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ABSTRACT

Like generic multi-task learning, continual learning has the nature of multi-
objective optimization, and therefore faces a trade-off between the performance
of different tasks. Researchers have discussed how to train models to address user
trade-off preferences between the tasks. However, existing algorithms (1) do not
guarantee Pareto-optimality and (2) require a training overhead proportional to the
number of user preferences, which may be infinite, thus generating a substantial
cost. As a response, we propose Imprecise Bayesian Continual Learning (IBCL).
Upon a new task, IBCL (1) updates a knowledge base in the form of a convex
hull of model parameter distributions and (2) generates one model per given user
preference without any additional training. That is, obtaining the user-preferred
models via IBCL is zero-shot. Moreover, IBCL ensures a buffer growth that is
sublinear in the number of tasks. Experiments show IBCL improves on baseline
methods by at most 45% in average per task accuracy and by 43% in peak per task
accuracy, while maintaining a near-zero to positive backward transfer. Moreover,
its training overhead, measured by number of batch updates per task, does not
scale up with the number of preferences. Therefore, it is a well-performing and
efficient algorithm when a large number of preferences are requested.

1 INTRODUCTION

Multi-task learning aims to obtain a shared model to maximize performance on multiple tasks.
Therefore, it has the nature of multi-objective optimization (Kendall et al., 2018; Sener and Koltun,
2018), where trade-offs exist between individual tasks. Lifelong machine learning, also known as
continual learning (CL), is a special case of multi-task learning where tasks arrive in sequential or-
der (Chen and Liu, 2016; Parisi et al., 2019; Ruvolo and Eaton, 2013b; Thrun, 1998). Formally,
the trade-off in CL between not forgetting previous knowledge vs. acquiring new knowledge is
known as stability-plasticity trade-off (De Lange et al., 2021). So far, researchers have leveraged
user preferences to select what points on a trade-off curve should be aimed for during multi-task and
continual learning (Mahapatra and Rajan, 2020; Kim et al., 2023).

Consider the following motivating example of a movie recommendation system. The model is first
trained to rate movies in the sci-fi genre. Then, a new genre, e.g., documentaries, is added by the
movie company. The model needs to learn how to rate documentaries while not forgetting how to
rate sci-fis. Training this model boils down to a continual learning problem.

The company now wants to build a recommendation system that adapts to users’ tastes in movies.
For example, a user Alice tells the company that she has equal preferences over sci-fis and docu-
mentaries. Another user Bob says he absolutely wants to watch documentaries and has no interest in
sci-fis at all. Consequently, the company’s goal is to train two customized models for Alice and Bob
respectively, to predict how likely a sci-fi or a documentary should be recommended to an individual
user. Based on preferences, Alice’s personal model should balance between the accuracy in rating
sci-fis and rating documentaries, while Bob’s model can compromise the accuracy in rating sci-fis
in order to achieve a high accuracy in rating documentaries. As new genres are added, users should
be able to input their preferences over all available genres to obtain customized models.

The example above urges us to train Pareto-optimal models under user trade-off preferences between
the tasks. State-of-the-art techniques formalize a user’s preference as a probability vector over tasks.
For instance, if we have two tasks, vector (0.5,0.5) " means that they are equally preferred, while
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(1,0) " means that the user is only interested in the first one (Mahapatra and Rajan, 2020; 2021).
Then, the user-preferred model is trained with a weighted sum of losses on each task’s training
data, with the weights being the preferences (Lin et al., 2019; 2020; De Lange et al., 2021; Servia-
Rodriguez et al., 2021).

However, we identify two major disadvantages in the state-of-the-art approach. First, there is no
guarantee of Pareto-optimality. We do not know whether the obtained model is the Pareto-optimal
one associated with the given user preference. Aside from the hard Pareto-optimality guarantee,
existing techniques do not provide even soft guarantees. For example, they do not inspect how far —
with respect to some metric — the obtained model is from the Pareto-optimal one, or how likely it is
to be Pareto-optimal under some probability distribution. Second, the training cost is proportional
to the number of user preferences. Specifically, we need to train one model per preference, impos-
ing large time and sample overheads, since the number of user preferences can be infinitely large.
The need for lowering the training cost urges us to seek few-shot or zero-shot model generation tech-
niques. Although model-based (Finn et al., 2017; Yoon et al., 2018b; Navon et al., 2020; Von Oswald
et al., 2019) and prompt-based (Radford et al., 2021; Wang et al., 2022a;b) methods enable few-shot
or zero-shot knowledge transfer in continual learning, they have yet to discuss generating models
under a specific preference over tasks performance.
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Figure 1: The IBCL workflow, illustrated without loss of generalization on two tasks.

We propose Imprecise Bayesian Continual Learning (IBCL), a Bayesian continual learning algo-
rithm to tackle the two identified shortcomings, with the workflow illustrated in Figure 1. Upon the
arrival of a new task’s training data, IBCL is trained to update its knowledge base (that is, all infor-
mation shared across tasks), which is a convex set of distributions Q, formally known as a fintely
generated credal set (FGCS) (Caprio et al., 2023). Each distribution in the FGCS corresponds to
one Pareto-optimal model on the trade-off curve, i.e., a model’s parameters are viewed as a random
variable # sampled from a distribution in Q. Since FGCS Q is convex, we only need to learn and
cache its extreme points. Then, given a preference w, IBCL selects the distribution ¢ € Q cor-
responding to the preferred Pareto-optimal model. Once we have ¢z, we identify a set of model
parameters, known as a highest density region (HDR), which is the smallest parameter set that con-
tains the Pareto-optimal model with high probability. Detailed definitions of FGCS and HDR can be
found in Section 2.

Compared to existing efficient knowledge transfer like Wang et al. (2022b) and Navon et al. (2020),
IBCL enables to specify trade-off preferences over tasks. Compared to existing multi-task and con-
tinual learning methods that allow to specify preferences (Lin et al., 2020), IBCL does not require
training one model per preference. In other words, IBCL significantly improves efficiency by main-
taining a constant training overhead per task, regardless of number of preferences requested. More-
over, IBCL probabilistically guarantees to find the Pareto-optimal models under given preferences,
a property not achievable by state-of-the-art.

IBCL is a method that belongs to the Bayesian continual learning (BCL) framework (Nguyen et al.,
2018) which, by design, mitigates catastrophic forgetting, that is, the forgetting part of the stability-
plasticity trade-off. This is shown in Appendix A, where we also carry out a more in-depth discus-
sion on BCL, and the relationship between IBCL and other BCL techniques.

Contributions. 1. We propose IBCL, a Bayesian continual learning algorithm that (i) probabilis-
tically guarantees to find the Pareto-optimal models associated with user trade-off preferences be-
tween the performance over the tasks, (ii) zero-shot generates these models, so that the training
overhead per task is constant, regardless of number of preferences, and (iii) has a sublinear buffer
growth in the number of tasks. 2. We prove the probabilistic guarantee of Pareto-optimality. 3. We
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evaluate IBCL on image classification and NLP benchmarks to support our claims. We find that
IBCL improves on baselines by at most 45% in average per task accuracy and by 43% in peak per
task accuracy while maintaining a near-zero to positive backward transfer, with a constant training
overhead regardless of number of preferences. Ablation studies are also performed.

2 BACKGROUND

Our algorithm hinges upon the concepts of finitely generated credal set (FGCS) from Imprecise
Probability (IP) theory (Walley, 1991; Troffaes and de Cooman, 2014; Caprio and Gong, 2023;
Caprio and Mukherjee, 2023; Caprio and Seidenfeld, 2023; Caprio et al., 2023).

Definition 1 (Finitely Generated Credal Set). A convex set Q = {q : ¢ = Y_0°, F¢’, B; >
0Vj, >°; Bj = 1} of probability distributions with finitely many extreme elements ex[Q] = {¢ i
is called a finitely generated credal set (FGCS).

In other words, an FGCS is a convex hull of (finitely many) distributions. We also borrow from the
Bayesian literature the idea of highest density region (HDR) (Coolen, 1992).

Definition 2 (Highest Density Region). Ler © be a set of interest, and o € [0, 1] be a significance
level. Suppose that a (continuous) random variable 6 € © has probability density function (pdf) q."
Then, the (1 — )-HDR is the set ©F such that [g,, q(0)d0 > 1 — acand [g,, d6 is minimum.

Definition 2 tells us that if 0 ~ ¢, Pro.q [0 € @g‘} >1—aqa,and @g‘ is the narrowest subset of © that
guarantees this inequality. In other words, the HDR ©¢ is the smallest subset of © where we can find
the realization of random variable 6 with high probability. The concept of HDR is further explained
in Appendix B with an illustration. Other related works, including multi-task and continual learning,
are reviewed in Appendix C.

3 PROBLEM FORMULATION

Our goal is to obtain classification models for domain-incremental learning (Van de Ven and Tolias,
2019) under user preferences over task trade-offs. The models should probabilistically guarantee
Pareto-optimality, with training overhead not scaling up with the number of user preferences.

3.1 ASSUMPTIONS

Formally, we denote a measurable space by (-, A(+)), i.e. the tuple of a set and a o-algebra endowed
to it. Let (X, A(X')) be the measurable space of data, (), . A())) be the measurable space of labels,
and (X x Y, A(X x Y)) be the measurable product space of data and labels. Next, we denote
the space of all probability measures on a measurable space by A(-, A(-)). That is, all possible
distributions on X x ) belong to set A(X x Y, A(X x })), simplified as A xy.

A task i is associated with a distribution p; € A yy, from which labeled data can be i.i.d. drawn.?
We assume that all tasks are similar to each other.

Assumption 1 (Task Similarity). For all task i, p; € F, where F is a convex subset of Axy. Also,
we assume that the diameter of F is some r > 0, that is, Supp prc 7 || — F'|lw, < 7, where || -[|w,
denotes the 2-Wasserstein distance.

In an effort to make the paper self-contained, in Appendix D we give the definition of 2-Wasserstein
distance, as well as the reason we choose it. Assumption 1 is needed to mitigate the possible model
misspecification, which in turn could lead to catastrophic forgetting even when Bayesian inference
is carried out exactly. For more, see Kessler et al. (2023) and Appendix E. Under Assumption 1, for
any two tasks ¢ and j, their underlying distributions p; and p; satisfy ||p; — p;|lw, < r. Moreover,
since F is convex, any convex combination of task distributions belongs to F. Next, we assume the
parameterization of class F.

"Here, for ease of notation, we do not distinguish between a random variable and its realization.
Notice that p; denotes the pdf/pmf of probability measure P;. In the remainder of the paper, we do not
distinguish between them for notational convenience.
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Assumption 2 (Parameterization of Task Distributions). Every distribution F' in F is parameterized
by 0, a parameter belonging to a parameter space ©.

An example of a parameterized family that satisfies Assumption 1 is given in Appendix F. Notice
that all tasks share the same data space X" and label space )/, so the learning is domain-incremental.
We then formalize user preferences over tasks.

Definition 3 (User Preferences over Tasks). Consider k tasks with underlying distributions
D1, D2, - - Pk We express a preference over them via a probability vector © = (wy,wa, . .., wy) ",

that is, w; > 0 foralli € {1,...,k}, and Zle w; = 1.

Based on this definition, given a user preference w over all k tasks encountered, the personalized

model for the user aims to learn the distribution pg := Zle w;p;. It is the distribution associated
with tasks 1,...,k that also takes into account a preference over them. Since pg is the convex
combination of pq, ..., px, thanks to Assumptions 1 and 2, we have that p; € F, and therefore it is
also parameterized by some 6 € O.

The learning procedure is the same as standard supervised domain-incremental learning. Upon task
k, we draw ny, labeled examples i.i.d. from an unknown p;. Then, we are given at least one user
preference w over the k tasks so far. The data drawn for task k£ + 1 will not be available until we
have finished learning models for all user preferences at task k.

3.2 MAIN PROBLEM

We aim to design a domain-incremental learning algorithm that generates one model per user pref-
erence at each task. Given a significance level « € [0, 1], at a task k, the algorithm should satisfy

1. Probabilistic Pareto-optimality. Let w be a preference over the k tasks. We want to identify the
smallest subset of model parameters, @(q{ﬁ C O (written as ©% for notational convenience from
now on), that the Pareto-optimal parameter 8}, (i.e. the ground-truth parameter of p;) belongs
to with high probability, i.e., Prg: .4, [0 € ©%] > 1 — «, under a known Gz over ©.

2. Zero-shot preferred model generation. When there are more than one user preference ws,
s €{1,...,S}, no training is needed for generating model subsets @%s, for all s, i.e. the model
generation is zero-shot.

3. Sublinear buffer growth. The memory overhead for the entire procedure should be growing
sublinearly in the number of tasks.

4 IMPRECISE BAYESIAN CONTINUAL LEARNING

4.1 FGCS KNOWLEDGE BASE UPDATE

We take a Bayesian continual learning approach, i.e., the parameter 6 of distribution py, pertaining to
task k is viewed as a random variable distributed according to some distribution g. At the beginning
of the analysis, we specify m many such distributions, ex[Qg] = {q},...,¢5*}. They are the ones
that the designer deems plausible — a priori — for parameter 6 of task 1. Upon observing data
pertaining to task 1, we learn a set Qtlmp of parameter distributions and buffer them as extreme
points ex[Q1] of the FGCS Q; corresponding to task 1. We proceed similarly for the successive

tasks ¢ > 2.

In Algorithm 1, at task 4, we learn m posteriors g}, ...q™ by variational inference from buffered
priors g}_;,...q", one-by-one (line 3). However, we do not want to buffer all learned posteriors,
so we use a distance threshold to exclude posteriors with similar distributions to the ones that are
already buffered (line 4 - 9). When a distribution similar to ¢; is found in the knowledge base, we
remember to use it in place of ¢/ in the future (line 8). The posteriors without a similar distribution
buffered are appended to the knowledge base (line 11).

We note in passing that another reason for requiring Assumption 1 is that, without it, the variational
approximation in line 3 may incur catastrophic forgetting.
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Algorithm 1 FGCS Knowledge Base Update
Input: Current knowledge base in the form of FGCS extreme points
ex[Qi—1] = {q}_1,...,q™}, observed labeled data (Z;, §;) at task i, and a distribution distance
threshold d > 0
Output: Updated extreme elements ex[Q;]
L QI
2: for j € {1,...,m} do
q] « variational_inference(q!_;, Z;, ¥;)

di <_ mianeX[QFﬂ Hqg - qHW2

if ! > d then
Q" « Q" U {d]}

else . .
Remember to use ¢ = arg min .o, ,1 114/ — ¢llw, in place of g/ later on

9: end if

10: end for

11: ex[Q;] « ex[Q; 1] U Q™

A A

Notice that Algorithm 1 ensures sublinear buffer growth in our problem formulation because at
each task 7 we only buffer m; new posterior models, with 0 < m,; < m. With sufficiently large
threshold d, the buffer growth can become constant after several tasks. The use of different threshold
d’s is discussed in our ablation studies, see section 5.2.

4.2 ZERO-SHOT GENERATION OF USER PREFERRED MODELS

Next, after we update the FGCS extreme points for task ¢, we are given a set of user preferences.
For each preference w, we need to identify the Pareto-optimal parameter 87 for the preferred data
distribution pg. This procedure can be divided into two steps as follows.

First, we find the parameter distribution ¢ via a convex combination of the extreme points in the
knowledge base, whose weights correspond to the entries of preference vector w. That is,

Go = Z Z 7q), where Zb’i = wy, and 3], > 0, for all j and all k. (1)
k=1j=1 j=1

Here, qi is a buffered extreme point of FGCS Oy, i.e. the j-th parameter posterior of task k. The
weight ﬁi of this extreme point is decided by preference vector entry w;. In implementation, if we
have my, extreme points stored for task &, we can choose equal weights 3 = -+ = 81" = wy /my.
For example, if we have preference w = (0.8,0.2) " on two tasks so far, and we have two extreme

points per task stored in the knowledge base, we can use 8 = 87 = 0.8/2 = 0.4 and 3} = 33 =
0.2/2 = 0.1.

As we can see from the following theorem, distribution Gz is a parameter posterior corresponding
to a preference elicitation via preference vector w over the tasks encountered so far.

Theorem 4 (Selection Equivalence). Selecting a precise distribution Gz from Q; is equivalent to
specifying a preference weight vector w on py, . .., p;.

Please refer to Appendix G for the proof. Theorem 4 entails that the selection of ¢ in Algorithm 2
is related to the correct parameterization of pz € Axy.

Second, we compute the HDR ©% C © from ¢z. This is implemented via a standard procedure
that locates a region in the parameter space whose enclosed probability mass is (at least) 1 — «,
according to §5. This procedure can be routinely implemented, e.g., in R, using package HDInterval
(Juat et al., 2022). As a result, we locate the smallest set of parameters O C O associated with
the preference w. This subroutine is formalized in Algorithm 2, and one remark is that it does not
require any training, i.e., we meet our goal of zero-shot preferred model generation of section 3.2.
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Algorithm 2 Preference HDR Computation

Input: Knowledge base ex[Q;] with my, extreme points saved for task k € {1,...,3},
preference vector @ on the i tasks, significance level « € [0, 1]
Output: HDR ©% C ©

fork=1,...,ido
Br == B wy/my
end for

o = 22:1 Z;n:ﬁ Bi%
0% + hdr(Gg, @)

AT

4.3 OVERALL IBCL ALGORITHM AND ANALYSIS

From the two subroutines in Sections 4.1 and 4.2, we construct the overall IBCL algorithm as in
Algorithm 3.

Algorithm 3 Imprecise Bayesian Continual Learning

Input: Prior distributions ex[Qo] = {¢}, - - -, ¢i*}, hyperparameters o and d
Output: HDR O% for each given preference w at each task 4

1: fortask:=1,2,...do

2 Z;, y; < sample n; labeled data points i.i.d. from p;

3 ex[Q;] < fgcs_knowledge_base_update(ex[Q;_1], Z;, ¥i, d) > % Algorithm 1 %
4 while user has a new preference do

5 W <— user input

6 0% < preference_hdr_computation(ex[Q;], @, «) > % Algorithm 2 %
7 end while

8: end for

For each task, in line 3, we use Algorithm I to update the knowledge base by learning m posteriors
from the current priors. Some of these posteriors will be cached and some will be substituted by a
previous distribution in the knowledge base. In lines 4-6, upon a user-given preference over all tasks
so far, we obtain the HDR of the model associated with preference w with zero-shot via Algorithm
2. Notice that this HDR computation does not require the initial priors ex[Qg], so we can discard
them once the posteriors are learned in the first task. The following theorem ensures that IBCL
locates the user-preferred Pareto-optimal model with high probability.

Theorem 5 (Probabilistic Pareto-optimality). Pick any o € [0,1]. The Pareto-optimal parameter
0%, i.e., the ground-truth parameter for pg, belongs to ©% with probability at least 1 — « under
distribution §g. In formulas, Pro: w4, [0% € O3] > 1 — a.

Theorem 5 gives us a (1 — «)-guarantee in obtaining Pareto-optimal models for given task trade-off
preferences. Consequently, the IBCL algorithm enjoys the probabilistic Pareto-optimality targeted

by our main problem. Please refer to Appendix G for the proof.

5 EXPERIMENTS

5.1 SEeTUP
We compare IBCL to the following continual learning baselines.

1. Rehearsal-based. Rehearsal-based methods memorize a subset of training data at each task. The
loss function is a sum of losses on each task’s data retained. A preference can be specified as
weights when computing the sum (Lin et al., 2019). We choose GEM (L.opez-Paz and Ranzato,
2017) and A-GEM (Chaudhry et al., 2018).

2. Rehearsal-based, Bayesian. Rehearsal-based methods are in general deterministic. Since IBCL
is Bayesian, we also compare to Bayesian methods and we choose VCL (Nguyen et al., 2018).
We equip VCL with episodic memory to make it rehearsal-based to specify a preference. This
approach has been used in Servia-Rodriguez et al. (2021).
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3. Prompt-based. Prompt-based continual learning are considered efficient because they fine-tune
a data prefix (prompt) instead of a model at each task. So far, there has been no discussion on
how to specify task preferences in these methods. We choose L2P (Wang et al., 2022b), with an
attempt to specify preferences by training one prompt per task, and use a preference-weighted
sum of the prompts at inference time.

We experiment on four standard continual learning benchmarks, including three image classification
and one NLP: (i) 15 tasks in CelebA (Liu et al., 2015) (with vs. without attributes), (ii) 10 tasks in
Split CIFAR-100 (Zenke et al., 2017) (animals vs. non-animals), (iii) 10 tasks in TinyImageNet (e
and Yang, 2015) (animals vs. non-animals) and (iv) 5 tasks in 20NewsGroup (Lang, 1995) (news
related to computers vs. not related to computers). For the first three image benchmarks, features
are first extracted by ResNet-18 (He et al., 2016), and for 20NewsGroup, features are extracted by
TF-IDF (Aizawa, 2003).

As in standard continual learning evaluation, after training on task ¢, we evaluate the accuracy on all
testing data of previous tasks j € {1,...,i}. To evaluate how well does a model address preferences,
we randomly generate nprs = 10 preferences per task, except for task 1, whose preference is always
given by scalar 1. Therefore, for each method, we obtain 10 models at each task, and we evaluate a
preference-weighted sum of their accuracies on previous tasks. Finally, these preference-weighted
accuracies are used to compute standard continual learning metrics: average per task accuracy, peak
per task accuracy, and backward transfer (Diaz-Rodriguez et al., 2018). Experiments are run on
Intel(R) Core(TM) 17-8550U CPU @ 1.80GHz. Detailed setup can be found in Appendix H.1.

5.2 RESULTS

Our results support the claim that IBCL not only achieves high performance by probabilistic Pareto-
optimality, but is also efficient with zero-shot generation of models.

Since VCL and IBCL output probabilistic models (BNNs and HDRs), we sample 10 deterministic
models from each and compute the range of their performance metrics, illustrated as shaded areas in
Figures 2 and 3. They represent performances on the 20NewsGroup and TinylmageNet, respectively.
In these figures, we draw the curves of top performance and mean performance of the sampled
deterministic models by VCL and IBCL as solid and dashed lines, respectively. Due to page limit,
we show the results on Split CIFAR-100 and CelebA in Figure 8 and 9 in Appendix H.2.

From Figures 2, 3, 8 and 9, we can see that IBCL overall generates the model with top performance
(high accuracy) in all cases, while maintaining little catastrophic forgetting (near-zero to positive
backward transfer). This is due to the probabilistic Pareto-optimality guarantee. Statistically, IBCL
improves on the baselines by at most 45% in average per task accuracy and by 43% in peak per task
accuracy (compared to L2P in 20News). So far, to our knowledge, there is no discussion on how
to specify a task trade-off preference in prompt-based continual learning, and we make an attempt
by using a preference-weighted sum of all learned prompts in L2P. We can see how this approach
generally works poorly, except for CelebA, where L2P performs nearly well as IBCL. We believe the
performance by prompts trained in L2P depends on its frozen model, and how to use prompt-based
methods to generate preference-specified models is still an open problem.

As illustrated in the figures, IBCL has a slightly negative backward transfer in the very beginning
but then this value stays near-zero or positive. This shows that although IBCL may slightly forget
the knowledge learned from the first task at the second task, it steadily retains knowledge afterwards.
This may be due to the choice of the priors, of the likelihood, of the variational method to approx-
imate the posterior, or to an intrinsic characteristic of our method. Given its relevance, we defer
studying this phenomenon to future work. We can also see how, although VCL’s backward transfer
is higher than IBCL’s in the first few tasks, it eventually decreases and takes values that are nearly
identical to IBCL ones. For 20NewsGroup, this happens after 5 tasks, for the other datasets after 10.

Table | shows the training overhead comparison measured in number of batch updates per task.
We can see how IBCL’s overhead is independent of the number of preferences np.rs because it
only requires training for the FGCS but not for the preferred models. Therefore, IBCL maintains
a constant training overhead regardless of number of preferences. Although prompt-based methods
like L2P can also achieve this efficiency, IBCL has a larger overhead only by a constant number of
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Figure 2: Results of 20NewsGroup. Since VCL and IBCL produce probabilistic models, we sample
10 deterministic models for each. The solid blue curve illustrates the top performance of determin-
istic models by IBCL, and the dashed blue curve is the mean performance. The shaded blue region
is the performance range by IBCL. The same illustration method is used for VCL in green color.
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Figure 3: Results of TinyImageNet. The illustration method is the same as in Figure 2.

priors, not to mention that L2P has not yet developed a way to learn preference-specified models
and therefore performs poorly.

The main experiments are conducted with hyperparameters &« = 0.01 and d = 0.002. We also
conduct two ablation studies. The first one is on different significance level « in Algorithm 2.

In Figure 4, we evaluate testing accuracy on three different o’s over five different preferences (from
[0.1,0.9] to [0.9,0.1]) on the first two tasks of 20NewsGroup. For each preference, we uniformly
sample 200 deterministic models from the HDR. We use the sampled model with the maximum L2
sum of the two accuracies to estimate the Pareto optimality under a preference. We can see that,
as « approaches 0, we tend to sample closer to the Pareto front. This is because, with a smaller «,
HDRs becomes wider and we have a higher probability to sample Pareto-optimal models according
to Theorem 5. For instance, when o = 0.01, we have a probability of at least 0.99 that the Pareto-
optimal solution is contained in the HDR.

We then evaluate the three a’s in the same way as in the main experiments, with 10 randomly
generated preferences per task. Figure 5 shows that the performance drops as « increases, because
we are more likely to sample poorly performing models from the HDR.

The second ablation study is on different thresholds d in Algorithm 1. As d increases, we are
allowing more posteriors in the knowledge base to be reused. This will lead to memory efficiency

. # batch updates at last task
# batch updates at task i |~orep A~ CIRARI0D  TTngNel  J0NGws
GEM Nprefs
Rehearsal | A-GEM | x(n; + (1 — 1) X nmem) | 99747 19532 13594 35313
VCL xe/b
Prompt L2P n; x e/b 9538 1250 938 2907
IBCL (ours) TNpriors X T X €/b 28614 3750 2814 8721

Table 1: Training overhead comparison, measured as # of batch updates required at a task. Here, n;:
# of training data points at task 4, nyefs: # of preferences per task, nmem: # of data points memorized
per task in rehearsal, npriors: # Of priors in IBCL, e: # of epochs and b: batch size.
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Figure 6: Different d’s on 20NewsGroup and Split-CIFAR100. The buffer growth curves of d =
5e — 3 and d = 2e — 3 of 20NewsGroup are overlapping.

at the cost of a performance drop. Figure 6 supports this trend. We can see how performance barely
drops by reusing posteriors, while the buffer growth speed becomes sublinear. For Split-CIFAR100,
when d = 8e — 3, the buffer size stops growing after task 6.

6 DISCUSSION AND CONCLUSION

Advantages of IBCL. IBCL (i) guarantees that the Pareto-optimal model under a given prefer-
ence can be sampled from the output HDR with high probability and (ii) zero-shot generates these
preferred model, with training overhead not scaling up with number of preferences. From the ex-
periments, we can see how baseline methods with performance close to IBCL (rehearsal-based) are
inefficient, and efficient methods (prompt-based) do not perform well in finding Pareto optimality.

Limitations of IBCL. Poorly performing models can also be sampled from IBCL’s HDRs. However,
in practice, we can fine-tune « to shrink down the HDR to avoid poorly performing ones, as shown
in the ablation studies.

Overall, we propose a probabilistic continual learning algorithm, namely IBCL, to locate models for
particular task trade-off preferences with probabilistic Pareto-optimality via zero-shot. This means
that the training overhead does not scale up with the number of preferences, significantly reducing
the computational cost when there is a large number of preferences.
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A REASON TO ADOPT A BAYESIAN CONTINUAL LEARNING APPROACH

Let go(#) be our prior pdf/pmf on parameter § € © at time ¢ = 0. At time ¢ = 1, we collect
data (Z1,91) pertaining to task 1, we elicit likelihood pdf/pmf ¢1(Z1,71 | ), and we compute
q1(0] Z1,71) x qo(0) x €1(Z1,71 | 0). Attime ¢t = 2, we collect data (Z, §2) pertaining to task 2
and we elicit likelihood pdf/pmf ¢2(Z2, g2 | 6). Now we have two options.

(i) Bayesian Continual Learning (BCL): we let the prior pdf/pmf at time ¢ = 2 be the posterior
pdf/pmf at time ¢ = 1. That is, our prior pdf/pmf is ¢1(6 | Z1, 71 ), and we compute g2 (6 |
T1, 91, %2, 92) < qu(0 | T1, 1) X La(T2, 2 | 0) o qo(0) x (1,91 | 0) x La(T2, 52 | 0)

(i) Bayesian Isolated Learning (BIL): we let the prior pdf/pmf at time ¢ = 2 be a generic prior
pdf/pmf ¢ (0). We compute ¢5(0 | Za,72) x g((0) X €2(Z2, 72 | §). We can even re-use
the original prior, so that g, = go.

As we can see, in option (i) we assume that the data generating process at time t = 2 takes into
account both tasks, while in option (ii) we posit that it only takes into account task 2. Denote by
o(X) the sigma-algebra generated by a generic random variable X . Let also Q)2 be the probability
measure whose pdf/pmf is go, and @ be the probability measure whose pdf/pmf is ¢5. Then, we
have the following.

Proposition 1. Posterior probability measure (5 can be written as a o(X1, Y7, Xo, Y )-measurable
random variable taking values in [0, 1], while posterior probability measure ()5 can be written as a
0(X2,Y>)-measurable random variable taking values in [0, 1].

Proof. Pick anyA C 0. Then, QQ[A ‘ 0'()217171,)?2,}72)] = EQ2[1A | U(Xl,yl,XQ,YQ)], a
o(X1,Y1, X, Ys)-measurable random variable taking values in [0, 1]. Notice that 1,4 denotes the
indicator function for set A. Similarly, Q5[A | 0(Xa,Y2)] = Eq,[1a | 0(X2,Y2)], a 0(Xz, Y2)-
measurable random variable taking values in [0, 1]. This is a well-known result in measure theory
(Billingsley, 1986). O

Of course Proposition 1 holds for all ¢ > 2. Recall that the sigma-algebra o(X) generated by a
generic random variable X captures the idea of information encoded in observing X. An immediate
corollary is the following.

Corollary 2.1 Let ¢ > 2. Then, if we opt for BIL, we lose all the information encoded in
{(X:, Y} iz

3Here we tacitly assume that the likelihoods are independent.
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In turn, if we opt for BIL, we obtain a posterior that is not measurable with respect to
o({(X;,Yi)}i_y) \ o(X3,Y:). If the true data generating process p; is a function of the previ-
ous data generating processes py:, t' < t, this leaves us with a worse approximation of the “true”
posterior Q" o< Qg X p;.

The phenomenon in Corollary 2 is commonly referred to as catastrophic forgetting. Continual
learning literature is unanimous in labeling catastrophic forgetting as undesirable — see e.g. Farquhar
and Gal (2019); Li et al. (2020). For this reason, in this work we adopt a BCL approach. In practice,
we cannot compute the posterior pdf/pmf exactly, and we will resort to variational inference to
approximate them — an approach often referred to as Variational Continual Learning (VCL) Nguyen
et al. (2018). As we shall see in Appendix E, Assumption 1 is needed in VCL to avoid catastrophic
forgetting.

A.1 RELATIONSHIP BETWEEN IBCL AND OTHER BCL TECHNIQUES

Like Farquhar and Gal (2019); Li et al. (2020), the weights in our Bayesian neural networks (BNN’s)
have Gaussian distribution with diagonal covariance matrix. Because IBCL is rooted in Bayesian
continual learning, we can initialize IBCL with a much smaller number of parameters to solve
a complex task as long as it can solve a set of simpler tasks. In addition, IBCL does not need to
evaluate the importance of parameters by measures such as computing the Fisher information, which
are computationally expensive and intractable in large models.

A.1.1 RELATIONSHIP BETWEEN IBCL AND MAML

In this section, we discuss the relationship between IBCL and the Model-Agnostic Meta-Learning
(MAML) and Bayesian MAML (BMAML) procedures introduced in Finn et al. (2017); Yoon et al.
(2018Db), respectively. These are inherently different than IBCL, since the latter is a continual learn-
ing procedure, while MAML and BMAML are meta-learning algorithms. Nevertheless, given the
popularity of these procedures, we feel that relating IBCL to them would be useful to draw some
insights on IBCL itself.

In MAML and BMAML, a task ¢ is specified by a n;-shot dataset D; that consists of a small number
of training examples, e.g. observations (Z1,,y1,),- -, (Tn,;, Yn; ). Tasks are sampled from a task
distribution T such that the sampled tasks share the statistical regularity of the task distribution. In
IBCL, Assumption | guarantees that the tasks p; share the statistical regularity of class 7. MAML
and BMAML leverage this regularity to improve the learning efficiency of subsequent tasks.

At each meta-iteration 1,

1. Task-Sampling: For both MAML and BMAML, a mini-batch 7T; of tasks is sampled from the
task distribution T. Each task 7; € T; provides task-train and task-validation data, ng“ and D;j‘l,
respectively.

2. Inner-Update: For MAML, the parameter of each task 7; € T; is updated starting from the
current generic initial parameter 6y, and then performing n; gradient descent steps on the task-
train loss. For BMAML, the posterior ¢(6-, | DY, 6) is computed, for all 7; € T;.

3. Outer-Update: For MAML, the generic initial parameter 6 is updated by gradient descent. For
BMAML, it is updated using the Chaser loss (Yoon et al., 2018b, Equation (7)).

Notice how in our work w is a probability vector. This implies that if we fix a number of task & and
we let w be equal to (wy, ..., w;) ", then w- p can be seen as a sample from T such that T(p;) = w;,
foralli € {1,...,k}.

Here lies the main difference between IBCL and BMAML. In the latter the information provided
by the tasks is used to obtain a refinement of the (parameter of the) distribution T on the tasks
themselves. In IBCL, instead, we are interested in the optimal parameterization of the posterior
distribution associated with w - p. Notice also that at time k + 1, in IBCL the support of T changes:
itis {p1,...,Pk+1}, while for MAML and BMAML it stays the same.

Also, MAML and BMAML can be seen as ensemble methods, since they use different values
(MAML) or different distributions (BMAML) to perform the Outer-Update and come up with a
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single value (MAML) or a single distributions (BMAML). Instead, IBCL keeps distributions sepa-
rate via FGCS, thus capturing the ambiguity faced by the designer during the analysis.

Furthermore, we want to point out how while for BMAML the tasks 7; are all “candidates” for the
true data generating process (dgp) p;, in IBCL we approximate the pdf/pmf of p; with the product
[1},—; ¢n of the likelihoods up to task . The idea of different candidates for the true dgp is beneficial
for IBCL as well: in the future, we plan to let go of Assumption 1 and let each p; belong to a credal
set P;. This would capture the epistemic uncertainty faced by the agent on the true dgp.

To summarize, IBCL is a continual learning technique whose aim is to find the correct parameteriza-
tion of the posterior associated with w-p. Here, w expresses the developer’s preferences on the tasks.
MAML and BMAML, instead, are meta-learning algorithms whose main concern is to refine the dis-
tribution T from which the tasks are sampled. While IBCL is able to capture the preferences of, and
the ambiguity faced by, the designer, MAML and BMAML are unable to do so. On the contrary,
these latter seem better suited to solve meta-learning problems. An interesting future research direc-
tion is to come up with imprecise BMAML, or IBMAML, where a credal set Conv({Ty, ..., Tx})
is used to capture the ambiguity faced by the developer in specifying the correct distribution on the
possible tasks. The process of selecting one element from such credal set may lead to computational
gains.

B HIGHEST DENSITY REGION

Equivalently to Definition 2, an HDR is defined as follows (Hyndman, 1996).

Definition 6. Let O be a set of interest, and consider a significance level « € [0, 1]. Suppose that a
(continuous) random variable § € © has probability density function (pdf) g.* The a-level Highest
Density Region (HDR) ©7 is the subset of © such that

0 = {0 0:4(0) > "}, @

where ¢ is a constant value. In particular, ¢ is the largest constant such that Pro4[0 € ©5] >
1—oa.

Some scholars indicate HDRs as the Bayesian counterpart to the frequentist concept of confidence
intervals. In dimension 1, ©F can be interpreted as the narrowest interval — or union of intervals
— in which the value of the (true) parameter falls with probability of at least 1 — « according to
distribution q. We give a simple visual example in Figure 7.
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Figure 7: The 0.25-HDR for a Normal Mixture density. This picture is a replica of (Hyndman, 1996, Figure
1). The geometric representation of “75% probability according to ¢” is the area between the pdf curve ¢(6)
and the horizontal bar corresponding to ¢°-2°. A higher probability coverage (according to ¢) would correspond
to a lower constant, so ¢® < ¢%2°, for all & < 0.25. In the limit, we recover 100% coverage at ¢° = 0.

C ADDITIONAL RELATED WORK

Multi-task Learning under Preferences. Learning for Pareto-optimal models under task perfor-
mance trade-offs has been studied by researchers in multi-task learning (Caruana, 1997; Sener and
Koltun, 2018). Various techniques have been applied to obtain models that address particular trade-
off points (Lin et al., 2019; 2020; Ma et al., 2020; Gupta et al., 2021). The idea of preferences on

“Here too, for ease of notation, we do not distinguish between a random variable and its realization.
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the trade-off points is introduced in multi-objective optimization (Lin et al., 2020; Sener and Koltun,
2018), and a preference can guide learning algorithms to search for a particular model. We borrow
the formalization of preferences from Mahapatra and Rajan (2020), where a preference is given
by a vector of non-negative real weights w, with each entry w; corresponding to task ¢. That is,
w; > w; <= 4 = j. This means that if w; > w;, then task 7 is preferred to task j. However,
state-of-the-art algorithms require training one model per preference, imposing large overhead when
there is a large number of preferences.

Continual Learning. Continual learning, also known as lifelong learning, is a special case of
multi-task learning, where tasks arrive sequentially instead of simultaneously (Thrun, 1998; Ruvolo
and Eaton, 2013a; Silver et al., 2013; Chen and Liu, 2016). In this paper, we leverage Bayesian
inference in the knowledge base update (Ebrahimi et al., 2019; Farquhar and Gal, 2019; Kao et al.,
2021). Like generic multi-task learning, continual learning also faces the stability-plasticity trade-off
(De Lange et al., 2021; Kim et al., 2023; Raghavan and Balaprakash, 202 1), which balances between
performance on new tasks and resistance to catastrophic forgetting (Kirkpatrick et al., 2017b; Lee
et al.,, 2017; Robins, 1995). Current methods identify models to address trade-off preferences by
techniques such as loss regularization (Servia-Rodriguez et al., 2021), meaning at least one model
needs to be trained per preference.

Researchers in CL have proposed various approaches to retain knowledge while updating a model
on new tasks. These include modified loss landscapes for optimization (Farajtabar et al., 2020; Kirk-
patrick et al., 2017a; Riemer et al., 2019; Suteu and Guo, 2019; Tang et al., 2021), preservation of
critical pathways via attention (Abati et al., 2020; Serra et al., 2018; Xu et al., 2021; Yoon et al.,
2020), memory-based methods (l.opez-Paz and Ranzato, 2017; Rolnick et al., 2019), shared repre-
sentations (He et al., 2018; Lee et al., 2019; Lu et al., 2017; Ruvolo and Eaton, 2013b; Vandenhende
etal., 2019; Yoon et al., 2018a), and dynamic representations (Bulat et al., 2020; Mendez and Eaton,
2021; Ramesh and Chaudhari, 2022; Rusu et al., 2016; Schwarz et al., 2018; Yang and Hospedales,
2017). Bayesian, or probabilistic methods such as variational inference are also adopted (Ebrahimi
et al., 2019; Farquhar and Gal, 2019; Kao et al., 2021; Kessler et al., 2023; Li et al., 2020; Nguyen
et al., 2018).

D 2-WASSERSTEIN METRIC

In the main portion of the paper, we endowed A yy with the 2-Wasserstein metric. It is defined as

Ip —p'llw, = Walp,p) = \/%}?,fp,)E«m,yl),(mz,yz))w[d((xl,y1)7 (72,92))?],  where

1. p,p’ € Axy;

2. T'(p,p’) is the set of all couplings of p and p’. A coupling ~ is a joint probability measure on
(X x Y) x (X x ) whose marginals are p and p’ on the first and second factors, respectively;

3. d is the product metric endowed to X x Y (Deza and Deza, 2013, Section 4.2)7

We choose the 2-Wasserstein distance for the ease of computation. In practice, when all distributions
are modeled by Bayesian neural networks with independent Gaussian weights and biases, we have

lar — q2llfy, = lwe, — w2, |5 + o2, 1 — o2 1|3, 3)

where || - ||2 denotes the Euclidean norm, 1 is a vector of all 1’s, and p, and o, are respectively the
mean and standard deviation of a multivariate normal distribution ¢ with independent dimensions,
q = N(uq, 031 ), I being the identity matrix. Therefore, computing the Ws-distance between two
distributions is equivalent to computing the difference between their means and variances.

E IMPORTANCE OF ASSUMPTION 1

We need Assumption 1 in light of the results in Kessler et al. (2023). There, the authors show that
misspecified models can forget even when Bayesian inference is carried out exactly. By requiring

>We denote by dx and dy the metrics endowed to X and ), respectively.
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that diam(F) = r, we control the amount of misspecification via r. In Kessler et al. (2023), the
authors design a new approach — called Prototypical Bayesian Continual Learning, or ProtoCL —
that allows dropping Assumption | while retaining the Bayesian benefit of remembering previous
tasks. Because the main goal of this paper is to come up with a procedure that allows the designer to
express preferences over the tasks, we retain Assumption 1, and we work in the classical framework
of Bayesi()an Continual Learning. In the future, we plan to generalize our results by operating with
ProtoCL.

F AN EXAMPLE OF A PARAMETERIZED FAMILY F

Let us give an example of a parameterized family /. Suppose that we have one-dimensional data
points and labels. At each task , the marginal on X’ of p; is a Normal A/(u, 1), while the conditional
distribution of label y € Y given data point x € X is a categorical Cat(«}). Hence, the parameter
for p; is @ = (u, ), and it belongs to © = R x RIYl. In this situation, an example of a family F
satisfying Assumptions | and 2 is the convex hull of distributions that can be decomposed as we just
described, and whose distance according to the 2-Wasserstein metric does not exceed some 7 > 0.

G PROOFS OF THE THEOREMS

Proof of Theorem 4. Without loss of generality, suppose we have encountered 1 = 2 tasks so far, so
the FGCS is Q,. Let ex[Q1] = {q7}}2, and ex[Qa] \ ex[Ql] = {q2 . Let ¢ be any element of
Qs. Then, there exists a probability vector 3 = (51, .., T B By ) such that

mi

:Z 1q1+262q2 O<p1251q0+p2252q0 “)

j=1

Here, p; = HZ=1 U, and £y, is the likelihood at task k. It estimates the pdf of the true data generating
process p; of task ¢. The proportional relationship in equation 4 is based on the Bayesian inference
step (line 3, approximated via variational inference) of Algorithm 1. We can then find a vector

W= (wy =Y 70 Bl wy = Py 33)T that expresses the designer’s preferences over tasks 1 and
2. As we can see, then, the act of selecting a generic distribution § € Q> is equivalent to specifying
a preference vector w over tasks 1 and 2. This concludes the proof.

Proof of Theorem 5. For maximum generality, assume © is uncountable. Recall from Definition 2
that a-level Highest Density Region ©% is defined as the subset of the parameter space © such that

/ Gz(0)d0 >1—a and / df is a minimum.

We need | oo 40 to be a minimum because we want OF to be the smallest possible region that gives

us the desired probabilistic coverage. Equivalently, from Definition 6 we can write that 0% = {6 €
© : Gp(6) > G2}, where G2 is the largest constant such that Prg.4, [0 € ©%] > 1 — c. Our result
Pry: <4, (0% € ©%)] > 1 — o, then, comes from the fact that Prg: 4. (0% € ©%)] = [o. ¢z(0)d0,

a consequence of a well-known equality in probability theory (Billingsley, 1986). O

H DETAILS OF EXPERIMENTS

H.1 SETUP DETAILS

We select 15 tasks from CelebA. All tasks are binary image classification on celebrity face images.
Each task ¢ is to classify whether the face has an attribute such as wearing eyeglasses or having a
mustache. The first 15 attributes (out of 40) in the attribute list (Liu et al., 2015) are selected for our

%Tn Kessler et al. (2023), the authors also show that if there is a task dataset imbalance, then the model can
forget under certain assumptions. To avoid complications, in this work we tacitly assume that task datasets are
balanced.
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tasks. The training, validation and testing sets are already split upon download, with 162,770, 19,867
and 19,962 images, respectively. All images are annotated with binary labels of the 15 attributes in
our tasks. We use the same training, validation and testing set for all tasks, with labels being the
only difference.

We select 20 classes from CIFAR100 (Krizhevsky et al., 2009) to construct 10 Split-CIFAR100 tasks
(Zenke et al., 2017). Each task is a binary image classification between an animal class (label 0) and
a non-animal class (label 1). The classes are (in order of tasks):

1. Label 0: aquarium fish, beaver, dolphin, flatfish, otter, ray, seal, shark, trout, whale.

2. Label 1: bicycle, bus, lawn mower, motorcycle, pickup truck, rocket, streetcar, tank, tractor,
train.

That is, the first task is to classify between aquarium fish images and bicycle images, and so on. We
want to show that the continual learning model incrementally gains knowledge of how to identify
animals from non-animals throughout the task sequence. For each class, CIFAR100 has 500 training
data points and 100 testing data points. We hold out 100 training data points for validation. There-
fore, at each task we have 400 x 2 = 800 training data, 100 x 2 =200 validation data and 100 x 2
= 200 testing data.

We also select 20 classes from TinylmageNet (Le and Yang, 2015). The setup is similar to Split-
CIFAR100, with label O being animals and 1 being non-animals.

1. Label 0: goldfish, European fire salamander, bullfrog, tailed frog, American alligator, boa con-
strictor, goose, koala, king penguin, albatross.

2. Label 1: cliff, espresso, potpie, pizza, meatloaf, banana, orange, water tower, via duct, tractor.

The dataset already splits 500, 50 and 50 images for training, validation and testing per class. There-
fore, each task has 1000, 100 and 100 images for training, validation and testing, respectively.

20NewsGroups (Lang, 1995) contains news report texts on 20 topics. We select 10 topics for 5
binary text classification tasks. Each task is to distinguish whether the topic is computer-related
(label 0) or not computer-related (label 1), as follows.

1. Label O: comp.graphics,  comp.os.ms-windows.misc,  comp.sys.ibm.pc.hardware,
comp.sys.mac.hardware, comp.windows.x.

2. Label 1: misc.forsale, rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey.

Each class has different number of news reports. On average, a class has 565 reports for training and
376 for testing. We then hold out 100 reports from the 565 for validation. Therefore, each binary
classification task has 930, 200 and 752 data points for training, validation and testing, on average
respectively.

All data points are first preprocessed by a feature extractor. For images, the feature extractor is a
pre-trained ResNet18 (He et al., 2016). We input the images into the ResNet18 model and obtain
its last hidden layer’s activations, which has a dimension of 512. For texts, the extractor is TF-IDF
(Aizawa, 2003) succeeded with PCA to reduce the dimension to 512 as well.

Each Bayesian network model is trained with evidence lower bound (ELBO) loss, with a fixed feed-
forward architecture (input=512, hidden=64, output=1). The hidden layer is ReLU-activated and the
output layer is sigmoid-activated. Therefore, our parameter space O is the set of all values that can
be taken by this network’s weights and biases.

The three variational inference priors, learning rate, batch size and number of epcohs are tuned on
validation sets. The tuning results are as follows.

1. CelebA: priors = {\(0,0.221), N'(0,0.25%1), N'(0,0.321)}, Ir = 1e — 3, batch size = 64, epochs
=10.

2. Split-CIFAR100: priors = {N(0,221), N'(0,2.5%1), N'(0,321)}, Ir = 5e — 4, batch size = 32,
epochs = 50.

3. TinylmageNet: priors = {N(0,221), N(0,2.5%1I), N'(0,3%1)}, Ir = 5e — 4, batch size = 32,
epochs = 30.
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4. 20NewsGroup: priors = {N(0,221), N'(0,2.5%I), N(0,3%I)}, Ir = 5e — 4, batch size = 32,
epochs = 100.

For the baseline methods, we use exactly the same learning rate, batch sizes and epochs. For proba-
bilistic baseline methods (VCL), we use the prior with the median standard deviation. For example,
on CelebA tasks, VCL uses the normal prior A'(0,0.25%1).

For rehearsal-based baselines, the memory size per task for CelebA is 200, and for the rest is 50.
Together with the numbers above, we can compute the numerical values in Table 1.

H.2 ADDITIONAL RESULTS

In Figure 8 and 9, we provide visual representations of the performances of IBCL vs. the baseline
methods on Split CIFAR-100 and CelebA, respectively. So far, to our knowledge, there is no dis-
cussion on how to specify a task trade-off preference in prompt-based continual learning, and we
make an attempt by using a preference-weighted sum of all learned prompts in L2P. We can see how
this approach generally works poorly, except for CelebA, where L2P performs nearly well as IBCL.
We believe the performance by prompts trained in L2P depends on its frozen model, and how to use
prompt-based methods to generate preference-specified models is still an open problem.
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Figure 8: Results of Split-CIFAR-100.
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Figure 9: Results of CelebA.
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