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ABSTRACT

Materials discovery depends critically on integrating information from multiple
experimental and computational techniques, yet most tools today analyze these
different data types in isolation. Here, we present MatBind, a model based on
the ImageBind architecture that creates a unified embedding space across four
key materials science modalities: density of states (DOS), crystal structures, text
descriptions, and powder X-ray diffraction (pXRD) patterns. Using a hub-and-
spoke architecture with crystal structure as the central modality, MatBind achieves
cross-modal recall@1 performance of up to 97% between directly aligned modal-
ities and up to 73% for pairs of modalities not explicitly trained together. Our
model demonstrates the ability to make semantically meaningful connections
across modalities, enabling researchers to query one type of materials data using
another. Our analysis shows that combining multiple modalities can improve the
model’s ability to recognize important structural features like perovskite crystal
systems. This approach lays the foundation for more integrated materials research
platforms that can accelerate discovery by leveraging the collective knowledge
encoded in materials databases.
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1 INTRODUCTION

Modern materials discovery relies on synthesizing heterogeneous data modalities, from experimen-
tal fingerprints like powder X-ray diffraction (pXRD) and nuclear magnetic resonance spectroscopy
(NMR) to simulated properties such as density of states (DOS) and band structures. Each modality
acts as a distinct “lens,” revealing partial facets of a material’s behavior. Yet today’s tools commonly
force scientists to peer through these lenses one at a time. For instance, research data management
systems (e.g., electronic lab notebooks (Jablonka et al., 2022; Scheidgen et al., 2023)) typically
lack cross-modal semantic search capabilities, restricting queries to isolated metadata fields for one
modality. Thus, it is commonly not possible to semantically search across modalities to, for instance,
find a crystal structure that best matches a pXRD pattern or DOS. Such a feature, however, would
lead to large increases in research productivity. Also, machine learning models typically focus only
on one modality. For instance, by predicting properties based on pXRD patterns as the input (Khan
& Moosavi, 2024; Jablonka et al., 2020; Lee et al., 2022). However, gains are to be expected by
leveraging the latent synergies between different modalities.

Here, we report MatBind, a model based on the ImageBind architecture (Girdhar et al., 2023) that
trains a shared embedding space across four modalities (DOS, crystal structures, text, and pXRD)
using a hub-and-spoke architecture. The architecture scales modularly, allowing seamless integra-
tion of new modalities such as emerging spectroscopic techniques. MatBind achieves cross-modal
recall@1 performance of up to 97 % and up to 73 % for pairs of modalities it has not seen in train-
ing. These results have very practical implications: they enable researchers to build systems that
can semantically query for data across different modalities and, in this way, open the possibility of
discovering previously unknown links and accelerating materials design and discovery.

2 RELATED WORK

Recent advances in multimodal learning have demonstrated the value of unified representations.
Girdhar et al. (2023) established that contrastive alignment with a central modality can bind addi-
tional data types into a shared embedding space, inspiring domain-specific adaptations and exten-
sions, for instance, by coupling the embeddings to large language models (LLM) (Su et al., 2023;
Han et al., 2023). In materials science, Moro et al. (2023) reported contrastively trained multi-
modal models but focused on property prediction rather than cross-modal retrieval. Das et al. (2023)
fused crystal graphs with textual descriptors to improve property prediction through global structural
awareness, though their reliance on curated text limits scalability compared to unsupervised align-
ment methods. Based on a modified CLIP architecture (Radford et al., 2021), Seidl et al. (2023)
demonstrated how textual task descriptions enhance few-shot drug discovery.

For molecular systems, Mirza et al. (2024) aligned chemical representations via contrastive learn-
ing, while Mirza & Jablonka (2024) combined multimodal embeddings with optimization for
spectroscopy-structure mapping. Protein science has seen analogous progress through frameworks
like (Flöge et al., 2024), which unified structural and sequence data, or Xiao et al. (2024) who unified
protein data with molecules and language.

Our work adapts the contrastive paradigm by Girdhar et al. (2023) to materials-specific modalities
while in contrast to Moro et al. (2023) focusing on retrieval.

3 METHODS

3.1 DATASET

We obtained our dataset from the Materials Project (Jain et al., 2013), which contains approximately
169,000 materials. We retrieve the crystal structure and DOS from the Materials Project. The
DOS data is simplified to the total density of states. To generate textual descriptions of crystal
structures, we use Robocrystallographer (Ganose & Jain, 2019). We generated pXRD patterns using
the pipeline described in Schopmans et al. (2023).
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3.2 MODEL ARCHITECTURE

MatBind is based on the ImageBind architecture. Figure 1 illustrates that we use encoders for
different modalities and align them contrastively by training on pairs of modalities (black lines).
Other links between modalities are emergent (red lines).
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Figure 1: Overview of the MatBind architecture. h<modality> represents the embeddings gener-
ated by the encoder. All modalities are aligned with the central modality. We contrastively train on
pairs of modalities (black lines), where one modality is always the central modality, C. The size of
the circles represents the parameter count of the different encoders but is not to scale (see Table 1
for detailed parameter counts). Embeddings obtained from each encoder are passed through a pro-
jection layer (green bars) to obtain vectors of fixed size.

3.2.1 ENCODER MODELS

Crystal Structure Encoder We encode crystal structures using a graph convolutional neural net-
work (Kipf & Welling, 2016) with six sequential graph convolution layers. A site-specific atomic
species encoding scheme (Taniai et al., 2024) is used for graph node representation where binary
vectors for single-species sites and weighted vectors for mixed-occupancy sites, while edges connect
nearest neighbors within an 8 Å cutoff radius. Edge attributes encode interatomic distances using a
Gaussian radial basis expansion with 41 components. After message passing, node embeddings are
aggregated via mean pooling across the crystal graph, producing a global material representation.

Powder X-Ray Diffractogram Encoder The pXRD encoder is a convolutional, ResNet-based
architecture (He et al., 2015) that was successfully used before for the prediction of space groups
associated with the diffractograms (Schopmans et al., 2023). It can be pre-trained using the space
group prediction task using synthetic (i.e., simulated, plus synthetic noise) pXRD diffractogram
derived from crystal structures in materials databases such as the Materials Project or the ICSD
database (Hellenbrandt, 2004), but as shown in Schopmans et al. (2023), it can also be trained on
fully synthetic crystal structures and simulated pXRD patterns.

Density of States (DOS) Encoder To efficiently encode the density of states into a latent space,
we employ a Transformer model (Vaswani, 2017). The DOS data can be viewed as two-dimensional
data, where one dimension represents energy and the other the density of states. However, the
measured energy range varies across different materials. To address this, we incorporate not only
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positional embeddings but also explicit energy values as additional input features. Our implemen-
tation follows the approach described by Moro et al. (2023). Additionally, we offset the energy
values by subtracting the Fermi energy of the material, enabling the model to capture energy-related
information better.

Text encoder Textual descriptors are tokenized using BERT Tokenizer and then encoded using
MatBERT (Walker et al., 2021; Trewartha et al., 2022), a BERT-based model (Devlin et al., 2019)
pretrained on scientific papers. We extract embeddings from the final hidden layer of the model,
computing the material’s representation as the attention-weighted average of all non-padding token
vectors.

3.2.2 JOINT TRAINING

MatBind is based on the ImageBind framework (Girdhar et al., 2023) and aligns pairs of different
modalities, with crystal structure (C) as the anchor modality paired with either text, DOS, or pXRD
(E). For each pair, the respective encoders ϕC and ϕE transform the raw inputs into representations
ai = ϕC(ai) and bi = ϕE(bi).

For a batch of pairs, we optimize two objectives: bringing matching representations closer together
while pushing non-matching ones apart. The InfoNCE loss function (van den Oord et al., 2018)
captures this dual aim:

L =
1

n

∑
i

log
exp(a⊤i bi/τ)

exp(a⊤i bi/τ) +
∑

j ̸=i exp(a
⊤
i bj/τ)

. (1)

The temperature parameter τ controls the scaling of similarity scores, while bi terms act as contrast-
ing examples within each batch. During training, we maintain crystal structures (C) as a constant
presence across batches of paired modalities, ensuring consistent alignment across all modalities.

4 RESULTS AND DISCUSSION

4.1 RETRIEVAL METRICS

In Figure 2, we show the recall@1 for all combinations of models, where the central modality
is the crystal structure. We find consistently very high retrieval performance for all pairs (E , C)
except for pairs of crystal structures and pXRD patterns. In addition, we observe both successful
and unsuccessful emergent links. For instance, we find very strong retrieval between DOS and text
descriptions.

The addition of additional encoders sometimes improves retrieval performance for other modalities.
This is particularly the case with the addition of the text encoder. For example, The DOS-crystal
structure, DOS-pXRD, and crystal structure-pXRD retrieval are improved by adding a text encoder.
But this is not always the case: for example, the text-DOS retrieval (0.643) in the four-modality
model (crystal structure - DOS - text - pXRD) underperforms the three-modality model (0.731,
crystal structure - DOS - text).

4.2 LATENT SPACE ANALYSIS

It is interesting to analyze how the addition of various encoders changes the structure of latent
spaces. An embedding of a material is particularly useful if it can be used to distinguish materials of
different classes and properties (Zhang et al., 2024; Isayev et al., 2015). Historically, scientists have
hand-crafted heuristics such as tolerance factors to perform such analyses. One important tolerance
factor is the Goldschmidt tolerance factor (Bartel et al., 2019; Kronmüller & Parkin, 2007) that can
be used to compute the compatibility of ABX3 with different structure types:

t =
rA + rX√
2 (rB + rX)

, (2)

where rA,B,X are the radii of the different ions.
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Figure 2: Recall@1 performance heatmap for all possible modality combinations, where the
central modality is the crystal structure. The y-axis represents the query modality - key modality
pairs (e.g., DOS-pXRD represents a pair of modalities where DOS embeddings are used as queries
and pXRD embeddings are used as keys. The x-axis labels the modalities used in training besides
the central modality. The white cells are impossible pairs for the respective models (because they
are not included in the model).

In this case, the following condition should be respected for a material to be a perovskite:

{
0.9 ≤ t ≤ 1.09, if the formula contains S (sulfides)
1.01 ≤ t ≤ 1.05, if the formula contains Se (selenides).

(3)

Based on the implementation of Schilling-Wilhelmi et al. (2025), we compute the tolerance factors
and embed the crystal structures using the crystal encoder aligned with different combinations of
other modalities. We find that all encoders show some ability to discriminate between perovskite
and non-perovskite structures (a Kolgomorov-Smirnov test showed a significant difference for all
pairs of distributions displayed in Figure 3), which indicates that our embeddings capture relevant
information about the structure of materials. However, the discrimination is typically best when
pXRD is included in the alignment training (see Figure 7). This observation highlights that different
modalities can act as different “lenses” on materials and showcases the importance of combining
different modalities.

5 CONCLUSION

Modern materials discovery relies on synthesizing information from multiple experimental and com-
putational techniques. Each technique—from X-ray diffraction to density of states calculations—
acts as a distinct “lens”, revealing different aspects of a material’s behavior. For simple systems,
scientists can often mentally integrate these different views to form a complete understanding. How-
ever, as materials become more complex and the volume of data grows, this manual synthesis be-
comes increasingly challenging. Yet, the materials science community has generated vast amounts
of multimodal data, implicitly encoding relationships between different measurement techniques
and material properties.

Here, we have shown that this implicit knowledge can be leveraged through a contrastive learning
framework that unifies different modalities in a shared embedding space. Our MatBind architecture
achieves cross-modal recall performance of up to 97% (k = 1) and, remarkably, discovers emergent
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Figure 3: Overlap between the distributions of cosine similarities within the set of perovskites
vs. non-perovskite materials. Embeddings of the validation set are used for these plots. The titles
of the subplots are consistent with the x-axes in Figure 2. We show the value of the area of the
overlap region between the two kernel density estimation (KDE) curves.

relationships between modalities that were never explicitly paired during training. The success
of this approach, even with encoders trained from scratch, demonstrates the power of data-driven
techniques to bridge different experimental and computational methods in materials science.

Our work highlights how modern machine learning techniques can solve fundamental challenges in
materials informatics for which no reliable alternatives exist. By enabling semantic queries across
different modalities, MatBind lays the foundation for more integrated materials research platforms
that can accelerate discovery by leveraging the collective knowledge encoded in materials databases.
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Thomas Christensen, and Marin Soljačić. Multimodal learning for crystalline materials. arXiv
preprint arXiv:2312.00111, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. arXiv preprint
arXiv: 2103.00020, 2021.

Markus Scheidgen, Lauri Himanen, Alvin Noe Ladines, David Sikter, Mohammad Nakhaee, Ádám
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A APPENDIX

A.1 OTHER RETRIEVAL METRICS

In the figure below, we also provide the Recall@5 metric for all models shown in Figure 2.
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Figure 4: Recall@5 for all combinations of modalities, where crystal structure acts as the cen-
tral modality. This figure is analogous to Figure 2.

A.2 ENCODER DETAILS

In Table 1 we show the number of parameters for all the encoders used in this work.

Table 1: Parameter count of the encoders used for the models described in Figure 1. For the
experiments shown in this work, most encoders, except the text encoder, were trained from scratch
during the contrastive training.

Encoder Parameter count

Density of states 6.4 M
Text description 110 M

Powder X-Ray Diffractogram 5 M
Crystal structure 1 M

A.3 ADDITIONAL LATENT SPACE VISUALIZATIONS

Here, we provide additional latent space visualization in lower dimensions. Figure 5 shows a two-
dimensional TSNE plot. The default settings from sklearn are used. Figure 6 shows the distribu-
tion of theoretical perovskites in a two-dimensional principal component space.
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Figure 5: TSNE component mapping for the crystal structure embeddings of every possible
encoder combination.
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Figure 6: PCA component mapping for the crystal structure embeddings of every possible
encoder combination.
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A.4 PXRD VS. NON-PXRD MODELS

In the figure below, we provide the distribution of all embeddings across models that contain the
pXRD encoder vs models that do not contain the pXRD encoder. The overlap area is significantly
higher (circa 14%) for models not containing the pXRD encoder.
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Figure 7: Overlap between the KDEs for perovskite vs. non-perovskite materials for models con-
taining pXRD vs. models not containing pXRD.
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