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ABSTRACT

Security concerns around gradient attacks - in which an adversary can inject a ma-
liciously crafted gradient during the training - have long been studied in distributed
learning due to their proven harmfulness and the difficulty to defend against.
These attacks however have been argued to affect far less systems than data poi-
soning. In the latter, an attacker’s power is reduced to only being able to inject
data points to training sets, via e.g. legitimate-looking participation in an online
service, or participation in a collaborative or open-sourced dataset. Even though
an equivalence between the two attack modalities have been showed in convex
settings (regression), this apparent difference in the attackers’ power raises the
question of whether the harm made by gradient attacks can be replicated by data
poisoning ones in non-convex settings. In this paper, we show that data poisoning
can sometimes mimic gradient availability attacks in a more practical deep learn-
ing setting. While data poisoning have mainly been used to perform targeted or
backdoor attacks, we show that by borrowing a threat model to gradient attacks,
we can successfully perform a data poisoning availability attack.

1 INTRODUCTION

In Federated Learning, workers only communicate the gradients computed on their own data. One
malicious worker can, alone, steer the training procedure with a gradient attack, where it can send
an arbitrary gradient as showed in Blanchard et al. (2017). These attacks can severely degrade the
global performances of the model (availability attacks). However, most machine learning models are
trained on the data points directly. While Machine Learning practitioners tend to trust their training
procedures, their data, and resulting models (Hoang et al., 2021), data poisoning, which consists in
tampering with training samples to induce a certain bias or behaviour in a machine learning model,
has proven to be a realistic security threat (Carlini et al., 2023) that can throw algorithms off (Biggio
et al., 2013; Geiping et al., 2021).

As stated in the abstract of Gebru et al. (2021) : “The machine learning community currently has
no standardized process for documenting datasets, which can lead to severe consequences in high-
stakes domains”. This is particularly true as they scaled to web-scrapped datasets (Luccioni &
Viviano, 2021; Schuhmann et al., 2022). Because of such scale, it is difficult to comprehend the
extent of contamination they could realistically endure. Although Carlini et al. (2023) shows that
they manage to poison at most 1% of a few publicly available datasets with a $10k budget, a much
higher upper bound can be advanced, and higher levels of contamination are not to overlook either.
Varol et al. (2017) claimed that bots represented between 9% and 15% of Twitter’s active users
(which is more than Twitter’s CEO’s claim of 5% Agrawal (2022)). We could expect the ratio
of stealthy malevolent agents to be somewhat similar (if not higher). And since Xie et al. (2022)
shows that a subtle substitution of one word with a synonymous can be enough to perform an attack,
even a strict moderation cannot hope to prevent these attacks from stealthy adversarial accounts.
On Reddit, although there is no relevant estimation of the number of fake accounts, creating an
account is quick and easy. So much that the notion of “throw away account” is common to post
anonymously (MEOWTheKitty18, 2022). We thus expect the ratio of potential malevolent accounts
and potentially poisonous contents there to be much higher, so much that it has already influenced
Machine Learning algorithms. Rumbelow & mwatkins (2023) shows that a few redditors artificially
inflated their online presence (by posting over 160k posts on the “r/counting” subreddit on which
people simply count) on the platform so much that they managed to have a dedicated token in GPT-
3’s tokenizer. According to Charon & Vilmer (2021), “armies” as large as 2 million full time and
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Figure 1: Threat model for data poisoning. The attacker does not have access to the minibatch Sb
t

but estimates it with an auxiliary dataset Da to craft Sp
t the set of data poisons. Both the minibatch

and the poisons set are gathered into Sb∪p
t . The attacker’s goal is either to slow down the training or

prevent it.

20 million part time individuals could be conducing campaigns on social media. Datasets could
already be poisoned without easily detectable action: social media, collaborative datasets such as
CommonVoice (Ardila et al., 2020) or Wikipedia (Carlini et al., 2023), or even intruding the websites
hosting trusted datasets.

What is, then, the extent of harm that can be caused by data poisoning on deep learning models? A
partial answer by Farhadkhani et al. (2022) shows an equivalence between gradient attacks and data
poisoning in convex settings. Such result has yet to be extended to deep neural networks in non-
convex settings. In this work, we borrow a threat model from gradient attacks litterature and allow an
attacker to send a few adversarially crafted data points at each iteration during the training process.
This threat model acts like a worst-case scenario from a data poisoning perspective as attackers
usually only craft their poison once and put them in the dataset among other points. We formulate
our data poisoning procedure as an optimization problem constrained in the input space which aims
at producing data poisons whose resulting gradient is as similar as possible as a given gradient attack.
As such, we demonstrate that data poisoning can mimic gradient attacks and successfully perform
a training time attack which slows down the training or an availability attack which degrades the
model’s global performances.

CONTRIBUTIONS

• We propose a new data poisoning threat model inspired from gradient attacks.
• We design new data poisoning attacks by mimicking gradient attacks.
• We experimentally demonstrate these data poisoning procedures can produce training time

attacks and availability attacks on neural networks trained end-to-end.

2 BACKGROUND

Our work builds on existing knowledge of the harmfulness of both gradient attacks and data poi-
soning. There are several types of attacks: targeted toward certain examples (integrity attack),
untargeted to compromise the general performances of the model (availability attack), triggerless
when the adversary can only influence the training phase of the model, backdoor when it can also
intervene at inference time...

Gradient Attacks are applicable when the learner uses gradients sent by the worker, such as
in Federated Learning. There is naively no way to determine if a gradient is legitimate or not.
So much that a malevolent (Lamport et al., 1982) worker can send any gradient vector. Lemma
1 in Blanchard et al. (2017) shows that AVERAGING in Stochastic Gradient Descent SGD can be
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devastated by only a single malevolent worker and that the way by which gradients are aggregated
can be a defense mechanism since learning under gradient attack can be reduced to robust mean
estimation (Yin et al., 2021). However, with better defense mechanisms came better attacks (Baruch
et al., 2019; El-Mhamdi et al., 2018). Even stronger, Theorem 2 in El-Mhamdi et al. (2023) shows
the impossibility of robust mean estimation, and therefore of robust distributed learning, below a
certain threshold that depends on data heterogeneity and model size. We leverage working gradient
attacks in Federated Learning settings and apply them in Centralized Learning settings where the
use of defense mechanisms are yet to be the norm (Bouhata et al., 2022).

Data Poisoning manipulate the training data of ML models with the goal of influencing their
behavior. If Farhadkhani et al. (2022) shows an equivalence with gradient attacks in the convex
case, it falls short on neural networks and is limited to a frozen network with only the last layer
trainable. This boils down to a linear regression and requires an impractical knowledge 1 on the
trained model. A gradient attack can immediately be derived from a data poisoning (the attacker
sends the gradients associated with the poisons), but the contrary may not be possible as the gradient
attack may fall outside of the image space of the gradient operator. Our experiments show the
existence of poisons derived from gradient attacks which achieve a similar impact on the model in
a similar threat model, i.e. when the attacker crafts a poison at each update iteration of the model.
Several ways of generating poisons for an availability attack exist: label flipping (Shejwalkar et al.,
2021), generative models (Muñoz-González et al., 2019; Zhao & Lao, 2022), or gradient-based
approaches. The latter allows us to finely control the resulting gradient on the poisonous points
instead of relying on another proxy. Even though Shejwalkar et al. (2021) consider data poisoning
to be of limited harm and gradient-based approach to be too computationally intensive, several work
showed that such poisons can both be stealth and effective as in targeted clean-label attacks (Shafahi
et al., 2018). These poisons are obtained as a solution to a a bi-level optimization problem in which
the inner problem is the poisoning objective, and the outer problem is the learning one (Geiping et al.,
2021). If direct solutions to said bi-level problem have been proposed for certain learning algorithms
(Demontis et al., 2019), it is intractable for deep neural networks for which no closed form solution
is known. Existing approaches are computationally expensive such as Muñoz-González et al. (2017)
which inverts the training process and requires access to the dataset. We circumvent this difficulty
by allowing the attacker to intervene at each iteration, only requiring to steer a single model update
at a time, which lightens the computational burden. On the other hand, attacks on the training time
have been understudied compared to other forms of attacks. Shumailov et al. (2021) proposes such
attack, however, their adversary is allowed to order the data that are seen by the model. Such threat
model cannot easily be adapted to other learning settings. In comparison, our threat model does not
assume any particular learning setting.

Defenses To counter data poisoning attacks, several techniques were proposed such as data san-
itization (Steinhardt et al., 2017), data augmentation (Borgnia et al., 2020), bagging (Wang et al.,
2022) or pruning and fine-tuning (Liu et al., 2018). However, the effectiveness of such defenses
rely on strong assumptions such as the learner having access to a clean dataset, on the convexity
of the loss w.r.t. the model’s parameters, or on the ability to train a very large number of models.
And attackers can still find ways to break these defenses (Koh et al., 2021). Even though defending
against data poisoning might be impossible, adopting defense mechanisms to make the attacker’s
job harder in a “swiss cheese”-like model is not to overlook.

3 SETTING

3.1 LEARNING SETTING

We consider a classification task where the model is trained on a dataset Dtrain = {(xi, yi)}ni=1
sampled from a distribution D over X × Y . The learner trains a model hθ parametrized by θ with a
gradient-based minibatched optimization algorithm on the loss function L. Its goal is to achieve the

1knowing the embeddings of the input w.r.t. the frozen layers
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lowest loss on a heldout test set Dtest, formulated as the following optimization problem:

θ∗ ∈ argmin
θ∈Θ

1

ntest

∑
(x,y)∈Dtest

L(hθ(x), y)

At each iteration t, a minibatch Sb
t = {(xi

t, y
i
t)}

nb
i=1 of size nb is sampled from Dtrain. The pa-

rameters are updated using an UPDATE algorithm which rely on an aggregation function AGG:
θt+1 = UPDATE(θt, S

b
t , AGG). In the common SGD setting, the update algorithm is SGD and the

aggregation function is AVERAGING. The choice we make is important since in Federated Learning
litterature, the update algorithm and aggregation rule are both considered as potential defense mech-
anisms. In our experiments, we will consider an image classification task on the CIFAR10 dataset
using the SGD and ADAM update algorithms and the AVERAGING and MULTIKRUM Blanchard
et al. (2017) aggregation rules. MULTIKRUMf<0.5 is a robust aggregation rule and is defined for
a set of vectors {vi}ni=1 as the average of the n(1 − f) − 2 vectors minimizing the score function
s(i) =

∑
i→j ∥vi − vj∥2 with i → j the indices of the n(1− f)− 2 closest vectors to vi.

3.2 THREAT MODEL

We consider a threat model where the attacker:

• has access to the weights of the model θt, the update algorithm UPDATE and aggregation
rule AGG as in Farhadkhani et al. (2022); Blanchard et al. (2017); Yin et al. (2021); Shafahi
et al. (2018). This can be the case if the attacker has gained read access to the system storing
the model.

• has access to an auxiliary dataset Da ∼ D that is not the training set. This can be the case
if the attacker has knowledge of the data used to train the model and constitutes a similar
dataset, or if the attacker has gained read access to the system storing the training data
and extract a part of them, or else in an online learning setting, if the attacker also sample
points from the same stream of data as the learner. This was also a working assumption
in Blanchard et al. (2017); Farhadkhani et al. (2022) and lie inbetween full knowledge of
the training set Muñoz-González et al. (2017) and knowledge of a few targets only Geiping
et al. (2021).

• has the ability to add a set of crafted data Sp
t = (xp

t,i, y
p
t,i)

np

i=1 to the minibatch Sb
t at each

iteration t up to a level α of contamination ( |Sp
t |

|Sb∪p
t | = α). This assumption is borrowed

from gradient attacks (Blanchard et al., 2017) and can be seen as a worst case scenario.
We considered that pulling out an availability attack required slightly more interaction with
the model than traditional data poisoning assumptions where the poisoner craft its poisons
once and for all (Geiping et al., 2021; Shafahi et al., 2018; Muñoz-González et al., 2019).
But it can also be a working assumption in an online learning setting where the attacker is
a regular user of the system and can add data to the stream of data (as in a Sybil attack).
This is somewhat implicitely assumed in Xie et al. (2022).

• constrains itself with only crafting poisons that are in a feasible domain Sp
t ∈ Fnp =

(FX × FY)
np , depending on the task and data structure. For instance, for an image clas-

sification task on CIFAR10, where each image’s 32 × 32 pixels are coded on 3 bytes and
labels are between 1 and 10, we set F to be the set of possible such sized image and labels:
F = [0..255]32×32×3 × [1..10].

The attacker’s goal is to perform an availability attack: degrading the learner’s performances as
much as possible. A weaker version of such attack would be to slow down the learning procedure in
a training time attack (see Figure 1).

4 METHOD

To achieve its goal, at each iteration t, the attacker estimates the clean averaged gradient over the
minibatch: gbt = 1

nb

∑
g∈Gb

t
g with Gb

t = {gbt,i}
nb
i=1 = {∇θtL(hθt(x), y)}(x,y)∈Sb

t
the set of clean

sample gradients over the minibatch. Since the attacker cannot access the minibatch, it uses the
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clean gradients over the auxiliary dataset Ga
t as a surrogate to estimate the clean averaged gradi-

ent over the minibatch: gat = 1
na

∑
g∈Ga

t
g with Ga

t = {gat,i}
na
i=1 = {∇θtL(hθt(x), y)}(x,y)∈Da

and
EGa

t
[g] = EGb

t
[g]. The attacker can also compute the sample gradients Gp

t over the poisonous points:
gpt = 1

np

∑
g∈Gp

t
g with Gp

t = {gpt,i}
np

i=1 = {∇θtL(hθt(x), y)}(x,y)∈Sp
t

. Similarly, the averaged
gradient over the poisoned minibatch is estimated with the weighted averaged gradient over the aux-
iliary dataset and poisoned points: gb∪p

t = 1
nb+np

(
nbg

b
t + npg

p
t

)
, ga∪p

t = 1
nb+np

(nbg
a
t + npg

p
t ),

and EGa
t
[ga∪p

t ] = EGb
t
[gb∪p

t ]. We then formulate our data poisoning as an optimization problem
where the attacker aims to minimize a poisoning function fp over a feasible domain F :

Sp
t ∈ arg min

S∈Fnp
fp(hθ, Daux, S) (1)

One way such attacker could perform a data poisoning would thus be to try and obtain a targeted
gradient with the poisoned surrogate gradient. Table 1 details the formulas used to determine the
gradient attacks and their equivalent poisoning functions in the data poisoning case.

4.1 GRADIENT ATTACKS

We suggest several gradient attacks to perform an availability attack.

• Gradient Ascent (Blanchard et al., 2017): the attacker sends a gradient such that the to-
tal corrupted gradient is anti-collinear with the clean gradient. Which would provoke a
gradient ascent step, with the SGD update rule and λ ∈ R:

EGb
t
[θt+1] = θt − ηEGb

t
[gb∪p

t ] = θt − ηEGa
t
[ga∪p

t ] = θt + ηλ× EGb
t
[gbt ]

• Orthogonal Gradient: the attacker sends a gradient such that the total corrupted gradient
is orthogonal to the clean gradient. This should make the training stall.

• Little is Enough (Baruch et al., 2019): the attacker sends the mean gradient deviated by a
strategically chosen amount times the coordinate-wise standard deviation of the gradients,
with σ[j] =

√
V ar({g[j]}g∈Ga

t
).

gpt = gat − zmax × σ

with zmax ∈ arg max
z∈R∗

+

∥∥AGG(Ga
t ∪ {gat − zσ}np

i=1)− AGG(Ga
t )
∥∥

This attack takes the aggregation rule into consideration and has been shown to be effective
against MULTIKRUM when the working conditions of the latter are not met.

4.2 DATA POISONING

Data poisoning is allegedly harder as it constitutes a far more constrained problem than gradient
attacks (in which the attacker can send any gradient). We want the data poisons to be feasible, i.e.
to be in a constrained domain F . Characterizing the image space of the gradient operator on the
loss function L is a difficult task. Together with the imposed constraints on feasibility, finding data
poisons which exactly reproduce the gradient attack might be impossible. We reformulate gradient
attacks equations as optimization problems of carefully chosen poisoning functions fp in the feasible
input domain F . We show in our experiments that an attacker can still produce data poisons which
have significant impact on the training procedure. The attacker does not have access to the minibatch
and uses the auxiliary dataset as a surrogate to estimate any desired quantities. Instead of a gradient
gpt , it sends a set of poisonous points Sp

t to the minibatch. The poisoning is performed by solving the
optimization problem (1) with the poisoning function as specified in Table 1. Poisons are iteratively
updated using the Adam optimizer and are projected on the feasible set F at each iteration of the
poisoning optimization by clipping.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Model & dataset As a matter of proof of concept, we demonstrate our poisoning procedure on a
custom convolutional neural network (described in Table 5 in Appendix) and on Vision Transformers

5



Under review as a conference paper at ICLR 2024

Table 1: Gradient attacks formula and their equivalent data poisoning objective functions to be
optimized. θ represents the model’s weight at the current iteration, and gp, ga, ga∪p are respectively
the resulting gradients computed on the data poisons, on the auxiliary dataset, and the weighted
average between them.

Gradient attack Our data poisoning attack
gp ∈ Rd s.t. Sp ∈ argminS∈Fnp ...

Gradient Ascent Simcos(g
a∪p, ga) = −1 Simcos (g

a∪p, ga)

Orthogonal Gradient ⟨ga∪p, ga⟩ = 0 ∥Simcos (g
a∪p, ga)∥2

Little is Enough gp = ga − zmax × σ ∥gp − ga + zmaxσ∥2

(ViT-tiny models with patch size 8) models on the CIFAR10 dataset splitted in a partition of
training, validation, and auxiliary datasets.We use different optimization algorithms and aggregation
rules: SGD & AVERAGING, ADAM & AVERAGING, SGD & MULTIKRUM (with different levels of
data truncation f ∈ {0.1, 0.2, 0.4}). Since MULTIKRUM is used as a defense mechanism, we expect
it to be robust to the attacks, except for the Little is Enough attack which is specifically designed to
circumvent it.

Baseline In every setting, the learning rate is fixed to the value were the learner achieves the best
performances without any poisoning to set a baseline for the performances of the model. We then
measure the decay in performances caused by an attack. Each setting of this experiment is run 4
times for better statistical significance. Each run has a different model and poisons initialization,
and dataset split. Full results can be seen in Appendix. The np crafted poisons are added to the
minibatch of size nb at each iteration so that np

nb+np
= α.

5.2 RESULTS

Gradient attacks To ensure that gradient attacks can have an impact in our setting, we perform
them as a sanity check. They will also serve as toplines for the corresponding data poisoning pro-
cedures. Table 4 in Appendix shows that the gradient attacks perform well, making the model
diverge, but also that the MULTIKRUM aggregation rule does act as a defense mechanism for levels
of contamination lower than its tolerance parameter f . However, as expected, this defense is well
circumvented by the Little is Enough attack.

(a) Comparison of different at-
tacks at α = 0.01.

(b) Comparison of different levels of contamination for the Gradi-
ent Ascent & Little is Enough attacks.

Figure 2: Validation accuracies during training in the SGD & AVERAGING setting under different
attacks and different level α of contamination. Error bars represent the standard error.

Overview of the data poisoning We now perform the equivalent data poisonings. The observed
effects can be graduated from a slowdown of the training procedure to its complete halt and up to
degrading the performances down to random levels. Figure 2a compares the different attacks and
a random data poisoning (uniformly sampled in [0, 1]) at α = 0.01 with its baseline counterpart.
While the Gradient Ascent and Orthogonal attacks behave similarly and only slightly slow down
the training at most, Little is Enough attack appears able to strongly degrade the performances,
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even at such low level of contamination. Figure 2b shows for the Gradient Ascent and Little is
Enough attacks that the higher the level of contamination, the stronger the effect: validation accuracy
increases slower or plummets earlier in the training.

Availability attacks To fairly compare each setting under that attack, each model has been eval-
uated on the test set at the point where it achieved the best validation accuracy. Figure 3 shows
that for the SGD & AVERAGING learner setting under the Little is Enough attack, α = 0.01
is enough to significantly degrade the model’s performances. Among the 4 runs, 3 ended up
diverging while every poison was in the feasible set F . Figure 7 in the Appendix shows 50 of
the first 500 poisons crafted by the attacker in one of the diverging run. Similarly, in the setting
SGD & MULTIKRUMf=0.1, the attacker performing the Little is Enough attack with contamination
level α = 0.05 is able to find data poisons that circumvent the robust aggregation rule and
drastically reduce the model’s performances.

Training time attacks While the gradient attacks we propose successfully perform availability
attacks, the corresponding data poisoning might not totally succeed. Instead, it can find a solution
that perturbs the total gradient enough to slow down convergence, but not enough to completely halt
it. Figure 6 in Appendix illustrates this.

Comparaison of update rules. We compare different update rules and aggregation functions un-
der the same attack. Figure 3 shows that our data poisoning procedure failed at performing an
availability attack against the ADAM update rule. However, the training time attack can still be ob-
served. Table 2 shows that higher level of contamination lead to lower best validation accuracies
and a higher number of epochs (hence a longer time) to reach it.

α GA OG LIE

0.00 4 (67.1) 4 (67.1) 4 (67.1)
0.01 5 (66.4) 5 (66.4) 6 (66.3)
0.05 7 (66.5) 7 (65.3) 7 (66.3)
0.10 19 (63.6) 14 (63.9) 10 (65.7)
0.20 34 (61.2) 17 (62.5) 22 (62.1)
0.30 19 (63.0) 20 (62.0) 23 (60.4)
0.40 34 (63.5) 23 (60.7) 9 (36.5)
0.48 13 (64.0) 13 (65.0) 48 (36.0)

Table 2: Epoch at which the best val accuracy is reached (val accuracies in parenthesis) for the CNN
model with ADAM optimizer under different data poisoning attacks. Higher levels of contamination
display slower training and lower performances.

Data poisoning against a standard robust aggregation rule. Table 3 shows that with the
MULTIKRUMf=0.1 aggregation rule which filter gradients, the attacker still manages to have some
of them to be selected. For α > f , the aggregation rule do not play a defensive role anymore.
On the other hand, for α below this point, the Little is Enough attack displays significantly higher
selection rates than the other attacks. This means that the attacker manages to produce data poisons
whose gradients deceive MULTIKRUMf=0.1, similarly to the gradient version of the attack which is
particularly designed for this purpose. However Figure 3 shows that a higher selection rate does not
necessarily means success of attack. Even if the attacker sometimes manages to successfully attack
the model, MULTIKRUM overall enhances the robustness of the model while slightly degradiong its
performances.

Influence of the feasible set As the feasible set FX change, the attacker will only be allowed to
converge (or not) towards different poisons. We compare three increasingly restrictive feasible sets
to determine their influence on the success of the attack:

• Constraint-free set: the feasible set is simply the input domain FX free = RH×W×3;
• Image-encoding set: the feasible set ensures that the poisons respect the same encoding as

clean data FX img = 28
H×W×3;
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Table 3: Poison selection rates in the SGD & MULTIKRUMf=0.1 averaged over all runs and all
epochs. Each row corresponds to a different attack. Standard deviations in parenthesis.

α
0.01 0.05 0.1 0.2

Gradient ascent 0.0 2e−4 1.5e−3 0.91
(0.0) (4e−4) (2.4e−3) (0.08)

Orthogonal 0.0 3e−4 0.18 0.85
(0.0) (1e−3) (0.1) (0.05)

Little is Enough 0.92 0.91 0.97 0.87
(0.07) (0.13) (0.02) (0.06)

Figure 3: Test accuracy of the CNN model which achieved the best validation accuracy under the
Little is Enough attack. Each column represents a different setting of update function and aggrega-
tion rule. The blue line is the test accuracy obtained with (SGD, AVERAGING) setting and no attack.
Error bars are the standard errors.

• Neighborhood set: is a subset of the previous one and is composed of all the images that
are at a L1 norm of at most ϵ = 32

255 , FXnei = {x ∈ FX img/∃xa ∈ Das.t. ∥x− xa∥1 ≤ ϵ}

Figure 4 shows that the more constrained the feasible set, the less effective the resulting attack. It
is to note however that early stopping helps in limiting the effects of the attack (see Figure 8 in
Appendix).

(a) FX free (b) FX img (c) FXnei

Figure 4: Final test accuracies for the SGD; AVERAGING setting under the Little is Enough attack
for different feasible sets. Error bars are the standard errors.

Neural Network architecture We perform the same attacks on the same learning pipelines but
replace the CNN model with a Visual Transformer (ViT) tiny with patch size 8. Since ViT are
predominantly trained using ADAM-like approaches, we report the efficiency of our attacks using it.
Figure 5 shows that ViT are also vulnerable to our data poisoning. Although with far less success
and with higher levels of contamination required.
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(a) Training time attack. (b) Availability attack.

Figure 5: Visual Transformer (ViT) tiny with patch size 8 under different attacks. Little is Enough
performs a training time attack whereas Gradient Ascent and Orthogonal Gradient are able to per-
form an availability attack for high enough contamination levels α.

6 DISCUSSION

In this work, we show that in training settings involving deep neural networks, which are not re-
stricted to convex cases as in (Farhadkhani et al., 2022), data poisoning can be crafted to mimic
gradient attacks. Our threat model uses several assumptions that should be further explored in future
work:

• The role of the auxiliary dataset. In our experiments, it appeared that the size of the auxil-
iary dataset played only a small part in the success of the attack above a sufficient size. But
what if the auxiliary dataset is no longer sampled from the same distribution as the training
set? What if the attacker cannot have access to an auxiliary dataset and estimates the mean
clean gradient by observing the successive updates of the model?

• The necessity to access the trained model’s weights. Exploring whether or not the attack
can still be performed when the attacker estimates the victim model’s with a surrogate
model would open the threat model to a wider variety of cases.

• The role of the feasible set. Works on clean label poisoning (Geiping et al., 2021; Shafahi
et al., 2018) showed that it is possible to design data poisons which decieve human an-
notators. Future work should consider exploring more constraining feasible sets for the
attacker.

• Finally, our threat model acts as a worst case scenario, future work should explore data
poisoning availability attacks in a more common threat model, i.e. limiting the number of
times the attacker can craft its poisons.

Although the Little is Enough attack shows working cases of data poisoning on the model availabil-
ity, the other attacks only manage to slow down the training at best. We consider this to still be an
attack not to overlook, considering that companies might afford to have their costly trainings slowed
down.

Overall, our attack does not consistently manage to craft an effective data poisoning for an avail-
ability attack. However, we argue that our work shows how a data poisoning mimicking a gradient
attack is possible, even in the case of neural networks. We chose to solve the poisoning optimiza-
tion problem with gradient-based approaches which showed to be computationally intense, limiting
us in experimenting with larger models and datasets. Stronger or less computationally expensive
data poisoning approach (that may not rely on gradient attacks) can be experimented to enhance the
attack success rate.

7 CONCLUSION

This work shows that data poisoning can mimic gradient attacks and have a similarly devastating
impact on neural networks trained end-to-end. While the tested defense mechanisms for the gradient
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case appear to generalize to the data poisoning, it has been shown that data poisoning can bypass
certain defense mechanisms Koh et al. (2021) and that robust mean estimation only work up to a
certain point El-Mhamdi et al. (2023). This leaves room for potentially devastating data poisoning
that can bypass defenses while mimicking an unstoppable gradient attack. Although the success
rate of our attack was relatively low, the possibility of mimicking gradient attacks with feasible data
poisoning ones should motivate further research in defense mechanisms and lower bounds to better
assess the safety of machine learning algorithms in the presence of unreliable data.
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Sadegh Farhadkhani, Rachid Guerraoui, Lê-Nguyên Hoang, and Oscar Villemaud. An equivalence
between data poisoning and byzantine gradient attacks, 2022.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
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A GRADIENT ATTACKS

Table 4: Sanity check with gradient attacks. Best validation accuracy under different attacks with
different update rules and different aggregation functions. A high validation accuracy (colored in
apricot) indicates a failed attack. A low validation accuracy (colored in pale green) indicates a
successful attack.

α
UPDATE; AGG Attack 0.01 0.05 0.10 0.20 0.30 0.40 0.48

ADAM;
AVERAGING

GA 10.0 9.8 10.0 10.0 10.0 10.1 10.0
OG 9.9 9.9 10.1 10.1 9.8 10.0 10.1
LIE 10.2 10.3 10.1 10.2 10.1 10.1 10.0

SGD;
AVERAGING

GA 10.1 10.1 10.1 9.9 10.0 10.0 10.0
OG 10.2 10.2 10.0 9.9 10.1 10.1 10.2
LIE 10.2 9.9 10.2 9.9 9.9 10.0 10.0

SGD;
MULTIKRUMf=0.1

GA 65.1 63.2 33.7 10.1 10.1 10.2 10.2
OG 65.1 65.3 65.9 10.0 10.1 10.2 9.9
LIE 41.7 15.0 10.4 9.9 10.0 9.9 10.1

B DATA POISONING

Table 5: Architecture of the 1.6M parameters convolutional neural network used for our experi-
ments.

Layer # of channels kernel stride

Conv2d 32 5 × 5 2
ReLU
Conv2d 64 5 × 5 2
ReLU
Linear 512
ReLU
Linear 64
ReLU
Linear 10
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Figure 6: Validation accuracies of the CNN during training with the SGD and ADAM update rule
with the AVERAGING aggregation function under the Gradient Ascent attack. This data poisoning
manages to slow down the training but not degrade the model’s performance to random levels. Error
bars represent the standard error.

Figure 7: 50 of the first 500 poisons crafted in the (SGD & AVERAGING, Little is Enough, α = 0.01)
setting.

(a) FX free (b) FX img (c) FXnei

Figure 8: Best test accuracies for the SGD; AVERAGING setting under the Little is Enough attack
for different feasible sets.
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Figure 9: Test accuracy of the model which achieved the best validation accuracy during the training
procedure. The blue line is the test accuracy obtained with SGD and no attack.
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