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Abstract
Models trained on semantically related datasets and tasks exhibit comparable inter-sample
relations within their latent spaces. We investigate in this study the aggregation of such
latent spaces to create a unified space encompassing the combined information. To this end,
we introduce Relative Latent Space Aggregation (RLSA), a two-step approach that first
renders the spaces comparable using relative representations, and then aggregates them
via a simple mean. We carefully divide a classification problem into a series of learning
tasks under three different settings: sharing samples, classes, or neither. We then train a
model on each task and aggregate the resulting latent spaces. We compare the aggregated
space with that derived from an end-to-end model trained over all tasks and show that
the two spaces are similar. We then observe that the aggregated space is better suited
for classification, and empirically demonstrate that it is due to the unique imprints left
by task-specific embedders within the representations. We finally test our framework in
scenarios where no shared region exists and show that it can still be used to merge the
spaces, albeit with diminished benefits over naive merging.

1. Introduction

The success of neural networks can partly be attributed to the latent spaces they learn.
In fact, given a sufficiently general task, the deeper layers of a network are able to learn
semantically meaningful representations that capture the inherent data structure. If these
representations solely relied on semantics, the latent space would exhibit invariance to the
model’s architecture and training process and be seamlessly transferable to other tasks sharing
the same semantics. In practice, however, training stochasticities such as initialization and
data shuffling hinder the immediate comparability of latent spaces. Nevertheless, when spaces
are rich in semantics, the distance between data points becomes indicative of their similarity.
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Figure 1: Framework description. Given two absolute spaces X and Y, we first project
these spaces into two comparable relative representations Xrel, Yrel. Then, we combine these
representations into a single, unified relative space RLSA(Xrel, Yrel).

That is, samples located close to each other are likely to share similarities, and conversely,
those farther apart are expected to be more distinct. This intuitive notion suggests that
the latent spaces of models trained on semantically analogous datasets and tasks relying on
the same underlying structure should exhibit similar inter-sample relations. Returning to a
geometric perspective, this implies that the inter-sample distances should remain consistent
across the two spaces. Building upon this insight, Moschella et al. (2023) introduced relative
representations as a way to compare latent spaces: when the similarities among samples are
consistent across the two spaces, the latter become comparable.

In this paper, we investigate a natural follow-up question: when, and under what
assumptions, can two spaces be merged into one? In principle, given two comparable
representations that may partially overlap or be entirely disjoint, it should be possible
to generate a unified representation in which both coexist consistently. We refer to this
problem as Latent Space Aggregation. Space aggregation raises several questions on i) the
representational power of the unified representation space, ii) its ability to accommodate
both spaces without collisions, and iii) its robustness to complementary information present
in only one of the two spaces. In fact, naively aggregating the sample representations by
computing their mean in absolute coordinates would not account for the different latent
configurations caused by training stochasticities, resulting in an inconsistent aggregation of
different entities based on spurious random factors.

Motivated by the above challenges, we propose Relative Latent Space Aggregation (RLSA).
Our approach involves two steps: we first switch to a relative representation where the latent
spaces are represented with respect to a set of anchors, and then aggregate the obtained
representations by computing their mean. The first step makes the spaces comparable,
enabling a meaningful aggregation of samples that are common to multiple latent spaces, at
the same time avoiding collisions.

To test our framework, we partition a classification dataset into multiple learning tasks.
These tasks can vary in terms of class composition, such as covering disjoint subsets of
classes, or in sample composition, such as being sampled with different class distributions.
These diverse tasks enable us to train task-specific models, extract their latent spaces, and
subsequently examine their aggregation. We consider three different cases: i) tasks sharing
a set of samples, ii) tasks sharing the same classes but disjoint sample sets, and iii) tasks
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disjoint both at the class and at the sample level. In the first case, we select the anchors from
the shared samples, while in the disjoint scenarios they are sampled from unseen samples in
the training dataset. We then analyze the quality of the aggregation by i) comparing it to
the space of an end-to-end model trained on all the tasks, ii) assessing the performance of a
classifier over the aggregated space, and iii) quantifying the separability of the classes within
it. We show that the best results are obtained when sharing samples, while the benefits
decrease in the disjoint scenarios. Finally, we release an extensible and modular codebase1

to foster reproducibility and further research in the problem.
To summarize, our contributions are three-fold:

1. We propose for the first time a framework for latent space aggregation, merging different
latent spaces without requiring weight averaging, sharing, or any model-specific details;

2. We evaluate our framework on aggregating tasks sharing samples, classes, or neither,
assessing representational power, class separability, and similarity to the global space;

3. We investigate the improved performance over class-disjoint tasks, empirically demon-
strating that it is a natural consequence of utilizing task-specific embedders.

2. Related work

Closest to our work are the fields of model merging and representational similarity analysis.
In model merging, the goal is to combine multiple models into a single model. This is usually
done by merging the models’ parameters with some aggregation function, e.g., by averaging
(McMahan et al., 2017). Most recently, Git Re-Basin (Ainsworth et al., 2022) leverages
advances in linear mode connectivity (Garipov et al., 2018; Benton et al., 2021; Frankle
et al., 2019) to first map the two models into the same basin, and then interpolate among
them. It is important to note that, unlike model merging, our approach does not require any
architectural details from the models and is therefore applicable to a set of spaces originating
from any set of models. On the other hand, our approach does not provide a trained model,
but rather a unified space that can be used as a starting point to train other models.

In representational similarity analysis, the goal is to compare the representations of
different models. Several measures have been proposed for the task (Klabunde et al., 2023;
Shahbazi et al., 2021; Raghu et al., 2017; Tang et al., 2020; Williams et al., 2021), with the
most prominent being Centered Kernel Alignment (CKA) (Kornblith et al., 2019). In this
work, we use CKA to compare the representations of the models in the aggregated space.

3. Approach

Relative representations We leverage relative representations (Moschella et al., 2023) to
render the seemingly different latent spaces comparable. In practice, we start by selecting a
subset A of the training data X , denoted as anchor samples. Every sample in the training
distribution will be represented as a function of the embedded anchors aj = fΘ(aj) with
aj ∈ A. As a measure capturing the relation between the anchors and the other samples, we
consider the cosine similarity s : Rd × Rd 7→ R, yielding a scalar score r ∈ [−1, 1] between

1. https://github.com/crisostomi/latent-aggregation
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two absolute representations xi,xj . The relative representation of xi ∈ X as a function of
the anchors A is then given by

r(xi) =
(
s(xi,a1), s(xi,a2), . . . , s(xi,a∥A∥) .

)
(1)

In the following, we will call the embedding space the absolute space, and the set of relative
representations the relative space.

Space aggregation Given a set of M relative spaces X
(1)
r , . . . , X

(M)
r , we can define an

aggregation function that maps them to a single space. If a sample x appears in K ≤ M

spaces, we can assemble its relative representations x
(1)
r , . . . , x

(K)
r just by taking their mean:

xaggregated =
1

K

K∑
k=1

X(k)
r . (2)

This trivially entails that when the spaces are disjoint, each sample representation will just
be its relative representation in its original space. The aggregation accounts for noise in the
relative representations, as the same samples may be represented differently in the different
relative spaces. Nevertheless, in the optimal case in which they perfectly align, the relative
representation will be equal for all the spaces and therefore still equal to the mean. Due to
the different experimental settings, the anchor set is chosen differently for each scenario. In
particular, when a portion of samples is shared, we select our anchors there. In fact, these are
samples that the model can reliably embed in the latent space and can be used as reference
points to give structure to the new aggregated space. Intuitively, if the resulting latent
regions are comparable and shared, the out-of-distribution samples should be triangulated
in a consistent manner. On the other hand, when the tasks are disjoint, the anchors are
extracted from a small subset of the global dataset that is not shown to the model. Indeed, if
these were used for training, the task-specific models would be partially aware of the overall
class distribution, while we enforce them to see only the samples and classes of the task they
are trained on. Importantly, the projection anchors are the same across all the tasks. Within
the anchor set, we follow Moschella et al. (2023) and employ random sampling.

4. Experiments

We consider two datasets throughout our experiments: CIFAR100 (Krizhevsky et al., 2009)
and TinyImagenet (Le and Yang, 2015). We refer to the latter as TINY in the tables for brevity.
These offer a good trade-off between scale and tractability. In fact, the first experiment
alone requires training and aggregating 70 task-specific models. Dataset details can be found
in appendix A.1. As for the models, we experiment with a standard convolutional neural
network trained from scratch and a pre-trained EfficientNet due to its superior performance
on CIFAR100 (Tan and Le, 2019). Common to the experiments will be a quantitative measure
of the similarity between the aggregated space and the space of a model trained end-to-end
on the whole dataset. To this end, we employ CKA (Kornblith et al., 2019) as it is the most
commonly used metric for comparing neural representations. We measure the separability
of the considered spaces as the ratio of the inter-class distances over the average of the
intra-class distances. The latter is described in detail in appendix C.3. For space reasons, we
will consider only one of the datasets or a subset of the configurations when the results are
consistent, reporting the remaining experiments in appendix B.3.
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4.1. Aggregating tasks sharing samples and classes

Figure 2: Experiment outline.

Setup In this experiment, we want to test the
ability of our framework to merge latent spaces
originating from models trained on partially dis-
joint tasks, i.e. classification tasks that share
a nucleus of classes but also have a set of task-
specific classes. If a class is present in the task,
either shared with the other tasks or not, all its
samples are considered in the task. Given C total
classes in the dataset, we determine a number
S of classes that will be shared across the tasks,
and a number N of classes that will be novel for
each task. This subdivision results in K = (C−S)

N
discrete tasks, each comprising all the S shared
classes and a set of N task-specific novel classes.
Subsequently, we train K + 1 models: one inclu-
sive of all the C classes and one for each task.
Each task-specific model is thus characterized by
a latent space segregated into shared and novel samples. The latent spaces defined by the K
task-specific models are then represented as similarities from a set of 256 anchors sampled
only from the shared samples. Intuitively, expecting the subspaces corresponding to the
shared classes to be similar across the different models, these shared anchors should be able to
impose a consistent structure on the merged space that will accommodate the novel samples.
Being represented in a possibly different way in each space, we obtain K representations for
each shared sample. The latter are averaged to get the final representation for the unified
space. On the other hand, being only represented once across all the spaces, the task-specific
novel samples can be added to the consolidated space without further ado.

Comparison with the original space As we can quantitatively assess in Table 1, for each
combination of S and N , the space obtained by aggregating the latent spaces corresponding
to the models trained on the partially disjoint tasks exhibits high similarity to the one
obtained by training on the whole dataset. In fact, the values are always higher than 0.7 and
often higher than 0.8. This can be also qualitatively appreciated in Figure 9. As expected,
the CKA among the samples from the shared classes is always higher than that of the samples
from task-specific classes. Interestingly, the CKA is still high even when considering low
values for S, i.e. when having a small number of shared classes. This suggests that the
framework can merge latent spaces even when the shared portion of samples is small.

Representational power of the aggregated space We also want to test the repre-
sentational power of the aggregated space. To this end, we train a simple classifier on the
aggregated space and compare its performance with the end-to-end trained classifier. Table 2
shows that the former obtains better performance than one trained over the original space
and, most importantly, that the performance increases when decreasing the number of shared
classes. While this is a surprising result, we will see in section 4.3 that it is due to task-specific
embedders. The gap in accuracy is impressive, with +33, +20 accuracy points in CIFAR100
using VanillaCNN and EfficientNet and a +14, +8 increase for TinyImageNet. To verify
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CKA

Dataset S N # tasks non-shared shared overall non-shared shared overall
CI

FA
R1

00
VanillaCNN EfficientNet

80 10 2 0.88 0.90 0.90 0.85 0.90 0.89
60 10 4 0.85 0.92 0.89 0.82 0.88 0.85
40 10 6 0.83 0.91 0.86 0.80 0.89 0.83
20 10 8 0.74 0.86 0.76 0.77 0.87 0.79

80 5 4 0.90 0.93 0.92 0.81 0.90 0.88
60 5 8 0.82 0.90 0.87 0.83 0.87 0.84
40 5 12 0.81 0.87 0.84 0.78 0.89 0.82
20 5 16 0.78 0.87 0.80 0.77 0.88 0.79

TI
NY

VanillaCNN EfficientNet

100 25 4 0.85 0.91 0.88 0.72 0.81 0.76
50 25 6 0.83 0.91 0.85 0.67 0.80 0.71

Table 1: Experiment 1. Comparison of the aggregated spaces with the space of an end-to-end
model trained on the whole dataset. S and N represent the number of shared and novel
classes per task out of a total of C classes. We compute CKA both for the overall space and
for the subspaces defined by non-shared and shared classes.

Dataset S N tasks vanilla non-shared shared total improv vanilla non-shared shared total improv

CI
FA

R1
00

VanillaCNN 0.39 EfficientNet 0.70

80 10 2 0.36 0.60 0.39 0.43 +0.04 0.68 0.80 0.71 0.73 +0.02
60 10 4 0.39 0.64 0.45 0.53 +0.14 0.72 0.82 0.76 0.79 +0.08
40 10 6 0.42 0.64 0.50 0.58 +0.19 0.75 0.87 0.80 0.84 +0.14
20 10 8 0.47 0.65 0.52 0.62 +0.23 0.80 0.88 0.84 0.87 +0.17

80 5 4 0.37 0.77 0.41 0.49 +0.10 0.71 0.84 0.72 0.75 +0.05
60 5 8 0.39 0.71 0.45 0.55 +0.16 0.76 0.85 0.78 0.81 +0.11
40 5 12 0.44 0.74 0.49 0.64 +0.25 0.80 0.90 0.80 0.86 +0.16
20 5 16 0.51 0.76 0.55 0.72 +0.33 0.83 0.93 0.83 0.90 +0.20

TI
NY

VanillaCNN 0.22 EfficientNet 0.69

100 25 4 0.22 0.37 0.23 0.30 +0.08 0.68 0.75 0.71 0.73 +0.05
50 25 6 0.24 0.36 0.36 0.36 +0.14 0.72 0.77 0.74 0.77 +0.08

Table 2: Classification accuracy comparison. Each quarter shows a dataset-model combination,
with end-to-end model accuracy on the right. For each S, N combination, we report the
accuracy of a classifier trained on the aggregated space, along with accuracy when considering
only non-shared and shared classes. Improv is the improvement over the end-to-end model,
while vanilla the accuracy of naive merging.

that it is enough to merge the spaces without first passing to a unified representation, we
also test with a classifier trained on the union of the absolute embedding spaces. As we
can see in table 2, the performance is way lower than that of the classifier trained on the
aggregated space, confirming that the relative representation is beneficial.

To check whether different non-shared classes end up in the same region in the aggregated
space, we measure the mean separability for any pair of classes ci, cj such that either is not
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Figure 3: Separability analysis over CIFAR100: we compare the mean separability of the
resulting space when using relative and naive aggregation for different values of S and N = 10,
as well as the separability over the space of the end-to-end model trained over the whole
dataset. The relatively aggregated space consistently results in the highest separability.

shared. Figure 3 shows that our approach is consistently higher than the baseline, suggesting
that the former can better avoid collisions from the merge. Surprisingly, the separability
of the aggregated space is also higher than that of the end-to-end one, and it is higher for
smaller numbers of shared classes. This again suggests that the task-specific models can
better separate the samples and that the aggregated space can preserve this information.

Summary Aggregating spaces of models trained on tasks sharing a portion of samples
results in a space that is similar to the one of the end-to-end model but that allows significantly
better classification performance and improved class separability, especially when task-specific
models have fewer shared classes.

4.2. Aggregating tasks sharing classes

Figure 4: Experiment outline.

Setup In this experiment, we divide the dataset
into two disjoint subsets, A and B. Subset A
comprises 20% samples labeled from the first half
of the classes and 80% instances labeled from the
second one, while subset B contains 80% samples
labeled from the first and 20% samples labeled
from the second. This arrangement ensures a
distributional imbalance in terms of class labels
between the two subsets. Subsequently, we train
two models on A and B; each model learns to
classify the distinct distribution of labels within
its assigned subset. Post-training, we introduce
an unseen set of anchor points to project the
latent spaces of the two models to relative spaces.
The final step involves unifying these relative spaces into a single latent space: similarly to
the samples belonging to novel classes in Section 4.1, we only have one representation for
each sample already in the unified latent space.

Results Figure 5 shows that, in this case, relative aggregation does not improve over naive
merging when considering classification accuracy. This suggests that a shared region of the
latent space is required for the relative representations to be most effective. However, fig. 12
shows that the relative aggregated space still vastly outperforms the naive one regarding class
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Figure 5: Classification analysis. Each barplot represents a different model: for each one; we
compare its end-to-end accuracy versus that of a classifier trained over the relative aggregated
space and that of a classifier trained over the naive aggregated space.

separability. This last result hints at the relative aggregated space being better suited for
classification, attributing the equality in results with the naive baseline to the expressiveness
of the downstream classifier that can make up for the inferior separability of the naive space.

It is noteworthy to observe that the aggregated spaces, both the naive and the relative
ones, can reach a comparable accuracy to the end-to-end model. This is a remarkable result,
as it shows that the unified space can capture the information from both models, even
though the two models were trained on disjoint tasks. This is further confirmed by the
similarity between original and relative aggregated being as high as 0.87, 0.83 on CIFAR100
for EfficientNet and VanillaCNN respectively, and 0.79 and 0.84 on TinyImagenet.

Summary For sample-disjoint tasks sharing common classes but distinct distributions,
the relative aggregated space effectively preserves information from both spaces, improving
classification accuracy and class separability in downstream tasks.

4.3. Aggregating totally disjoint tasks

Setup Similarly to section 4.2, we split a dataset into
two disjoint sets of samples, with the difference that
these now also belong to disjoint class sets. The first
set comprises samples exclusively from the first half of
the classes, while the second consists of samples from
the remaining half. This ensures that the two subsets
do not overlap in classes or instances, presenting an
independent learning scenario for two models to be
trained on. Post-training, we introduce an unseen set
of anchor points spanning all the classes, and use them
to project the latent spaces into relative spaces.

Figure 6: Experiment outline.
In this way, each task-specific space will be projected with respect to anchors that are

roughly half from the training distribution and half from out-of-distribution. Coming from
disjoint tasks, each sample will then just be represented with its relative representation.
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Figure 7: Classification analysis. Each barplot represents a different model: for each one; we
compare its end-to-end accuracy versus that of a classifier trained over the relative aggregated
space and that of a classifier trained over the naive aggregated space.

Results As the spaces to aggregate are class- and sample-disjoint, the similarity to the
end-to-end space drops to 0.81, 0.83 on CIFAR100 and to 0.72, 0.81 on TinyImageNet for
EfficientNet and VanillaCNN respectively. Interestingly, fig. 7 shows that the space
that allows us to obtain the best results is consistently the aggregated one, significantly
outperforming the original space obtained by training a model end-to-end over the whole
dataset. While surprising, this finding aligns with the increased performance over the tasks
with fewer shared classes seen in Section 4.1. We envision two possibilities to explain this
phenomenon. Hypothesis A: The task-specific models can extract more specialized features
for their classes, presenting the downstream classifier with better features. To investigate this
hypothesis, we start from the first three classes C1 = c1, c2, c3 of CIFAR100 and gradually
expand the set with a new class ci for i = 1, . . . ,M . We train a model on each class set
{c1, c2, c3}, . . . , {c1, . . . , cM}, use it to embed the samples with class in C1 and then train a
downstream classifier on this embedding space. Intuitively, the embeddings for three original
classes will come from increasingly more crowded spaces with the addition of new classes.
Figure 8 shows that the accuracy has an increasing trend overall when adding new classes,
therefore not supporting the hypothesis. Similarly, the second experiment in appendix B.3
compares the classification suitability of the embeddings of M classes in a task-specific space
versus the embeddings of the same classes in the space of all the C classes. As before, the
restriction over the M classes in the space of a model trained on all C classes proves a
better feature space than the space of a model that is only trained over the M classes, again
disconfirming the hypothesis. Hypothesis B: the task-specific models trained on C ′ ≤ C
classes leave a footprint in the embeddings, allowing the downstream classifier to discriminate
among a smaller set of classes. To verify whether this holds, we add a task-embedding layer
to the downstream classifier and train it on the embedding space of the end-to-end model.
The results, shown in Figure 7, show that the accuracy rises to that of the aggregation
techniques, confirming the hypothesis. Intuitively, being trained on a smaller subset of classes,
the task-specific embedders are better able to discriminate their class set. If the embeddings
carry a footprint of the model, they also covertly reveal the task. The downstream classifier
can exploit this information and discriminate among C ′ classes instead of C, significantly
lowering the complexity of the task and therefore increasing its accuracy.
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Figure 8: Classifier accuracy as the embedding space becomes less specific, where point i
represents the accuracy of a downstream classifier over classes c1, c2, c3 embedded within a
space containing classes c1, c2, c3, . . . , ci+3.

Summary Relative aggregation allows merging sample- and class-disjoint spaces, granting
better accuracy than an end-to-end model trained over the whole dataset due to task-specific
footprints being embedded within the representations.

5. Conclusions

In this work, we have studied the problem of aggregating spaces originating from different
learning models, possibly more than one. We have seen how relative representations provide
the means to perform this operation and analyzed various experimental settings spanning a
set of varying assumptions. In particular, we have seen that the approach works best when
a shared region of the space is available, and that it is still possible to obtain good results
when this is not the case. We have studied the characteristics of the aggregated space in
terms of representational power, separability, and similarity to an end-to-end space trained
over the whole dataset, and have shown the benefits of the approach when compared to a
naive merging baseline. In future work, we envision applying the approach to other settings,
such as federated learning, where aggregating latent spaces involving anonymized anchors
could provide an architecture-agnostic alternative to weight-space model merging.
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Appendix A. Details

We report here the technical details that are not present in the main manuscript.

A.1. Dataset details

We employ two well-established benchmark datasets that offer a good trade-off between scale
and tractability. In fact, the first experiment alone requires training and aggregating 70
task-specific models.
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CIFAR100 CIFAR-100 (Krizhevsky et al., 2009) is a popular dataset in the field of computer
vision. It consists of 100 different classes, each containing 600 images, making a total of
60,000 labeled images for training and testing. CIFAR-100 is widely used for benchmarking
and evaluating the performance of machine learning and deep learning models in tasks such
as image classification and object recognition. It offers a diverse range of objects and scenes,
making it a challenging dataset for developing and testing algorithms in the field of image
analysis and pattern recognition.

TinyImageNet TinyImageNet is a subset of the larger ImageNet dataset, focusing on a
more manageable scale while maintaining its diversity. It consists of 100000 images of 200
classes (500 for each class) downsized to 64× 64 colored images. Each class has 500 training
images, 50 validation images and 50 test images.

A.2. Model details

All our models are trained using the Adam optimizer from the torch.optim suite.

VanillaCNN We utilized a vanilla Convolutional Neural Network (CNN). The model is
defined by intermediate convolutional stages with 16 and 32 channels respectively, culminating
in an embedding layer of 128 dimensions. The preprocessing pipeline only consists of
normalization.

EfficientNet We employ EfficientNet as a pre-trained model for our experiments, specif-
ically the efficientnet_b0 variant provided by the TIMM library. Post the embedder, we
employ a MultiLayer Perceptron (MLP) projector, which transitions from an input feature
dimension of 1280 to a hidden dimension of 256, and ultimately to a projection dimension of
128. As for preprocessing, images are first converted to the PIL format, resized to 256 pixels
on the longer side, and then center-cropped to a consistent size of 224× 224 pixels. Standard
normalization ensures the input images are aptly conditioned for the model’s requirements.

A.3. Tools & Technologies

We use the following tools in all the experiments presented in this work:

• PyTorch Lightning, to ensure reproducible results while also getting a clean and modular
codebase;

• NN-Template GrokAI (2021), to easily bootstrap the project and enforce best practices;

• Datasets by HuggingFace, to access the datasets.

Appendix B. Additional experiments

We report here the results for the experiment configurations that were omitted in the
manuscript, as well as experiments that were only mentioned.
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B.1. Qualitative visualization

Figure 9 compares the space of an end-to-end model trained on the whole dataset and the
aggregated space from the task-specific models. Being the hardest to position, only the
non-shared classes are visualized. Remarkably, even in this case, the aggregated spaces look
similar to the one of the end-to-end model.

S = 80

N
=

5

S = 50 S = 20

N
=

10

Figure 9: Experiment 1. Principal Component Analysis (PCA) visualizations of the latent
space obtained training on the whole dataset versus aggregated latent spaces from models
trained on partially disjoint tasks. Notably, the spaces remain similar despite reducing the
shared core of classes.

B.2. Separability analysis

Figure 11 shows the separability for the spaces obtained in section 4.1 for N = 5. The
same considerations given for N = 10 apply. Figure 10 instead shows the same analysis for
TinyImageNet. In Figure 12, we instead show the separability values for the aggregation of
sample-level disjoint tasks, as described in section 4.2. In Figure 13 the same analysis is
carried for spaces that are disjoint at the class and sample level, as described in section 4.3.

B.3. Subclass experiment

In this experiment, we compare the classification suitability of the embeddings of M classes
in a task-specific space versus the embeddings of the same classes in the space of all the
C classes. In practice, we randomly sample M classes for each task, train a model on the
corresponding sample subset, and then use it to embed an unseen test dataset for the same
classes. We then also train a model from scratch over the whole dataset, and use it to
embed the same sample subset (again, the samples for the selected M classes). We then
train two downstream classifiers to classify the sample label from the embeddings: one over
the embeddings obtained by the task-specific model and one over the embeddings produced
by the model trained on the whole dataset. We pick M = 30 and C = 100 for CIFAR100.
Intuitively, if the features learned by the task-specific model were better specialized, the
classification accuracy of the downstream classifier would be higher than when trained over
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Figure 10: Separability analysis over TinyImageNet for tasks sharing a sample portion:
we compare the mean separability of the resulting space when using relative and naive
aggregation for different values of S and N = 25, as well as the separability over the space
of the end-to-end model trained over the whole dataset. The relatively aggregated space
consistently results in the highest separability.

Figure 11: Separability analysis over CIFAR100 for tasks sharing a sample portion: we compare
the mean separability of the resulting space when using relative and naive aggregation for
different values of S and N = 5, as well as the separability over the space of the end-to-end
model trained over the whole dataset. The relatively aggregated space consistently results in
the highest separability.

Figure 12: Separability analysis over CIFAR100 and TinyImageNet for sample-level disjoint
tasks sharing the same class set: we plot the mean separability over the relatively aggregated
space, the naively aggregated space, and the one of the end-to-end model. The relatively
aggregated space consistently results in the highest separability.
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Figure 13: Separability analysis over CIFAR100 and TinyImageNet for tasks disjoint both at
the sample and at the class level: we plot the mean separability over the relatively aggregated
space, the naively aggregated space, and the one of the end-to-end model. The relatively
aggregated space consistently results in the highest separability.

Figure 14: Accuracy results for the experiment in appendix B.3. Each barplot is a different
task, space A is the feature space learned by the model trained on M = 30 classes, and space
B is that of the model trained on all the C = 100 classes. A downstream classifier always
obtain the best performance over the latter.

the features learned by the global model. We can see in fig. 14 that this is not the case, as
in any of the four attempts the features of the global model (space B) result in a greater
accuracy. As before, the restriction over the M classes in the space of a model trained on all
C classes proves a better feature space than the space of a model that is only trained over
the M classes, again disconfirming hypothesis A in section 4.3.

Appendix C. Background

C.1. Relative representations

Relative representations encode data points as distances with respect to a set of training
points termed anchors. Moschella et al. (2023) empirically show that in many scenarios
two spaces become aligned when passing to this distance-based representation, claiming
that stochasticities in the training process often result in an angle-preserving transformation
between the two latent spaces. Figure 15 shows a visual representation of the relative
representation framework.
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Figure 15: Relative representations: (left) a sample x and three anchor samples a1, a2, a3 are
embedded in a latent space. (right) the new representation of x is given by its distance with
respect to the anchors.

C.2. Similarity measures

The most common representational similarity measure is CKA (Kornblith et al., 2019), that
is defined as:

mCKA(R,R′) =
HSIC(S,S′)√

HSIC(S,S)HSIC(S′,S′)
, (3)

where HSIC(S,S′) = 1
(N−1)2

tr(SHS′H), H = I − 1
N 11T is a centering matrix, and 1 is

a vector of N ones. The denominator is introduced to scale CKA between 0 and 1, with a
value of 1 indicating equivalent representations. We employ the linear kernel version, as the
difference with more complex kernels is usually negligible (Kornblith et al., 2019).

Most notably, CKA is invariant to orthogonal transformations and isotropic scaling,
assuming invariant similarity measures for RSM computation. It is worth remarking that
relative representations are invariant to angle-preserving transformations, a superclass of the
orthogonal transformations.

C.3. Separability measures

Let’s denote the aggregated space as Xaggregated. For simplicity, consider a scenario where
the aggregated space consists of samples from two different classes C1 and C2. The goal is
to assess the separability of these two classes in the aggregated space. To do so, we first
calculate the centroid (mean vector) for each class in the aggregated space:

cC1 =
1

|C1|
∑
x∈C1

x

cC2 =
1

|C2|
∑
x∈C2

x

Then, we calculate the Euclidean distance between the centroids of the two classes:

dinter = ∥cC1 − cC2∥
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as well as the average distance of samples in each class to their respective centroid:

dintraC1
=

1

|C1|
∑
x∈C1

∥x− cC1∥

dintraC2
=

1

|C2|
∑
x∈C2

∥x− cC2∥

A separability score can then be defined as the ratio of inter-class distance to the average
intra-class distance:

S =
dinter

1
2(dintraC1

+ dintraC2
)

Intuitively, an high value of S indicates that the classes are well-separated in the aggregated
space, meaning there is little to no collision, while a value that is close to or less than 1
indicates that there is a significant overlap or collision of classes in the aggregated space.
For a set of classes, we generalize the above approach by calculating pairwise separability
scores for all combinations of class pairs and then taking the average or the minimum of
these scores as an overall indicator.
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