

000 001 002 003 004 005 ROBUSTNESS OF PROBABILISTIC MODELS TO LOW- 006 QUALITY DATA: A MULTI-PERSPECTIVE ANALYSIS 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024

025 ABSTRACT 026 027

028 A systematic, comparative investigation into the effects of low-quality data reveals
029 a stark spectrum of robustness across modern probabilistic models. We find that
030 autoregressive language models, from token prediction to sequence-to-sequence
031 tasks, are remarkably resilient (for GPT-2, test NLL increases modestly from 2.87
032 to 3.59 despite 50% token corruption). By contrast, under the same levels of data
033 corruption, class-conditional diffusion models degrade catastrophically (image-
034 label consistency plummets by 56.81% relative to baseline), while classifiers show a
035 moderate impact that diminishes with dataset scale. To explain these discrepancies,
036 we analyze the results through a multi-perspective lens, integrating information
037 theory, PAC learning, and gradient dynamics. **These analyses suggest that robust-
038 ness is heavily influenced by two key principles:** the **richness of conditioning
039 information**, which constrains the learning problem, and the **absolute information
040 content** of the training data, which allows the signal from correct information to
041 dominate statistical noise.
042

043 1 INTRODUCTION 044

045 Contemporary deep learning models are trained on increasingly vast datasets where the presence of
046 low-quality data is inevitable (Radford et al., 2018; 2019; Brown et al., 2020; Podell et al., 2023b;
047 Li et al., 2024). How models contend with such data, however, is far from uniform. Our systematic
048 investigation reveals a stark divergence in robustness across modern probabilistic models: while
049 autoregressive language models and large-scale classifiers are remarkably resilient to high levels of
050 data corruption, class-conditional diffusion models exhibit catastrophic degradation under the same
051 conditions.
052

053 This dramatic disparity, which synthesizes observations from prior work on discriminative model
054 robustness (Rolnick et al., 2018) and generative model fragility (Na et al., 2023), motivates the
055 central goal of this paper: to move beyond model-specific observations and uncover the fundamental
056 principles governing this behavior. Why do some of the most powerful models in AI occupy opposite
057 ends of the robustness spectrum?

058 To systematically probe this disparity, we conduct a suite of controlled experiments across these
059 three representative model families. Our methodology involves dynamically introducing quantifiable,
060 random errors into the training data, allowing us to precisely control the level of corruption. This
061 paradigm lets us study the effects of what we term **low-quality data**, which we define functionally as
062 samples where the relationship between inputs, conditions, and target outputs has been corrupted in a
063 way that is detrimental to the specific learning task.
064

065 To answer this question, we adopt a multi-perspective analytical approach, integrating insights
066 from information theory, PAC learning, and gradient dynamics. We hypothesize that the observed
067 disparities can be explained by a coherent set of underlying factors. By integrating empirical findings
068 with these theoretical viewpoints, we aim to provide foundational insights for understanding and
069 predicting model robustness in real-world, noisy environments.
070

071 The key contributions of this work are as follows:
072

- We conduct a systematic empirical investigation that validates and quantifies a stark divergence in robustness across autoregressive language models, class-conditional diffusion models, and image classifiers, providing controlled evidence for this critical phenomenon.
- We propose and apply a multi-perspective analytical framework that uses information theory, PAC learning, and gradient dynamics to **explain what informational properties drive robustness, why they are formally required for generalization, and how the optimization process mechanistically achieves this resilience.**
- Through this integrated approach, we identify two fundamental factors that govern model robustness: (1) the **richness of conditioning information** available to the model, and (2) the **absolute information content** of the training data.

2 RELATED WORK

The challenge of training on imperfect data is a central theme in machine learning, giving rise to a rich literature on noise robustness. For discriminative models, this is a well-established field; the surprising resilience of deep classifiers to label noise is well-documented (Rolnick et al., 2018; ZhangChiyuan et al., 2021), leading to an ecosystem of solutions, from noise-robust loss functions (Menon et al., 2019; Chen et al., 2020) to techniques for noise correction (Yi & Wu, 2019). More recently, attention has turned to the fragility of modern generative models. This has spurred a new wave of targeted, architectural fixes for issues like noisy labels in class-conditional diffusion models (Na et al., 2023) and corrupted contexts in language models (Gao et al., 2024). In parallel, empirical work has validated the principle that massive data volume can overwhelm supervision noise (Jia et al., 2021). While these approaches are vital, they focus on fixing individual vulnerabilities rather than explaining their origins.

To analyze such phenomena, our work draws upon several foundational theoretical frameworks. The **information-theoretic perspective** builds on the seminal work of Shannon (Shannon, 1948) and its application to neural networks, which frames learning as a process of preserving a useful signal from noisy inputs (Tishby & Zaslavsky, 2015). The **PAC learning framework** provides a formal link between a task’s complexity (e.g., its Vapnik-Chervonenkis dimension), the required volume of clean data, and the feasibility of generalization (Valiant, 1984). Finally, the **gradient-based perspective** offers a mechanistic view rooted in the extensive literature on stochastic gradient descent (SGD) dynamics, where factors like batch size and the nature of gradient noise are known to be crucial for optimization and stable learning (Keskar et al., 2017).

Our work departs from the prevailing focus on model-specific engineering to conduct a fundamental, comparative investigation. Rather than chasing state-of-the-art performance on individual benchmarks, we aim to isolate the intrinsic properties that govern robustness across diverse model families. We are the first to systematically synthesize these distinct theoretical viewpoints to explain *why* a stark divergence in robustness exists between autoregressive, diffusion, and discriminative models. By integrating controlled experiments with this multi-perspective framework, we identify two core principles—richness of conditioning information and absolute information content—that provide a unified explanation for these disparate behaviors. A more comprehensive review of the literature is provided in Appendix F.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Our experimental methodology is designed to precisely measure the impact of low-quality data under controlled conditions. We introduce noise at ratios (r) from 0.1 to 1.0 relative to the clean data volume, creating effective error rates ($e = r/(1+r)$) up to 50.0%. We analyze the results using two complementary paradigms.

Noise Generation Protocols. To establish a foundational baseline for intrinsic robustness, our primary experiments employ unstructured, random noise. For text-based tasks, we corrupt target tokens by replacing them with tokens chosen uniformly at random from the entire vocabulary. For classification and class-conditional generation, labels are corrupted by replacement with a class

108 chosen uniformly from the $C - 1$ incorrect alternatives. Full pseudocode is provided in Appendix G
 109 for reproducibility. [While this stochastic corruption isolates the model’s ability to extract signal](#)
 110 [from noise, we also investigate the impact of realistic, systematic errors through structured noise](#)
 111 [experiments in Section 3.3 and Appendix L.](#)

112 **Primary Paradigm: Isolating Intrinsic Robustness.** For most of our experiments (autoregressive,
 113 diffusion, and classification models), our goal is to isolate the model’s intrinsic tolerance to noise.
 114 To do this, we hold the amount of correct supervision constant by scaling total training compute by
 115 $(1 + r)$. This design ensures that any performance degradation is a direct consequence of the added
 116 noise, not a lack of clean data. For stability in high-noise regimes, batch sizes were increased and
 117 iterations proportionally reduced to preserve this principle (see Appendix H).

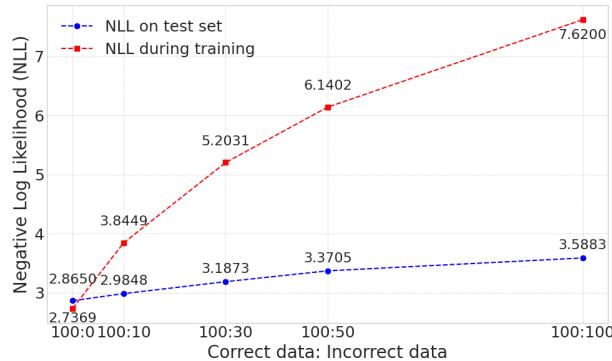
118 **Secondary Paradigm: Fixed-Budget and Structured Noise Analysis.** We also employ a secondary
 119 paradigm with a fixed computational budget (constant iterations). The first is a direct analysis of
 120 data replacement, where clean tokens are swapped with unstructured, random noise (Table 8). The
 121 second variation moves beyond unstructured noise to assess robustness against more challenging,
 122 structured errors. For these sequence-to-sequence experiments (Sec. 3.3), the flawed target data
 123 was generated by an early-stage, partially trained version of the model. This provides a crucial test
 124 of our rich-context hypothesis under a more realistic, non-random error distribution that mimics
 125 machine-generated artifacts.

127 3.2 AUTOREGRESSIVE MODELS FOR TEXT GENERATION ARE ROBUST TO LOW-QUALITY 128 DATA

130 To investigate the impact of incorrect data on the training of decoder-only transformer-based autoregressive models, we trained GPT-2 models (Radford et al., 2019) on the OpenWebText dataset
 131 (Gokaslan et al., 2019). OpenWebText is an open-source replication of the private WebText dataset
 132 originally used to train GPT-2 and comprises approximately 38 GB of text from 8,013,769 documents.
 133 The training set contains approximately 9 billion tokens, and the validation set contains approximately
 134 4 million tokens.

136 We trained 124M parameter GPT-2 models using the AdamW optimizer. The baseline model was
 137 trained for 600,000 iterations. For experiments with added noise, batch sizes and total iterations were
 138 scaled to maintain constant exposure to the original clean data, a strategy necessitated by training
 139 instability in high-noise regimes. Full architectural and training configuration details are provided in
 140 Appendix H.

141 Figure 1 shows the negative log-likelihood (NLL) resulting from training language models with different
 142 ratios of additional incorrect data. The NLL on the test set represents the final evaluation after training,
 143 while the NLL on the (noisy) training set is reported from the end of the training process. Even when trained on
 144 data with a high error rate, language models can still achieve good performance on the test set. Notably,
 145 high ratios of additional incorrect data ($r = 0.5, r = 1.0$) introduced significant instability; training with base-
 146 line batch sizes failed to converge due to what we identify as overwhelming gradient noise. To counteract this, it
 147 was necessary to increase the batch size—doubling it for $r = 0.5$ and using a twelve-fold increase for $r = 1.0$ —while proportionally
 148 reducing iterations to maintain equivalent exposure to correct samples. This necessary intervention
 149 provides direct empirical support for the gradient-averaging mechanism discussed in our analysis
 150 (Section 4.3). As the ratio of incorrect data increases, the NLL on the clean test set increases only
 151



153 **Figure 1: Impact of Increased Low-Quality Data on NLL.** Results for 100:50 and 100:100 used increased batch sizes
 154 and proportionally reduced iterations to maintain training
 155 stability and equivalent correct sample exposure.

156 To counteract this, it was necessary to increase the batch size—doubling it for $r = 0.5$ and using a twelve-fold increase for $r = 1.0$ —while proportionally
 157 reducing iterations to maintain equivalent exposure to correct samples. This necessary intervention
 158 provides direct empirical support for the gradient-averaging mechanism discussed in our analysis
 159 (Section 4.3). As the ratio of incorrect data increases, the NLL on the clean test set increases only
 160

162 slightly compared to the baseline (trained on correct data only), while the NLL on the noisy training
 163 set itself increases significantly with higher error rates. This phenomenon demonstrates that
 164 decoder-only transformer-based autoregressive models can learn effectively even in the presence of a
 165 substantial proportion of incorrect data.

166 To provide a complementary view under a **fixed computational budget**, we also analyzed performance
 167 where adding noisy data displaces clean data within a constant number of training steps.
 168 This analysis, detailed in Appendix I, reinforces our finding: even as the model attempts to fit the
 169 corrupted samples (leading to a high training NLL), its generalization to the clean data distribution
 170 remains largely intact (validation NLL increases only modestly). This further highlights the model’s
 171 resilience.

172

173 3.3 THE PROTECTIVE EFFECT OF RICH CONDITIONING IN SEQUENCE-TO-SEQUENCE 174 MODELS

175

176 Our information-theoretic and PAC learning
 177 analyses (Sec. 4.1, 4.2) predict that a model’s
 178 robustness is profoundly influenced by the rich-
 179 ness of its conditioning information. Rich con-
 180 text constrains the learning problem and lowers
 181 the task complexity (VC dimension), making
 182 the model less susceptible to noise in the tar-
 183 get. We test this prediction directly by com-
 184 paring two sequence-to-sequence tasks with a
 185 vast informational disparity: WMT 2014 trans-
 186 lation (Bojar et al., 2014) (sparse context, 99.9th
 187 percentile source length of 153 tokens) and
 188 CNN/DailyMail (Chen et al., 2016) summariza-
 189 tion (rich context, 2343 tokens).

190 To ensure a stringent test, we trained models
 191 from scratch and introduced **structured, non-**
 192 **random errors** into the target data using a
 193 "noisy teacher" paradigm. The results, shown in
 194 Figure 2, offer a clear empirical confirmation of
 195 our theoretical framework. At a 50% effective error rate,
 196 the NLL for the sparsely-conditioned WMT
 model degraded by 31.5%. In contrast, the richly-conditioned CNN/DailyMail model was far more
 resilient, with its NLL increasing by only 17.9%.

197 This finding provides strong evidence that robustness is not an inherent property of an architecture
 198 alone. Instead, it is heavily modulated by the information asymmetry between input and output.
 199 When a model can draw upon a strong, constraining signal from a rich context, it can effectively
 200 average out and overcome substantial noise in a comparatively low-information target. The full
 201 results and experimental details are available in Appendix K.

202

203 3.4 CLASS-CONDITIONAL DIFFUSION MODELS ARE NOT ROBUST TO LOW-QUALITY DATA

204

205 To investigate the impact of substantial low-quality data on image generation, we trained class-
 206 conditional diffusion models and a classifier network separately on CIFAR-10 and CIFAR-100
 207 (Krizhevsky, 2009). After training the diffusion model, we generated images by randomly selecting
 208 class labels as conditions. The pre-trained classifier then predicted labels for these generated images.
 209 We calculated an accuracy score by comparing these predicted labels with the conditioning labels
 210 used for generation.

211 We employ the EDM framework (Karras et al., 2022) for the diffusion model, using a U-Net architec-
 212 ture for the denoiser and a ResNet-18 model as the external classifier. Detailed hyperparameters for
 213 the diffusion process, network architectures, and training are available in Appendix H.

214 Algorithm 3 in Appendix G is used to generate incorrect labels. For a specific image, with a probability
 215 equal to the effective error rate e , its correct label was replaced by a new label randomly selected
 from the $C - 1$ alternative class labels.

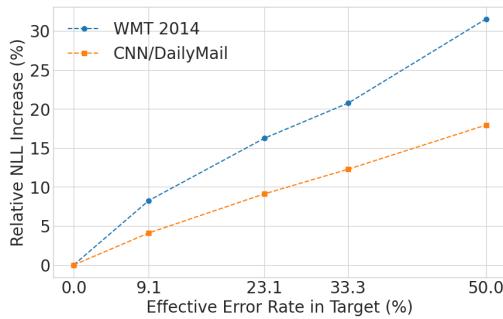


Figure 2: Relative NLL increase versus target noise. The model trained on CNN/DailyMail, with its information-rich conditioning input, is significantly more robust to target corruption than the WMT model, demonstrating how rich context constrains the learning problem.

216
 217 Table 1: Ratio of Additional Incorrect Data and Corresponding Classification Accuracy of Generated
 218 Images (Consistency with Conditioning Labels) for Image Generation Tasks.

219	220	221	222	223	224	Correct: Incorrect	CIFAR-10 Generation	CIFAR-100 Generation
225	226	227	228	229	230	100: 0	94.082%	65.236%
231	232	233	234	235	236	100: 10	84.160%	54.262%
237	238	239	240	241	242	100: 30	69.864%	38.882%
243	244	245	246	247	248	100: 50	57.876%	30.404%
249	250	251	252	253	254	100: 100	40.630%	16.996%

The results in Table 1 show a substantial decrease in the accuracy of the generated images (consistency with the conditioning labels) as the proportion of incorrect training labels increases. For example, on the CIFAR-10 dataset, when 100% additional incorrect data is used (effective error rate $e = 0.5$, corresponding to the ‘100:100’ condition), the accuracy drops from a baseline of 94.082% to 40.630%. For CIFAR-100, the impact is even more pronounced, with accuracy falling from 65.236% to 16.996% under the same conditions. Notably, the Fréchet Inception Distance (FID) scores for these generated images remained relatively stable across different levels of label incorrectness (see Appendix O for details). This suggests that the degradation in performance is primarily due to a weakened association between images and their conditioning labels, rather than a general decline in perceptual image quality.

3.5 ABSOLUTE INFORMATION CONTENT: CLASSIFIER ROBUSTNESS EMERGES AT SCALE

239 Table 2: Ratio of Increased Incorrect Data and Corresponding Accuracy for CIFAR Classification
 240 Tasks

241	242	243	244	245	246	Correct:Incorrect	CIFAR-10 Classification	CIFAR-100 Classification
247	248	249	250	251	252	100: 0	95.30%	78.96%
253	254	255	256	257	258	100: 10	95.11%	77.33%
259	260	261	262	263	264	100: 30	90.18%	67.68%
265	266	267	268	269	270	100: 50	89.19%	63.71%
271	272	273	274	275	276	100: 100	85.35%	61.65%

While autoregressive models demonstrated inherent robustness, the behavior of classifiers presents a more nuanced picture that powerfully highlights the role of dataset scale. On smaller datasets like CIFAR-10 and CIFAR-100, a ResNet-18 model trained from scratch exhibits moderate sensitivity to label noise, with performance degrading as corruption increases (Table 2). This establishes a baseline for moderately complex tasks with limited data.

254 Table 3: Ratio of Increased Incorrect Data and Corresponding Accuracy for ImageNet Classification
 255 Tasks

256	257	258	259	260	261	Correct:Incorrect	ImageNet-10	ImageNet-100	ImageNet-1000
262	263	264	265	266	267	100: 0	62.302%	64.520%	73.784%
268	269	270	271	272	273	100: 10	62.500%	63.360%	73.530%
274	275	276	277	278	279	100: 30	58.929%	57.560%	73.646%
280	281	282	283	284	285	100: 50	54.563%	57.220%	73.684%
286	287	288	289	290	291	100: 100	50.794%	45.920%	74.778%

To test the hypothesis that robustness is driven by the **absolute information content** of the clean data in section 4.1.2, we scaled up to ImageNet (Deng et al., 2009) using a ViT-Base model, again trained from scratch to eliminate pre-training as a confounder. The results in Table 3 are striking. While the ImageNet-10 and -100 subsets degrade similarly to CIFAR, the model trained on the full 1.28M-sample ImageNet-1000 dataset becomes almost impervious to label noise. Counter-intuitively, performance did not degrade but slightly improved, even when the training data contained 50% incorrect labels under the same setting, [an effect we attribute to the additional training compute in our experimental design](#).

270 In high-noise regimes on the subsets, it was necessary to increase batch sizes to stabilize training—an
 271 empirical confirmation of the gradient-averaging mechanism we analyze in Section 4.3. This intervention,
 272 detailed in Appendix H, ensures a fair comparison. The extreme robustness on ImageNet-1000
 273 thus provides compelling evidence that a sufficiently large volume of correct signal can dominate
 274 statistical noise. **This robustness is further confirmed by our complementary **fixed-budget analysis****
 275 **(see Appendix J)**, which isolates the effect from increased compute.

277 4 ANALYSIS

279 We analyze why autoregressive models and classification models can learn effectively despite sub-
 280 stantial low-quality training data, while class-conditional diffusion models struggle under similar
 281 conditions. Our analysis is conducted from three complementary perspectives: information-theoretic,
 282 probably approximately correct (PAC), and gradient-based. **This convergence analysis explains what**
 283 **informational properties drive robustness (information theory)**, why these properties are a formal
 284 requirement for generalization (PAC learning), and how the model mechanistically achieves this
 285 resilience (gradient dynamics). The analysis is built upon two fundamental principles. The first is the
 286 **richness of conditioning information**, which fundamentally governs a task’s complexity (a property
 287 formalized by PAC theory). The second is the **absolute information content** of the data, which
 288 provides the learnable signal that can be mechanically extracted from noise via gradient aggregation.

290 4.1 INFORMATION-THEORETIC PERSPECTIVE

291 Information theory (Shannon, 1948), introduced to quantify information in communication, also
 292 offers a valuable lens for understanding machine learning as a process of information transfer to a
 293 model.

295 4.1.1 RESIDUAL INFORMATION IN LOW-QUALITY DATA

297 To understand how models learn from corrupted data, we first quantify the amount of instructive
 298 signal that survives the introduction of noise. We measure this using **relative information loss**: the
 299 fraction of label uncertainty attributable to data corruption, normalized by the total entropy of the
 300 true labels. Let \mathbf{y} be the true label and \mathbf{x} be the observed (potentially corrupted) label from a set of n
 301 classes. Assuming a uniform error model where an incorrect label is chosen randomly from the $n - 1$
 302 alternatives with probability p_e , the relative information loss is:

$$303 \text{information_loss} = \frac{-(1 - p_e) \log_2(1 - p_e) - p_e \log_2 p_e + p_e \log_2(n - 1)}{H(\mathbf{y})} \quad (1)$$

306 This formulation (derived in Appendix Q) isolates the information-theoretic penalty of label noise
 307 itself. Analyzing this equation shows that for a large number of classes n , the loss increases
 308 approximately linearly with the error rate p_e . Additionally, for a fixed error rate, the relative
 309 information loss decreases as n grows.

310 These behaviors help explain the general
 311 performance degradation trends in our ex-
 312 periments (Section 3). However, the practi-
 313 cal impact of n is often coupled with other
 314 factors, such as the absolute data volume.
 315 The crucial insight from this analysis is
 316 that instructive information persists as long
 317 as the observed labels are not statistically
 318 independent of the true labels. This inde-
 319 pendence occurs at a single, precise point:
 320 when $p_e = (n - 1)/n$. For error rates
 321 greater than this, the corrupted labels can
 322 paradoxically become informative again
 323 (e.g., $p_e = 1$ simply represents a perfectly
 324 inverted signal when $n = 2$). Our analy-
 325 sis and experiments operate in the realistic,

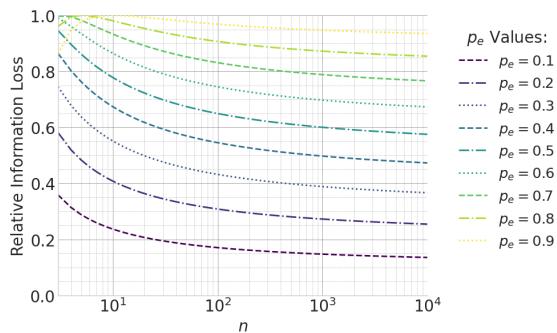


Figure 3: Behavior of Relative Information Loss with
 Varying p_e and n

324 information-degrading regime of $p_e \leq (n - 1)/n$. Within this scope, a residual signal always
 325 exists, allowing a model with sufficient capacity and data to extract meaningful patterns even from
 326 substantially noisy datasets. Figure 3 illustrates this behavior.
 327

328 4.1.2 ABSOLUTE INFORMATION CONTENT AS THE PRIMARY DRIVER OF ROBUSTNESS 329

330 Beyond the analysis of residual information quantifies the information remaining even in corrupted
 331 data, our analysis identifies the **absolute information content** of the training data as a principal
 332 driver of robustness. We define this as the total, aggregate quantity of correct, instructive information
 333 available across the entire dataset for learning the desired conditional distribution, $p(y|x)$.
 334

335 It is crucial to distinguish what information a corrupted sample provides. An image with an incorrect
 336 label, for instance, still contributes to the model’s understanding of the input distribution, $p(x)$, aiding
 337 the learning of robust visual features in a manner similar to unsupervised learning. However, it
 338 provides zero instructive information for the supervised task itself. Only the uncorrupted samples
 339 contribute to the absolute information content that correctly guides the model to learn the input-output
 340 relationship.
 341

342 Our experimental design directly investigates this principle. By scaling the total training duration
 343 by a factor of $(1 + r)$, we ensure that across all experiments, the model is exposed to a constant
 344 and substantial quantity of this **correct instructive information**, holding the absolute information
 345 content steady.
 346

347 The remarkable robustness of the classifier trained on the full ImageNet-1000 dataset is a powerful
 348 illustration of this concept. While the feature extractors learn from all processed images, the final
 349 classification is shaped by the immense absolute information content provided by the 1.28 million
 350 clean samples. This aggregate signal is so overwhelmingly strong that it provides a clear directive for
 351 the learning task, effectively allowing the model to average out and disregard the conflicting gradients
 352 from the noisy labels. This establishes that a sufficiently large absolute quantity of correct, instructive
 353 information is a dominant factor in ensuring model robustness, explaining why massive datasets can
 354 often tolerate significant levels of noise.
 355

356 4.1.3 THE ROLE OF RICHER CONDITIONING INFORMATION 357

358 We hypothesize that robustness is deeply influenced by the information asymmetry between the
 359 conditioning variables (inputs) and the target variables (outputs). Richer conditioning variables
 360 provide a more constrained and informative context, which can empower a model to overcome noise,
 361 particularly when that noise is in a comparatively information-sparse target.
 362

363 This principle is demonstrated across our experiments. In our autoregressive language models,
 364 the conditioning context of previous tokens, $p(\text{next_token}|\text{previous_tokens})$, is information-rich
 365 compared to the single target token. Similarly, for image classifiers, the input image, $p(\text{label}|\text{image})$,
 366 contains vastly more information than the simple class label. Both of these model types proved robust
 367 when their information-sparse targets (the next token or the class label) were corrupted.
 368

369 Conversely, our class-conditional diffusion models, $p(\text{image}|\text{class_label})$, represent the opposite
 370 scenario. The conditioning variable (a single class label) is extremely information-sparse relative to
 371 the high-information target (a complete image). As predicted by our hypothesis, these models were
 372 highly fragile when this low-information conditioning signal was corrupted.
 373

374 The sequence-to-sequence experiments in Section 3.3 provide an even more direct and compelling
 375 validation of this principle. We compared two tasks where the targets were corrupted: one with a
 376 short, less informative conditioning input (WMT 2014, with a 99.9th percentile source length of 153
 377 tokens) and one with a long, information-rich conditioning input (CNN/DailyMail, 2343 tokens).
 378 The results were unambiguous: the model with the richer conditioning information (CNN/DailyMail)
 379 was significantly more robust, exhibiting only a 17.9% performance degradation compared to 31.5%
 380 for the model with the sparser input.
 381

382 This demonstrates a clear pattern: models are vulnerable when low-information conditions are
 383 used to guide high-information outputs, but they can be remarkably robust when rich conditioning
 384 information provides a strong signal to overcome noise in simpler targets. This establishes the relative
 385

378 richness of the conditioning information as a key determinant of a model’s resilience to low-quality
 379 data.
 380

381 4.2 PROBABLY APPROXIMATELY CORRECT PERSPECTIVE
 382

383 The Probably Approximately Correct (PAC) learning framework (Valiant, 1984) offers a theoretical
 384 lens through which we can understand the principles of richer conditioning information and absolute
 385 information content. PAC theory defines the sample complexity, m , as the minimum number of
 386 examples required to learn a concept with a low generalization error. For any concept class with a
 387 Vapnik-Chervonenkis (VC) dimension of d , this sample complexity m is lower-bounded:

$$388 \quad m \geq c_0 \left(\frac{1}{\epsilon} \log \frac{1}{\delta} + \frac{d}{\epsilon} \log \frac{1}{\epsilon} \right) \quad (2)$$

391 where ϵ and δ are the error and confidence parameters, and c_0 is a constant. (Kearns & Vazirani,
 392 1994) This inequality reveals how both of our core robustness principles are grounded in learning
 393 theory.

394 First, the required number of samples, m , provides the theoretical foundation for what we term
 395 the **absolute information content**. A model’s ability to generalize is contingent upon receiving a
 396 sufficient quantity of clean, instructive examples. When training data is noisy, only the uncorrupted
 397 samples contribute toward meeting this required threshold m . Our ImageNet experiment is a
 398 clear example: the sheer volume of the clean dataset (1.28 million samples) provides an absolute
 399 information content that far exceeds the minimum m required for the task, even when a large number
 400 of noisy samples are present. This vast quantity of correct information ensures robust learning.

401 Second, the VC dimension, d , which reflects the complexity of the function the model must learn, is
 402 directly related to the principle of **richer conditioning information**. The value of d is determined
 403 not just by the task, but by the complexity of the conditional distribution being modeled.

- 405 • **Richer Conditioning (e.g., Classification):** In tasks like $p(\text{label}|\text{image})$, the conditioning
 406 variable (image) is information-rich, while the target (label) is simple. The rich input
 407 severely constrains the possible outputs, simplifying the learning problem. This corresponds
 408 to a concept class with a lower effective VC dimension d .
- 409 • **Sparse Conditioning (e.g., Conditional Diffusion):** In tasks like $p(\text{image}|\text{label})$, the
 410 conditioning variable (label) is information-sparse, while the target (image) is extremely
 411 complex. The sparse input provides very little constraint, meaning the model must learn a
 412 far more complex function. This corresponds to a much higher VC dimension d .

413 According to Inequality 2, a higher VC dimension d demands a significantly larger number of samples
 414 m . Class-conditional diffusion models, with their sparse conditioning and consequently higher d ,
 415 have an enormous requirement for absolute information content. This makes them exceptionally
 416 vulnerable to low-quality data, as noise rapidly depletes the effective number of clean samples below
 417 the critical threshold m needed for successful learning.

418 Thus, the PAC framework converges with the information-theoretic perspective, identifying richer
 419 conditioning information (which lowers d) and sufficient absolute information content (which satisfies
 420 m) as the intertwined, principal drivers of a model’s robustness to noisy data.

422 4.3 GRADIENT-BASED PERSPECTIVE
 423

424 The training of modern neural networks via backpropagation (Rumelhart et al., 1986) provides a
 425 mechanistic explanation for how models achieve robustness to noisy data. This perspective highlights
 426 how aggregating samples amplifies the coherent signal from correct information while averaging out
 427 divergent noise from corrupted data, thereby leveraging the dataset’s absolute information content.

428 Within any given training batch, the total gradient, $\mathbf{g}_{\text{total}}$, can be decomposed into a coherent signal
 429 from correct samples and divergent noise from incorrect ones:

$$431 \quad \mathbf{g}_{\text{total}} = \mathbf{g}_{\text{correct_signal}} + \sum_j \mathbf{g}_{\text{noise_component_}j} \quad (3)$$

432 Here, $g_{correct_signal}$ represents the consistent directional update from clean samples, guiding the
 433 model toward the true data manifold. By contrast, each $g_{noise_component_j}$ arises from a corrupted
 434 sample and points in a less predictable, often orthogonal, direction. To quantitatively validate
 435 this decomposition and the effect of sample aggregation, we analyzed per-example gradients at
 436 initialization across different data corruption ratios and batch sizes. The results are summarized in
 437 Table 4.

438
 439

440 Table 4: Quantitative Analysis of Gradient Coherence. Clean gradients exhibit strong, **coherent**
 441 **positive alignment** (+0.52), while corrupted gradients are directionally random and orthogonal
 442 (similarity ≈ 0). This disparity allows larger batch sizes to amplify the coherent signal relative to the
 443 noise, systematically improving the Signal-to-Noise Ratio.

Metric	25% Corruption		50% Corruption	
	Batch Size = 4	Batch Size = 8	Batch Size = 4	Batch Size = 8
<i>Directional Coherence (Mean Cosine Similarity)</i>				
Clean vs. Clean	+0.52	+0.52	+0.52	+0.52
(Min, Max)	(+0.00, +0.76)	(-0.00, +0.76)	(+0.00, +0.73)	(+0.00, +0.76)
Corrupt vs. Corrupt	+0.001	+0.001	+0.001	+0.001
(Min, Max)	(-0.02, +0.02)	(-0.02, +0.02)	(-0.01, +0.02)	(-0.01, +0.02)
Clean vs. Corrupt	+0.001	+0.001	+0.001	+0.001
(Min, Max)	(-0.03, +0.03)	(-0.03, +0.03)	(-0.03, +0.03)	(-0.03, +0.05)
<i>Aggregated Signal Magnitude (Mean L2 Norm)</i>				
Aggregated Clean Signal	6.13	11.37	4.19	7.88
Aggregated Noise Signal	0.84	1.36	1.42	2.06
Signal-to-Noise Ratio	7.31x	8.34x	2.96x	3.83x

458
 459
 460 Table 4 provides direct empirical validation of our hypothesis. First, the coherence analysis confirms a
 461 fundamental disparity: gradients from clean data are consistently and strongly aligned (mean similarity
 462 +0.52), while gradients from corrupted data are directionally random, centered symmetrically around
 463 zero and orthogonal to the clean signal. This holds true regardless of noise ratio or batch size.
 464 Second, and most critically, the table demonstrates the power of aggregation. For both 25% and 50%
 465 corruption levels, doubling the batch size causes the magnitude of the aggregated clean signal to
 466 nearly double, consistent with constructive accumulation. In contrast, the aggregated noise magnitude
 467 grows at a much slower rate, reflecting partial cancellation. Consequently, the signal-to-noise ratio
 468 systematically improves with a larger batch size in all scenarios. This provides a concrete mechanistic
 469 explanation for why larger batches are crucial for stabilizing training in high-noise regimes, as
 470 observed in our main experiments.(see Appendix M for full experimental details).

471 This fundamental mechanism of signal amplification has a direct, macroscopic consequence on the
 472 training process: it stabilizes the learning trajectory. To quantify this effect, we analyzed the loss
 473 statistics of a converged model across varying global batch sizes, as summarized in Table 5.

474

475 Table 5: Impact of Global Effective Batch Size on Gradient Signal Stability. The high mean loss
 476 for the noisy model is an expected consequence of fitting noise, whiles the sharp reduction in loss
 477 standard deviation with larger batches demonstrates increased training stability through gradient
 478 cancellation.

Global Batch Size	Noisy Model (50% Corruption)		Clean Model (Baseline)	
	Mean Loss	Std. Dev. ($\times 10^{-3}$)	Mean Loss	Std. Dev. ($\times 10^{-3}$)
480	7.5806	9.45	2.8366	17.50
960	7.5811	7.08	2.8377	13.17
1920	7.5809	4.58	2.8373	8.85
3840	7.5805	3.61	2.8369	6.43
7680	7.5807	2.40	2.8375	4.44

486 These results provide direct quantitative evidence of how sample aggregation stabilizes learning.
 487 For a noisy model (50% corruption), the mean loss is significantly higher (≈ 7.58) compared to the
 488 clean baseline (≈ 2.84). It is vital to distinguish this high mean loss from the net direction of the
 489 parameter update. The elevated loss is an expected consequence of the objective accommodating the
 490 50% corrupted labels, reflecting a necessary compromise in fitting the noisy data.

491 However, the stability of the learning process is revealed by the loss variance. At first glance, the
 492 noisy model in Table 5 appears more stable, exhibiting a lower loss standard deviation than the
 493 clean baseline. This is a statistical artifact: the consistently high, low-variance loss from corrupted
 494 random targets statistically dampens the natural, higher variance from the clean data. The crucial
 495 insight, therefore, comes not from the absolute variance but from its trend. As the global effective
 496 batch size scales from 480 to 7680, the inter-batch standard deviation of the loss—a direct proxy for
 497 gradient stability—is reduced by approximately 75% in both noisy and clean scenarios. This sharp
 498 reduction signifies that the aggregated gradient provides a stable and consistent update direction.
 499 Although the noisy samples dampen the overall gradient magnitude, the coherent signal from the
 500 correct samples remains dominant after the divergent noisy gradients partially cancel each other out.
 501 This enables a reliable optimization trajectory that, over many steps, allows the model to learn the
 502 true data distribution, explaining its strong generalization despite the high training loss.

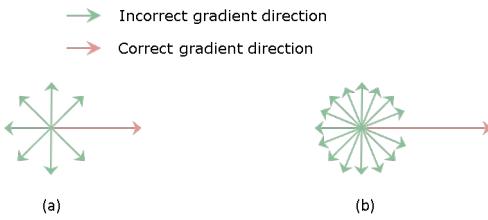
503 This mechanism is further validated by our nec-
 504 cessary intervention in Section 3.2. When base-
 505 line batch sizes led to instability in high-noise
 506 autoregressive model training, we increased
 507 them up to twelve-fold to achieve convergence.
 508 As Figure 4(b) illustrates, this directly strength-
 509 ens the cumulative $g_{\text{correct_signal}}$ sufficiently to
 510 dominate the increased, but largely canceling,
 noise.

511 Therefore, the gradient perspective confirms that
 512 aggregating samples is the crucial mechanism
 513 through which the statistical power of absolute
 514 information content is realized, enabling robust
 515 learning even with substantial low-quality data.
 516 This statistical averaging effect may be a fundamental reason why training large models often requires
 517 very large batch sizes (Yang et al., 2024; Touvron et al., 2023; Dubey et al., 2024; DeepSeek-AI,
 518 2024).

5 CONCLUSION

525 This paper confronts a critical challenge in modern machine learning: the impact of low-quality
 526 data on probabilistic models. Our systematic investigation reveals a stark divergence in robustness
 527 across model families. We find that autoregressive models, spanning both token-level prediction
 528 and sequence-to-sequence tasks, are remarkably resilient to significant data corruption, as are large-
 529 scale image classifiers. In sharp contrast, class-conditional diffusion models exhibit catastrophic
 530 degradation within our comparative analysis, pinpointing a critical vulnerability.

531 To explain these disparities, we analyze these results through a multi-perspective lens, integrating
 532 principles from information theory, PAC learning, and gradient dynamics to show what informational
 533 properties drive robustness, why they are formally required for generalization, and how this
 534 is mechanistically achieved. Our convergence analysis suggests that robustness in this context is
 535 heavily influenced by two key factors: the richness of conditioning information, which constrains
 536 the learning problem, and the absolute information content of the training data, which allows the
 537 aggregate signal from correct supervision to dominate the statistical noise from flawed examples.
 538 These principles move beyond model-specific observations to provide a more fundamental under-
 539 standing of learning dynamics, offering crucial guidance for designing the next generation of reliable
 models intended for imperfect real-world data environments.



540 Figure 4: Interpretation of the gradient-based per-
 541 spective. (a) Gradients from correct data are coher-
 542 ent, while those from incorrect data are divergent.
 543 (b) Aggregating samples in larger batches ampli-
 544 fies the correct signal relative to the noise.

540 REFERENCES
541

542 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
543 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rombach.
544 Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets, November
545 2023a.

546 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
547 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rombach.
548 Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets, November
549 2023b.

550 Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Level-
551 ing, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia, and
552 Aleš Tamchyna. Findings of the 2014 Workshop on Statistical Machine Translation. In Ondřej
553 Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Christof Monz, Matt
554 Post, and Lucia Specia (eds.), *Proceedings of the Ninth Workshop on Statistical Machine Transla-*
555 *tion*, pp. 12–58, Baltimore, Maryland, USA, June 2014. Association for Computational Linguistics.
556 doi: 10.3115/v1/W14-3302. URL <https://aclanthology.org/W14-3302/>.

557 Zalán Borsos, Raphaël Marinier, Damien Vincent, Eugene Kharitonov, Olivier Pietquin, Matt
558 Sharifi, Dominik Roblek, Olivier Teboul, David Grangier, Marco Tagliasacchi, and Neil Zeghi-
559 dour. AudioLM: a language modeling approach to audio generation, 2023. URL [http://arxiv.org/abs/2209.03143](https://arxiv.org/abs/2209.03143).

560 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
561 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
562 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
563 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
564 teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCand-
565 dish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
566 ers. In *Advances in Neural Information Processing Systems*, volume 33, pp. 1877–1901.
567 Curran Associates, Inc., 2020. URL <https://papers.nips.cc/paper/2020/hash/1457c0d6bfc4967418fb8ac142f64a-Abstract.html>.

568 Danqi Chen, Jason Bolton, and Christopher D. Manning. A Thorough Examination of the CNN/Daily
569 Mail Reading Comprehension Task. In Katrin Erk and Noah A. Smith (eds.), *Proceedings of the*
570 *54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
571 pp. 2358–2367, Berlin, Germany, August 2016. Association for Computational Linguistics. doi:
572 10.18653/v1/P16-1223. URL <https://aclanthology.org/P16-1223/>.

573 Jian Chen, Ruiyi Zhang, Tong Yu, Rohan Sharma, Zhiqiang Xu, Tong Sun, and Changyou Chen.
574 Label-Retrieval-Augmented Diffusion Models for Learning from Noisy Labels. November 2023a.
575 URL <https://openreview.net/forum?id=o778eWSr1S¬eId=TSSjz7iHpm>.

576 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
577 Ping Luo, Huchuan Lu, and Zhenguo Li. PixArt-\$\alpha\$: Fast Training of Diffusion Transformer
578 for Photorealistic Text-to-Image Synthesis. In *The Twelfth International Conference on Learning*
579 *Representations*, October 2023b.

580 Pengfei Chen, Guangyong Chen, Junjie Ye, Jingwei Zhao, and Pheng-Ann Heng. Noise against
581 noise: stochastic label noise helps combat inherent label noise. October 2020. URL <https://openreview.net/forum?id=80FMCTS6J0>.

582 Christopher Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006.
583 URL <https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/>.

584 DeepSeek-AI. DeepSeek-v2: A strong, economical, and efficient mixture-of-experts language model,
585 2024. URL [http://arxiv.org/abs/2405.04434](https://arxiv.org/abs/2405.04434).

594 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
 595 scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern*
 596 *Recognition*, pp. 248–255, June 2009. doi: 10.1109/CVPR.2009.5206848.

597

598 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
 599 *Advances in Neural Information Processing Systems*, volume 34, pp. 8780–8794. Curran Asso-
 600 ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html.

601

602 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 603 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 604 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
 605 In *International Conference on Learning Representations*, October 2020.

606

607 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 608 Letman, Akhil Mathur, and et al. The llama 3 herd of models, 2024. URL <http://arxiv.org/abs/2407.21783>.

609

610 Hongfu Gao, Feipeng Zhang, Wenyu Jiang, Jun Shu, Feng Zheng, and Hongxin Wei. On
 611 the Noise Robustness of In-Context Learning for Text Generation. November 2024.
 612 URL [https://openreview.net/forum?id=00uVk06eVK&referrer=%5Bthe%20profile%20of%20Hongfu%20Gao%5D\(%2Fprofile%3Fid%3D~Hongfu_Gao2\)](https://openreview.net/forum?id=00uVk06eVK&referrer=%5Bthe%20profile%20of%20Hongfu%20Gao%5D(%2Fprofile%3Fid%3D~Hongfu_Gao2)).

613

614

615 Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. <http://Skylion007.github.io/OpenWebTextCorpus>, 2019.

616

617 Youdi Gong, Guangzhen Liu, Yunzhi Xue, Rui Li, and Lingzhong Meng. A survey on dataset
 618 quality in machine learning. *Information and Software Technology*, 162:107268, October 2023.
 619 ISSN 0950-5849. doi: 10.1016/j.infsof.2023.107268. URL <https://www.sciencedirect.com/science/article/pii/S0950584923001222>.

620

621

622 Alex Graves. Generating sequences with recurrent neural networks, 2014. URL <http://arxiv.org/abs/1308.0850>.

623

624

625 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
 626 Recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
 627 pp. 770–778, 2016.

628

629 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Ad-
 630 vances in Neural Information Processing Systems*, volume 33, pp. 6840–6851. Curran Asso-
 631 ciates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html>.

632

633 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
 634 Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen Video: High
 635 Definition Video Generation with Diffusion Models, October 2022a.

636

637 Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
 638 Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High
 639 definition video generation with diffusion models, 2022b. URL <http://arxiv.org/abs/2210.02303>.

640

641 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9
 642 (8):1735–1780, 1997. ISSN 0899-7667, 1530-888X. doi: 10.1162/neco.1997.9.8.1735. URL
 643 <https://direct.mit.edu/neco/article/9/8/1735-1780/6109>.

644

645 J. Stuart Hunter. The Exponentially Weighted Moving Average. *Journal of Quality Technology*,
 646 October 1986. ISSN 0022-4065.

647

Aapo Hyvärinen. Estimation of Non-Normalized Statistical Models by Score Matching. *Journal of
 648 Machine Learning Research*, 6(24):695–709, 2005. ISSN 1533-7928.

648 Jiaming Ji, Kaile Wang, Tianyi Alex Qiu, Boyuan Chen, Jiayi Zhou, Changye Li, Hantao Lou, Josef
 649 Dai, Yunhuai Liu, and Yaodong Yang. Language Models Resist Alignment: Evidence From
 650 Data Compression. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
 651 Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational
 652 Linguistics (Volume 1: Long Papers)*, pp. 23411–23432, Vienna, Austria, July 2025. Association
 653 for Computational Linguistics. ISBN 9798891762510. doi: 10.18653/v1/2025.acl-long.1141.
 654 URL <https://aclanthology.org/2025.acl-long.1141/>.

655 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 656 Sung, Zhen Li, and Tom Duerig. Scaling Up Visual and Vision-Language Representation Learning
 657 With Noisy Text Supervision. In *Proceedings of the 38th International Conference on Machine
 658 Learning*, pp. 4904–4916. PMLR, July 2021. URL <https://proceedings.mlr.press/v139/jia21b.html>. ISSN: 2640-3498.

660 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 661 based generative models. In *Advances in Neural Information Processing Systems*, 2022. URL
 662 <https://openreview.net/forum?id=k7FuTOWM0c7>.

664 Michael J. Kearns and Umesh Vazirani. *An Introduction to Computational Learning Theory*. MIT Press, 1994. URL <https://direct.mit.edu/books/monograph/2604/An-Introduction-to-Computational-Learning-Theory>.

668 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
 669 Tang. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.
 670 February 2017. URL <https://openreview.net/forum?id=H1oyR1Ygg>.

671 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A Versatile
 672 Diffusion Model for Audio Synthesis. In *International Conference on Learning Representations*,
 673 October 2020a.

675 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A versatile
 676 diffusion model for audio synthesis. In *International Conference on Learning Representations*,
 677 2020b. URL <https://openreview.net/forum?id=a-xFK8Ymz5J>.

678 Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet,
 679 Devi Parikh, Yaniv Taigman, and Yossi Adi. AudioGen: Textually guided audio generation.
 680 In *The Eleventh International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=CYK7RfcOzQ4>.

683 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report TR-2009,
 University of Toronto, 2009. Accessed: 2024-07-10.

685 Kuaishou. KLING AI: Next-generation ai creative studio. <https://www.klingai.com/>, 2024.
 686 Accessed: 2024-09-22.

688 Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang,
 689 Xingchao Liu, and et al. Hunyuan-DiT: A powerful multi-resolution diffusion transformer with
 690 fine-grained chinese understanding, 2024. URL <http://arxiv.org/abs/2405.08748>.

691 Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D.
 692 Plumbley. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models, September 2023.

694 I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. In *International Conference
 695 on Learning Representations*, November 2017.

696 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Er-
 697 mon. SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations. In
 698 *International Conference on Learning Representations*, October 2021.

700 Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar. Can gradient
 701 clipping mitigate label noise? September 2019. URL <https://openreview.net/forum?id=rk1B76EKPr>.

702 Byeonghu Na, Yeongmin Kim, HeeSun Bae, Jung Hyun Lee, Se Jung Kwon, Wanmo Kang,
 703 and Il-chul Moon. Label-Noise Robust Diffusion Models. October 2023. URL <https://openreview.net/forum?id=HXWTXXtHn1>.
 704

705 Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray
 706 Kavukcuoglu. Conditional image generation with PixelCNN decoders. In *Proceedings of the 30th*
 707 *International Conference on Neural Information Processing Systems*, NIPS'16, pp. 4797–4805.
 708 Curran Associates Inc., 2016. ISBN 978-1-5108-3881-9.
 709

710 OpenAI. Video generation models as world simulators. <https://openai.com/index/video-generation-models-as-world-simulators/>, 2024. Accessed: 2024-09-22.
 711 Published by OpenAI.
 712

713 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 714 Aleman, and et al. GPT-4 technical report, 2024. URL <http://arxiv.org/abs/2303.08774>.
 715

716 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 717 Penna, and Robin Rombach. SDXL: Improving Latent Diffusion Models for High-Resolution
 718 Image Synthesis. In *The Twelfth International Conference on Learning Representations*, October
 719 2023a.
 720

721 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 722 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 723 synthesis, 2023b. URL <http://arxiv.org/abs/2307.01952>.
 724

725 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
 726 standing by generative pre-training, 2018.
 727

728 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 729 models are unsupervised multitask learners, 2019.
 730

731 David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep Learning is Robust to Massive
 732 Label Noise, February 2018.
 733

734 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
 735 Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
 736 Frangi (eds.), *Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015*,
 737 Lecture Notes in Computer Science, pp. 234–241, Cham, 2015. Springer International Publishing.
 738 ISBN 978-3-319-24574-4. doi: 10.1007/978-3-319-24574-4_28.
 739

740 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
 741 back-propagating errors. *Nature*, 323(6088):533–536, October 1986. ISSN 1476-4687. doi:
 742 10.1038/323533a0. URL <https://doi.org/10.1038/323533a0>.
 743

744 Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. <https://github.com/mseitzer/pytorch-fid>, August 2020. Version 0.3.0.
 745

746 C. E. Shannon. A mathematical theory of communication. *The Bell System Technical Journal*, 27(3):
 747 379–423, July 1948. ISSN 0005-8580. doi: 10.1002/j.1538-7305.1948.tb01338.x.
 748

749 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 750 Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-A-Video:
 751 Text-to-Video Generation without Text-Video Data. In *The Eleventh International Conference on*
 752 *Learning Representations*, September 2022a.
 753

754 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang,
 755 Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video: Text-to-
 756 video generation without text-video data. In *The Eleventh International Conference on Learning*
 757 *Representations*, 2022b. URL <https://openreview.net/forum?id=nJfy1Dvgz1q>.
 758

756 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 757 learning using nonequilibrium thermodynamics. In *Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37*, ICML'15, pp. 2256–2265,
 758 Lille, France, July 2015. JMLR.org.

759

760 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. In
 761 *International Conference on Learning Representations*, October 2020a.

762

763 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data dis-
 764 tribution. In *Advances in Neural Information Processing Systems*, volume 32. Curran Asso-
 765 ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/hash/3001ef257407d5a371a96cd947c7d93-Abstract.html.

766

767 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
 768 Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
 769 *International Conference on Learning Representations*, October 2020b.

770

771 Gemini Team, Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry, Lepikhin, Timothy Lillicrap,
 772 Jean-baptiste Alayrac, Radu Soricu, Angeliki Lazaridou, Orhan Firat, Julian Schrittweiser, Ioannis
 773 Antonoglou, Rohan Anil, Sebastian Borgeaud, and et al. Gemini 1.5: Unlocking multimodal
 774 understanding across millions of tokens of context, 2024. URL <http://arxiv.org/abs/2403.05530>.

775

776 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In *2015
 777 IEEE Information Theory Workshop (ITW)*, pp. 1–5, April 2015. doi: 10.1109/ITW.2015.7133169.
 778 URL <https://ieeexplore.ieee.org/document/7133169>.

779

780 Hugo Touvron, Louis Martin, and Kevin Stone. Llama 2: Open foundation and fine-tuned chat
 781 models, 2023.

782

783 L. Valiant. A theory of the learnable. *Symposium on the Theory of Computing*, 1984.

784

785 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
 786 Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Ad-
 787 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 788 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fb053c1c4a845aa-Abstract.html.

789

790

791 Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. *Neural
 792 Computation*, 23(7):1661–1674, July 2011. ISSN 0899-7667. doi: 10.1162/NECO_a_00142.

793

794 Song Wang, Zhen Tan, Ruocheng Guo, and Jundong Li. Noise-Robust Fine-Tuning of Pre-
 795 trained Language Models via External Guidance. In Houda Bouamor, Juan Pino, and Kali-
 796 ka Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*,
 797 pp. 12528–12540, Singapore, December 2023a. Association for Computational Linguistics.
 798 doi: 10.18653/v1/2023.findings-emnlp.834. URL <https://aclanthology.org/2023.findings-emnlp.834>.

799

800 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolif-
 801 Dreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation. In
 802 *Thirty-Seventh Conference on Neural Information Processing Systems*, November 2023b.

803

804 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 805 Chengyuan Li, and et al. Qwen2 technical report, 2024. URL <http://arxiv.org/abs/2407.10671>.

806

807 Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
 808 Diffsound: Discrete Diffusion Model for Text-to-Sound Generation. *IEEE/ACM Transactions
 809 on Audio, Speech, and Language Processing*, 31:1720–1733, 2023. ISSN 2329-9304. doi:
 10.1109/TASLP.2023.3268730.

810 Kun Yi and Jianxin Wu. Probabilistic End-To-End Noise Correction for Learning With Noisy Labels.
 811 In *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 7010–
 812 7018, Long Beach, CA, USA, June 2019. IEEE. ISBN 978-1-72813-293-8. doi: 10.1109/CVPR.
 813 2019.00718. URL <https://ieeexplore.ieee.org/document/8953202/>.

814

815 Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent, Michael Rubinstein, William T. Freeman,
 816 Forrester Cole, Deqing Sun, Noah Snavely, Jiajun Wu, and Charles Herrmann. WonderJourney:
 817 Going from Anywhere to Everywhere. In *2024 IEEE/CVF Conference on Computer Vision and*
 818 *Pattern Recognition (CVPR)*, pp. 6658–6667, June 2024. doi: 10.1109/CVPR52733.2024.00636.

819

820 ZhangChiyuan, BengioSamy, HardtMoritz, RechtBenjamin, and VinyalsOriol. Understanding deep
 821 learning (still) requires rethinking generalization. *Communications of the ACM*, February 2021.
 822 doi: 10.1145/3446776.

823

824 Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The Anisotropic Noise in Stochastic
 825 Gradient Descent: Its Behavior of Escaping from Sharp Minima and Regularization Effects. In *Pro-
 ceedings of the 36th International Conference on Machine Learning*, pp. 7654–7663. PMLR, May
 826 2019. URL <https://proceedings.mlr.press/v97/zhu19e.html>. ISSN: 2640-
 827 3498.

828

829 Alon Ziv, Itai Gat, Gael Le Lan, Tal Remez, Felix Kreuk, Jade Copet, Alexandre Défossez, Gabriel
 830 Synnaeve, and Yossi Adi. Masked audio generation using a single non-autoregressive transformer.
 831 In *The Twelfth International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Ny8NiVfi95>.

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

A DISCUSSION

865
 866 Decoder-only transformer-based autoregressive models for text generation are largely insensitive to
 867 low-quality data, which may partially explain their success (Radford et al., 2018; 2019; Brown et al.,
 868 2020; OpenAI et al., 2024). In contrast, class-conditional diffusion models exhibit greater sensitivity
 869 to data quality, suggesting that training such models requires a larger volume of high-quality data.
 870 This dichotomy is explained by our core finding: when rich conditioning information (e.g., a long text
 871 prefix) is available, models can overcome noise in a low-information target (the next token). When
 872 the conditioning is sparse (a single class label), the model is far more vulnerable. However, in the
 873 text-to-image task (Podell et al., 2023a), text conditions provide more information than categorical
 874 conditions, thereby reducing the amount of high-quality data needed for training.

875 A potential critique of our PAC analysis is that the comparison might be unfair. A class-conditional
 876 diffusion model, for instance, must solve two difficult problems simultaneously: learning the distri-
 877 bution for high-quality images and learning the correlation between those images and their labels.
 878 A classifier, by contrast, only needs to learn the correlation. We argue that our analysis is valid
 879 because our findings reveal a clear disentanglement of these two problems. For the class-conditional
 880 diffusion model, we show that label noise does not impact its ability to model image quality. Its
 881 capacity to learn the image manifold remains unimpaired, as evidenced by the stable FID scores
 882 detailed in Appendix O. The failure is catastrophic but also highly specific: it is isolated entirely
 883 to the label correlation, leading to a massive drop in image-label consistency as shown in Table 1.
 884 In stark contrast, the image classifier is largely robust. However, the sensitivity it does exhibit is
 885 clearly isolated to its correlation mechanism. This isolation is evident when comparing two factors: a
 886 moderate degradation in per-sample accuracy (Tables 2 and 3) against a near-perfect preservation of
 887 the marginal label distribution, which is quantitatively confirmed in Appendix P (KL Divergence < 0.0003). By isolating the correlation as the symmetric point of vulnerability, we can make a direct
 888 and insightful comparison, validating our analysis.

889 Our analysis intentionally focuses on models trained from scratch, rather than the dominant pre-
 890 training and fine-tuning paradigm, to establish a controlled, foundational understanding of robustness.
 891 This methodological choice is crucial for a clear interpretation of our results. Pre-trained models
 892 already possess a deep understanding of the world from their initial training, which acts as a powerful
 893 but confounding factor. By training from scratch, we remove this variable, allowing us to better
 894 isolate and understand the principles governing a model’s robustness. Our findings then offer strong
 895 evidence that this robustness is shaped by the richness of conditioning information and the absolute
 896 information content of the data. Furthermore, the impact of fine-tuning can be transient; models
 897 exhibit a strong tendency to revert to their pre-trained behaviors, a phenomenon known as “elasticity”
 898 (Ji et al., 2025). Understanding how robustness is established in the initial training phase is therefore
 899 paramount, as this phase instills the core properties of the model. Our work provides this essential
 900 baseline, upon which future investigations into the more complex dynamics of fine-tuning with noisy
 901 data can be built.

902 A primary goal of our study was to establish this foundational understanding using a controlled,
 903 unstructured noise model, a necessary first step analogous to using a standardized test to measure
 904 a system’s baseline capabilities. Our framework, however, also provides crucial foresight into the
 905 effects of more complex, structured noise, which presents a vital avenue for future work. Unlike
 906 the random errors studied here, which create diffuse gradient noise, structured noise introduces a
 907 coherent, competing learning signal. For example, a dataset where images of wolves are consistently
 908 mislabeled as “husky” would create a strong, incorrect gradient direction. Our gradient-based
 909 perspective predicts that this systematic error would be significantly more difficult to overcome, as
 910 the signal-averaging effect would be less effective against a persistent, biased signal, a prediction we
 911 confirm experimentally in Appendix L, where systematic mislabeling led to a catastrophic drop in
 912 classifier accuracy that was not observed with unstructured noise. In scoping our work, we distinguish
 913 between two types of structured noise that fall outside our primary research question. The first is
 914 correctable noise, such as the systematic wolf/husky error mentioned above, or the lexical misuse
 915 of “Complement” vs. “Compliment,” which can often be solved contextually by other models. The
 916 second is noise from inherent ambiguity, such as the Trolley Problem, which lacks a single ground
 917 truth even for humans. By focusing on unstructured noise, our work addresses the more fundamental
 918 challenge of a model’s intrinsic ability to find signal amidst stochastic corruption, a prerequisite for
 919 tackling these more complex scenarios.

918 The findings of this research contribute to a deeper understanding of how different probabilistic
919 models handle imperfections in training data. This enhanced understanding can positively impact the
920 machine learning community by enabling a more principled approach to data curation. One could
921 potentially estimate the data quality requirements for a given model by considering the information
922 asymmetry between its inputs and outputs. If the input is information-rich, data quality constraints
923 can be relaxed; otherwise, a larger volume of high-quality data is necessary. As AI capabilities
924 improve, driven in part by such foundational research, there is a potential for accelerated productivity
925 across various sectors. However, it is also crucial to recognize that more powerful AI, stemming
926 from a better grasp of its learning mechanisms, could also be misused for malicious purposes if
927 not developed and deployed responsibly. Therefore, continued research on AI safety, ethics, and
928 governance is paramount along with advancements in model capabilities.
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **B LIMITATIONS**
973974 The central goal of this paper is to provide a systematic and foundational analysis of how core model
975 properties affect robustness. To achieve this, our experimental design primarily employs a simplified
976 noise model: the dynamic introduction of **unstructured, random errors**. This approach ensures that
977 the error rate is precisely quantifiable and reproducible, allowing us to isolate the effects of our core
978 principles.979 While our main experiments use unstructured noise to isolate core principles, we also validate
980 our framework’s predictive power on structured noise. In our sequence-to-sequence experiments
981 (Section 3.3), we apply a form of **targeted, structured noise** to the output. Furthermore, our analysis
982 of systematic label corruption in classifiers (Appendix L) confirms that our framework correctly
983 predicts increased model fragility under such conditions. The primary limitation, therefore, is not
984 the absence of structured noise analysis, but that our study does not systematically compare various
985 forms of more complex, correlated noise (e.g., where errors depend on the input data). Exploring
986 these scenarios is a crucial next step.987 Additionally, our work has **some** other scope limitations. First, computational constraints precluded
988 training diffusion models on very large-scale datasets. Second, we did not perform a direct analysis
989 of the number of classes (n) as an independent variable, since its effects are inherently entangled
990 with dataset size and model capacity. Third, we acknowledge that a direct comparison across tasks is
991 challenging, as no unified metric exists for objectively scoring text, image, and classification models
992 against one another. This is particularly relevant to our structured noise experiments comparing
993 translation (WMT 2014) and summarization (CNN/DailyMail). While these are fundamentally
994 different tasks, this was a deliberate choice to test our hypothesis under a clear disparity in context
995 richness while controlling for model architecture and training configuration. We contend this is a more
996 insightful proxy than intra-task comparisons, where a model trained on a long-context summarization
997 task, for instance, might learn a trivial copying heuristic, or a long-context translation task could
998 introduce output length as a new confounder. Our comparative insights are therefore derived from
999 the starkly different relative degradation patterns each model exhibits against its own clean-data
1000 baseline. Finally, our experiments intentionally employ well-established and representative model
1001 architectures rather than the latest state-of-the-art systems. This choice is crucial for ensuring our
1002 findings are attributable to fundamental model properties, rather than confounding effects from
1003 specific, highly-tuned components of a particular SOTA model. The contribution of this work lies in
1004 analyzing principles of robustness, for which these architectures serve as clear and effective testbeds.1005 **C REPRODUCIBILITY**
10061007 Our work is designed to be fully reproducible. For the review process, the complete source code,
1008 configuration files, and analysis scripts are provided in the supplementary material. Critically, for a
1009 full and transparent account of our methodology, we direct reviewers to the detailed appendices, which
1010 document the precise training configurations (Appendix H), noise generation protocols (Appendix G),
1011 and other experimental specifics that form the basis of our findings. Upon publication, these resources
1012 will be made permanently available in a public GitHub repository.1013
1014 **D LLM USAGE STATEMENT**
10151016 Large Language Models (LLMs) were utilized as an assistive tool in the preparation of this manuscript
1017 and its associated code. The LLM’s role included: (1) improving the grammar and clarity of the text;
1018 (2) generating boilerplate code snippets; and (3) assisting in the articulation of authors arguments.1019 The fundamental scientific contributions, including the formulation of the key ideas, the experimental
1020 design, and the final interpretation of the results, are the original work of the human authors. The
1021 authors have critically reviewed, validated, and take full responsibility for all text and code presented.

1026 **E PRELIMINARIES**

1028 Probabilistic models are widely used in machine learning to learn distributions from data. After
 1029 training, the learned probabilistic model approximates the underlying data distribution. Probabilistic
 1030 models can be broadly categorized into two types: generative models and discriminative models.

1031 Generative models aim to learn the joint probability distribution $p_{data}(\mathbf{x}, \mathbf{y})$ or the data distribution
 1032 $p_{data}(\mathbf{x})$. By learning this underlying distribution, generative models, such as those that model
 1033 $p_{model}(\mathbf{x})$, can generate new data samples \mathbf{x} that resemble those drawn from $p_{data}(\mathbf{x})$. Conditional
 1034 generative models, which model $p_{model}(\mathbf{x} | \mathbf{y})$, generate data \mathbf{x} based on specific inputs \mathbf{y} .

1035 In contrast, discriminative models directly learn a decision boundary or the conditional probability
 1036 $p_{model}(\mathbf{y} | \mathbf{x})$ of a label \mathbf{y} given an input \mathbf{x} . They focus on predicting the label for a given input
 1037 rather than modeling how the data itself is generated. Classification models are a prominent example
 1038 of discriminative models, where the goal is to assign an input \mathbf{x} to one of several predefined classes \mathbf{y} .
 1039 Generative models generally require more sophisticated mechanisms to model complex distributions
 1040 compared to discriminative models (Christopher Bishop, 2006).

1041 Recently, generative models have achieved remarkable success across various domains, including text
 1042 generation (OpenAI et al., 2024; Team et al., 2024; Dubey et al., 2024; Yang et al., 2024; DeepSeek-
 1043 AI, 2024), image generation (Ho et al., 2020; Song et al., 2020a; Song & Ermon, 2019; Dhariwal &
 1044 Nichol, 2021; Karras et al., 2022; Podell et al., 2023b), video generation (Kuaishou, 2024; OpenAI,
 1045 2024; Blattmann et al., 2023b; Singer et al., 2022b; Ho et al., 2022b), and audio generation (Borsos
 1046 et al., 2023; Kreuk et al., 2022; Ziv et al., 2023; Kong et al., 2020b). Transformer-based autoregressive
 1047 models (Vaswani et al., 2017) and diffusion models (Ho et al., 2020) have demonstrated exceptional
 1048 capabilities in these areas.

1049

1050 **E.1 AUTOREGRESSIVE MODELS**

1051 Consider a sequence of random variables $\mathbf{x} = (x_1, \dots, x_D)$, where each x_i belongs to a defined
 1052 domain. An autoregressive model decomposes the joint probability $p(\mathbf{x})$ as:

1053

$$p(\mathbf{x}) = p(x_1) \prod_{d=2}^D p(x_d | x_{<d}). \quad (4)$$

1054 Specifically, for text generation, autoregressive models generate the next token conditioned on
 1055 previous tokens (Brown et al., 2020), while for image generation, they can generate the next pixel
 1056 conditioned on previous pixels (Oord et al., 2016). Recurrent neural networks (Graves, 2014) (such
 1057 as long short-term memory networks (Hochreiter & Schmidhuber, 1997)) and transformers (Vaswani
 1058 et al., 2017) can be used as autoregressive models to generate data. Decoder-only transformer-based
 1059 autoregressive models are currently prevalent for text generation (Radford et al., 2018; 2019; Brown
 1060 et al., 2020; OpenAI et al., 2024) and audio generation (Borsos et al., 2023; Kreuk et al., 2022).

1061

1062 **E.2 DIFFUSION MODELS**

1063 Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al.,
 1064 2020b) have achieved remarkable success across various domains, including image generation (Chen
 1065 et al., 2023b; Meng et al., 2021; Podell et al., 2023a), video generation (Ho et al., 2022a; Singer et al.,
 1066 2022a; Blattmann et al., 2023a), audio generation (Liu et al., 2023; Yang et al., 2023; Kong et al.,
 1067 2020a) and more (Wang et al., 2023b; Yu et al., 2024).

1068 Diffusion models generate data by gradually denoising pure noise into meaningful data samples. The
 1069 EDM formulation for diffusion models (Karras et al., 2022), proposed to elucidate the design space
 1070 of diffusion models, is employed in this work to examine the influence of incorrect training data.

1071 Assume $p_{data}(\mathbf{x})$ is the data distribution with standard deviation σ_{data} . Let $\sigma_0 = \sigma_{max} > \sigma_1 >$
 1072 $\dots > \sigma_N = \sigma_{min} \approx 0$ be a sequence of decreasing noise levels. We denote $p(\mathbf{x}; \sigma)$ as the marginal
 1073 distribution of clean data samples from p_{data} after being corrupted by i.i.d. Gaussian noise with
 1074 standard deviation σ . Thus, $p(\mathbf{x}; \sigma_i)$ represents the distribution of data with noise level σ_i . In practice,
 1075 the distribution at the maximum noise level, $p(\mathbf{x}; \sigma_{max})$ (where $\sigma_{max} = \sigma_0$), is indistinguishable
 1076 from standard Gaussian noise. Diffusion models first sample random noise $\mathbf{x}_0 \sim \mathcal{N}(\mathbf{0}, \sigma_{max}^2 \mathbf{I})$ and

1080 then sequentially denoise it according to the noise levels. The result \mathbf{x}_N thus aims to sample from the
 1081 data distribution $p_{data}(\mathbf{x})$.
 1082

1083 The probability flow ordinary differential equation (ODE) (Song et al., 2020b) is the deterministic
 1084 counterpart of the stochastic differential equation (SDE), whose solutions describe a diffusion process.
 1085 The probability flow ODE can continuously increase or reduce the noise level of the data depending
 1086 on the direction of time:
 1087

$$d\mathbf{x} = -\dot{\sigma}(t)\sigma(t)\nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma(t))dt, \quad (5)$$

1088 where the dot denotes the derivative with respect to time, and $\nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma)$ is the score function
 1089 (Hyvärinen, 2005), which points in the direction of steepest ascent of the log-probability density
 1090 $p(\mathbf{x}; \sigma)$.
 1091

1092 The denoiser $D(\mathbf{x}; \sigma)$, which predicts clean data \mathbf{y} from a noisy input $\mathbf{x} = \mathbf{y} + \mathbf{n}$ (where $\mathbf{y} \sim p_{data}$
 1093 and $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$), is trained by minimizing the following denoising score matching objective
 1094 (Vincent, 2011):
 1095

$$\mathbb{E}_{\mathbf{y}, \mathbf{n}} \|D(\mathbf{y} + \mathbf{n}; \sigma) - \mathbf{y}\|_2^2. \quad (6)$$

1096 From the trained denoiser, the score function $\nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma)$ can be estimated as:
 1097

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}; \sigma) = \frac{D(\mathbf{x}, \sigma) - \mathbf{x}}{\sigma^2}. \quad (7)$$

1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134 **F RELATED WORK**

1135
 1136 The challenge of training models on imperfect data is a foundational issue in machine learning. Our
 1137 work contributes by systematically analyzing how these imperfections affect modern probabilistic
 1138 models, moving beyond model-specific fixes to uncover the general principles that govern robustness.
 1139 This section situates our contribution by reviewing the literature on the data quality problem and the
 1140 theoretical principles that inform our multi-perspective analysis.

1141
 1142 **F.1 DATA QUALITY AND ROBUSTNESS IN DISCRIMINATIVE MODELS**

1143
 1144 The problem of data quality extends beyond simple label errors to include a range of imperfections
 1145 like missing values and feature inaccuracies (Gong et al., 2023), all of which constitute a form
 1146 of **information corruption**. Historically, the study of robustness to such corruption has centered
 1147 on discriminative models. It is well-documented that deep classifiers can be surprisingly resilient
 1148 to massive label noise (Rolnick et al., 2018), a finding that stands in tension with their ability to
 1149 memorize random data (ZhangChiyuan et al., 2021). This observation has spurred the development
 1150 of a rich ecosystem of methodological solutions, including techniques for noise correction (Yi & Wu,
 1151 2019) and the design of noise-robust loss functions (Menon et al., 2019; Chen et al., 2020). t

1152
 1153 **F.2 EMERGING FRAGILITY IN GENERATIVE MODELS**

1154
 1155 While discriminative models have proven robust, the implications of information corruption for
 1156 modern generative models present a distinct and more recent research frontier. These models are
 1157 often tasked with learning highly complex, high-dimensional distributions, making them potentially
 1158 more sensitive to noise.

1159 Recent work has begun to document these vulnerabilities and propose targeted fixes. For instance, the
 1160 sensitivity of class-conditional diffusion models has led to specialized solutions, such as transition-
 1161 aware score matching (Na et al., 2023) and retrieval-augmented training (Chen et al., 2023a). Similarly,
 1162 for language models, methods have been developed to mitigate noisy contexts during in-context
 1163 learning (Gao et al., 2024) or fine-tuning (Wang et al., 2023a).

1164 Our work shifts the focus from these model-specific solutions to a more fundamental question.
 1165 Instead of asking *how* to fix a single model’s sensitivity, we provide the first **systematic, comparative**
 1166 **analysis** to explain *why* these starkly different robustness behaviors emerge. The fragility of diffusion
 1167 models, in our view, is not a bug to be fixed but a key piece of evidence in this analysis.

1168 Complementing this picture is the principle that massive data scale can often compensate for low data
 1169 quality. The success of models trained on a billion noisy image-text pairs is a powerful demonstration
 1170 of this effect (Jia et al., 2021). Our findings on large-scale classifiers align with this. We unify these
 1171 seemingly disparate empirical observations under our proposed principles: that a sufficient quantity
 1172 of **absolute information content** and the presence of **rich conditioning information** are the primary
 1173 determinants of robustness.

1174
 1175 **F.3 THEORETICAL FOUNDATIONS FOR ANALYZING ROBUSTNESS**

1176
 1177 Our analysis seeks to explain the observed disparities in robustness by synthesizing insights from
 1178 three distinct but complementary theoretical viewpoints. While our convergent application of these
 1179 perspectives is novel, each is grounded in established literature.

1180 **The Information-Theoretic Perspective** frames learning as a process of extracting a useful signal
 1181 from noisy data. Our analysis of robustness through the lenses of “richness of conditioning informa-
 1182 tion” and “relative information loss” is a direct application of foundational concepts like entropy and
 1183 mutual information (Shannon, 1948). This perspective allows us to quantify how much usable signal
 1184 remains in corrupted data and explain why models with information-rich conditions (e.g., an image
 1185 for a classifier, a long token history for an LM) are better equipped to handle noise in their targets
 1186 than models with sparse conditions (e.g., a single class label for a diffusion model). This follows a
 1187 tradition of analyzing neural networks through an information-theoretic lens (Tishby & Zaslavsky,
 1188 2015).

1188
1189 **The PAC Learning Perspective** provides a formal link between a task’s complexity, the amount of
1190 data required, and the feasibility of generalization (Valiant, 1984). The theory establishes that more
1191 complex concept classes (i.e., those with a higher Vapnik-Chervonenkis dimension) require more
1192 clean samples to learn effectively. This principle helps to formally explain why inherently complex
1193 generative tasks, such as modeling the high-dimensional distribution of natural images, have a higher
1194 demand for information and are thus more sensitive to data corruption than comparatively simpler
1195 classification tasks.

1196 **The Gradient-Based Perspective** offers a mechanistic explanation for how learning occurs amidst
1197 noise at the optimization level. The dynamics of stochastic gradient descent (SGD) are central to
1198 deep learning, and the inherent noise in the gradient estimation is known to have a regularizing effect.
1199 Our analysis builds on modern studies of these dynamics, which have highlighted the crucial roles
1200 of batch size in navigating the loss landscape (Keskar et al., 2017) and the anisotropic nature of
1201 gradient noise in escaping sharp minima (Zhu et al., 2019). This literature provides a firm basis
1202 for our argument that aggregating samples (e.g., through larger batches) strengthens the coherent
1203 “signal” from correct data against the chaotic “noise” from corrupted data, enabling effective and
1204 stable learning.

1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **G ALGORITHMS**
1243

1244 This section provides the algorithms used to calculate the error rate and generate low-quality data.
1245

1246 **Algorithm 1** Algorithm to Calculate Scaled Training Duration (assuming constant batch size) and
1247 Effective Error Rate e .

1248 **Require:** r : The ratio of additional incorrect data relative to original correct data (e.g., $r=1.0$ means
1249 100% additional incorrect data)

1250 N_{orig} : The number of original epochs or iterations

1251 **Ensure:** $r \geq 0, N_{orig} > 0$

1252 1. $N_{new} \leftarrow N_{orig} \times (1 + r)$

1253 2. $e \leftarrow \frac{N_{orig} \times r}{N_{new}}$

1254 3. **return** N_{new}, e

1255

1256 **Algorithm 2** Algorithm to Generate Incorrect Text Data

1257 **Require:** e : The effective error rate (calculated as $r/(1 + r)$, see Algorithm 1)

1258 V : The size of the vocabulary

1259 $data$: The correct text data

1260 B : The batch size

1261 L : The sequence length

1262 **Ensure:** $e \geq 0$

1263 1. $idx \leftarrow \text{random_int}(0, \text{len}(data) - L, B)$ {Random starting indices}

1264 2. $X \leftarrow data[B, idx, idx + L]$ {Extract input sequences}

1265 3. $Y \leftarrow data[B, idx + 1, idx + L + 1]$ {Extract target sequence (shifted by 1)}

1266 4. $mask \leftarrow \text{rand_like}(Y) < e$ {Create a mask for introducing errors}

1267 5. $rand_vals \leftarrow \text{randint_like}(Y, low = 0, high = V)$ {Generate random values for errors}

1268 6. $Y[mask] \leftarrow rand_vals[mask]$ {Replace tokens where mask is true with random tokens}

1269 7. **return** X, Y

1270

1271 **Algorithm 3** Algorithm to Generate Incorrect Image Labels

1272 **Require:** e : The effective error rate (calculated as $r/(1 + r)$, see Algorithm 1)

1273 y : The true class label

1274 C : The number of classes

1275 **Ensure:** $e \geq 0, C > 0$

1276 1. **if** $\text{rand} < e$ **then**

1277 2. $possible_labels \leftarrow \text{list}(\text{range}(C))$

1278 3. $possible_labels.\text{remove}(y)$

1279 4. $incorrect_label \leftarrow \text{random_choice}(possible_labels)$

1280 5. **return** $incorrect_label$

1281 6. **else**

1282 7. **return** y

1283 8. **end if**

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296 H TRAINING CONFIGURATION DETAILS

1298 This section provides a summary of the batch sizes and training durations (iterations or epochs) used
 1299 for the autoregressive language model experiments (Section 3.2) and the ImageNet classification
 1300 experiments (Section 3.5). The configurations were designed to ensure that the total number of
 1301 number of samples processed was scaled by a factor of $(1 + r)$ relative to the baseline (where r is the
 1302 ratio of added incorrect data), while the number of correct samples processed remained equivalent to
 1303 the baseline.

1304 H.1 AUTOREGRESSIVE MODEL (GPT-2) TRAINING CONFIGURATION

1305 The GPT-2 model architecture used (the 124M parameter version) consists of 12 transformer blocks.
 1306 Each block sequentially applies Layer Normalization, Causal Attention, a second Layer Normalization,
 1307 and a Multi-layer Perceptron (MLP). Each Causal Attention layer utilizes 12 heads. The model
 1308 employs an embedding dimension of 768, a vocabulary size of 50,257, and has approximately 124
 1309 million parameters. Models were trained using the AdamW (Loshchilov & Hutter, 2017) optimizer
 1310 with a weight decay of 0.1, $\beta_1 = 0.9$, $\beta_2 = 0.95$, and a maximum learning rate of 6×10^{-4} . The
 1311 baseline model (0% added incorrect data) was trained for 600,000 iterations.

1312 The baseline GPT-2 model ($r = 0$) was trained for $N_{\text{orig}} = 600,000$ iterations with a baseline batch
 1313 size of $B_{\text{base}} = 491,520$ tokens (12 samples/GPU \times 1,024 sequence length \times 5 gradient steps \times 8
 1314 GPUs). For experiments with incorrect data, batch sizes and iterations were adjusted as detailed in
 1315 Table 6.

1316
 1317
 1318 Table 6: GPT-2 Training Configuration on OpenWebText. $N_{\text{orig}} = 600,000$ iterations. B_{base} is the
 1319 baseline batch size. Iterations are adjusted to maintain $(1 + r)$ scaling of total number of samples
 1320 processed relative to baseline, keeping correct sample exposure constant.

1322 Correct:Incorrect (r)	1323 Batch Size	1324 Iterations
1325 100:0 ($r = 0$)	1 $\times B_{\text{base}}$	N_{orig} (600,000)
1326 100:10 ($r = 0.1$)	1 $\times B_{\text{base}}$	1.1 $\times N_{\text{orig}}$ (660,000)
1327 100:30 ($r = 0.3$)	1 $\times B_{\text{base}}$	1.3 $\times N_{\text{orig}}$ (780,000)
1328 100:50 ($r = 0.5$)	2 $\times B_{\text{base}}$	$N_{\text{orig}} \times (1 + 0.5)/2$ (450,000)
1329 100:100 ($r = 1.0$)	12 $\times B_{\text{base}}$	$N_{\text{orig}} \times (1 + 1.0)/12$ (100,000)

1330 H.2 DIFFUSION MODEL AND CLASSIFIER CONFIGURATION

1331 For the class-conditional diffusion models, we employ the EDM (Karras et al., 2022) framework
 1332 with training settings: $\sigma_{\text{data}} = 0.5$, $p_{\text{mean}} = -1.2$, $p_{\text{std}} = 1.2$. For sampling, we use
 1333 $\sigma_{\text{min}} = 0.002$, $\sigma_{\text{max}} = 80$, $\rho = 7$, and $\text{steps} = 18$. The denoise network is a U-Net architecture
 1334 (Ronneberger et al., 2015; Song et al., 2020b) with 15.7 million parameters. For training, we used a
 1335 batch size of 128, a learning rate of 0.0001 with 200 warm-up epochs, and an exponential moving
 1336 average decay rate of 0.9993 (Hunter, 1986). The classifier model is a ResNet-18 (He et al., 2016),
 1337 trained for 200 epochs on CIFAR-10 and CIFAR-100, respectively.

1338 H.3 IMAGENET CLASSIFICATION (ViT-BASE) TRAINING CONFIGURATION

1339 For the ImageNet experiments, we used the ViT-Base architecture (Dosovitskiy et al., 2020), which
 1340 has 86M parameters. The baseline ViT-Base models ($r = 0$) for ImageNet classification tasks were
 1341 trained for $N_0 = 300$ epochs with a baseline batch size of $B_0 = 128$ per GPU. For experiments with
 1342 incorrect data, batch sizes and epochs were adjusted as detailed in Table 7.

1350
 1351 Table 7: ViT-Base Training Configuration on ImageNet Subsets and Full ImageNet. $N_0 = 300$
 1352 epochs. $B_0 = 128$ (per GPU). Epochs are adjusted to maintain $(1 + r)$ scaling of total number of
 1353 samples processed relative to baseline, keeping correct sample exposure constant.

Dataset	Correct:Incorrect (r)	Batch Size (per GPU)	Epochs
ImageNet-10			
	100:0 ($r = 0$)	B_0 (128)	N_0 (300)
	100:10 ($r = 0.1$)	B_0 (128)	$1.1 \times N_0$ (330)
	100:30 ($r = 0.3$)	B_0 (128)	$1.3 \times N_0$ (390)
	100:50 ($r = 0.5$)	B_0 (128)	$1.5 \times N_0$ (450)
	100:100 ($r = 1.0$)	$2 \times B_0$ (256)	$(1 + 1.0)/2 \times N_0$ (300)
ImageNet-100			
	100:0 ($r = 0$)	B_0 (128)	N_0 (300)
	100:10 ($r = 0.1$)	B_0 (128)	$1.1 \times N_0$ (330)
	100:30 ($r = 0.3$)	$2 \times B_0$ (256)	$(1 + 0.3)/2 \times N_0$ (195)
	100:50 ($r = 0.5$)	$2 \times B_0$ (256)	$(1 + 0.5)/2 \times N_0$ (225)
	100:100 ($r = 1.0$)	$4 \times B_0$ (512)	$(1 + 1.0)/4 \times N_0$ (150)
ImageNet-1000			
	100:0 ($r = 0$)	B_0 (128)	N_0 (300)
	100:10 ($r = 0.1$)	B_0 (128)	$1.1 \times N_0$ (330)
	100:30 ($r = 0.3$)	B_0 (128)	$1.3 \times N_0$ (390)
	100:50 ($r = 0.5$)	B_0 (128)	$1.5 \times N_0$ (450)
	100:100 ($r = 1.0$)	B_0 (128)	$2.0 \times N_0$ (600)

I FIXED TRAINING COMPUTE FOR GPT-2

1379 Table 8: Language Model NLL with Fixed Total Training Compute.

Ratio of Clean to Noisy Data	Training NLL	Validation NLL
100: 0	2.7369	2.8650
100:10	3.8744	2.9758
100:30	5.3622	3.1646
100:50	6.2423	3.3455
100:100	7.6048	3.6525

1388 To further isolate the effect of noise from computational budget, we ran an additional analysis where
 1389 we fixed the total training compute (i.e., total number of training steps) across all noise ratios. The
 1390 results, presented in Table 8, provide further quantitative detail on this divergence. As the proportion
 1391 of noisy data increases, the training NLL on the noisy data rises substantially, showing the model is
 1392 attempting to fit the corrupted samples. In contrast, the validation NLL on clean data increases only
 1393 modestly. This demonstrates the model’s resilience; while its performance on the training distribution
 1394 degrades, its generalization to the true, clean data distribution remains largely intact.

J FIXED TRAINING COMPUTE FOR IMAGENET CLASSIFIER

1399 To provide a complementary view, we also conducted an analysis on ImageNet-1000 with a fixed
 1400 computational budget, where adding noisy data means reducing the proportion of clean data seen per
 1401 epoch. The results (Table 9) show that while training accuracy degrades significantly as the model
 1402 attempts to fit the noisy labels, test accuracy remains remarkably stable, dropping by less than 3%
 1403 even at a 50% error rate. This reinforces the finding that the model effectively learns from the true
 signal while averaging out the random noise.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Table 9: ImageNet-1000 Classification with a Fixed Total Training Budget.

Ratio of Clean to Noisy Data	Training Accuracy	Test Accuracy
100:0	94.244%	73.784%
100:10	92.728%	72.992%
100:30	87.162%	72.302%
100:50	80.533%	71.854%
100:100	66.870%	71.093%

K DETAILED EXPERIMENTAL SETUP FOR SEQUENCE-TO-SEQUENCE ROBUSTNESS

This section provides a comprehensive overview of the experimental setup for the sequence-to-sequence robustness investigation presented in Section 3.3. Our objective was to rigorously compare the robustness of Transformer models in short-context versus long-context generation tasks when trained with structured target noise, while carefully controlling for confounding variables.

K.1 DATASETS AND PREPROCESSING

- **Short-Context Task (Short-to-Short Generation):** We utilized the WMT 2014 English-German machine translation dataset. To ensure comparable data volume with the long-context task, the full WMT’14 training set was subsampled to 287,113 examples. The validation and test sets remained the original WMT’14 splits.
- **Long-Context Task (Long-to-Short Generation):** We used the CNN/DailyMail summarization dataset. Its training set naturally comprises 287,113 examples, providing an identical training data volume to the subsampled WMT’14.
- **Tokenization:** For fair comparison, both tasks employed separate, task-specific Byte-Level BPE tokenizers, each trained on its respective dataset’s full text (source and target). A crucial control was setting the vocabulary size identically to 32,000 tokens for both WMT’14 and CNN/DailyMail tokenizers. This ensures equivalent embedding layer capacity across models.
- **Sequence Lengths:** Maximum sequence length for the Transformer models was set to 256 tokens for WMT 2014 (covering 99.9th percentile of both source and target lengths) and 2048 tokens for CNN/DailyMail (covering 99.9th percentile of source article lengths, while target summaries were capped during generation at 256 tokens).

K.2 MODEL ARCHITECTURE AND TRAINING

- **Model:** A standard Encoder-Decoder Transformer architecture was employed for both tasks. Models were trained entirely from scratch.
- **Hyperparameters:** Identical architectural hyperparameters were used across both tasks: 6 encoder layers, 6 decoder layers, 512 embedding dimension (d_{model}), 8 attention heads, 2048 feed-forward hidden dimension, and a dropout probability of 0.1.
- **Optimizer:** Adam optimizer with a learning rate of 1×10^{-4} and gradient clipping at 1.0.
- **Training Duration:** All models were trained for 50k training steps, ensuring that models were exposed to a consistent number of total samples (clean + noisy) for each noise ratio, adhering to the “fixed-budget” paradigm for noise analysis.

K.3 STRUCTURED NOISE GENERATION PROTOCOL

To introduce realistic, structured low-quality data into the target sequences, we employed a “noisy teacher” approach:

1. **Noisy Teacher Training:** For each task (WMT’14 and CNN/DailyMail), a clean Transformer model (the “Noisy Teacher”) was trained on its respective *clean* dataset for an early,

1458 fixed number of steps (e.g., 5,000 steps). This early-stage model is capable of generating
 1459 text but produces outputs that are less coherent and accurate than a fully converged model,
 1460 mimicking common forms of machine-generated errors.
 1461

2. **Noisy Target Generation:** The “clean_source” inputs from the training sets were fed into
 1462 their respective “Noisy Teacher” models to generate “noisy_target” sequences. For machine
 1463 translation, this produced poorly translated German sentences given English source. For
 1464 summarization, this produced incomplete or inaccurate summaries given an article source.
 1465
3. **Mixed Training Datasets:** New training datasets were constructed where a specified per-
 1466 centage of the “clean_target” sequences were randomly replaced with these “noisy_target”
 1467 sequences. Noise ratios of 0.1, 0.3, 0.5, and 1.0 were applied as other experiments,
 1468 corresponding to effective error rates of 0.0909%, 0.2307%, 0.3333%, and 0.5%. The
 1469 “clean_source” inputs always remained uncorrupted.
 1470

1471
 1472 Table 10: Negative Log-Likelihood (NLL) on WMT 2014 and CNN/DailyMail with varying levels of
 1473 structured target noise. These are the full results supporting the analysis in Section 3.3. Lower NLL
 1474 is better.

1475 Ratio of Clean to Noisy Data	1476 NLL (WMT 2014)	1477 NLL (CNN/DailyMail)
1476 100:0	2.5488	3.3859
1477 100:10	2.7591	3.5246
1478 100:30	2.9625	3.6942
1479 100:50	3.0777	3.8015
1480 100:100	3.3525	3.9931

1483 L ANALYSIS OF ROBUSTNESS TO STRUCTURED NOISE

1484
 1485 A primary goal of our study was to establish a foundational understanding of robustness using a
 1486 controlled, unstructured noise model. However, we acknowledge that real-world data imperfections
 1487 are often structured. To test the predictions of our analytical framework under this more challenging
 1488 condition, we conducted an additional set of experiments on CIFAR-10 and CIFAR-100 using a
 1489 **structured noise** protocol.

1490 The experimental setup, including the ResNet-18 model architecture and all training hyperparameters,
 1491 was kept identical to the classification experiments in Section 3.5 to ensure a direct comparison. The
 1492 sole modification was the noise generation mechanism. Instead of replacing a label with a randomly
 1493 chosen incorrect class, we applied a systematic and consistent error: with a probability corresponding
 1494 to the effective error rate, a true label y was deterministically replaced with $(y + 1) \pmod{C}$, where
 1495 C is the total number of classes. This creates a coherent, competing signal, as all instances of a given
 1496 class, when corrupted, are mislabeled as the same incorrect class.

1497 The results, presented in Table 11, reveal a dramatically different picture of robustness compared to
 1498 the unstructured noise scenario.

1500
 1501 Table 11: Impact of Structured Label Noise on CIFAR Classification Accuracy. Unlike the diffuse
 1502 gradients from random noise, the coherent incorrect signal from systematic mislabeling leads to a
 1503 catastrophic performance decline, especially at high corruption rates.

1504 Correct:Incorrect	1505 CIFAR-10 Accuracy	1506 CIFAR-100 Accuracy
1505 100:0	94.17%	75.54%
1506 100:10	94.15%	75.83%
1507 100:30	91.28%	74.05%
1508 100:50	87.99%	62.44%
1509 100:100	40.72%	33.39%

1510 While the model shows resilience at low levels of structured noise, its performance collapses at higher
 1511 ratios. The contrast with unstructured noise is stark. For example, at a 50% effective error rate (the

1512 100:100 condition) on CIFAR-10, accuracy plummeted to 40.72%, whereas the model maintained an
 1513 accuracy of 85.35% under the same level of unstructured noise (Table 2). A similar catastrophic drop
 1514 is observed for CIFAR-100, from 61.65% (unstructured) to 33.39% (structured).

1515 This outcome provides strong validation for the gradient-based perspective detailed in Section 4.3.
 1516 Unstructured, random noise generates divergent gradients ($\sum_j \mathbf{g}_{noise_component_j}$) that are direc-
 1517 tionally varied and can be effectively averaged out, allowing the coherent signal from correct data
 1518 ($\mathbf{g}_{correct_signal}$) to dominate. Structured noise, however, creates a coherent but incorrect gradient
 1519 signal that systematically pulls the model parameters toward a wrong data manifold. This introduces a
 1520 persistent, biased signal that cannot be canceled out through aggregation. The model is thus forced to
 1521 learn a competing, incorrect hypothesis, leading to severe performance degradation. This experiment
 1522 therefore confirms that our analytical framework not only explains robustness to random noise but
 1523 also correctly predicts the increased fragility of models when faced with systematic errors.

1524 M EXPERIMENTAL DETAILS FOR GRADIENT COHERENCE ANALYSIS

1525 To quantitatively validate the claims made in our gradient-based perspective (Section 4.3), we
 1526 conducted a dedicated experiment to analyze the directional properties and aggregate magnitudes of
 1527 per-example gradients. This analysis is the source of the data presented in Table 4.

1528 Our methodology mirrored the experimental context of our primary autoregressive model experi-
 1529 ments (Section 3.2). We used a randomly initialized 124M parameter GPT-2 model, with the same
 1530 architecture detailed in Appendix H, and sampled data from the OpenWebText dataset. We applied
 1531 the same on-the-fly, unstructured noise protocol detailed in Section 3. The analysis focused on the
 1532 word token embedding layer (`transformer.wte.weight`).

1533 Per-example gradients were computed using the `torch.func.vmap` transform. We calculated
 1534 two sets of metrics across 200 batches for each experimental condition: (1) **Directional Coherence**,
 1535 measured by the pairwise cosine similarity between gradients from clean, corrupt, and mixed pairs
 1536 and (2) **Aggregated Signal Magnitude**, the L2 norm of the sum of all clean gradients and, separately,
 1537 all corrupt gradients within each batch. The Signal-to-Noise Ratio (SNR) was defined as the ratio of
 1538 the mean L2 norm of the aggregated clean signal to the mean L2 norm of the aggregated noise signal.

1539 The results, as shown in Table 4, provide strong empirical support for our theoretical claims. The
 1540 analysis revealed a clear disparity in the directional coherence of the gradients, and we observed how
 1541 the signal-to-noise ratio consistently improves with larger batch sizes.

1542 N EXPERIMENTAL DETAILS FOR LOSS STABILITY ANALYSIS

1543 To provide quantitative evidence for the gradient-averaging mechanism discussed in Section 4.3,
 1544 we conducted a dedicated experiment to measure the stability of the training process under noisy
 1545 conditions. This analysis is the source of the data presented in Table 5.

1546 **Objective** The goal of this experiment was not to measure generalization, but to quantify the
 1547 consistency of the training signal itself. We hypothesized that while individual batches containing
 1548 noisy data would produce chaotic gradients, aggregating samples into a larger “global batch” would
 1549 yield a much more stable and consistent update direction. We use the inter-batch variance of the
 1550 training loss as a direct proxy for the stability of the aggregated gradient.

1551 **Methodology** The experiment was conducted using the final model checkpoints from two of our
 1552 GPT-2 training runs: the baseline model trained on 100% clean data, and the noisy model trained
 1553 with a 50% effective error rate (the “100:100” condition).

1554 The measurement process was as follows:

- 1555 1. **Global Macro-Batch Definition:** A “global macro-batch” represents a single, large-scale
 1556 gradient update step. Its size is defined as (*micro-batch size per GPU* \times *gradient accumula-*
 1557 *tion steps* \times *number of GPUs*).

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577

2. **Loss Calculation:** For each macro-batch, we processed multiple micro-batches of data drawn from the OpenWebText training set. The appropriate noise ratio (0% for the clean model, 50% for the noisy model) was applied on-the-fly. We recorded the training loss for each micro-batch on each GPU.
3. **Averaging:** The losses from all micro-batches within a single global macro-batch were averaged to produce a single, scalar loss value for that macro-batch.
4. **Statistical Analysis:** We repeated this process for 200 independent global macro-batches. The final reported metrics in Table 5 are the **mean** and **standard deviation** calculated over these 200 macro-batch loss values.

O FID FOR IMAGE GENERATION

1578
 1579 Table 12 shows the FID calculated for the diffusion model in Section 3.4. FID was calculated using
 1580 50,000 generated images and the original dataset images, employing the “pytorch-fid” package
 1581 (Seitzer, 2020). Even with an increased proportion of incorrect conditioning labels in training, the
 1582 FID scores remained largely unchanged. The relatively stable FID scores across different levels of
 1583 incorrect data suggest that the observed drop in classification accuracy for class-conditional diffusion
 1584 models is primarily due to a mismatch between generated images and their conditioning class labels,
 1585 rather than a degradation in the perceptual quality of the generated images themselves.
 1586

1587 Table 12: Ratio of Increased Incorrect Data and Corresponding FID for Image Generation Tasks

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619	Correct: Incorrect	CIFAR-10 Generation	CIFAR-100 Generation
100: 0		3.49	5.38
100: 10		3.68	5.70
100: 30		3.66	6.09
100: 50		3.66	6.12
100: 100		3.62	6.28

1620 **P ANALYSIS OF LEARNED LABEL DISTRIBUTIONS IN CLASSIFIERS**
 1621

1622 This section details a supplementary experiment conducted to quantitatively validate the claim made
 1623 in our Discussion (Section A). The goal is to demonstrate that the image classifier successfully learns
 1624 the marginal label distribution, even when its per-sample conditional accuracy is degraded by label
 1625 noise. This provides the empirical basis for our argument that the classifier’s sensitivity to noise is
 1626 isolated to its conditional guidance (correlation), not its understanding of the output space’s structure.

1627 For this dedicated analysis, we replicated the training process for the CIFAR-10 classification
 1628 experiments presented in Section 3.5. This involved retraining the ResNet-18 models under identical
 1629 architectural and hyperparameter configurations for each noise level. While minor variations exist due
 1630 to training stochasticity, the final test accuracies of these replicated models are consistent with those
 1631 reported in Table 2, confirming that they exhibit the same fundamental robustness characteristics.

1632 The evaluation process was as follows:

1633

- Each newly trained model (corresponding to effective error rates of 0%, 9.1%, 23.1%, 33.3%,
 1634 and 50%) was run on the full, clean CIFAR-10 test set (10,000 images).
- We collected the complete set of 10,000 predicted labels generated by each model.
- We then compared the statistical distribution of these predicted labels against the true,
 1635 uniform distribution of the test set labels (1,000 samples per each of the 10 classes).

1636 To quantify the similarity between the predicted and true label distributions, we employed two
 1637 standard metrics:

1638

- **Kullback-Leibler (KL) Divergence:** Measures how one probability distribution diverges
 1639 from a second. A KL Divergence value close to zero indicates that the two distributions are
 1640 nearly identical.
- **Total Variation Distance (TVD):** Measures the total difference between two probability
 1641 distributions. A TVD value close to zero also signifies high similarity.

1642 The results, summarized in Table 13, reveal a stark contrast between the model’s conditional perfor-
 1643 mance and its grasp of the marginal label distribution.

1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 Table 13: Impact of Label Noise on Conditional Accuracy vs. Learned Marginal Distribution (Repli-
 cated CIFAR-10 Runs). While per-sample accuracy degrades, the KL Divergence and TVD remain
 exceptionally low, indicating the model consistently learns the true underlying label distribution.

Correct:Incorrect Ratio	Effective Error Rate	Test Accuracy (Conditional)	KL Divergence (Marginal)	Total Variation Dist. (Marginal)
100:0	0.0%	93.85%	0.000228	0.0088
100:10	9.1%	94.08%	0.000241	0.0089
100:30	23.1%	92.11%	0.000068	0.0045
100:50	33.3%	87.96%	0.000152	0.0076
100:100	50.0%	86.28%	0.000155	0.0077

1662 As shown in the table, while the model’s test accuracy, which is a measure of its per-sample
 1663 conditional mapping ability, $p(\text{label}|\text{image})$, degrades under high noise ratios, the KL Divergence
 1664 and TVD remain extremely low and stable across all conditions. A KL Divergence of ≈ 0.0002
 1665 signifies that the distribution of the model’s 10,000 predictions on the test set is statistically almost
 1666 indistinguishable from the true uniform distribution.

1667 This provides powerful empirical support for the argument presented in our Discussion. This
 1668 demonstrates that the classifier successfully learns the correct marginal distribution of the output
 1669 space. Even when its conditional, per-sample predictions are less accurate, its aggregate predictions
 1670 reproduce the true statistical frequencies of the test set. The performance degradation is therefore
 1671 isolated to the conditional guidance mechanism (the correlation). This finding is crucial, as it validates
 1672 our comparison with the class-conditional diffusion model, which exhibits an analogous failure mode:
 1673 its knowledge of the output structure (image quality) is preserved, while its conditional guidance
 (label correlation) collapses.

1674 **Q RELATIVE INFORMATION LOSS**

1675
 1676 Let \mathbf{y} represent the true label and \mathbf{x} the observed label provided to the model during training (which
 1677 may be corrupted from \mathbf{y} with probability p_e). Let n be the number of label classes, and let p_e be the
 1678 error rate, which is the probability that any given label is incorrect. Additionally, assume the classes
 1679 follow a uniform distribution, such that $p(i) = \frac{1}{n}$.

1680 The entropy of the true labels under a uniform distribution is:

1681
 1682
$$H(\mathbf{y}) = - \sum_{i=1}^n p(i) \log_2 p(i) = - \sum_{i=1}^n \left(\frac{1}{n}\right) \log_2 \left(\frac{1}{n}\right) = \log_2 n \quad (8)$$

1683
 1684 If the labels are mislabeled with an error rate p_e , the predicted labels can be correct with a probability
 1685 of at most $1 - p_e$. Furthermore, we assume the incorrect classes follow a uniform error distribution,
 1686 meaning each piece of data can be mislabeled as any of the $n - 1$ incorrect labels with probability
 1687 $\frac{p_e}{n-1}$. The conditional entropy is then:

1688
 1689
$$H(\mathbf{y} | \mathbf{x}) = - \sum_{i=1}^C p(i) \left[(1 - p_e) \log_2 (1 - p_e) + \sum_{j \neq i} \frac{p_e}{n-1} \log_2 \left(\frac{p_e}{n-1}\right) \right] \quad (9)$$

1690
 1691 Since $p(i) = \frac{1}{n}$ for all i :

1692
 1693
$$H(\mathbf{y} | \mathbf{x}) = - \sum_{i=1}^n p(i) \left[(1 - p_e) \log_2 (1 - p_e) + \sum_{j \neq i} \frac{p_e}{n-1} \log_2 \left(\frac{p_e}{n-1}\right) \right] \quad (10)$$

1694
 1695
$$= - \frac{1}{n} \sum_{i=1}^n \left[(1 - p_e) \log_2 (1 - p_e) + (n - 1) \frac{p_e}{n-1} \log_2 \left(\frac{p_e}{n-1}\right) \right] \quad (11)$$

1696
 1697
$$= - \left[(1 - p_e) \log_2 (1 - p_e) + (n - 1) \frac{p_e}{n-1} \log_2 \left(\frac{p_e}{n-1}\right) \right] \quad (12)$$

1698
 1699
$$= -(1 - p_e) \log_2 (1 - p_e) - p_e \log_2 p_e + p_e \log_2 (n - 1) \quad (13)$$

1700
 1701 If we use the difference between the entropy of the true labels and the mutual information to represent
 1702 information loss, then:

1703
 1704
$$\text{information_loss} = H(\mathbf{y}) - I(\mathbf{x}; \mathbf{y}) \quad (14)$$

1705
 1706
$$= H(\mathbf{y}) - (H(\mathbf{y}) - H(\mathbf{y} | \mathbf{x})) \quad (15)$$

1707
 1708
$$= H(\mathbf{y} | \mathbf{x}) \quad (16)$$

1709 The ratio of the information loss to the total entropy, which we define as the relative information loss,
 1710 becomes:

1711
 1712
$$\frac{\text{information_loss}}{H(\mathbf{y})} = \frac{-(1 - p_e) \log_2 (1 - p_e) - p_e \log_2 p_e + p_e \log_2 (n - 1)}{\log_2 n} \quad (17)$$

1713 For \mathbf{x} to be independent of \mathbf{y} , the conditional distribution $P(\mathbf{x} | \mathbf{y})$ must equal the marginal
 1714 distribution $P(\mathbf{x})$. Under uniform label noise, this reduces to:

1715
 1716
$$P(\mathbf{x} = i | \mathbf{y} = i) = P(\mathbf{x} = i | \mathbf{y} = j) \quad \forall j \neq i. \quad (18)$$

1717
 1718 Substituting the noise model probabilities:

1719
 1720
$$1 - p_e = \frac{p_e}{n - 1} \quad (19)$$

1721
 1722 Solving for p_e :

1723
 1724
$$(n - 1)(1 - p_e) = p_e \implies n - 1 - (n - 1)p_e = p_e \implies n - 1 = np_e, \quad (20)$$

$$p_e = \frac{n-1}{n} \quad (21)$$

Thus, when $p_e = \frac{n-1}{n}$, the observed labels \mathbf{x} contain no information about the true labels \mathbf{y} , and the relative information loss reaches its maximum value of 1.

1728
1729

1730 Thus, when $p_e = \frac{n-1}{n}$, the observed labels \mathbf{x} contain no information about the true labels \mathbf{y} , and the
1731 relative information loss reaches its maximum value of 1.
1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781