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ABSTRACT

A systematic, comparative investigation into the effects of low-quality data reveals
a stark spectrum of robustness across modern probabilistic models. We find that
autoregressive language models, from token prediction to sequence-to-sequence
tasks, are remarkably resilient (for GPT-2, test NLL increases modestly from 2.87
to 3.59 despite 50% token corruption). By contrast, under the same levels of data
corruption, class-conditional diffusion models degrade catastrophically (image-
label consistency plummets by 56.81% relative to baseline), while classifiers show a
moderate impact that diminishes with dataset scale. To explain these discrepancies,
we analyze the results through a multi-perspective lens, integrating information
theory, PAC learning, and gradient dynamics. These analyses suggest that robust-
ness is heavily influenced by two key principles: the richness of conditioning
information, which constrains the learning problem, and the absolute information
content of the training data, which allows the signal from correct information to
dominate statistical noise.

1 INTRODUCTION

Contemporary deep learning models are trained on increasingly vast datasets where the presence of
low-quality data is inevitable (Radford et al., 2018; 2019; Brown et al., 2020; Podell et al., 2023b;
Li et al., 2024). How models contend with such data, however, is far from uniform. Our systematic
investigation reveals a stark divergence in robustness across modern probabilistic models: while
autoregressive language models and large-scale classifiers are remarkably resilient to high levels of
data corruption, class-conditional diffusion models exhibit catastrophic degradation under the same
conditions.

This dramatic disparity, which synthesizes observations from prior work on discriminative model
robustness (Rolnick et al., 2018) and generative model fragility (Na et al., 2023), motivates the
central goal of this paper: to move beyond model-specific observations and uncover the fundamental
principles governing this behavior. Why do some of the most powerful models in AI occupy opposite
ends of the robustness spectrum?

To systematically probe this disparity, we conduct a suite of controlled experiments across these
three representative model families. Our methodology involves dynamically introducing quantifiable,
random errors into the training data, allowing us to precisely control the level of corruption. This
paradigm lets us study the effects of what we term low-quality data, which we define functionally as
samples where the relationship between inputs, conditions, and target outputs has been corrupted in a
way that is detrimental to the specific learning task.

To answer this question, we adopt a multi-perspective analytical approach, integrating insights
from information theory, PAC learning, and gradient dynamics. We hypothesize that the observed
disparities can be explained by a coherent set of underlying factors. By integrating empirical findings
with these theoretical viewpoints, we aim to provide foundational insights for understanding and
predicting model robustness in real-world, noisy environments.

The key contributions of this work are as follows:
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• We conduct a systematic empirical investigation that validates and quantifies a stark di-
vergence in robustness across autoregressive language models, class-conditional diffusion
models, and image classifiers, providing controlled evidence for this critical phenomenon.

• We propose and apply a multi-perspective analytical framework that uses information
theory, PAC learning, and gradient dynamics to explain what informational properties drive
robustness, why they are formally required for generalization, and how the optimization
process mechanistically achieves this resilience.

• Through this integrated approach, we identify two fundamental factors that govern model
robustness: (1) the richness of conditioning information available to the model, and (2)
the absolute information content of the training data.

2 RELATED WORK

The challenge of training on imperfect data is a central theme in machine learning, giving rise to
a rich literature on noise robustness. For discriminative models, this is a well-established field;
the surprising resilience of deep classifiers to label noise is well-documented (Rolnick et al., 2018;
ZhangChiyuan et al., 2021), leading to an ecosystem of solutions, from noise-robust loss functions
(Menon et al., 2019; Chen et al., 2020) to techniques for noise correction (Yi & Wu, 2019). More
recently, attention has turned to the fragility of modern generative models. This has spurred a new
wave of targeted, architectural fixes for issues like noisy labels in class-conditional diffusion models
(Na et al., 2023) and corrupted contexts in language models (Gao et al., 2024). In parallel, empirical
work has validated the principle that massive data volume can overwhelm supervision noise (Jia et al.,
2021). While these approaches are vital, they focus on fixing individual vulnerabilities rather than
explaining their origins.

To analyze such phenomena, our work draws upon several foundational theoretical frameworks. The
information-theoretic perspective builds on the seminal work of Shannon (Shannon, 1948) and its
application to neural networks, which frames learning as a process of preserving a useful signal from
noisy inputs (Tishby & Zaslavsky, 2015). The PAC learning framework provides a formal link
between a task’s complexity (e.g., its Vapnik-Chervonenkis dimension), the required volume of clean
data, and the feasibility of generalization (Valiant, 1984). Finally, the gradient-based perspective
offers a mechanistic view rooted in the extensive literature on stochastic gradient descent (SGD)
dynamics, where factors like batch size and the nature of gradient noise are known to be crucial for
optimization and stable learning (Keskar et al., 2017).

Our work departs from the prevailing focus on model-specific engineering to conduct a fundamental,
comparative investigation. Rather than chasing state-of-the-art performance on individual benchmarks,
we aim to isolate the intrinsic properties that govern robustness across diverse model families. We
are the first to systematically synthesize these distinct theoretical viewpoints to explain why a stark
divergence in robustness exists between autoregressive, diffusion, and discriminative models. By
integrating controlled experiments with this multi-perspective framework, we identify two core
principles—richness of conditioning information and absolute information content—that provide a
unified explanation for these disparate behaviors. A more comprehensive review of the literature is
provided in Appendix F.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Our experimental methodology is designed to precisely measure the impact of low-quality data under
controlled conditions. We introduce noise at ratios (r) from 0.1 to 1.0 relative to the clean data
volume, creating effective error rates (e = r/(1 + r)) up to 50.0%. We analyze the results using two
complementary paradigms.

Noise Generation Protocols. To establish a foundational baseline for intrinsic robustness, our
primary experiments employ unstructured, random noise. For text-based tasks, we corrupt target
tokens by replacing them with tokens chosen uniformly at random from the entire vocabulary. For
classification and class-conditional generation, labels are corrupted by replacement with a class
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chosen uniformly from the C − 1 incorrect alternatives. Full pseudocode is provided in Appendix G
for reproducibility. While this stochastic corruption isolates the model’s ability to extract signal
from noise, we also investigate the impact of realistic, systematic errors through structured noise
experiments in Section 3.3 and Appendix L.

Primary Paradigm: Isolating Intrinsic Robustness. For most of our experiments (autoregressive,
diffusion, and classification models), our goal is to isolate the model’s intrinsic tolerance to noise.
To do this, we hold the amount of correct supervision constant by scaling total training compute by
(1 + r). This design ensures that any performance degradation is a direct consequence of the added
noise, not a lack of clean data. For stability in high-noise regimes, batch sizes were increased and
iterations proportionally reduced to preserve this principle (see Appendix H).

Secondary Paradigm: Fixed-Budget and Structured Noise Analysis. We also employ a secondary
paradigm with a fixed computational budget (constant iterations). The first is a direct analysis of
data replacement, where clean tokens are swapped with unstructured, random noise (Table 8). The
second variation moves beyond unstructured noise to assess robustness against more challenging,
structured errors. For these sequence-to-sequence experiments (Sec. 3.3), the flawed target data
was generated by an early-stage, partially trained version of the model. This provides a crucial test
of our rich-context hypothesis under a more realistic, non-random error distribution that mimics
machine-generated artifacts.

3.2 AUTOREGRESSIVE MODELS FOR TEXT GENERATION ARE ROBUST TO LOW-QUALITY
DATA

To investigate the impact of incorrect data on the training of decoder-only transformer-based au-
toregressive models, we trained GPT-2 models (Radford et al., 2019) on the OpenWebText dataset
(Gokaslan et al., 2019). OpenWebText is an open-source replication of the private WebText dataset
originally used to train GPT-2 and comprises approximately 38 GB of text from 8,013,769 documents.
The training set contains approximately 9 billion tokens, and the validation set contains approximately
4 million tokens.

We trained 124M parameter GPT-2 models using the AdamW optimizer. The baseline model was
trained for 600,000 iterations. For experiments with added noise, batch sizes and total iterations were
scaled to maintain constant exposure to the original clean data, a strategy necessitated by training
instability in high-noise regimes. Full architectural and training configuration details are provided in
Appendix H.

Figure 1: Impact of Increased Low-Quality Data on NLL.
Results for 100:50 and 100:100 used increased batch sizes
and proportionally reduced iterations to maintain training
stability and equivalent correct sample exposure.

Figure 1 shows the negative log-
likelihood (NLL) resulting from train-
ing language models with different ra-
tios of additional incorrect data. The
NLL on the test set represents the
final evaluation after training, while
the NLL on the (noisy) training set
is reported from the end of the train-
ing process. Even when trained on
data with a high error rate, language
models can still achieve good per-
formance on the test set. Notably,
high ratios of additional incorrect data
(r = 0.5, r = 1.0) introduced signif-
icant instability; training with base-
line batch sizes failed to converge due
to what we identify as overwhelming
gradient noise. To counteract this, it
was necessary to increase the batch
size—doubling it for r = 0.5 and using a twelve-fold increase for r = 1.0—while proportionally
reducing iterations to maintain equivalent exposure to correct samples. This necessary intervention
provides direct empirical support for the gradient-averaging mechanism discussed in our analysis
(Section 4.3). As the ratio of incorrect data increases, the NLL on the clean test set increases only
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slightly compared to the baseline (trained on correct data only), while the NLL on the noisy train-
ing set itself increases significantly with higher error rates. This phenomenon demonstrates that
decoder-only transformer-based autoregressive models can learn effectively even in the presence of a
substantial proportion of incorrect data.

To provide a complementary view under a fixed computational budget, we also analyzed perfor-
mance where adding noisy data displaces clean data within a constant number of training steps.
This analysis, detailed in Appendix I, reinforces our finding: even as the model attempts to fit the
corrupted samples (leading to a high training NLL), its generalization to the clean data distribution
remains largely intact (validation NLL increases only modestly). This further highlights the model’s
resilience.

3.3 THE PROTECTIVE EFFECT OF RICH CONDITIONING IN SEQUENCE-TO-SEQUENCE
MODELS

Figure 2: Relative NLL increase versus target
noise. The model trained on CNN/DailyMail, with
its information-rich conditioning input, is signif-
icantly more robust to target corruption than the
WMT model, demonstrating how rich context con-
strains the learning problem.

Our information-theoretic and PAC learning
analyses (Sec. 4.1, 4.2) predict that a model’s
robustness is profoundly influenced by the rich-
ness of its conditioning information. Rich con-
text constrains the learning problem and lowers
the task complexity (VC dimension), making
the model less susceptible to noise in the tar-
get. We test this prediction directly by com-
paring two sequence-to-sequence tasks with a
vast informational disparity: WMT 2014 trans-
lation (Bojar et al., 2014) (sparse context, 99.9th
percentile source length of 153 tokens) and
CNN/DailyMail (Chen et al., 2016) summariza-
tion (rich context, 2343 tokens).

To ensure a stringent test, we trained models
from scratch and introduced structured, non-
random errors into the target data using a
"noisy teacher" paradigm. The results, shown in
Figure 2, offer a clear empirical confirmation of
our theoretical framework. At a 50% effective error rate, the NLL for the sparsely-conditioned WMT
model degraded by 31.5%. In contrast, the richly-conditioned CNN/DailyMail model was far more
resilient, with its NLL increasing by only 17.9%.

This finding provides strong evidence that robustness is not an inherent property of an architecture
alone. Instead, it is heavily modulated by the information asymmetry between input and output.
When a model can draw upon a strong, constraining signal from a rich context, it can effectively
average out and overcome substantial noise in a comparatively low-information target. The full
results and experimental details are available in Appendix K.

3.4 CLASS-CONDITIONAL DIFFUSION MODELS ARE NOT ROBUST TO LOW-QUALITY DATA

To investigate the impact of substantial low-quality data on image generation, we trained class-
conditional diffusion models and a classifier network separately on CIFAR-10 and CIFAR-100
(Krizhevsky, 2009). After training the diffusion model, we generated images by randomly selecting
class labels as conditions. The pre-trained classifier then predicted labels for these generated images.
We calculated an accuracy score by comparing these predicted labels with the conditioning labels
used for generation.

We employ the EDM framework (Karras et al., 2022) for the diffusion model, using a U-Net architec-
ture for the denoiser and a ResNet-18 model as the external classifier. Detailed hyperparameters for
the diffusion process, network architectures, and training are available in Appendix H.

Algorithm 3 in Appendix G is used to generate incorrect labels. For a specific image, with a probability
equal to the effective error rate e, its correct label was replaced by a new label randomly selected
from the C − 1 alternative class labels.
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Table 1: Ratio of Additional Incorrect Data and Corresponding Classification Accuracy of Generated
Images (Consistency with Conditioning Labels) for Image Generation Tasks.

Correct: Incorrect CIFAR-10 Generation CIFAR-100 Generation

100: 0 94.082% 65.236%
100: 10 84.160% 54.262%
100: 30 69.864% 38.882%
100: 50 57.876% 30.404%
100: 100 40.630% 16.996%

The results in Table 1 show a substantial decrease in the accuracy of the generated images (consistency
with the conditioning labels) as the proportion of incorrect training labels increases. For example,
on the CIFAR-10 dataset, when 100% additional incorrect data is used (effective error rate e = 0.5,
corresponding to the ‘100:100’ condition), the accuracy drops from a baseline of 94.082% to 40.630%.
For CIFAR-100, the impact is even more pronounced, with accuracy falling from 65.236% to 16.996%
under the same conditions. Notably, the Fréchet Inception Distance (FID) scores for these generated
images remained relatively stable across different levels of label incorrectness (see Appendix O for
details). This suggests that the degradation in performance is primarily due to a weakened association
between images and their conditioning labels, rather than a general decline in perceptual image
quality.

3.5 ABSOLUTE INFORMATION CONTENT: CLASSIFIER ROBUSTNESS EMERGES AT SCALE

Table 2: Ratio of Increased Incorrect Data and Corresponding Accuracy for CIFAR Classification
Tasks

Correct:Incorrect CIFAR-10 Classification CIFAR-100 Classification

100: 0 95.30% 78.96%
100: 10 95.11% 77.33%
100: 30 90.18% 67.68%
100: 50 89.19% 63.71%
100: 100 85.35% 61.65%

While autoregressive models demonstrated inherent robustness, the behavior of classifiers presents a
more nuanced picture that powerfully highlights the role of dataset scale. On smaller datasets like
CIFAR-10 and CIFAR-100, a ResNet-18 model trained from scratch exhibits moderate sensitivity to
label noise, with performance degrading as corruption increases (Table 2). This establishes a baseline
for moderately complex tasks with limited data.

Table 3: Ratio of Increased Incorrect Data and Corresponding Accuracy for ImageNet Classification
Tasks

Correct:Incorrect ImageNet-10 ImageNet-100 ImageNet-1000

100: 0 62.302% 64.520% 73.784%
100: 10 62.500% 63.360% 73.530%
100: 30 58.929% 57.560% 73.646%
100: 50 54.563% 57.220% 73.684%
100: 100 50.794% 45.920% 74.778%

To test the hypothesis that robustness is driven by the absolute information content of the clean
data in section 4.1.2, we scaled up to ImageNet (Deng et al., 2009) using a ViT-Base model, again
trained from scratch to eliminate pre-training as a confounder. The results in Table 3 are striking.
While the ImageNet-10 and -100 subsets degrade similarly to CIFAR, the model trained on the full
1.28M-sample ImageNet-1000 dataset becomes almost impervious to label noise. Counter-intuitively,
performance did not degrade but slightly improved, even when the training data contained 50%
incorrect labels under the same setting , an effect we attribute to the additional training compute in
our experimental design.
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In high-noise regimes on the subsets, it was necessary to increase batch sizes to stabilize training—an
empirical confirmation of the gradient-averaging mechanism we analyze in Section 4.3. This interven-
tion, detailed in Appendix H, ensures a fair comparison. The extreme robustness on ImageNet-1000
thus provides compelling evidence that a sufficiently large volume of correct signal can dominate
statistical noise. This robustness is further confirmed by our complementary fixed-budget analysis
(see Appendix J), which isolates the effect from increased compute.

4 ANALYSIS

We analyze why autoregressive models and classification models can learn effectively despite sub-
stantial low-quality training data, while class-conditional diffusion models struggle under similar
conditions. Our analysis is conducted from three complementary perspectives: information-theoretic,
probably approximately correct (PAC), and gradient-based. This convergence analysis explains what
informational properties drive robustness (information theory), why these properties are a formal
requirement for generalization (PAC learning), and how the model mechanistically achieves this
resilience (gradient dynamics). The analysis is built upon two fundamental principles. The first is the
richness of conditioning information, which fundamentally governs a task’s complexity (a property
formalized by PAC theory). The second is the absolute information content of the data, which
provides the learnable signal that can be mechanically extracted from noise via gradient aggregation.

4.1 INFORMATION-THEORETIC PERSPECTIVE

Information theory (Shannon, 1948), introduced to quantify information in communication, also
offers a valuable lens for understanding machine learning as a process of information transfer to a
model.

4.1.1 RESIDUAL INFORMATION IN LOW-QUALITY DATA

To understand how models learn from corrupted data, we first quantify the amount of instructive
signal that survives the introduction of noise. We measure this using relative information loss: the
fraction of label uncertainty attributable to data corruption, normalized by the total entropy of the
true labels. Let y be the true label and x be the observed (potentially corrupted) label from a set of n
classes. Assuming a uniform error model where an incorrect label is chosen randomly from the n− 1
alternatives with probability pe, the relative information loss is:

information_loss
H(y)

=
−(1− pe) log2(1− pe)− pe log2 pe + pe log2(n− 1)

log2 n
(1)

This formulation (derived in Appendix Q) isolates the information-theoretic penalty of label noise
itself. Analyzing this equation shows that for a large number of classes n, the loss increases
approximately linearly with the error rate pe. Additionally, for a fixed error rate, the relative
information loss decreases as n grows.

Figure 3: Behavior of Relative Information Loss with
Varying pe and n

These behaviors help explain the general
performance degradation trends in our ex-
periments (Section 3). However, the practi-
cal impact of n is often coupled with other
factors, such as the absolute data volume.
The crucial insight from this analysis is
that instructive information persists as long
as the observed labels are not statistically
independent of the true labels. This inde-
pendence occurs at a single, precise point:
when pe = (n − 1)/n. For error rates
greater than this, the corrupted labels can
paradoxically become informative again
(e.g., pe = 1 simply represents a perfectly
inverted signal when n = 2). Our analy-
sis and experiments operate in the realistic,
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information-degrading regime of pe ≤ (n − 1)/n. Within this scope, a residual signal always
exists, allowing a model with sufficient capacity and data to extract meaningful patterns even from
substantially noisy datasets. Figure 3 illustrates this behavior.

4.1.2 ABSOLUTE INFORMATION CONTENT AS THE PRIMARY DRIVER OF ROBUSTNESS

Beyond the analysis of residual information quantifies the information remaining even in corrupted
data, our analysis identifies the absolute information content of the training data as a principal
driver of robustness. We define this as the total, aggregate quantity of correct, instructive information
available across the entire dataset for learning the desired conditional distribution, p(y|x).
It is crucial to distinguish what information a corrupted sample provides. An image with an incorrect
label, for instance, still contributes to the model’s understanding of the input distribution, p(x), aiding
the learning of robust visual features in a manner similar to unsupervised learning. However, it
provides zero instructive information for the supervised task itself. Only the uncorrupted samples
contribute to the absolute information content that correctly guides the model to learn the input-output
relationship.

Our experimental design directly investigates this principle. By scaling the total training duration
by a factor of (1 + r), we ensure that across all experiments, the model is exposed to a constant
and substantial quantity of this correct instructive information, holding the absolute information
content steady.

The remarkable robustness of the classifier trained on the full ImageNet-1000 dataset is a powerful
illustration of this concept. While the feature extractors learn from all processed images, the final
classification is shaped by the immense absolute information content provided by the 1.28 million
clean samples. This aggregate signal is so overwhelmingly strong that it provides a clear directive for
the learning task, effectively allowing the model to average out and disregard the conflicting gradients
from the noisy labels. This establishes that a sufficiently large absolute quantity of correct, instructive
information is a dominant factor in ensuring model robustness, explaining why massive datasets can
often tolerate significant levels of noise.

4.1.3 THE ROLE OF RICHER CONDITIONING INFORMATION

We hypothesize that robustness is deeply influenced by the information asymmetry between the
conditioning variables (inputs) and the target variables (outputs). Richer conditioning variables
provide a more constrained and informative context, which can empower a model to overcome noise,
particularly when that noise is in a comparatively information-sparse target.

This principle is demonstrated across our experiments. In our autoregressive language models,
the conditioning context of previous tokens, p(next_token|previous_tokens), is information-rich
compared to the single target token. Similarly, for image classifiers, the input image, p(label|image),
contains vastly more information than the simple class label. Both of these model types proved robust
when their information-sparse targets (the next token or the class label) were corrupted.

Conversely, our class-conditional diffusion models, p(image|class_label), represent the opposite
scenario. The conditioning variable (a single class label) is extremely information-sparse relative to
the high-information target (a complete image). As predicted by our hypothesis, these models were
highly fragile when this low-information conditioning signal was corrupted.

The sequence-to-sequence experiments in Section 3.3 provide an even more direct and compelling
validation of this principle. We compared two tasks where the targets were corrupted: one with a
short, less informative conditioning input (WMT 2014, with a 99.9th percentile source length of 153
tokens) and one with a long, information-rich conditioning input (CNN/DailyMail, 2343 tokens).
The results were unambiguous: the model with the richer conditioning information (CNN/DailyMail)
was significantly more robust, exhibiting only a 17.9% performance degradation compared to 31.5%
for the model with the sparser input.

This demonstrates a clear pattern: models are vulnerable when low-information conditions are
used to guide high-information outputs, but they can be remarkably robust when rich conditioning
information provides a strong signal to overcome noise in simpler targets. This establishes the relative
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richness of the conditioning information as a key determinant of a model’s resilience to low-quality
data.

4.2 PROBABLY APPROXIMATELY CORRECT PERSPECTIVE

The Probably Approximately Correct (PAC) learning framework (Valiant, 1984) offers a theoretical
lens through which we can understand the principles of richer conditioning information and absolute
information content. PAC theory defines the sample complexity, m, as the minimum number of
examples required to learn a concept with a low generalization error. For any concept class with a
Vapnik-Chervonenkis (VC) dimension of d, this sample complexity m is lower-bounded:

m ≥ c0

(
1

ϵ
log

1

δ
+

d

ϵ
log

1

ϵ

)
(2)

where ϵ and δ are the error and confidence parameters, and c0 is a constant. (Kearns & Vazirani,
1994) This inequality reveals how both of our core robustness principles are grounded in learning
theory.

First, the required number of samples, m, provides the theoretical foundation for what we term
the absolute information content. A model’s ability to generalize is contingent upon receiving a
sufficient quantity of clean, instructive examples. When training data is noisy, only the uncorrupted
samples contribute toward meeting this required threshold m. Our ImageNet experiment is a
clear example: the sheer volume of the clean dataset (1.28 million samples) provides an absolute
information content that far exceeds the minimum m required for the task, even when a large number
of noisy samples are present. This vast quantity of correct information ensures robust learning.

Second, the VC dimension, d, which reflects the complexity of the function the model must learn, is
directly related to the principle of richer conditioning information. The value of d is determined
not just by the task, but by the complexity of the conditional distribution being modeled.

• Richer Conditioning (e.g., Classification): In tasks like p(label|image), the conditioning
variable (image) is information-rich, while the target (label) is simple. The rich input
severely constrains the possible outputs, simplifying the learning problem. This corresponds
to a concept class with a lower effective VC dimension d.

• Sparse Conditioning (e.g., Conditional Diffusion): In tasks like p(image|label), the
conditioning variable (label) is information-sparse, while the target (image) is extremely
complex. The sparse input provides very little constraint, meaning the model must learn a
far more complex function. This corresponds to a much higher VC dimension d.

According to Inequality 2, a higher VC dimension d demands a significantly larger number of samples
m. Class-conditional diffusion models, with their sparse conditioning and consequently higher d,
have an enormous requirement for absolute information content. This makes them exceptionally
vulnerable to low-quality data, as noise rapidly depletes the effective number of clean samples below
the critical threshold m needed for successful learning.

Thus, the PAC framework converges with the information-theoretic perspective, identifying richer
conditioning information (which lowers d) and sufficient absolute information content (which satisfies
m) as the intertwined, principal drivers of a model’s robustness to noisy data.

4.3 GRADIENT-BASED PERSPECTIVE

The training of modern neural networks via backpropagation (Rumelhart et al., 1986) provides a
mechanistic explanation for how models achieve robustness to noisy data. This perspective highlights
how aggregating samples amplifies the coherent signal from correct information while averaging out
divergent noise from corrupted data, thereby leveraging the dataset’s absolute information content.

Within any given training batch, the total gradient, gtotal, can be decomposed into a coherent signal
from correct samples and divergent noise from incorrect ones:

gtotal = gcorrect_signal +
∑
j

gnoise_component_j (3)

8
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Here, gcorrect_signal represents the consistent directional update from clean samples, guiding the
model toward the true data manifold. By contrast, each gnoise_component_j arises from a corrupted
sample and points in a less predictable, often orthogonal, direction. To quantitatively validate
this decomposition and the effect of sample aggregation, we analyzed per-example gradients at
initialization across different data corruption ratios and batch sizes. The results are summarized in
Table 4.

Table 4: Quantitative Analysis of Gradient Coherence. Clean gradients exhibit strong, coherent
positive alignment (+0.52), while corrupted gradients are directionally random and orthogonal
(similarity ≈ 0). This disparity allows larger batch sizes to amplify the coherent signal relative to the
noise, systematically improving the Signal-to-Noise Ratio.

25% Corruption 50% Corruption
Metric Batch Size = 4 Batch Size = 8 Batch Size = 4 Batch Size = 8

Directional Coherence (Mean Cosine Similarity)
Clean vs. Clean +0.52 +0.52 +0.52 +0.52

(Min, Max) (+0.00, +0.76) (-0.00, +0.76) (+0.00, +0.73) (+0.00, +0.76)
Corrupt vs. Corrupt +0.001 +0.001 +0.001 +0.001

(Min, Max) (-0.02, +0.02) (-0.02, +0.02) (-0.01, +0.02) (-0.01, +0.02)
Clean vs. Corrupt +0.001 +0.001 +0.001 +0.001

(Min, Max) (-0.03, +0.03) (-0.03, +0.03) (-0.03, +0.03) (-0.03, +0.05)

Aggregated Signal Magnitude (Mean L2 Norm)
Aggregated Clean Signal 6.13 11.37 4.19 7.88
Aggregated Noise Signal 0.84 1.36 1.42 2.06

Signal-to-Noise Ratio 7.31x 8.34x 2.96x 3.83x

Table 4 provides direct empirical validation of our hypothesis. First, the coherence analysis confirms a
fundamental disparity: gradients from clean data are consistently and strongly aligned (mean similarity
+0.52), while gradients from corrupted data are directionally random, centered symmetrically around
zero and orthogonal to the clean signal. This holds true regardless of noise ratio or batch size.
Second, and most critically, the table demonstrates the power of aggregation. For both 25% and 50%
corruption levels, doubling the batch size causes the magnitude of the aggregated clean signal to
nearly double, consistent with constructive accumulation. In contrast, the aggregated noise magnitude
grows at a much slower rate, reflecting partial cancellation. Consequently, the signal-to-noise ratio
systematically improves with a larger batch size in all scenarios. This provides a concrete mechanistic
explanation for why larger batches are crucial for stabilizing training in high-noise regimes, as
observed in our main experiments.(see Appendix M for full experimental details).

This fundamental mechanism of signal amplification has a direct, macroscopic consequence on the
training process: it stabilizes the learning trajectory. To quantify this effect, we analyzed the loss
statistics of a converged model across varying global batch sizes, as summarized in Table 5.

Table 5: Impact of Global Effective Batch Size on Gradient Signal Stability. The high mean loss
for the noisy model is an expected consequence of fitting noise, whiles the sharp reduction in loss
standard deviation with larger batches demonstrates increased training stability through gradient
cancellation.

Noisy Model (50% Corruption) Clean Model (Baseline)

Global Batch Size Mean Loss Std. Dev. (×10−3) Mean Loss Std. Dev. (×10−3)

480 7.5806 9.45 2.8366 17.50
960 7.5811 7.08 2.8377 13.17
1920 7.5809 4.58 2.8373 8.85
3840 7.5805 3.61 2.8369 6.43
7680 7.5807 2.40 2.8375 4.44
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These results provide direct quantitative evidence of how sample aggregation stabilizes learning.
For a noisy model (50% corruption), the mean loss is significantly higher (≈ 7.58) compared to the
clean baseline (≈ 2.84). It is vital to distinguish this high mean loss from the net direction of the
parameter update. The elevated loss is an expected consequence of the objective accommodating the
50% corrupted labels, reflecting a necessary compromise in fitting the noisy data.

However, the stability of the learning process is revealed by the loss variance. At first glance, the
noisy model in Table 5 appears more stable, exhibiting a lower loss standard deviation than the
clean baseline. This is a statistical artifact: the consistently high, low-variance loss from corrupted
random targets statistically dampens the natural, higher variance from the clean data. The crucial
insight, therefore, comes not from the absolute variance but from its trend. As the global effective
batch size scales from 480 to 7680, the inter-batch standard deviation of the loss—a direct proxy for
gradient stability—is reduced by approximately 75% in both noisy and clean scenarios. This sharp
reduction signifies that the aggregated gradient provides a stable and consistent update direction.
Although the noisy samples dampen the overall gradient magnitude, the coherent signal from the
correct samples remains dominant after the divergent noisy gradients partially cancel each other out.
This enables a reliable optimization trajectory that, over many steps, allows the model to learn the
true data distribution, explaining its strong generalization despite the high training loss.

Figure 4: Interpretation of the gradient-based per-
spective. (a) Gradients from correct data are coher-
ent, while those from incorrect data are divergent.
(b) Aggregating samples in larger batches ampli-
fies the correct signal relative to the noise.

This mechanism is further validated by our nec-
essary intervention in Section 3.2. When base-
line batch sizes led to instability in high-noise
autoregressive model training, we increased
them up to twelve-fold to achieve convergence.
As Figure 4(b) illustrates, this directly strength-
ens the cumulative gcorrect_signal sufficiently to
dominate the increased, but largely canceling,
noise.

Therefore, the gradient perspective confirms that
aggregating samples is the crucial mechanism
through which the statistical power of absolute
information content is realized, enabling robust
learning even with substantial low-quality data.
This statistical averaging effect may be a fundamental reason why training large models often requires
very large batch sizes (Yang et al., 2024; Touvron et al., 2023; Dubey et al., 2024; DeepSeek-AI,
2024).

5 CONCLUSION

This paper confronts a critical challenge in modern machine learning: the impact of low-quality
data on probabilistic models. Our systematic investigation reveals a stark divergence in robustness
across model families. We find that autoregressive models, spanning both token-level prediction
and sequence-to-sequence tasks, are remarkably resilient to significant data corruption, as are large-
scale image classifiers. In sharp contrast, class-conditional diffusion models exhibit catastrophic
degradation within our comparative analysis, pinpointing a critical vulnerability.

To explain these disparities, we analyze these results through a multi-perspective lens, integrating
principles from information theory, PAC learning, and gradient dynamics to show what informa-
tional properties drive robustness, why they are formally required for generalization, and how this
is mechanistically achieved. Our convergence analysis suggests that robustness in this context is
heavily influenced by two key factors: the richness of conditioning information, which constrains
the learning problem, and the absolute information content of the training data, which allows the
aggregate signal from correct supervision to dominate the statistical noise from flawed examples.
These principles move beyond model-specific observations to provide a more fundamental under-
standing of learning dynamics, offering crucial guidance for designing the next generation of reliable
models intended for imperfect real-world data environments.
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A DISCUSSION

Decoder-only transformer-based autoregressive models for text generation are largely insensitive to
low-quality data, which may partially explain their success (Radford et al., 2018; 2019; Brown et al.,
2020; OpenAI et al., 2024). In contrast, class-conditional diffusion models exhibit greater sensitivity
to data quality, suggesting that training such models requires a larger volume of high-quality data.
This dichotomy is explained by our core finding: when rich conditioning information (e.g., a long text
prefix) is available, models can overcome noise in a low-information target (the next token). When
the conditioning is sparse (a single class label), the model is far more vulnerable. However, in the
text-to-image task (Podell et al., 2023a), text conditions provide more information than categorical
conditions, thereby reducing the amount of high-quality data needed for training.

A potential critique of our PAC analysis is that the comparison might be unfair. A class-conditional
diffusion model, for instance, must solve two difficult problems simultaneously: learning the distri-
bution for high-quality images and learning the correlation between those images and their labels.
A classifier, by contrast, only needs to learn the correlation. We argue that our analysis is valid
because our findings reveal a clear disentanglement of these two problems. For the class-conditional
diffusion model, we show that label noise does not impact its ability to model image quality. Its
capacity to learn the image manifold remains unimpaired, as evidenced by the stable FID scores
detailed in Appendix O. The failure is catastrophic but also highly specific: it is isolated entirely
to the label correlation, leading to a massive drop in image-label consistency as shown in Table 1.
In stark contrast, the image classifier is largely robust. However, the sensitivity it does exhibit is
clearly isolated to its correlation mechanism. This isolation is evident when comparing two factors: a
moderate degradation in per-sample accuracy (Tables 2 and 3) against a near-perfect preservation of
the marginal label distribution, which is quantitatively confirmed in Appendix P (KL Divergence <
0.0003). By isolating the correlation as the symmetric point of vulnerability, we can make a direct
and insightful comparison, validating our analysis.

Our analysis intentionally focuses on models trained from scratch, rather than the dominant pre-
training and fine-tuning paradigm, to establish a controlled, foundational understanding of robustness.
This methodological choice is crucial for a clear interpretation of our results. Pre-trained models
already possess a deep understanding of the world from their initial training, which acts as a powerful
but confounding factor. By training from scratch, we remove this variable, allowing us to better
isolate and understand the principles governing a model’s robustness. Our findings then offer strong
evidence that this robustness is shaped by the richness of conditioning information and the absolute
information content of the data. Furthermore, the impact of fine-tuning can be transient; models
exhibit a strong tendency to revert to their pre-trained behaviors, a phenomenon known as "elasticity"
(Ji et al., 2025). Understanding how robustness is established in the initial training phase is therefore
paramount, as this phase instills the core properties of the model. Our work provides this essential
baseline, upon which future investigations into the more complex dynamics of fine-tuning with noisy
data can be built.

A primary goal of our study was to establish this foundational understanding using a controlled,
unstructured noise model, a necessary first step analogous to using a standardized test to measure
a system’s baseline capabilities. Our framework, however, also provides crucial foresight into the
effects of more complex, structured noise, which presents a vital avenue for future work. Unlike
the random errors studied here, which create diffuse gradient noise, structured noise introduces a
coherent, competing learning signal. For example, a dataset where images of wolves are consistently
mislabeled as "husky" would create a strong, incorrect gradient direction. Our gradient-based
perspective predicts that this systematic error would be significantly more difficult to overcome, as
the signal-averaging effect would be less effective against a persistent, biased signal, a prediction we
confirm experimentally in Appendix L, where systematic mislabeling led to a catastrophic drop in
classifier accuracy that was not observed with unstructured noise. In scoping our work, we distinguish
between two types of structured noise that fall outside our primary research question. The first is
correctable noise, such as the systematic wolf/husky error mentioned above, or the lexical misuse
of "Complement" vs. "Compliment," which can often be solved contextually by other models. The
second is noise from inherent ambiguity, such as the Trolley Problem, which lacks a single ground
truth even for humans. By focusing on unstructured noise, our work addresses the more fundamental
challenge of a model’s intrinsic ability to find signal amidst stochastic corruption, a prerequisite for
tackling these more complex scenarios.
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The findings of this research contribute to a deeper understanding of how different probabilistic
models handle imperfections in training data. This enhanced understanding can positively impact the
machine learning community by enabling a more principled approach to data curation. One could
potentially estimate the data quality requirements for a given model by considering the information
asymmetry between its inputs and outputs. If the input is information-rich, data quality constraints
can be relaxed; otherwise, a larger volume of high-quality data is necessary. As AI capabilities
improve, driven in part by such foundational research, there is a potential for accelerated productivity
across various sectors. However, it is also crucial to recognize that more powerful AI, stemming
from a better grasp of its learning mechanisms, could also be misused for malicious purposes if
not developed and deployed responsibly. Therefore, continued research on AI safety, ethics, and
governance is paramount along with advancements in model capabilities.
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B LIMITATIONS

The central goal of this paper is to provide a systematic and foundational analysis of how core model
properties affect robustness. To achieve this, our experimental design primarily employs a simplified
noise model: the dynamic introduction of unstructured, random errors. This approach ensures that
the error rate is precisely quantifiable and reproducible, allowing us to isolate the effects of our core
principles.

While our main experiments use unstructured noise to isolate core principles, we also validate
our framework’s predictive power on structured noise. In our sequence-to-sequence experiments
(Section 3.3), we apply a form of targeted, structured noise to the output. Furthermore, our analysis
of systematic label corruption in classifiers (Appendix L) confirms that our framework correctly
predicts increased model fragility under such conditions. The primary limitation, therefore, is not
the absence of structured noise analysis, but that our study does not systematically compare various
forms of more complex, correlated noise (e.g., where errors depend on the input data). Exploring
these scenarios is a crucial next step.

Additionally, our work has some other scope limitations. First, computational constraints precluded
training diffusion models on very large-scale datasets. Second, we did not perform a direct analysis
of the number of classes (n) as an independent variable, since its effects are inherently entangled
with dataset size and model capacity. Third, we acknowledge that a direct comparison across tasks is
challenging, as no unified metric exists for objectively scoring text, image, and classification models
against one another. This is particularly relevant to our structured noise experiments comparing
translation (WMT 2014) and summarization (CNN/DailyMail). While these are fundamentally
different tasks, this was a deliberate choice to test our hypothesis under a clear disparity in context
richness while controlling for model architecture and training configuration. We contend this is a more
insightful proxy than intra-task comparisons, where a model trained on a long-context summarization
task, for instance, might learn a trivial copying heuristic, or a long-context translation task could
introduce output length as a new confounder. Our comparative insights are therefore derived from
the starkly different relative degradation patterns each model exhibits against its own clean-data
baseline. Finally, our experiments intentionally employ well-established and representative model
architectures rather than the latest state-of-the-art systems. This choice is crucial for ensuring our
findings are attributable to fundamental model properties, rather than confounding effects from
specific, highly-tuned components of a particular SOTA model. The contribution of this work lies in
analyzing principles of robustness, for which these architectures serve as clear and effective testbeds.

C REPRODUCIBILITY

Our work is designed to be fully reproducible. For the review process, the complete source code,
configuration files, and analysis scripts are provided in the supplementary material. Critically, for a
full and transparent account of our methodology, we direct reviewers to the detailed appendices, which
document the precise training configurations (Appendix H), noise generation protocols (Appendix G),
and other experimental specifics that form the basis of our findings. Upon publication, these resources
will be made permanently available in a public GitHub repository.

D LLM USAGE STATEMENT

Large Language Models (LLMs) were utilized as an assistive tool in the preparation of this manuscript
and its associated code. The LLM’s role included: (1) improving the grammar and clarity of the text;
(2) generating boilerplate code snippets; and (3) assisting in the articulation of authors arguments.

The fundamental scientific contributions, including the formulation of the key ideas, the experimental
design, and the final interpretation of the results, are the original work of the human authors. The
authors have critically reviewed, validated, and take full responsibility for all text and code presented.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E PRELIMINARIES

Probabilistic models are widely used in machine learning to learn distributions from data. After
training, the learned probabilistic model approximates the underlying data distribution. Probabilistic
models can be broadly categorized into two types: generative models and discriminative models.

Generative models aim to learn the joint probability distribution pdata(x,y) or the data distribution
pdata(x). By learning this underlying distribution, generative models, such as those that model
pmodel(x), can generate new data samples x that resemble those drawn from pdata(x). Conditional
generative models, which model pmodel(x | y), generate data x based on specific inputs y.

In contrast, discriminative models directly learn a decision boundary or the conditional probability
pmodel(y | x) of a label y given an input x. They focus on predicting the label for a given input
rather than modeling how the data itself is generated. Classification models are a prominent example
of discriminative models, where the goal is to assign an input x to one of several predefined classes y.
Generative models generally require more sophisticated mechanisms to model complex distributions
compared to discriminative models (Christopher Bishop, 2006).

Recently, generative models have achieved remarkable success across various domains, including text
generation (OpenAI et al., 2024; Team et al., 2024; Dubey et al., 2024; Yang et al., 2024; DeepSeek-
AI, 2024), image generation (Ho et al., 2020; Song et al., 2020a; Song & Ermon, 2019; Dhariwal &
Nichol, 2021; Karras et al., 2022; Podell et al., 2023b), video generation (Kuaishou, 2024; OpenAI,
2024; Blattmann et al., 2023b; Singer et al., 2022b; Ho et al., 2022b), and audio generation (Borsos
et al., 2023; Kreuk et al., 2022; Ziv et al., 2023; Kong et al., 2020b). Transformer-based autoregressive
models (Vaswani et al., 2017) and diffusion models (Ho et al., 2020) have demonstrated exceptional
capabilities in these areas.

E.1 AUTOREGRESSIVE MODELS

Consider a sequence of random variables x = (x1, . . . , xD), where each xi belongs to a defined
domain. An autoregressive model decomposes the joint probability p(x) as:

p(x) = p(x1)

D∏
d=2

p(xd | x<d). (4)

Specifically, for text generation, autoregressive models generate the next token conditioned on
previous tokens (Brown et al., 2020), while for image generation, they can generate the next pixel
conditioned on previous pixels (Oord et al., 2016). Recurrent neural networks (Graves, 2014) (such
as long short-term memory networks (Hochreiter & Schmidhuber, 1997)) and transformers (Vaswani
et al., 2017) can be used as autoregressive models to generate data. Decoder-only transformer-based
autoregressive models are currently prevalent for text generation (Radford et al., 2018; 2019; Brown
et al., 2020; OpenAI et al., 2024) and audio generation (Borsos et al., 2023; Kreuk et al., 2022).

E.2 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al.,
2020b) have achieved remarkable success across various domains, including image generation (Chen
et al., 2023b; Meng et al., 2021; Podell et al., 2023a), video generation (Ho et al., 2022a; Singer et al.,
2022a; Blattmann et al., 2023a), audio generation (Liu et al., 2023; Yang et al., 2023; Kong et al.,
2020a) and more (Wang et al., 2023b; Yu et al., 2024).

Diffusion models generate data by gradually denoising pure noise into meaningful data samples. The
EDM formulation for diffusion models (Karras et al., 2022), proposed to elucidate the design space
of diffusion models, is employed in this work to examine the influence of incorrect training data.

Assume pdata(x) is the data distribution with standard deviation σdata. Let σ0 = σmax > σ1 >
· · · > σN = σmin ≈ 0 be a sequence of decreasing noise levels. We denote p(x;σ) as the marginal
distribution of clean data samples from pdata after being corrupted by i.i.d. Gaussian noise with
standard deviation σ. Thus, p(x;σi) represents the distribution of data with noise level σi. In practice,
the distribution at the maximum noise level, p(x;σmax) (where σmax = σ0), is indistinguishable
from standard Gaussian noise. Diffusion models first sample random noise x0 ∼ N (0, σ2

maxI) and
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then sequentially denoise it according to the noise levels. The result xN thus aims to sample from the
data distribution pdata(x).

The probability flow ordinary differential equation (ODE) (Song et al., 2020b) is the deterministic
counterpart of the stochastic differential equation (SDE), whose solutions describe a diffusion process.
The probability flow ODE can continuously increase or reduce the noise level of the data depending
on the direction of time:

dx = − ˙σ(t)σ(t)∇x log p(x;σ(t))dt, (5)
where the dot denotes the derivative with respect to time, and ∇x log p(x;σ) is the score function
(Hyvärinen, 2005), which points in the direction of steepest ascent of the log-probability density
p(x;σ).

The denoiser D(x;σ), which predicts clean data y from a noisy input x = y + n (where y ∼ pdata
and n ∼ N (0, σ2I)), is trained by minimizing the following denoising score matching objective
(Vincent, 2011):

Ey,n||D(y + n;σ)− y||22. (6)
From the trained denoiser, the score function∇x log p(x;σ) can be estimated as:

∇x log p(x;σ) =
D(x, σ)− x

σ2
. (7)
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F RELATED WORK

The challenge of training models on imperfect data is a foundational issue in machine learning. Our
work contributes by systematically analyzing how these imperfections affect modern probabilistic
models, moving beyond model-specific fixes to uncover the general principles that govern robustness.
This section situates our contribution by reviewing the literature on the data quality problem and the
theoretical principles that inform our multi-perspective analysis.

F.1 DATA QUALITY AND ROBUSTNESS IN DISCRIMINATIVE MODELS

The problem of data quality extends beyond simple label errors to include a range of imperfections
like missing values and feature inaccuracies (Gong et al., 2023), all of which constitute a form
of information corruption. Historically, the study of robustness to such corruption has centered
on discriminative models. It is well-documented that deep classifiers can be surprisingly resilient
to massive label noise (Rolnick et al., 2018), a finding that stands in tension with their ability to
memorize random data (ZhangChiyuan et al., 2021). This observation has spurred the development
of a rich ecosystem of methodological solutions, including techniques for noise correction (Yi & Wu,
2019) and the design of noise-robust loss functions (Menon et al., 2019; Chen et al., 2020). t

F.2 EMERGING FRAGILITY IN GENERATIVE MODELS

While discriminative models have proven robust, the implications of information corruption for
modern generative models present a distinct and more recent research frontier. These models are
often tasked with learning highly complex, high-dimensional distributions, making them potentially
more sensitive to noise.

Recent work has begun to document these vulnerabilities and propose targeted fixes. For instance, the
sensitivity of class-conditional diffusion models has led to specialized solutions, such as transition-
aware score matching (Na et al., 2023) and retrieval-augmented training (Chen et al., 2023a). Similarly,
for language models, methods have been developed to mitigate noisy contexts during in-context
learning (Gao et al., 2024) or fine-tuning (Wang et al., 2023a).

Our work shifts the focus from these model-specific solutions to a more fundamental question.
Instead of asking how to fix a single model’s sensitivity, we provide the first systematic, comparative
analysis to explain why these starkly different robustness behaviors emerge. The fragility of diffusion
models, in our view, is not a bug to be fixed but a key piece of evidence in this analysis.

Complementing this picture is the principle that massive data scale can often compensate for low data
quality. The success of models trained on a billion noisy image-text pairs is a powerful demonstration
of this effect (Jia et al., 2021). Our findings on large-scale classifiers align with this. We unify these
seemingly disparate empirical observations under our proposed principles: that a sufficient quantity
of absolute information content and the presence of rich conditioning information are the primary
determinants of robustness.

F.3 THEORETICAL FOUNDATIONS FOR ANALYZING ROBUSTNESS

Our analysis seeks to explain the observed disparities in robustness by synthesizing insights from
three distinct but complementary theoretical viewpoints. While our convergent application of these
perspectives is novel, each is grounded in established literature.

The Information-Theoretic Perspective frames learning as a process of extracting a useful signal
from noisy data. Our analysis of robustness through the lenses of “richness of conditioning informa-
tion” and “relative information loss” is a direct application of foundational concepts like entropy and
mutual information (Shannon, 1948). This perspective allows us to quantify how much usable signal
remains in corrupted data and explain why models with information-rich conditions (e.g., an image
for a classifier, a long token history for an LM) are better equipped to handle noise in their targets
than models with sparse conditions (e.g., a single class label for a diffusion model). This follows a
tradition of analyzing neural networks through an information-theoretic lens (Tishby & Zaslavsky,
2015).
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The PAC Learning Perspective provides a formal link between a task’s complexity, the amount of
data required, and the feasibility of generalization (Valiant, 1984). The theory establishes that more
complex concept classes (i.e., those with a higher Vapnik-Chervonenkis dimension) require more
clean samples to learn effectively. This principle helps to formally explain why inherently complex
generative tasks, such as modeling the high-dimensional distribution of natural images, have a higher
demand for information and are thus more sensitive to data corruption than comparatively simpler
classification tasks.

The Gradient-Based Perspective offers a mechanistic explanation for how learning occurs amidst
noise at the optimization level. The dynamics of stochastic gradient descent (SGD) are central to
deep learning, and the inherent noise in the gradient estimation is known to have a regularizing effect.
Our analysis builds on modern studies of these dynamics, which have highlighted the crucial roles
of batch size in navigating the loss landscape (Keskar et al., 2017) and the anisotropic nature of
gradient noise in escaping sharp minima (Zhu et al., 2019). This literature provides a firm basis
for our argument that aggregating samples (e.g., through larger batches) strengthens the coherent
“signal” from correct data against the chaotic “noise” from corrupted data, enabling effective and
stable learning.
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G ALGORITHMS

This section provides the algorithms used to calculate the error rate and generate low-quality data.

Algorithm 1 Algorithm to Calculate Scaled Training Duration (assuming constant batch size) and
Effective Error Rate e.
Require: r: The ratio of additional incorrect data relative to original correct data (e.g., r=1.0 means

100% additional incorrect data)
Norig: The number of original epochs or iterations

Ensure: r ≥ 0, Norig > 0
1. Nnew ← Norig × (1 + r)

2. e← Norig×r
Nnew

3. return Nnew, e

Algorithm 2 Algorithm to Generate Incorrect Text Data
Require: e: The effective error rate (calculated as r/(1 + r), see Algorithm 1)

V : The size of the vocabulary
data: The correct text data
B: The batch size
L: The sequence length

Ensure: e ≥ 0
1. idx← random_int(0, len(data)− L,B) {Random starting indices}
2. X ← data[B, idx, idx+ L] {Extract input sequences}
3. Y ← data[B, idx+ 1, idx+ L+ 1] {Extract target sequence (shifted by 1)}
4. mask ← rand_like(Y ) < e {Create a mask for introducing errors}
5. rand_vals← randint_like(Y, low = 0, high = V ) {Generate random values for errors}
6. Y [mask]← rand_vals[mask] {Replace tokens where mask is true with random tokens}
7. return X,Y

Algorithm 3 Algorithm to Generate Incorrect Image Labels
Require: e: The effective error rate (calculated as r/(1 + r), see Algorithm 1)

y: The true class label
C: The number of classes

Ensure: e ≥ 0, C > 0
1. if rand < e then
2. possible_labels← list(range(C))
3. possible_labels.remove(y)
4. incorrect_label← random_choice(possible_labels)
5. return incorrect_label
6. else
7. return y
8. end if
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H TRAINING CONFIGURATION DETAILS

This section provides a summary of the batch sizes and training durations (iterations or epochs) used
for the autoregressive language model experiments (Section 3.2) and the ImageNet classification
experiments (Section 3.5). The configurations were designed to ensure that the total number of
number of samples processed was scaled by a factor of (1 + r) relative to the baseline (where r is the
ratio of added incorrect data), while the number of correct samples processed remained equivalent to
the baseline.

H.1 AUTOREGRESSIVE MODEL (GPT-2) TRAINING CONFIGURATION

The GPT-2 model architecture used (the 124M parameter version) consists of 12 transformer blocks.
Each block sequentially applies Layer Normalization, Causal Attention, a second Layer Normaliza-
tion, and a Multi-layer Perceptron (MLP). Each Causal Attention layer utilizes 12 heads. The model
employs an embedding dimension of 768, a vocabulary size of 50,257, and has approximately 124
million parameters. Models were trained using the AdamW (Loshchilov & Hutter, 2017) optimizer
with a weight decay of 0.1, β1 = 0.9, β2 = 0.95, and a maximum learning rate of 6 × 10−4. The
baseline model (0% added incorrect data) was trained for 600,000 iterations.

The baseline GPT-2 model (r = 0) was trained for Norig = 600,000 iterations with a baseline batch
size of Bbase = 491,520 tokens (12 samples/GPU × 1,024 sequence length × 5 gradient steps × 8
GPUs). For experiments with incorrect data, batch sizes and iterations were adjusted as detailed in
Table 6.

Table 6: GPT-2 Training Configuration on OpenWebText. Norig = 600, 000 iterations. Bbase is the
baseline batch size. Iterations are adjusted to maintain (1 + r) scaling of total number of samples
processed relative to baseline, keeping correct sample exposure constant.

Correct:Incorrect (r) Batch Size Iterations
100:0 (r = 0) 1×Bbase Norig (600,000)
100:10 (r = 0.1) 1×Bbase 1.1×Norig (660,000)
100:30 (r = 0.3) 1×Bbase 1.3×Norig (780,000)
100:50 (r = 0.5) 2×Bbase Norig × (1 + 0.5)/2 (450,000)
100:100 (r = 1.0) 12×Bbase Norig × (1 + 1.0)/12 (100,000)

H.2 DIFFUSION MODEL AND CLASSIFIER CONFIGURATION

For the class-conditional diffusion models, we employ the EDM (Karras et al., 2022) frame-
work with training settings: σdata = 0.5, pmean = −1.2, pstd = 1.2. For sampling, we use
σmin = 0.002, σmax = 80, ρ = 7, and steps = 18. The denoise network is a U-Net architecture
(Ronneberger et al., 2015; Song et al., 2020b) with 15.7 million parameters. For training, we used a
batch size of 128, a learning rate of 0.0001 with 200 warm-up epochs, and an exponential moving
average decay rate of 0.9993 (Hunter, 1986). The classifier model is a ResNet-18 (He et al., 2016),
trained for 200 epochs on CIFAR-10 and CIFAR-100, respectively.

H.3 IMAGENET CLASSIFICATION (VIT-BASE) TRAINING CONFIGURATION

For the ImageNet experiments, we used the ViT-Base architecture (Dosovitskiy et al., 2020), which
has 86M parameters. The baseline ViT-Base models (r = 0) for ImageNet classification tasks were
trained for N0 = 300 epochs with a baseline batch size of B0 = 128 per GPU. For experiments with
incorrect data, batch sizes and epochs were adjusted as detailed in Table 7.
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Table 7: ViT-Base Training Configuration on ImageNet Subsets and Full ImageNet. N0 = 300
epochs. B0 = 128 (per GPU). Epochs are adjusted to maintain (1 + r) scaling of total number of
samples processed relative to baseline, keeping correct sample exposure constant.

Dataset Correct:Incorrect (r) Batch Size (per GPU) Epochs
ImageNet-10

100:0 (r = 0) B0 (128) N0 (300)
100:10 (r = 0.1) B0 (128) 1.1×N0 (330)
100:30 (r = 0.3) B0 (128) 1.3×N0 (390)
100:50 (r = 0.5) B0 (128) 1.5×N0 (450)

100:100 (r = 1.0) 2×B0 (256) (1 + 1.0)/2×N0 (300)

ImageNet-100
100:0 (r = 0) B0 (128) N0 (300)

100:10 (r = 0.1) B0 (128) 1.1×N0 (330)
100:30 (r = 0.3) 2×B0 (256) (1 + 0.3)/2×N0 (195)
100:50 (r = 0.5) 2×B0 (256) (1 + 0.5)/2×N0 (225)

100:100 (r = 1.0) 4×B0 (512) (1 + 1.0)/4×N0 (150)

ImageNet-1000
100:0 (r = 0) B0 (128) N0 (300)

100:10 (r = 0.1) B0 (128) 1.1×N0 (330)
100:30 (r = 0.3) B0 (128) 1.3×N0 (390)
100:50 (r = 0.5) B0 (128) 1.5×N0 (450)

100:100 (r = 1.0) B0 (128) 2.0×N0 (600)

I FIXED TRAINING COMPUTE FOR GPT-2

Table 8: Language Model NLL with Fixed Total Training Compute.
Ratio of Clean to Noisy Data Training NLL Validation NLL
100: 0 2.7369 2.8650
100:10 3.8744 2.9758
100:30 5.3622 3.1646
100:50 6.2423 3.3455
100:100 7.6048 3.6525

To further isolate the effect of noise from computational budget, we ran an additional analysis where
we fixed the total training compute (i.e., total number of training steps) across all noise ratios. The
results, presented in Table 8, provide further quantitative detail on this divergence. As the proportion
of noisy data increases, the training NLL on the noisy data rises substantially, showing the model is
attempting to fit the corrupted samples. In contrast, the validation NLL on clean data increases only
modestly. This demonstrates the model’s resilience; while its performance on the training distribution
degrades, its generalization to the true, clean data distribution remains largely intact.

J FIXED TRAINING COMPUTE FOR IMAGENET CLASSIFIER

To provide a complementary view, we also conducted an analysis on ImageNet-1000 with a fixed
computational budget, where adding noisy data means reducing the proportion of clean data seen per
epoch. The results (Table 9) show that while training accuracy degrades significantly as the model
attempts to fit the noisy labels, test accuracy remains remarkably stable, dropping by less than 3%
even at a 50% error rate. This reinforces the finding that the model effectively learns from the true
signal while averaging out the random noise.
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Table 9: ImageNet-1000 Classification with a Fixed Total Training Budget.
Ratio of Clean to Noisy Data Training Accuracy Test Accuracy
100:0 94.244% 73.784%
100:10 92.728% 72.992%
100:30 87.162% 72.302%
100:50 80.533% 71.854%
100:100 66.870% 71.093%

K DETAILED EXPERIMENTAL SETUP FOR SEQUENCE-TO-SEQUENCE
ROBUSTNESS

This section provides a comprehensive overview of the experimental setup for the sequence-to-
sequence robustness investigation presented in Section 3.3. Our objective was to rigorously compare
the robustness of Transformer models in short-context versus long-context generation tasks when
trained with structured target noise, while carefully controlling for confounding variables.

K.1 DATASETS AND PREPROCESSING

• Short-Context Task (Short-to-Short Generation): We utilized the WMT 2014 English-
German machine translation dataset. To ensure comparable data volume with the long-
context task, the full WMT’14 training set was subsampled to 287,113 examples. The
validation and test sets remained the original WMT’14 splits.

• Long-Context Task (Long-to-Short Generation): We used the CNN/DailyMail sum-
marization dataset. Its training set naturally comprises 287,113 examples, providing an
identical training data volume to the subsampled WMT’14.

• Tokenization: For fair comparison, both tasks employed separate, task-specific Byte-Level
BPE tokenizers, each trained on its respective dataset’s full text (source and target). A crucial
control was setting the vocabulary size identically to 32,000 tokens for both WMT’14 and
CNN/DailyMail tokenizers. This ensures equivalent embedding layer capacity across
models.

• Sequence Lengths: Maximum sequence length for the Transformer models was set to 256
tokens for WMT 2014 (covering 99.9th percentile of both source and target lengths) and
2048 tokens for CNN/DailyMail (covering 99.9th percentile of source article lengths, while
target summaries were capped during generation at 256 tokens).

K.2 MODEL ARCHITECTURE AND TRAINING

• Model: A standard Encoder-Decoder Transformer architecture was employed for both tasks.
Models were trained entirely from scratch.

• Hyperparameters: Identical architectural hyperparameters were used across both tasks:
6 encoder layers, 6 decoder layers, 512 embedding dimension (dmodel), 8 attention heads,
2048 feed-forward hidden dimension, and a dropout probability of 0.1.

• Optimizer: Adam optimizer with a learning rate of 1× 10−4 and gradient clipping at 1.0.

• Training Duration: All models were trained for 50k training steps, ensuring that models
were exposed to a consistent number of total samples (clean + noisy) for each noise ratio,
adhering to the “fixed-budget” paradigm for noise analysis.

K.3 STRUCTURED NOISE GENERATION PROTOCOL

To introduce realistic, structured low-quality data into the target sequences, we employed a “noisy
teacher” approach:

1. Noisy Teacher Training: For each task (WMT’14 and CNN/DailyMail), a clean Trans-
former model (the “Noisy Teacher”) was trained on its respective clean dataset for an early,
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fixed number of steps (e.g., 5,000 steps). This early-stage model is capable of generating
text but produces outputs that are less coherent and accurate than a fully converged model,
mimicking common forms of machine-generated errors.

2. Noisy Target Generation: The “clean_source” inputs from the training sets were fed into
their respective “Noisy Teacher” models to generate “noisy_target” sequences. For machine
translation, this produced poorly translated German sentences given English source. For
summarization, this produced incomplete or inaccurate summaries given an article source.

3. Mixed Training Datasets: New training datasets were constructed where a specified per-
centage of the “clean_target” sequences were randomly replaced with these “noisy_target”
sequences. Noise ratios of 0.1, 0.3, 0.5, and 1.0 were applied as other experiments,
corresponding to effective error rates of 0.0909%, 0.2307%, 0.3333%, and 0.5%. The
“clean_source” inputs always remained uncorrupted.

Table 10: Negative Log-Likelihood (NLL) on WMT 2014 and CNN/DailyMail with varying levels of
structured target noise. These are the full results supporting the analysis in Section 3.3. Lower NLL
is better.

Ratio of Clean to Noisy Data NLL (WMT 2014) NLL (CNN/DailyMail)
100:0 2.5488 3.3859
100:10 2.7591 3.5246
100:30 2.9625 3.6942
100:50 3.0777 3.8015
100:100 3.3525 3.9931

L ANALYSIS OF ROBUSTNESS TO STRUCTURED NOISE

A primary goal of our study was to establish a foundational understanding of robustness using a
controlled, unstructured noise model. However, we acknowledge that real-world data imperfections
are often structured. To test the predictions of our analytical framework under this more challenging
condition, we conducted an additional set of experiments on CIFAR-10 and CIFAR-100 using a
structured noise protocol.

The experimental setup, including the ResNet-18 model architecture and all training hyperparameters,
was kept identical to the classification experiments in Section 3.5 to ensure a direct comparison. The
sole modification was the noise generation mechanism. Instead of replacing a label with a randomly
chosen incorrect class, we applied a systematic and consistent error: with a probability corresponding
to the effective error rate, a true label y was deterministically replaced with (y+ 1) (mod C), where
C is the total number of classes. This creates a coherent, competing signal, as all instances of a given
class, when corrupted, are mislabeled as the same incorrect class.

The results, presented in Table 11, reveal a dramatically different picture of robustness compared to
the unstructured noise scenario.

Table 11: Impact of Structured Label Noise on CIFAR Classification Accuracy. Unlike the diffuse
gradients from random noise, the coherent incorrect signal from systematic mislabeling leads to a
catastrophic performance decline, especially at high corruption rates.

Correct:Incorrect CIFAR-10 Accuracy CIFAR-100 Accuracy

100:0 94.17% 75.54%
100:10 94.15% 75.83%
100:30 91.28% 74.05%
100:50 87.99% 62.44%
100:100 40.72% 33.39%

While the model shows resilience at low levels of structured noise, its performance collapses at higher
ratios. The contrast with unstructured noise is stark. For example, at a 50% effective error rate (the
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100:100 condition) on CIFAR-10, accuracy plummeted to 40.72%, whereas the model maintained an
accuracy of 85.35% under the same level of unstructured noise (Table 2). A similar catastrophic drop
is observed for CIFAR-100, from 61.65% (unstructured) to 33.39% (structured).

This outcome provides strong validation for the gradient-based perspective detailed in Section 4.3.
Unstructured, random noise generates divergent gradients (

∑
j gnoise_component_j) that are direc-

tionally varied and can be effectively averaged out, allowing the coherent signal from correct data
(gcorrect_signal) to dominate. Structured noise, however, creates a coherent but incorrect gradient
signal that systematically pulls the model parameters toward a wrong data manifold. This introduces a
persistent, biased signal that cannot be canceled out through aggregation. The model is thus forced to
learn a competing, incorrect hypothesis, leading to severe performance degradation. This experiment
therefore confirms that our analytical framework not only explains robustness to random noise but
also correctly predicts the increased fragility of models when faced with systematic errors.

M EXPERIMENTAL DETAILS FOR GRADIENT COHERENCE ANALYSIS

To quantitatively validate the claims made in our gradient-based perspective (Section 4.3), we
conducted a dedicated experiment to analyze the directional properties and aggregate magnitudes of
per-example gradients. This analysis is the source of the data presented in Table 4.

Our methodology mirrored the experimental context of our primary autoregressive model experi-
ments (Section 3.2). We used a randomly initialized 124M parameter GPT-2 model, with the same
architecture detailed in Appendix H, and sampled data from the OpenWebText dataset. We applied
the same on-the-fly, unstructured noise protocol detailed in Section 3. The analysis focused on the
word token embedding layer (transformer.wte.weight).

Per-example gradients were computed using the torch.func.vmap transform. We calculated
two sets of metrics across 200 batches for each experimental condition: (1) Directional Coherence,
measured by the pairwise cosine similarity between gradients from clean, corrupt, and mixed pairs
and (2) Aggregated Signal Magnitude, the L2 norm of the sum of all clean gradients and, separately,
all corrupt gradients within each batch. The Signal-to-Noise Ratio (SNR) was defined as the ratio of
the mean L2 norm of the aggregated clean signal to the mean L2 norm of the aggregated noise signal.

The results, as shown in Table 4, provide strong empirical support for our theoretical claims. The
analysis revealed a clear disparity in the directional coherence of the gradients, and we observed how
the signal-to-noise ratio consistently improves with larger batch sizes.

N EXPERIMENTAL DETAILS FOR LOSS STABILITY ANALYSIS

To provide quantitative evidence for the gradient-averaging mechanism discussed in Section 4.3,
we conducted a dedicated experiment to measure the stability of the training process under noisy
conditions. This analysis is the source of the data presented in Table 5.

Objective The goal of this experiment was not to measure generalization, but to quantify the
consistency of the training signal itself. We hypothesized that while individual batches containing
noisy data would produce chaotic gradients, aggregating samples into a larger “global batch” would
yield a much more stable and consistent update direction. We use the inter-batch variance of the
training loss as a direct proxy for the stability of the aggregated gradient.

Methodology The experiment was conducted using the final model checkpoints from two of our
GPT-2 training runs: the baseline model trained on 100% clean data, and the noisy model trained
with a 50% effective error rate (the “100:100” condition).

The measurement process was as follows:

1. Global Macro-Batch Definition: A “global macro-batch” represents a single, large-scale
gradient update step. Its size is defined as (micro-batch size per GPU × gradient accumula-
tion steps × number of GPUs).
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2. Loss Calculation: For each macro-batch, we processed multiple micro-batches of data
drawn from the OpenWebText training set. The appropriate noise ratio (0% for the clean
model, 50% for the noisy model) was applied on-the-fly. We recorded the training loss for
each micro-batch on each GPU.

3. Averaging: The losses from all micro-batches within a single global macro-batch were
averaged to produce a single, scalar loss value for that macro-batch.

4. Statistical Analysis: We repeated this process for 200 independent global macro-batches.
The final reported metrics in Table 5 are the mean and standard deviation calculated over
these 200 macro-batch loss values.

O FID FOR IMAGE GENERATION

Table 12 shows the FID calculated for the diffusion model in Section 3.4. FID was calculated using
50,000 generated images and the original dataset images, employing the “pytorch-fid” package
(Seitzer, 2020). Even with an increased proportion of incorrect conditioning labels in training, the
FID scores remained largely unchanged. The relatively stable FID scores across different levels of
incorrect data suggest that the observed drop in classification accuracy for class-conditional diffusion
models is primarily due to a mismatch between generated images and their conditioning class labels,
rather than a degradation in the perceptual quality of the generated images themselves.

Table 12: Ratio of Increased Incorrect Data and Corresponding FID for Image Generation Tasks
Correct: Incorrect CIFAR-10 Generation CIFAR-100 Generation
100: 0 3.49 5.38
100: 10 3.68 5.70
100: 30 3.66 6.09
100: 50 3.66 6.12
100: 100 3.62 6.28
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P ANALYSIS OF LEARNED LABEL DISTRIBUTIONS IN CLASSIFIERS

This section details a supplementary experiment conducted to quantitatively validate the claim made
in our Discussion (Section A). The goal is to demonstrate that the image classifier successfully learns
the marginal label distribution, even when its per-sample conditional accuracy is degraded by label
noise. This provides the empirical basis for our argument that the classifier’s sensitivity to noise is
isolated to its conditional guidance (correlation), not its understanding of the output space’s structure.

For this dedicated analysis, we replicated the training process for the CIFAR-10 classification
experiments presented in Section 3.5. This involved retraining the ResNet-18 models under identical
architectural and hyperparameter configurations for each noise level. While minor variations exist due
to training stochasticity, the final test accuracies of these replicated models are consistent with those
reported in Table 2, confirming that they exhibit the same fundamental robustness characteristics.

The evaluation process was as follows:

• Each newly trained model (corresponding to effective error rates of 0%, 9.1%, 23.1%, 33.3%,
and 50%) was run on the full, clean CIFAR-10 test set (10,000 images).

• We collected the complete set of 10,000 predicted labels generated by each model.
• We then compared the statistical distribution of these predicted labels against the true,

uniform distribution of the test set labels (1,000 samples per each of the 10 classes).

To quantify the similarity between the predicted and true label distributions, we employed two
standard metrics:

• Kullback-Leibler (KL) Divergence: Measures how one probability distribution diverges
from a second. A KL Divergence value close to zero indicates that the two distributions are
nearly identical.

• Total Variation Distance (TVD): Measures the total difference between two probability
distributions. A TVD value close to zero also signifies high similarity.

The results, summarized in Table 13, reveal a stark contrast between the model’s conditional perfor-
mance and its grasp of the marginal label distribution.

Table 13: Impact of Label Noise on Conditional Accuracy vs. Learned Marginal Distribution (Repli-
cated CIFAR-10 Runs). While per-sample accuracy degrades, the KL Divergence and TVD remain
exceptionally low, indicating the model consistently learns the true underlying label distribution.

Correct:Incorrect Effective Error Test Accuracy KL Divergence Total Variation Dist.
Ratio Rate (Conditional) (Marginal) (Marginal)

100:0 0.0% 93.85% 0.000228 0.0088
100:10 9.1% 94.08% 0.000241 0.0089
100:30 23.1% 92.11% 0.000068 0.0045
100:50 33.3% 87.96% 0.000152 0.0076
100:100 50.0% 86.28% 0.000155 0.0077

As shown in the table, while the model’s test accuracy, which is a measure of its per-sample
conditional mapping ability, p(label|image), degrades under high noise ratios, the KL Divergence
and TVD remain extremely low and stable across all conditions. A KL Divergence of ≈ 0.0002
signifies that the distribution of the model’s 10,000 predictions on the test set is statistically almost
indistinguishable from the true uniform distribution.

This provides powerful empirical support for the argument presented in our Discussion. This
demonstrates that the classifier successfully learns the correct marginal distribution of the output
space. Even when its conditional, per-sample predictions are less accurate, its aggregate predictions
reproduce the true statistical frequencies of the test set. The performance degradation is therefore
isolated to the conditional guidance mechanism (the correlation). This finding is crucial, as it validates
our comparison with the class-conditional diffusion model, which exhibits an analogous failure mode:
its knowledge of the output structure (image quality) is preserved, while its conditional guidance
(label correlation) collapses.
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Q RELATIVE INFORMATION LOSS

Let y represent the true label and x the observed label provided to the model during training (which
may be corrupted from y with probability pe). Let n be the number of label classes, and let pe be the
error rate, which is the probability that any given label is incorrect. Additionally, assume the classes
follow a uniform distribution, such that p(i) = 1

n .

The entropy of the true labels under a uniform distribution is:

H(y) = −
n∑

i=1

p(i) log2 p(i) = −
n∑

i=1

(
1

n

)
log2

(
1

n

)
= log2 n (8)

If the labels are mislabeled with an error rate pe, the predicted labels can be correct with a probability
of at most 1− pe. Furthermore, we assume the incorrect classes follow a uniform error distribution,
meaning each piece of data can be mislabeled as any of the n− 1 incorrect labels with probability
pe

n−1 . The conditional entropy is then:

H(y | x) = −
C∑
i=1

p(i)

(1− pe) log2(1− pe) +
∑
j ̸=i

pe
n− 1

log2

(
pe

n− 1

) (9)

Since p(i) = 1
n for all i:

H(y | x) = −
n∑

i=1

p(i)

(1− pe) log2(1− pe) +
∑
j ̸=i

pe
n− 1

log2

(
pe

n− 1

) (10)

= − 1

n

n∑
i=1

[
(1− pe) log2(1− pe) + (n− 1)

pe
n− 1

log2

(
pe

n− 1

)]
(11)

= −
[
(1− pe) log2(1− pe) + (n− 1)

pe
n− 1

log2

(
pe

n− 1

)]
(12)

= −(1− pe) log2(1− pe)− pe log2 pe + pe log2(n− 1) (13)

If we use the difference between the entropy of the true labels and the mutual information to represent
information loss, then:

information_loss = H(y)− I(x;y) (14)
= H(y)− (H(y)−H(y | x)) (15)
= H(y | x) (16)

The ratio of the information loss to the total entropy, which we define as the relative information loss,
becomes:

information_loss
H(y)

=
−(1− pe) log2(1− pe)− pe log2 pe + pe log2(n− 1)

log2 n
(17)

For x to be independent of y, the conditional distribution P (x | y) must equal the marginal
distribution P (x). Under uniform label noise, this reduces to:

P (x = i | y = i) = P (x = i | y = j) ∀j ̸= i. (18)

Substituting the noise model probabilities:

1− pe =
pe

n− 1
(19)

Solving for pe:

(n− 1)(1− pe) = pe =⇒ n− 1− (n− 1)pe = pe =⇒ n− 1 = npe, (20)
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pe =
n− 1

n
(21)

Thus, when pe =
n−1
n , the observed labels x contain no information about the true labels y, and the

relative information loss reaches its maximum value of 1.
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