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ABSTRACT

Single-view RGB model-based object pose estimation methods achieve strong
generalization performance but are fundamentally limited by depth ambiguity,
clutter, and occlusions. Multi-view pose estimation methods have the potential to
solve these issues, but existing works rely on precise single-view pose estimates or
lack generalization to unseen objects. To address these challenges, we introduce
AlignPose, a 6D object pose estimation method that aggregates information from
multiple extrinsically calibrated views and generalizes to unseen objects. The
contributions of this work are threefold. First, leveraging powerful, frozen fea-
tures from a foundation model, AlignPose iteratively minimizes the discrepancy
between rendered and observed images across multiple viewpoints, enforcing ge-
ometric consistency without object-specific training. Second, robust handling of
noisy inputs is achieved by aggregating pose candidates from an arbitrary single-
view pose estimator via 3D non-maximum suppression. Third, extensive experi-
ments on three BOP benchmarks (YCB-V, T-LESS, ITODD-MV) show AlignPose
sets a new state of the art, especially on challenging industrial datasets where mul-
tiple views are readily available in practice.

1 INTRODUCTION

Model-based 6D object pose estimation is crucial for real-world applications like robotic grasping
and scene understanding. Recent deep learning-based methods achieve strong generalization in this
task, even for objects unseen during training (Labbé et al., 2022; Örnek et al., 2024). However, these
approaches are single-view and hence inherently struggle in cluttered scenes due to occlusions or
appearance ambiguities (e.g., a cup with a hidden handle (Hodaň et al., 2016)). RGB methods are
also prone to errors in camera-object pose estimates due to the depth ambiguity. On the other hand,
depth-based estimators typically achieve superior precision but may fail for certain types of objects
(e.g., reflective, transparent Chen et al. (2022)), and industrial depth cameras are often expensive.
Leveraging multiple RGB views thus offers a compelling alternative to address these issues.

However, existing methods either rely on a strict multi-view matching procedure (Labbé et al., 2020)
that may discard valid candidates or require object-specific training (Shugurov et al., 2021b), which
may require hours or days of training time. Provided with initial object poses in a common reference
frame and camera extrinsics, consistency between views and the object model pose can be enforced
by minimizing an image quantity, as is the case for reprojection error in bundle adjustment (Triggs
et al., 1999) or photometric error in direct SLAM (Engel et al., 2014). Generalization to unseen
objects, however, remains a major challenge. In this work, we formulate the RGB multi-view pose
estimation problem as a multi-view feature-metric image alignment by using frozen features from a
foundation model (Oquab et al., 2023) to achieve generalizability to new objects without training.

Our contributions are as follows:

• We design an approach for multi-view 6D pose estimation from RGB images that does
not require any object-specific training or symmetry annotation. We use per-view pose
candidates, obtained by any existing single-view pose estimation method, aggregate them
in a common 3D coordinate frame, and refine them to obtain a new, improved object pose
estimate.
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• We propose a new formulation of multi-view object pose refinement based on multi-view
feature-metric alignment to minimize the discrepancy between the view-dependent features
extracted from the 3D model and the multiple observed views. We use features from a pre-
trained vision foundation model, which unlocks generalizability to new objects without any
additional training.

• We evaluate our method on the BOP challenge (Hodan et al., 2024) YCBV, T-LESS, and
ITODD-MV benchmarks. We demonstrate substantial improvements in performance mea-
sured by average recall and average precision. Our approach surpasses single-view esti-
mates by 11% on average and state-of-the-art multi-view RGB-based pose estimates by 5%.

2 RELATED WORK

Single-view 6D pose estimation. Model-based object detection and 6D pose estimation from
RGB(-D) images is a well-established field whose progress is tracked in several benchmarks and
datasets (Hodan et al., 2018; Van Nguyen et al., 2025). Leading approaches are all deep learning-
based, and can be broadly classified into direct regression (Xiang et al., 2018), template-matching
(Nguyen et al., 2024; Örnek et al., 2024; Caraffa et al., 2024), 2D-3D correspondence matching (Liu
et al., 2025), and render-and-compare (Li et al., 2018b; Labbé et al., 2020; Labbé et al., 2022). A re-
cent focus has been to develop methods able to generalize to objects that are not seen at training time
(Hodan et al., 2024) by training on large simulated datasets (Labbé et al., 2022; Nguyen et al., 2024;
Wen et al., 2024). Visual (Oquab et al., 2023) and point-cloud (Poiesi & Boscaini, 2022) foundation
models have also been shown to provide useful features for building training-free generalizable pose
estimation approaches (Örnek et al., 2024; Caraffa et al., 2024). We build on this line of work by
leveraging a vision foundation model for the task of multi-view object pose estimation.

Multi-view object pose estimation. Multiple viewpoints can be used to improve single-view RGB-
based pose estimation methods by resolving depth/scale ambiguity and occlusions. Some methods
estimate jointly the object pose and temporally linked camera poses, a problem known as object-
SLAM (Salas-Moreno et al., 2013; Fu et al., 2021; Zorina et al., 2024), while other assume access
to camera poses, e.g. from robot kinematics (Wada et al., 2020) or off-line localization (Li et al.,
2018a). One approach is to first build 3D scene representation, using either volumetric representa-
tion obtained from RGBD frames (Wada et al., 2020; Kaskman et al., 2020) or implicit represen-
tations (Taher et al., 2024) and to then register the object model in the scene. Others fuse multiple
single-view pose estimates, associated with confidence scores (Labbé et al., 2022) or even probabil-
ity distributions (Yang et al., 2023). They are first expressed in a common reference frame using the
camera poses and can then be aggregated using voting schemes (Sock et al., 2017; Li et al., 2018a)
or Maximum Likelihood Estimation (Erkent et al., 2016; Yang et al., 2023). CosyPose (Labbé et al.,
2020) uses pose-level RANSAC (Fischler & Bolles, 1981) aggregation to recover consistent cam-
era and object poses, and refine them using bundle adjustment. DPODv2 (Shugurov et al., 2021a)
proposes a refinement based differentiable rendering by training an model to predict object NOCS
representation (Wang et al., 2019). We introduce a simple but effective 3D Non Maximum Suppres-
sion (NMS) aggregation scheme followed by a multi-view feature-metric refinement which does not
require any object specific training and can therefore generalize to any object model.

Feature-metric refinement. Direct image alignment (Irani & Anandan, 1999; Baker & Matthews,
2004) methods localize a camera by minimizing a photometric loss and have been used to build
highly precise visual SLAM systems (Engel et al., 2014). However, their performance drops signif-
icantly when the brightness consistency assumption is violated, which often appears in visual local-
ization tasks. To improve robustness, several works propose a feature-metric refinement approach
where images are encoded using deep features (Shu et al., 2020; Sarlin et al., 2021) including pre-
trained features (Trivigno et al., 2024). Inspired by those approaches, Örnek et al. (2024) minimizes
a feature-metric error between pre-rendered templates and query images using an image foundation
model (Oquab et al., 2023) but only considers single views. We build on this line of work and
introduce an approach to minimize a feature-metric loss across multiple camera viewpoints.
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Figure 1: Our feature-based multi-view pose estimation pipeline. Single-view pose candidates
are first generated independently for each view using state-of-the-art pose estimation methods (e.g.
Labbé et al. (2022); Örnek et al. (2024)). During aggregation, candidates are transformed into a
common coordinate frame, and non-maximum suppression (NMS) is applied to eliminate redundant
detections of the same object. These filtered pose candidates TWO are then refined using multi-view
feature-metric refinement to obtain object poses that are consistent from all views.

3 GENERALIZABLE MULTI-VIEW OBJECT POSE ESTIMATION

Problem formulation. The goal of multi-view 6D object pose estimation is to determine the 3D
position and orientation of a previously unseen object, given its known 3D mesh and a set of RGB
images from a calibrated multi-camera setup. The object’s pose is represented by a single rigid trans-
formation TWO ∈ SE(3), which maps the object’s local coordinate frame to a shared world coor-
dinate frame. The pose observed by any individual camera, TCO ∈ SE(3), is related to this world
pose through the known camera extrinsics, TCW , via the kinematic chain: TCO = TCWTWO.
Here TCW is the transformation from the world frame to the camera’s frame, which is assumed to
be known from a one-time offline camera calibration procedure.

The primary challenges for multi-view pose estimation are threefold. First, the system must robustly
aggregate multiple, often conflicting, pose candidates from different views to resolve per-view am-
biguities and establish a single, globally consistent estimate. Second, this initial estimate must
be refined by aligning it with subtle image features to achieve final accuracy. Finally, this entire
aggregation-and-refinement pipeline must achieve zero-shot generalization, operating on novel ob-
jects using only their 3D mesh without any object-specific training. To address these challenges we
propose multi-view pose estimation pipeline, as illustrated in Figure 1 and described next. Our ap-
proach leverages existing single-view pose estimators to produce per-view candidate poses, which
are then aggregated, filtered, and refined to yield poses that are consistent in 3D and well-aligned
with the input images. Individual components of the pipeline are described next.

3.1 GENERATION OF SINGLE-VIEW POSE CANDIDATES

As an input to our method, we expect multiple RGB images of a scene, camera intrinsics, along
with poses of cameras that captured these images relative to some world frame. For each view we
let a single-view pose estimation method predict a set of object pose candidates. Each candidate
is associated with a pose relative to the camera and a confidence score. We do not provide a spe-
cific implementation; rather, we assume the use of any off-the-shelf method for single-view pose
estimation of unseen objects.

3.2 MULTI-VIEW AGGREGATION

The goal of the aggregation stage is to consolidate the noisy and redundant pose candidates from
all single views into a clean, minimal set of unique 3D object pose candidates. The main challenge
is that transforming these single-view estimates into a common world frame creates multiple, over-
lapping pose candidates for each physical object. To resolve this, we employ 3D Non-Maximum
Suppression (NMS) to filter the duplicates. In this process, each candidate is represented by a 3D
bounding box derived from its pose and 3D model, using the confidence score from the single-view
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Figure 2: Multi-view feature-metric refinement. This figure illustrates a two-view feature-metric
refinement. The two cameras show cropped query features (mapping the first three PCA components
to RGB values). The partial multi-color point clouds represent the registered features FCO, shifted
towards their corresponding camera for visualization purpose. The projection of registered feature
3D coordinates xi is represented by a line colorcoded with a matching color of the feature value pi.
During refinement, each registered feature pi is compared to the feature value interpolated from the
query feature image Fq at the location of the corresponding 3D point xi projected into the image at
πC (TCOxi), according to Equation 1. For clarity, only a few (3 per view) projected 3D points are
shown.

estimator. Overlapping boxes are then suppressed based on their 3D Intersection over Union (IoU) if
they exceed a predefined threshold. This stage concludes with a set of unique pose candidates, each
with a coarse but consolidated pose with respect to the world coordinate frame, ready for refinement.

3.3 MULTI-VIEW REFINEMENT

In the refinement stage, each pose candidate is refined independently via multi-view feature-metric
alignment. The goal is to maximize the alignment between the projection of 3D registered features
extracted from the 3D object model and 2D feature maps extracted from input images by optimizing
the object pose using a multi-view feature-metric loss. In the following, we explain how the 3D
registered features and 2D feature maps are obtained, and then describe our loss formulation.

Feature extraction. Before the multi-view alignment begins, we prepare two fixed representations
for each input view: a query 2D feature map derived from the observed image and 3D registered
features derived from the object’s coarse pose candidate. The query is the observed appearance
of the scene that acts as the evidence we want to match. For each view, it is derived from the
input image by cropping the region that (presumably) contains the object to a standardized size
and extracting its feature map with a feature extractor. The 3D registered features represent view-
dependent appearance of the object based on the coarse pose. This view-dependent appearance
is represented by a set of 3D registered features FCO = {pi,xi}. This is a point cloud where
each 3D point xi on the object’s surface has an associated feature descriptor pi. We obtain this
representation by first rendering color and depth frames for each view using the coarse object pose.
We then extract features from the color render and register them in 3D by lifting them to the object’s
coordinate system using the rendered depth map. Note that while Örnek et al. (2024) pre-computes
a large collection of registered features from template views, we only compute one set of registered
features per view, which reduces the memory requirements of the method. More details can be found
in the appendix A.

Per-view loss function. For each view, we define the feature-metric loss of a pose estimate TCO as:
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LC
FE(TCO) =

∑
(pi,xi)∈FCO

ρ (pi − Fq (πC (TCOxi))) , (1)

where FCO is the set of registered features of the view and Fq are the 2D query features. Each
registered object feature pi is compared with its corresponding feature from the query feature map
Fq (πC (TCOxi)). The correspondence is obtained by transforming the 3D object point xi from the
object frame into the camera frame (by transformation TCOxi), projecting it into the query image
(with camera projection πC), and then sampling the query feature map Fq with bilinear interpolation
at the given image coordinates. The loss for each registered feature is then calculated using a robust
cost function ρ(·) by Barron (2019) with parameters α = −5, c = 0.5.

Multi-view alignment. The goal of the multi-view alignment is to find a consistent object pose
in the world frame T r

WO that minimizes the feature-metric loss across all camera views. This is
achieved by minimizing the sum of per-view feature-metric losses:

T r
WO = argmin

TWO

∑
C∈C

LC
FE(TCWTWO) , (2)

where C is the set of all cameras. The optimized object pose TCO is expressed in the camera frame
following the kinematic chain TCO = TCWTWO. We visualise the multi-view alignment and the
feature-metric loss in Figure 2.

Optimization. The pose is refined iteratively by the Levenberg-Marquardt(Levenberg, 1944; Mar-
quardt, 1963) optimization algorithm until convergence or a maximum of 30 iterations. After the
optimization, the refined pose Tr

W,O is assigned a score based on the average per-view error:

s(T r
WO) = 1− 1

|C|
∑
C∈C

LC
FE(TCWTr

WO) . (3)

The score ranges from 0 to 1, with higher values indicating better poses, reaching its maximum
when the pose best aligns the registered features with the query features. This score serves as a final
confidence measure, quantifying how consistently the refined pose aligns with the visual evidence
across all available camera views.

4 EXPERIMENTS

Evaluation. We follow the BOP evaluation protocol (Hodaň et al., 2020) and use three pose-
error functions: Maximum Symmetry-Aware Surface Distance (MSSD), which measures the max-
imum 3D distance between corresponding object vertices accounting for symmetries; Maximum
Symmetry-Aware Projection Distance (MSPD), which computes the maximum 2D distance between
the projected vertices of the predicted and ground-truth poses in the image plane; and Visible Surface
Discrepancy (VSD), which measures the difference between visible object surfaces by comparing
rendered depth maps, considering occlusions.

We evaluate our method on two tasks: 6D object localization, measured by Average Recall (AR)
and 6D object detection, measured by Average Precision (AP) (see Hodaň et al. (2020)[A.1]). The
AR metric measures the fraction of object instances for which a correct pose is found, averaged
across several error thresholds. The AP metric follows an evaluation methodology similar to the
COCO challenge (Lin et al., 2014) but it replaces the standard Intersection over Union (IoU) with
the MSSD and MSPD pose errors. AP is generally a stricter metric than AR. See Van Nguyen et al.
(2025) for more details. For each method, we report the average recalls for each error function
(ARVSD,ARMSSD,ARMSPD), their average AR = (ARVSD + ARMSSD + ARMSPD)/3, as well as
the average precisions for error functions (APMSSD,APMSPD), and their average AP = (APMSSD +
APMSPD)/2.

Datasets. We evaluate our method on three benchmark datasets from the BOP benchmark: YCB-
V (Xiang et al., 2018), T-LESS (Hodaň et al., 2017), and ITODD (Drost et al., 2017). YCB-V
contains household objects with texture. T-LESS includes industry-relevant, texture-less objects,
often arranged in heavily cluttered environments. ITODD dataset is composed of small, metallic,
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Table 1: Multi-view pose estimation of unseen objects on YCB-V, T-LESS, and ITODD. Both
our method and CosyPose (Labbé et al., 2020) refine candidates from FoundPose (Örnek et al.,
2024), GigaPose (Nguyen et al., 2024), MegaPose (Labbé et al., 2022), and Co-Op (Moon et al.,
2025). Our approach achieves higher performance across datasets. On ITODD, we omit the aggre-
gation stage and refine candidates from one view only; CosyPose is unable to refine such candidates.

Dataset Method AR ARVSD ARMSSD ARMSPD AP APMSSD APMSPD

YCB-V

FoundPose 69.0 60.2 67.0 79.7 63.0 54.5 71.4
+ CosyPose MV 79.2 73.6 81.4 82.7 76.1 74.3 77.8
+ Ours 84.2 79.0 89.0 84.5 83.0 85.2 80.8

GigaPose 66.6 57.4 64.2 78.2 63.1 54.2 72.0
+ CosyPose MV 76.5 70.3 77.8 81.2 70.9 68.3 73.4
+ Ours 82.7 77.9 87.4 82.3 80.2 82.4 78.0

MegaPose 62.0 53.5 59.7 72.8 56.1 47.8 64.5
+ CosyPose MV 71.1 65.1 72.3 75.8 64.5 61.8 67.2
+ Ours 80.2 75.4 84.7 80.5 77.1 79.0 75.3

Co-op 69.7 58.3 66.3 84.6 69.5 57.8 81.2
+ CosyPose MV 81.0 73.9 83.0 86.1 79.2 76.3 82.1
+ Ours 83.2 78.0 88.1 83.5 82.1 84.2 80.0

T-LESS

FoundPose 57.0 53.6 54.9 62.3 57.0 52.9 61.1
+ CosyPose MV 66.4 62.4 63.9 67.0 63.0 62.1 64.0
+ Ours 82.0 77.7 83.7 84.5 86.9 86.9 86.9

GigaPose 58.2 54.9 56.0 63.7 54.3 50.8 57.8
+ CosyPose MV 61.9 59.5 60.6 65.6 55.9 55.5 57.3
+ Ours 80.7 76.8 82.4 83.1 83.8 83.8 83.8

Megapose 50.8 48.1 48.5 55.9 50.5 46.6 54.4
+ CosyPose MV 57.6 55.8 56.7 60.3 56.1 54.9 57.3
+ Ours 76.9 73.0 78.6 79.2 79.8 79.8 79.8

Co-op 68.2 64.0 65.8 74.8 68.9 64.3 73.4
+ CosyPose MV 78.7 76.9 78.5 80.7 78.9 78.3 79.4
+ Ours 86.0 81.6 87.9 88.6 89.4 89.4 89.3

ITODD Co-op 50.6 42.7 47.5 61.7 50.4 44.1 56.7
+ Ours 54.2 47.6 56.2 58.8 54.5 54.4 54.7

and reflective objects. It is captured in grayscale and represents industrial settings. We use the
ITODD-MV version provided by BOP, which includes multi-view data.

For YCB-V and T-LESS, we sample view groups out of the test targets following the same procedure
as (Labbé et al., 2020) for a fair comparison. In contrast, ITODD provides exactly four predefined
views for each scene, so no sampling is necessary. All datasets include camera calibration.

4.1 UNSEEN OBJECT POSE ESTIMATION TASK

Our work introduces a generalizable multi-view pose estimation method, capable of operating on
novel objects without object-specific training. To validate this generalization capability, we evaluate
our approach in the unseen object pose estimation setting defined by (Hodan et al., 2024). In this
scenario, the pose estimation method is not permitted to train on the 3D object models; only a brief
onboarding stage is allowed. To obtain input single-view pose candidates, we use state-of-the-art
single-view pose estimation methods that operate on unseen objects1: FoundPose (Örnek et al.,
2024), GigaPose (Nguyen et al., 2024), MegaPose (Labbé et al., 2022) and Co-Op (Moon et al.,
2025).

1We use single-view pose candidates downloaded from BOP Leaderboard, specifically the fol-
lowing versions: FoundPose+FeatRef+Megapose-5hyp, GigaPose+GenFlow (5 hypotheses), MegaPose-
CNOS fastSAM+MultiHyp, Co-op (F3DT2D, 5 Hypo)
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Table 2: Seen object pose estimation task on the T-LESS dataset. We compare our multi-view
pose estimation method with multi-view pose estimation methods CenDerNet(Haugaard & Iversen,
2023), DPODv2(Shugurov et al., 2021b) and CosyPose(Labbé et al., 2020). Our method gives the
best results across all metrics. For baseline results we rely on publicly available results and therefore
not all metrics are available by the baseline methods.

Data Method #views AR ARVSD ARMSSD ARMSPD AP APMSSD APMSPD

sy
nt

CenDerNet 5 71.3 70.7 71.7 71.5 not available
DPODv2 1 63.6 56.1 60.2 74.4 not available

+ DPODv2 MV 4 68.9 64.5 71.0 71.2 not available
CosyPose 1 64.0 57.1 58.9 76.1 63.0 54.7 71.4

+ CosyPose MV 4 72.8 68.2 71.5 78.9 70.6 68.6 72.7
+ Our refinement 4 85.5 80.3 87.6 88.7 89.2 88.9 89.4

sy
nt

+r
ea

l DPODv2 1 65.5 57.9 62.1 76.4 not available
DPODv2 MV 4 72.0 67.9 74.2 74.0 not available

CosyPose 1 72.8 66.9 69.5 82.1 74.1 67.8 80.3
+ CosyPose MV 4 81.5 77.9 81.4 85.4 81.7 80.6 82.7
+ Our refinement 4 86.8 81.9 88.9 89.7 91.0 91.0 91.0

YCBV and T-LESS evaluation. We compare our multi-view pose estimation method against the
multi-view aggregation-and-refinement strategy proposed in CosyPose (Labbé et al., 2020). To our
knowledge, this is the only available method capable of multi-view pose refinement of unseen ob-
jects. Unlike our method, CosyPose jointly refines object and camera poses and does not require
known camera extrinsics. To ensure a fair comparison, we evaluate CosyPose in a setting where
camera extrinsics are known and the refinement is applied only to object poses. Additionally, Cosy-
Pose relies on annotated object symmetries, while our method is symmetry-agnostic. The results
are shown in Table 1. The table shows that our multi-view pose estimation method significantly
outperforms CosyPose multi-view on both YCB-V and T-LESS datasets.

An exception to the overall trend appears in the MSPD error when refining candidates from Co-
Op (Moon et al., 2025). In this case, our method does not yield an improvement in this single
reprojection error metric. A likely explanation is that our refinement adjusts the object pose to better
align in spatial/depth direction, thereby reducing MSSD. However, this stricter alignment in 3D can
sometimes lead to a slight increase in the 2D projection error (MSPD), for instance when the refined
pose corrects depth or orientation errors in ways that shift the projected silhouette. This highlights a
trade-off: optimizing for geometric consistency in 3D may not always translate to lower reprojection
error in 2D, especially when the input candidates have a very low reprojection error.

ITODD evaluation. For ITODD dataset, we use pose candidates from one of the four views as input
and refine them with respect to features from all of the views as single-view pose candidates for all
views were not publicly available. The results (see Table 1) show that our refinement improves
performance even without the aggregation stage, though the improvement compared to the single-
view input is not as substantial. In contrast, CosyPose multi-view refinement cannot be applied in
this setting.

Qualitative results. Qualitative results for YCB-V dataset are shown in Figure 4.1 and for T-LESS
in Figure 4.1. Our qualitative results demonstrate the superior performance of our multi-view
method over both the initial single-view estimates and the CosyPose refinement. For each scene,
we compare the initial single-view pose candidates against the refined multi-view outputs from both
CosyPose and our approach. A key advantage of our method is its robustness. For instance, Cosy-
Pose often fails to produce a final estimate when its RANSAC-based aggregation step discards all
initial pose candidates for an object. In contrast, our method successfully processes and refines any
object pose detected in at least one valid view, showcasing a significant improvement in reliability.

4.2 SEEN OBJECT POSE ESTIMATION TASK

Although our method is designed for the primary challenge of generalizable pose estimation for
unseen objects, we also benchmark its performance in the seen object setting. This allows for a
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Input image Single-view CosyPose MV Ours

Figure 3: Qualitative results of multi-view refinement on the YCB-V dataset. We show one
input image in the first column and its corresponding single-view pose estimates from the Co-op
method (Moon et al., 2025) shown in blue in the second column. The ground-truth object poses are
shown with textures. The third column presents the results of CosyPose multi-view pose estimation
and the forth column shows the results of our multi-view pose estimation method. CosyPose and
our method both used Co-op pose candidates from four input images/views. Our approach refines
these single-view candidates more effectively than CosyPose, producing more accurate 6D poses.

direct comparison against a wider range of established multi-view baselines that require object-
specific training on the exact test objects. For this evaluation, we focus on the industry-relevant
T-LESS dataset for which existing multi-view pose estimation methods provide results publicly.

We show the results for seen object pose estimation in Table 2. We compare with methods trained on
synthetic data (synt) as well as those trained on a mix of synthetic and real data (synth+real), namely
CenDerNet (Haugaard & Iversen, 2023), DPODv2 (Shugurov et al., 2021b), and CosyPose (Labbé
et al., 2020). DPODv2 and CosyPose both have a single-view version and a multi-view (MV)
version that combines and refines these single-view inputs. Results for CosyPose MV were obtained
by running the original pipeline with known camera extrinsics. As shown in Table 2, our method
outperforms all baselines across all metrics. This indicates that, despite requiring no training, our
approach is competitive even against methods explicitly trained on the test objects. For fairness,
we refine pose candidates generated by CosyPose’s single-view estimator, which was trained on
T-LESS, ensuring the inputs to our refinement are comparable to those used by the baselines.

4.3 ABLATIONS

To understand and quantify the contribution of each component within our pipeline, we performed an
ablation study. The results are shown in Table 3. Aggregating single-view candidates from multiple
views slightly increases AR, as more objects become visible, but substantially reduces AP due to
redundant or inconsistent pose estimates. Applying NMS restores precision by keeping only the best
candidates. Finally, the full pipeline, including refinement, demonstrates that visual-feature-based
refinement is crucial for achieving high-quality 6D pose estimates.
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Input image Single-view CosyPose MV Ours

Figure 4: Qualitative results of multi-view refinement on the T-LESS dataset. We show one
input image in the first column. Single-view pose estimates obtained by MegaPose (Labbé et al.,
2022) are shown in blue in the second column. Ground-truth poses are highlighted in red. The third
column presents the results of CosyPose multi-view estimation and the fourth column shows the
results of our multi-view pose estimation method. CosyPose and our method both use MegaPose
single-view pose candidates from four input views/images. Our approach refines the poses better
than CosyPose (see rows 1-2) and is able to correctly retrieve poses for more objects (see rows 1-4)
in this challenging setting with multiple textureless objects.

5 CONCLUSION

In this work, we introduce AlignPose, a novel and effective method for multi-view generalizable
6D object pose estimation. The method efficiently aggregates information from multiple views
and generates high-quality pose estimates. We show that a frozen vision foundation model can be
leveraged for this task as a powerful feature extractor. This allows AlignPose to achieve remarkable
generalization to new, unseen objects without any additional training. Our strategy sets a new state-
of-the-art on key BOP benchmarks and provides a powerful solution that is well-suited for industrial
setups with challenging conditions, where multi-view information is most useful.

Table 3: Ablation of the key components of our method on the T-LESS dataset. Performance
of the single-view input to our method (1v (Co-op)), followed by successive stages of our approach:
multi-view aggregation (4v aggregate), 3D non-maximum suppression (4v aggregate + NMS), and
multi-view refinement (4v aggregate + NMS + refinement).

Method AR ARVSD ARMSSD ARMSPD AP APMSSD APMSPD

1v (Co-op) 68.2 64.0 65.8 74.8 68.9 64.3 73.4
4v aggregate 69.3 56.4 73.8 77.7 48.6 47.4 49.8
4v aggregate + NMS 73.1 58.4 78.3 82.7 80.3 79.0 81.5
4v aggregate + NMS + refinement 86.0 81.6 87.9 88.6 89.4 89.4 89.3
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

As a preparation for multi-view alignment, we prepare two distinct, fixed representations for each
view: a 2D query feature map a set of 3D registered features. In this section we describe the
generation process based on the work of Örnek et al. (2024). We now describe how the query
features and registered features are created for some view associated to camera C and for an object
O with a coarse pose estimate TWO.

2D query features. Given an 2D bounding box obtained from the coarse pose TWO, we crop the
image using the perspective cropping method implemented by Örnek et al. (2024). For each view,
this process yields a cropped image of size 420 × 420 and a corresponding crop camera C ′ with
pose TWC′ in the world coordinates. We then extract a 2D feature maps using DINOv2: the cropped
image is decomposed into a grid of non-overlapping 14 × 14 patches and each of these patch i, is
embeded with a feature descriptor. We use the hidden state of layer 18 of the DINOv2 backbone
which was empirically found to provide a good balance between positional information and semantic
abstraction (Örnek et al., 2024). The resulting feature map is then upsampled to the crop resolution
via bilinear interpolation.

3D registered features. To generate the registered feature, we render an RGB-D image of the object
as it would appear from the crop camera C ′ given the coarse pose TWO. After rendering, we extract
a feature descriptor for each patch, analogously to the process used for the query features, but we
keep only the descriptors of patches whose center belong to the object and not the background.
Additionally, we lift the 2D descriptors into 3D object space. Each descriptor pi corresponding to
a patch centered at pixel ci is assigned the 3D point xi in object coordinates that projects to ci.
This yields a set of registered features FCO = {pi,xi} where pi is a patch descriptor and xi its
corresponding 3D location in object space.

Dimensionality reduction. Feature extractors such as DINOv2 produce high-dimensional descrip-
tors (e.g., 1024 dimensions), which can be computationally expensive for optimization. To make
the process tractable, we reduce the dimensionality of these descriptors using Principal Component
Analysis (PCA). The principal components are pre-computed for each object type during an offline
onboarding stage and then applied to all subsequent patch descriptors of that object. Specifically,
the components are estimated from feature descriptors extracted from renders of the object observed
under a diverse set of viewpoints.
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