Under Review - Proceedings Track 1-12, 2025 Symmetry and Geometry in Neural Representations

The Geometry of Cortical Computation: Manifold
Disentanglement and Predictive Dynamics in VCNet

Editors: List of editors’ names

Abstract

Modern convolutional neural networks (CNNs) face fundamental limitations such as data
inefficiency, poor out-of-distribution generalization, and vulnerability to adversarial per-
turbations. These shortcomings stem from a lack of inductive biases reflecting the vi-
sual world’s inherent geometric structure. In contrast, the primate visual system offers a
blueprint for more capable artificial vision; its efficiency and robustness derive from ar-
chitectural principles evolved to internalize these structures. This paper introduces the
Visual Cortex Network (VCNet), a novel architecture inspired by the macro-scale orga-
nization of the primate visual cortex. VCNet emulates key biological mechanisms within
a geometric framework: hierarchical processing, dual-stream segregation for learning dis-
entangled representations, and top-down predictive feedback for refinement. Interpreted
through geometry and dynamical systems, we posit these mechanisms guide the learning
of structured, low-dimensional neural manifolds. We evaluate VCNet on two specialized
benchmarks: the Spots-10 animal pattern dataset to probe natural texture sensitivity, and
the Stanford Light Field dataset to test performance on higher-dimensional visual data.
VCNet surpasses contemporary models of comparable size, achieving 92.1% accuracy on
Spots-10 and 74.4% on the light field dataset. This work demonstrates that integrating
neuroscientific principles through a geometric lens can lead to more efficient, robust models,
offering a promising direction for machine learning.

Keywords: Representational Geometry, Neural Manifolds, Manifold Disentanglement,
Predictive Coding, Dynamical Systems, Neuro-inspired Architecture, Equivariant Repre-
sentations, Hierarchical Representations, Geometric Deep Learning, Computational Neu-
roscience.

1. Introduction

Contemporary deep learning models for image recognition, particularly Convolutional Neu-
ral Networks (CNNs), have achieved remarkable success Krizhevsky et al. (2012). However,
their success is shadowed by critical challenges impeding reliable deployment. These models
often require vast labeled training datasets, show poor generalization to out-of-distribution
(OOD) examples Sagawa et al. (2020), and are vulnerable to adversarial attacks and partial
occlusion Liu et al. (2022). Minor, human-imperceptible perturbations or occluded parts
can cause catastrophic failures, raising reliability concerns in safety-critical applications.
These issues may point to a fundamental inadequacy in their core architectural assump-
tions. While CNNs incorporate the crucial geometric prior of translation equivariance, they
largely fail to account for other fundamental symmetries and structures of the visual world,
such as rotation, scale, and the compositional nature of objects.

In stark contrast, the primate visual system is a model of efficiency and robustness.
Humans can learn from few examples Lake et al. (2015), generalize effortlessly across novel
contexts Geirhos et al. (2018), robustly identify occluded objects Hegdé et al. (2008), and
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operate with high energy efficiency Lennie (2003). Mounting evidence from neuroscience
suggests these capabilities stem from the visual cortex’s specific architectural and computa-
tional principles. Neural representations in the brain appear organized on low-dimensional,
structured geometric spaces known as neural manifolds. The brain seems to learn the under-
lying geometric and topological structure of the data-generating process, not just features.
This is achieved through its hierarchical organization Felleman and van Essen (1991); Grill-
Spector and Malach (2004) and its use of predictive processing Rao and Ballard (1999);
de Lange et al. (2018).

This paper aims to bridge the gap between the pattern matching of modern CNNs
and the brain’s geometrically-aware, structured inference. We propose VCNet, a neural
network whose macro-architecture is derived from the primate visual cortex. Going beyond
mere biomimicry, we interpret the cortex’s organization as a computational framework
for learning geometrically sound representations. Our work is guided by the thesis that
principles of symmetry and geometry are foundational to intelligence. Our contributions
are threefold:

e We introduce VCNet, an architecture modeling the high-level information flow of
the visual cortex. We provide a geometric interpretation of its core components:
dual-stream processing for manifold disentanglement, recurrent connections for rep-
resentation dynamics, and top-down predictive feedback for geometric refinement.

o We demonstrate VCNet’s efficacy on the Spots-10 animal pattern benchmark, a
task mirroring a key evolutionary pressure for vision, showing it outperforms compa-
rable models.

o We evaluate VCNet on the Stanford Light Field dataset, showing its geometrically-
motivated design is well-suited for richer, multi-view data that more closely approxi-
mates human visual input.

2. Related Work

Our research is situated at the confluence of geometric deep learning, computational neu-
roscience, and neuro-inspired Al.

Geometric Deep Learning and Equivariance Geometric deep learning seeks to incor-
porate geometric priors and symmetries into neural network architectures Bronstein et al.
(2021). A significant focus has been on achieving equivariance to groups of transformations
beyond translation. Steerable CNNs Cohen and Welling (2017) and E(2)-equivariant CNNs
Maurice Weiler (2019) generalize convolutions to handle rotation and reflection, leading
to improved data efficiency and generalization on tasks with these underlying symmetries.
Graph Neural Networks (GNNs) extend these ideas to data defined on non-Euclidean do-
mains like graphs and manifolds. While these approaches enforce geometric constraints at
the micro-level of individual filters or operations, VCNet takes a complementary, macro-
level approach. We do not engineer specific filter symmetries; instead, we hypothesize that
the high-level architectural organization of the visual cortex itself, its network topology of
processing streams and feedback loops, creates an inductive bias that guides the learning
process toward geometrically structured representations.
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Neuro-Inspired Architectures The brain has long been a source of inspiration for artifi-
cial intelligence. Early models like the Neocognitron Fukushima (1980) laid the groundwork
for modern CNNs by mimicking the simple and complex cells of V1. More recently, models
like CorNet Kubilius et al. (2019) have sought to create architectures that not only perform
well but also whose internal activations correlate with neural recordings from the primate
brain. These models often focus on replicating the feedforward ventral stream. VCNet
differentiates itself by modeling a more comprehensive set of cortical principles: (1) the
explicit separation and interaction of the ventral and dorsal streams, (2) the inclusion of
recurrent dynamics to model iterative processing, and (3) the implementation of a top-down
predictive coding loop, which we argue is critical for robust, generative understanding.

Predictive Coding and Generative Models Predictive coding posits that the brain
is fundamentally a generative model of its environment Rao and Ballard (1999). Higher
cortical areas generate predictions about lower-level sensory input, and only the residual
error between the prediction and the actual input is propagated forward. This principle
is computationally efficient and has deep connections to Bayesian inference and the free-
energy principle Friston (2010). In machine learning, this resonates with the objectives of
generative models like Variational Autoencoders (VAEs) and Helmholtz machines, which
learn a latent generative model of the data. Our implementation of predictive coding in
VCNet serves a similar purpose, encouraging the network to learn an internal model of the
visual world. By framing this process geometrically, we view the prediction error as a vector
in the tangent space of a learned representation manifold, driving the model’s state along
a geodesic toward a more accurate representation.

3. The VCNet Architecture: A Geometric Interpretation

While fully replicating the visual system is infeasible, we emulate the macro-scale orga-
nization of the visual cortex. We interpret its connectivity and computational patterns
not as an arbitrary biological arrangement, but as a sophisticated framework for learning
and processing geometric information. VCNet is a deep neural architecture engineered to
operationalize these principles.

3.1. Biologically-Inspired Geometric Principles

Our model’s design is predicated on three foundational principles of primate vision, which
we reformulate in the language of geometry and dynamics.

Hierarchical Processing as Compositional Feature Geometry Visual information
propagates from the retina through a hierarchy of cortical areas (V1, V2, V3, V4, V5),
each specialized for extracting progressively complex features Huff et al. (2023). V1 detects
simple elements like oriented edges, recognizing local Euclidean symmetries (translations
and rotations of local patterns). It projects to V2, which processes intermediate features
like contours and textures. V2, in turn, projects to higher-order areas like V4 and V5. We
interpret this hierarchy not merely as a cascade of feature extractors, but as a sequence of
learned, non-linear transformations ¢; : M;_1 — M, that map representations from one
manifold M;_; to another M,. Each stage aims to create a new representation that is more



abstract, more disentangled, and more useful for the organism’s goals. The final represen-
tation should ideally live on a manifold where semantic categories are linearly separable.
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Figure 1: A high-level model of information pathways in the primate visual cortex, illus-
trating the hierarchical series of feature extraction stages Fulton (2001). This
organization forms the architectural basis of VCNet, which we interpret as a
graph of transformations between representation manifolds.

Dual-Stream Processing as Manifold Disentanglement The visual cortex is fa-
mously organized into two primary processing pathways Sheth and Young (2016). The
ventral stream ("what” pathway) is responsible for object recognition, while the dorsal
stream (”where/how” pathway) handles spatial awareness and motion analysis. We pro-
pose a geometric interpretation: these two streams learn to project the high-dimensional
sensory input onto two distinct, yet correlated, low-dimensional manifolds.

e The ventral stream learns an identity manifold, M;;. The goal is to learn a
representation that is invariant to changes in pose, illumination, and position. Points
on this manifold correspond to object identities.

e The dorsal stream learns a pose/motion manifold, My,.. The goal here is to
learn a representation that is equivariant to changes in object position and orientation.
Points on this manifold correspond to spatial properties.

By explicitly separating these tasks into different architectural pathways, the model is
encouraged to learn disentangled representations, a key goal in representation learning.
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The interconnections between the streams allow the model to bind ”what” information
with ”where” information.

Predictive Coding as Geodesic Refinement on a Manifold The visual cortex is
not a purely feedforward system. It employs predictive coding, where higher-level areas
send top-down predictions to lower-level areas Lowet and Uchida (2024). We formalize
this as a process of refinement on a representation manifold. Let z; be a representation
in a high-level area (e.g., AIT). The network learns a top-down mapping p(z|zr) that
generates a prediction of the representation z; in a lower-level area (e.g., V1). The bottom-
up processing provides the actual sensory evidence, resulting in an observed representation

zl"bs. The discrepancy, or prediction error €, is computed:

€ = 2" — p(z|21)
This error signal is not just noise; it is a vector in the tangent space of the lower-level
manifold M;. This vector indicates the direction in which the higher-level representation
zr, needs to be updated to better explain the sensory data. The learning process, which aims
to minimize this error over time and data, can be viewed as an optimization process that
encourages the model’s internal generative trajectory to follow a geodesic on the manifold of
plausible world states. This creates a powerful dynamical system for inference and learning.

3.2. Architectural Framework of VCNet

Departing from conventional, monolithic CNN architectures, VCNet is structured as a di-
rected graph that models the known connectivity between the major visual cortical areas.
The channel capacity of each module is scaled to approximate the relative neuronal popu-
lations in its biological counterpart.

Ventral Stream This "what” pathway models object recognition, progressing from V1
through modules representing V2 (Interstripe, Thin Stripe), V4, and the inferotemporal
(PIT, CIT, AIT) cortices. It is specialized for learning the invariant identity manifold.

Dorsal Stream This ”where/how” pathway models spatial and motion analysis, flow-
ing from V1 through V2 (Thick Stripe), the middle temporal (MT) and medial superior
temporal (MST) areas, and onward to parietal regions. It is specialized for learning the
equivariant pose/motion manifold.

These streams are interconnected at multiple levels, enabling the integration of object
identity with spatial information. The final representation is formed in the AIT module,
which receives convergent inputs and feeds into the classification layer. VCNet’s function-
ality is realized through several specialized computational blocks, each with a geometric
interpretation.

3.2.1. MULTI-SCALE FEATURE EXTRACTION

Implementation: To emulate the diverse receptive field sizes in V1, the module processes
input through three parallel depthwise separable convolution streams with different kernel
sizes (3x3, 5x5, 7x7). The resulting feature maps are concatenated. Geometric Interpre-
tation: This block acts as a multi-scale probe of the local geometry of the input signal.



Different kernel sizes are sensitive to structures at different frequencies and scales, akin to a
wavelet decomposition. This provides a rich, multi-scale initial representation that captures
the geometry of the input space more effectively than a single-scale approach.

3.2.2. RECURRENT PROCESSING BLOCKS

Implementation: To model the iterative refinement of representations, the MT and MST
modules incorporate Recurrent Blocks. These blocks apply a convolutional transformation
with shared weights for a fixed number of iterations (¢ = 3), with each iteration receiving the
output of the previous one plus a residual connection from the initial input. Geometric
Interpretation: This recurrent application of a transformation defines a discrete-time
dynamical system on the feature space. The representation z; at iteration t evolves according
to z¢+1 = f(z¢)+20. The recurrence allows the representation to iteratively converge toward
a stable fixed point on its manifold, effectively refining the estimate of motion or spatial
properties over time.

3.2.3. ATTENTIONAL MODULATION

Implementation: To emulate the brain’s ability to focus on salient features, key mod-
ules (V1, MT, V4) incorporate a Convolutional Block Attention Module (CBAM). CBAM
sequentially infers and applies channel-wise and spatial attention maps. Geometric Inter-
pretation: Attention can be viewed as a mechanism for dynamically selecting a relevant
subspace of the feature manifold. Channel attention re-weights the contribution of different
feature dimensions, effectively stretching or shrinking the manifold along certain axes. Spa-
tial attention re-weights different locations, focusing computational resources on a specific
region of the manifold’s domain (the image space).

3.2.4. LATERAL INTERACTION MODULE

Implementation: The V1 module includes a Lateral Interaction block, implemented as
a convolution followed by channel-wise self-attention within a residual connection. Geo-
metric Interpretation: This simulates the horizontal connections within cortical layers
that mediate contextual effects like lateral inhibition. Geometrically, this enforces local
consistency constraints on the feature manifold. It encourages nearby points in the image
space to have related representations, promoting smoothness and helping to form coherent
structures like contours, which can be seen as enforcing a local group structure.

3.2.5. PREDICTIVE CODING LooP

Implementation: We implement predictive coding via a top-down connection from the
highest level of the ventral stream (AIT) back to V1. The AIT module generates a prediction
of V1 feature activations. This prediction is subtracted from the actual bottom-up V1
activity to compute a prediction error, € = ReLU(V1pottom-up — AlTtop-down). This error
signal is then used as an additional learning signal. Geometric Interpretation: This is
the core of our geometric dynamical system. The top-down signal from AIT is a hypothesis
about the world, projected back onto the low-level V1 feature manifold. The bottom-up
signal is the evidence. The error € is a vector field on the V1 manifold that drives the
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learning process, forcing the high-level AIT manifold to generate representations that are
consistent with the low-level sensory data. This process refines the entire hierarchy of
representational geometries.

3.2.6. NEUROMODULATORY (GATING

Implementation: To model the global gain control exerted by neuromodulators, we in-
troduce a Neuromodulation block in key modules (V1, MT, V4). This block applies a
learnable, channel-wise multiplicative scaling factor to feature maps. Geometric Inter-
pretation: This mechanism can be interpreted as controlling the local curvature or metric
of the representation manifold. A high gain (scaling factor ; 1) could increase the sensitivity
of the representation to small input changes (increasing curvature), while a low gain (scaling
factor | 1) could promote invariance by ”flattening” the manifold locally. This allows the
network to adapt its representational geometry based on context.

4. Experiments and Results

We benchmarked VCNet against contemporary neural networks of comparable size on im-
age classification tasks. We chose datasets and tasks that are particularly relevant to the
evolution and function of biological vision and that test the geometric principles embedded
in our architecture.

4.1. Experimental Setup

All models were trained using the Adam optimizer Kingma and Ba (2015) with a learning
rate of 1073. We used a batch size of 16 and applied standard data augmentation techniques,
including random horizontal flips and random rotations. All experiments were conducted
using Google Colab Google (2017).

4.2. Experiment 1: Animal Pattern Classification

Motivation Key evolutionary drivers for primate vision include finding food and avoiding
predators, tasks that rely heavily on recognizing natural patterns and textures Kaas (2012).
The primate visual cortex is thus highly optimized for this purpose. We therefore evaluated
our biologically-inspired model on a benchmark focused on classifying animal patterns,
which tests the model’s ability to learn representations of complex, semi-structured textures.

Methodology We utilized the Spots-10 dataset, which contains 50,000 grayscale 32x32
pixel images across 10 classes of animal patterns Atanbori (2024). We trained VCNet and
compared its performance against a suite of established models whose weights were derived
via knowledge distillation, making them highly compact and efficient.

Results As shown in Table 1, VCNet Mini attains the highest accuracy on Spots-10
(92.08%), outperforming the strongest baseline (DenseNet121 Distiller, 81.84%) by a signif-
icant margin of 10.24 percentage points. To ensure a fair comparison with the lightweight
distilled baselines, we reduced VCNet’s hidden-layer widths to form the Mini variant. Re-
markably, VCNet Mini achieves this superior performance while using only 0.04 MB of
storage, about 43% smaller than the 0.07 MB baselines. These findings strongly indicate



Table 1: Test accuracy and model size on the Spots-10 benchmark. Best values are in bold.
VCNet Mini demonstrates superior accuracy with significantly fewer parameters,
highlighting the efficiency of its architectural priors.

Model Test Accuracy (%) Model Size (MB)
VCNet Mini (Ours) 92.08 0.04
DenseNet121 Distiller 81.84 0.07
ResNet101V2 Distiller 80.29 0.07
ResNet50V2 Distiller 79.03 0.07
MobileNet Distiller 78.26 0.07
MobileNetV3-Small Distiller 78.04 0.07

that architectures inspired by the geometric and computational principles of the visual
cortex can yield models that are both highly accurate and extremely parameter-efficient.

4.3. Experiment 2: Light Field Classification

Motivation Standard 2D images are flat projections of the 3D world, discarding vast
amounts of visual information related to depth, parallax, and view-dependent reflectance.
The human visual system (HVS) processes a much richer input, leveraging binocular vision
and eye movements to interpret a subset of the 7D plenoptic function Adelson and Bergen
(1991). Light field cameras, which capture both the intensity and the angular direction
of light rays, provide data that is a much closer analogue to the input processed by the
HVS Lin et al. (2024). We hypothesize that an architecture designed to emulate the visual
cortex’s dual-stream, geometrically-aware processing will demonstrate superior performance
on this richer data modality.

Methodology We evaluated VCNet on the Stanford Light Field dataset Raj et al. (2016).
The light field data was processed into a 4D tensor, which was then fed into the models.
We compared its performance against benchmark models: ResNet18, VGG11 with Batch
Normalization, and MobileNetV2.

Table 2: Performance and Size Comparison on Light Field Image Classification. VCNet
achieves the highest accuracy while being the most compact model, demonstrating
its suitability for processing higher-dimensional, geometrically rich visual data.

Model Test Accuracy (%) Model Size (MB)
VCNet (Ours) 74.42 3.52
MobileNetV2 72.09 8.66
ResNet18 65.12 42.69
VGG11_BN 51.16 491.39
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Results The results, summarized in Table 2, highlight VCNet’s superior performance
and efficiency. VCNet achieved the highest test accuracy (74.42%) while maintaining a
minimal model size of 3.52 MB. This is over twice as small as MobileNetV2, over ten times
smaller than ResNet18, and over 100 times smaller than VGG11. This result validates our
hypothesis that an architecture incorporating principles like dual-stream processing and
predictive feedback is particularly effective for processing high-dimensional visual data that
contains both object identity and spatial/viewpoint information.

5. Conclusion and Future Work

We introduced VCNet, an architecture guided by the computational and anatomical prin-
ciples of the primate visual cortex. By interpreting these principles through geometry and
dynamical systems, framing dual-stream processing as manifold disentanglement and pre-
dictive coding as geodesic refinement, we developed a model with superior performance
and parameter efficiency on challenging classification tasks. Our findings underscore the
potential of this approach: embedding high-level geometric priors into a network’s macro-
architecture can guide it toward more robust and efficient representations. This convergence
of disciplines not only offers a path toward more capable artificial systems but also provides
computational frameworks for testing hypotheses about brain function.

Our model opens several avenues for future research.

e Integrating Explicit Equivariance: A powerful next step would be to combine our
macro-scale geometric approach with the micro-scale constraints of geometric deep
learning. Incorporating steerable filters into the V1 module could enforce explicit
rotation and scale equivariance at the lowest level, which could then be integrated
into the global representations of the full VCNet architecture.

e Topological Data Analysis (TDA): The geometric structure of the learned man-
ifolds could be more formally analyzed using tools from TDA. We could use persis-
tent homology to quantify the topological structure of the representations, testing
the hypothesis that better representations have simpler topology (e.g., one connected
component per class with no spurious holes).

e Extension to Spatio-Temporal Dynamics: The current model is designed for
static images. Extending it to video processing is a natural progression. The dorsal
stream and recurrent dynamics would become even more critical for modeling the
flow of information on spatio-temporal manifolds, potentially leading to more robust
action recognition and video prediction models.

e Geometric Principles in Language: Finally, these principles of hierarchical, pre-
dictive, and geometrically structured representations may apply to other modalities.
Understanding the geometry of representations in large language models is a burgeon-
ing field, and concepts like dual-stream processing (e.g., for syntax vs. semantics) and
predictive refinement could offer valuable new architectural ideas.
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