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ABSTRACT

Large Language Models (LLMs) excel in various tasks, but they rely on carefully
crafted prompts that often demand substantial human effort. To automate this
process, in this paper, we propose a novel framework for discrete prompt opti-
mization, called EVOPROMPT, which borrows the idea of evolutionary algorithms
(EAs) as they exhibit good performance and fast convergence. To enable EAs
to work on discrete prompts, which are natural language expressions that need
to be coherent and human-readable, we connect LLMs with EAs. This approach
allows us to simultaneously leverage the powerful language processing capabil-
ities of LLMs and the efficient optimization performance of EAs. Specifically,
abstaining from any gradients or parameters, EVOPROMPT starts from a popula-
tion of prompts and iteratively generates new prompts with LLMs based on the
evolutionary operators, improving the population based on the development set.
We optimize prompts for both closed- and open-source LLMs including GPT-3.5
and Alpaca, on 31 datasets covering language understanding, generation tasks, as
well as BIG-Bench Hard (BBH) tasks. EVOPROMPT significantly outperforms
human-engineered prompts and existing methods for automatic prompt generation
(e.g., up to 25% on BBH). Furthermore, EVOPROMPT demonstrates that connect-
ing LLMs with EAs creates synergies, which could inspire further research on
the combination of LLMs and conventional algorithms. Our code is available at

1 INTRODUCTION

Large language models (LLMs) show remarkable performance on multiple natural language pro-
cessing (NLP) tasks (Touvron et al., 2023; Ouyang et al., 2022). To adapt to downstream tasks,
simply adding an instruction to the input text, also called discrete prompt, steers LLMs to carry out
the desired task with negligible impact on computational cost (Liu et al., 2023). Such approach
also eliminates the need for all the parameters and gradients in LLMs, making it suitable for LLMs
with block-box APIs such as GPT-3 and GPT-4 (Brown et al., 2020; OpenAl, 2023). Despite the
convenience, the performance of the LLMs towards a certain task is significantly influenced by the
prompt (Liu et al., 2023; Zhu et al., 2023). Accordingly, the key challenge of this approach lies in the
design of the prompt, which has emerged as a crucial technique known as prompt engineering (Zhou
et al., 2022). Given the wide variation in prompts across language models and tasks, the prompt
design typically requires substantial human effort and expertise with subjective and relatively limited
guidelines (Mishra et al., 2022a;b; Liu et al., 2023; Zamfirescu-Pereira et al., 2023; Wang et al.,
2023).
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To alleviate human effort on discrete prompt design, previous approaches usually rely on access to
the token probabilities from the output layer of LLMs, which may not always be accessible through
APIs (Deng et al., 2022; Zhang et al., 2023a). Some recent works consider enumerating diverse
prompts and selecting the best ones (Zhou et al., 2022; Jiang et al., 2020), or modifying current
prompts to improve them (Guo et al., 2023; Prasad et al., 2022; Pryzant et al., 2023). Such approaches
either emphasize exploring diverse prompts, which may lead to indecisiveness and wasted resources,
or focus on exploiting upon the current identified good prompts, which may result in stagnation and
confine the search to local optima. Several conventional derivative-free algorithms are well-designed
and strike a good balance between exploration and exploitation (Conn et al., 2009; Rios & Sahinidis,
2013). Among these, evolutionary algorithms (EAs) stand out as they are simple and efficient, as
well as suitable for discrete prompt optimization (Storn & Price, 1997; Brest et al., 2006; Zhang &
Sanderson, 2009; Vesterstrom & Thomsen, 2004). Sequences of phrases in prompts can be regarded
as gene sequences in typical EAs, making them compatible with the natural evolutionary process.

In this paper, we borrow the idea of EAs and propose a discrete prompt tuning framework, EVO-
PROMPT. While evolutionary operators in EAs are typically designed for sequences, they tend to
independently alter tokens to generate new candidate solutions. Unfortunately, this approach ignores
the connections among tokens, which is crucial for maintaining coherence and readability in prompts.
Taking advantage of LLMs’ expertise in NLP and the exceptional optimization capabilities of EAs, we
connect these two approaches, where LLMs generate new candidate prompts following evolutionary
operators, and EAs guide the optimization process to retain the optimal prompts.

Specifically, based on several initial prompts, we utilize LLMs to act as evolutionary operators to
generate new prompt candidates, and the prompt with better performance on the development set
is preserved. The above operations upon the updating population are iteratively applied to improve
the quality. By elaborately designing the evolutionary operators and adjusting the update strategy,
EVOPROMPT can be instantiated with various types of EAs. We optimize the prompts for two
different LLMs (i.e., Alpaca (Taori et al., 2023), and GPT-3.5 (Brown et al., 2020)) on a diverse
range of neural language understanding and generation tasks, as well as challenging BIG-Bench
tasks, using a total of 31 datasets. EVOPROMPT consistently gets better prompts compared with both
manually designed ones and previous automatic prompt generation methods. The main contributions
of this paper include:

* We propose a novel framework for automatic discrete prompt optimization connecting LLMs and
EAs, called EVOPROMPT, which enjoys the following advantages: 1) It does not require access to
any parameters or gradients of LLMs; 2) It strikes a balance between exploration and exploitation
leading to better results; 3) The generated prompts are human-readable.

» Experiments conducted on 31 datasets demonstrate the effectiveness of EVOPROMPT compared
with crafted prompts, as well as existing methods. We release the optimal prompts obtained
by EVOPROMPT for these common tasks such as sentiment classification, topic classification,
subjectivity classification, simplification, summarization and reasoning.

* We demonstrate that LLMs are capable of implementing multiple types of EAs provided with
appropriate instructions. We hope that our explorations will inspire further investigations on
the combination of LLMs and conventional algorithms, paving the way for new and innovative
applications of LLMs.

2 RELATED WORKS

Prompts in LLMs Prompting is an efficient method for employing LLMs in specialized tasks.
However, the performance is heavily influenced by the choice of the prompt. Recently, automatic
prompt optimization has obtained wide attention. Continuous prompt-based methods, which only
tune parameters of some input tokens (Li & Liang, 2021; Liu et al., 2021b;a; Zhang et al., 2021)
attract lots of attention. In spite of their effective performance, two drawbacks of such paradigms
can not be ignored: 1) The optimization of continuous prompts requires parameters of LLMs that
are inaccessible for black-box APIs. 2) Soft prompts often fall short of interpretability (Lester
et al., 2021). Discrete prompts, simply adding several discrete tokens, such as “It was” (Schick &
Schiitze, 2021), or task-specific descriptive instructions, such as “Classify the comment into positive
or negative.”, to the input text, can offer an interactive interface to humans with better interpretability
and show promising performance in various NLP tasks (Liu et al., 2023).
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Discrete Prompts Various approaches have been proposed for automatic discrete prompt searching
and generation (Shin et al., 2020; Shi et al., 2022; Wallace et al., 2019; Deng et al., 2022; Zhang et al.,
2023a), while these methods still rely on the gradients or the token probabilities from the output layer.
More recently, considering the high variance of different prompts for downstream tasks, some works
focus on exploration by enumerating and selecting the best prompt from a number of candidates,
mainly augmented by re-sampling (Zhou et al., 2022; Jiang et al., 2020). Approaches based on
prompt edit (Zhang et al., 2023a; Prasad et al., 2022) emphasize exploitation, which may potentially
lead to local optima. Another approach collects the incorrectly predicted cases and analyzes the
corresponding root cause to improve existing prompts (Pryzant et al., 2023; Guo et al., 2023), which
also emphasizes exploitation. Additionally, such approaches are constrained to tasks with standard
answers and cannot be directly applied to generation tasks. Our proposed EVOPROMPT empowered
with evolutionary algorithms strikes a balance between exploration and exploitation without requiring
any parameters or gradients.

LLMs and Optimization Algorithms LLMs demonstrate the potential to serve as black-box
optimizers (Zheng et al., 2023); however, this black-box approach lacks explainability. Some works
have revealed that LLMs have the capability to imitate specific operations in conventional algorithms.
For instance, LLMs can perform “Gradient Descent” in discrete space by collecting incorrectly
predicted samples (Pryzant et al., 2023; Guo et al., 2023). Meanwhile, it has been demonstrated
that LLMs can imitate the mutation (Lehman et al., 2022) or crossover (Meyerson et al., 2023)
operator in the genetic algorithm (GA). Chen et al. (2023) further integrates LLMs and GA for
neural architecture search, while Lanzi & Loiacono (2023) introduce a similar approach to game
design. Our work has taken a significant step forward by proposing a general framework that connects
LLMs with evolutionary algorithms, which can be instantiated to a diverse range of evolutionary
algorithms through customization of evolutionary and selection processes, thereby broadening its
applicability and potential influence in the domain. We aspire this work to inspire broader applications
of combining LLMs and conventional algorithms.

3 AUTOMATIC DISCRETE PROMPT OPTIMIZATION

Algorithm 1 Discrete prompt optimization: EVOPROMPT

Require: Initial prompts Py = {p1, p2,...,pN}, size of population N, a dev set D, fp(-) denotes
the score of a prompt on the desired LLM evaluated on D, a pre-defined number of iterations 7',
carefully designed evolutionary operators to generate a new prompt Evo(+)

1: Initial evaluation scores: Sy < {s; = fp(p;)|i € [1, N]}
2: fort =1to T do
3: Selection: select a certain number of prompts from current population as parent prompts

DrysevoyDry ~ Proa
Evolution: generate a new prompt based on the selected parent prompts by leveraging LLM

to perform evolutionary operators p;; <— Evo(p,,, ..., Dr;)

Evaluation: s; < f(p}, D)
Update: P, < {P,_1,p;} and S; < {S;_1, s;} based on the evaluation scores
: end for
: Return the best prompt, p*, among the final population Pr: p* < argmazpcp, f(p, D)

e

Current advanced LLMs are typically interacted via black-box APIs, while the gradients and parame-
ters are inaccessible. Evolutionary algorithms (EAs) are derivative-free algorithms with exceptional
accuracy and rapid convergence. Accordingly, we consider introducing EAs into discrete prompt
optimization. However, to generate new candidate solutions, evolutionary operators typically edit the
elements in current solutions independently, without considering the connections between them. This
makes it challenging to apply evolutionary operators on discrete prompts, which require coherence
and readability. To address this challenge, we propose a synergistic approach that connects the
natural language processing expertise of LLMs with the optimization capabilities of EAs, called
EVOPROMPT. Specifically, LLMs generate new candidate prompts based on evolutionary operators,
while EAs guide the optimization process to find the optimal prompts.
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Genetic Algorithm (GA) Implemented by LLMs

Query:

Please follow the instruction step-by-step to generate a better prompt.

1. Cross over the following prompts and generate a new prompt:
Prompt 1:

Prompt 2: Assign a sentiment label to the given sentence from ['negative',
'positive'] and return only the label without any other text.
2. Mutate the prompt generated in Step 1 and generate a final prompt bracketed wit
<prompt> and </prompt>.

!

RBSPOHSCI Crossover
1. Crossover Prompt:
and assign a sentiment label from ['negative', 'positive’].
" . " Mutate
2. <prompt>Determine the given sentence and assign a label |~

from ['negative', 'positive'].</prompt>
J

Figure 1: GA process implemented by LLMs (Evo(-) in Algorithm 1). In Step 1, LLMs perform
crossover on the given two prompts (words in and are inherited from Prompt 1 and
Prompt 2, respectively). In Step 2, LLMs perform mutation on the prompt.

In order to implement EVOPROMPT in practice, it is necessary to instantiate it with a specific
algorithm of EAs. There are various types of EAs, and in this paper, we consider two widely
used algorithms, including Genetic Algorithm (GA) (Holland, 1975) and Differential Evolution
(DE) (Storn & Price, 1997). GA is among the most highly regarded evolutionary algorithms (Holland,
1975; 1992; Mitchell, 1998; Mirjalili et al., 2020) and DE has emerged as one of the most widely
utilized algorithms for complex optimization challenges since its inception (Storn & Price, 1997,
Price, 2013; Das & Suganthan, 2010; Pant et al., 2020). In the following, we will first outline the
proposed EVOPROMPT, and then instantiate EVOPROMPT with GA and DE respectively.

3.1 FRAMEWORK OF EVOPROMPT

EAs typically start with an initial population of N solutions (prompts in our setting), then iteratively
generate new solutions using evolutionary operators (e.g., mutation and crossover) on the current
population and update it based on a fitness function. Following typical EAs, EVOPROMPT mainly
contains three steps:

* Initial population: Contrary to most existing automatic prompt methods that neglect priori human
knowledge, we apply available manual prompts as the initial population to leverage the wisdom
of humans. Besides, EAs typically start from random solutions, resulting in a diverse population
and avoiding being trapped in a local optimum. Accordingly, we also introduce some prompts
generated by LLMs (Zhou et al., 2022) into the initial population.

* Evolution: In each iteration, EVOPROMPT uses LLMs as evolutionary operators to generate a new
prompt based on several parent prompts selected from the current population. To accomplish this,
we design steps of the mutation and crossover operators for each specific type of EAs, along with
corresponding instructions to guide the LLMs in generating new prompts based on these steps.

» Update: We evaluate the generated candidate prompts on a development set and retain those with
superior performance, similar to the survival of the fittest in nature. The specific updating strategy
may vary depending on the type of EAs used.

The algorithm stops when the number of iterations reaches a predefined value. The details of
EVOPROMPT are outlined in Algorithm 1. When instantiating EVOPROMPT with a specific algorithm
of EAs, the evolutionary processes need to be adjusted, and the key challenge is to design the
evolutionary operators on discrete prompts.
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Differential Evolution (DE) Algorithm Implemented by LLMs

Query:

Please follow the instruction step-by-step to generate a better prompt.
1. Identify the different parts between the Prompt 1 and Prompt 2:

Prompt 1:

Prompt 2:

2. Randomly mutate the different parts

3. Combine the different parts with Prompt 3, selectively replace it with the different parts
in Step 2 and generate a new prompt. b-c

Prompt 3:

4. Cross over the prompt in the Step 3 with the following basic prompt and generate a final
prompt bracketed with <prompt> and </prompt>:

Basic Prompt:

Response:

1. | Different parts:
"tweet" vs "sentence"
"Categorize" vs "Carry out sentiment analysis"

2. “tweet” -> “review” F(b—c)
“Categorize”-> “Analyze”
“Sentiment analysis” -> “Sentiment identification”
a+F(b-c)
3./ New Prompt:

. Crossover
4. | Final Prompt: <prompt> v

</prompt>

- J

Figure 2: DE process implemented by LLMs (Evo(-) in Algorithm 1). In Step 1, LLMs find the
different parts (words in =~ and ) between and (b — cin typical DE). In Step 2,
LLMs perform mutation (words in ) on them (imitation of F(b — c)). Next, LLMs incorporate
the as with the mutated results in Step 2, to generate a new prompt
(counterpart of a + F(b — ¢) in DE). Finally, LLMs perform crossover upon the

p; and the in Step 3. See Figure 5 in Appendix B.2 for the complete response.

3.2 INSTANTIATION WITH GENETIC ALGORITHM

Selection In GA, parent solutions are conventionally selected using the roulette wheel selection
method, guided by their fitness values (Lipowski & Lipowska, 2012). Analogously, we employ the
roulette wheel selection to choose two parent prompts from the current population, based on their
performance scores obtained on the development sets. Let s; denote the performance score of the i-th
prompt within a population containing N prompts. The probability of selecting the :-th prompt as a

N
parent can be expressed as p; = s;/ Y., ;.

Evolution Conforming to the GA framework, we generate a new candidate prompt via two steps:
1) Crossover is performed between the parent prompts to produce a new offspring prompt that inherits
characteristics from both parents; 2) Mutation is applied to the offspring prompt, introducing random
alterations to certain elements. We formalize this two-stage operation into algorithmic instructions
for guiding LLMs to implement Evo(-) in Algorithm 1. The entire process is illustrated in Figure 1.

Update We employ a straightforward selection strategy for updating the population: at each
iteration, EVOPROMPT produces N new prompts, which are merged with the existing population of
N prompts. Subsequently, the top IV prompts, based on their scores, are retained to form the updated
population. Accordingly, the overall quality of the population undergoes continuous enhancement,
culminating in the selection of the best one within the final population as the optimal prompt.
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3.3 INSTANTIATION WITH DIFFERENTIAL EVOLUTION

Here, we begin with some preliminary knowledge of DE. Unlike GA, the solutions of DE are
represented by numerical vectors. Each vector within the population is sequentially selected as a
base vector, denoted as x, which subsequently undergoes mutation and crossover. During mutation, a
mutated solution y is generated from a randomly selected solution a from the current population. The
mutation is achieved by adding a scaled difference between two distinct, randomly selected solutions
bandctoa,ie.,y =a+ F(b — c), where F' is the scaled parameter.

Crossover is to generate a trial solution x’ = [27, ..., z/,] by choosing each parameter in the vector
from either the basic solution x or the mutated solution y. Then, x is replaced with x’ if x’ is better
than x. Within step-by-step evolution, DE ends with a population of high quality. A modified version
of DE uses the current best solution as vector a to exploit information from the best one.

Evolution The evolutionary process of DE can be decoupled into three steps: 1) F'(b — c); 2)
y = a+ F(b — c¢); 3) Crossover of x and y. In EVOPROMPT based on DE, we follow the three steps
to design the evolutionary process, as well as the corresponding instructions for LLMs to generate a
new prompt based on these steps as illustrated in Figure 2:

* Inspired by the differential vector in DE, we consider mutating only the different parts of two
randomly selected prompts in the current population (Step 1 and Step 2 in Figure 2). The prompts
in the current population are considered the current best ones. Accordingly, the shared components
of two prompts tend to have a positive impact on the performance, and thus need to be preserved.

* A variant of DE employs the current best vector during the mutation process, where a mutated
vector is generated by adding the scale of the differential vector to the current best vector. Building
upon this idea, we generate a mutated prompt by selectively replacing parts of the current best one
with the mutated different parts for combination. (Step 3 in Figure 2).

» Crossover replaces certain components of a basic prompt (i.e., a candidate of the current population)
with segments from the mutated prompt. This operation combines the features of two different
prompts, potentially creating a new and improved solution (Step 4 in Figure 2).

Update Following the standard DE, each prompt p; in the current population is chosen as a basic
prompt in turn to generate a corresponding new prompt p) using the instruction in Figure 2. Then,
the prompt with a higher score, either p; or pl, is retained. Accordingly, the population size remains
constant while the overall quality of the population is enhanced.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS AND BASELINES

With GPT-3.5 performing evolutionary operators, we optimize prompts using EVOPROMPT for the
open-source Alpaca-7b (Taori et al., 2023) and closed-source GPT-3.5 (text-davinci-003) (Brown
et al., 2020). We pick the prompt with the highest score on the development set and report its score on
the test set. Results reported on Alpaca are averaged over 3 random seeds and the standard deviation is
provided, while for GPT-3.5, we report results of one seed due to budget limitation. In our evaluation,
we compare EVOPROMPT against three categories of prompt-based approaches, detailed as follows:

* Manual Instructions (MI): These serve as task-specific guidelines and are crafted based on
established works, specifically referenced from Zhang et al. (2023b) for language understanding,
Sanh et al. (2021) for summarization, and Zhang et al. (2023c¢) for text simplification.

* PromptSource (Bach et al., 2022) and Natural Instructions (NI) (Mishra et al., 2022b): These
repositories aggregate human-composed prompts across a diverse range of datasets.

* APE (Zhou et al., 2022) and APO (Pryzant et al., 2023): APE employs an iterative Monte
Carlo Search strategy, emphasizing on exploration. We reproduce it and initialize populations
of equivalent sizes to that of EVOPROMPT. APO harnesses incorrectly predicted instances as
“pseudo-gradient” to iteratively refine the original prompt, which emphasizes exploitation. We
reproduce APO on binary classification tasks with the optimal manual prompt as the initial one.
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Method || SST-2 CR MR SST-5 AG’s News TREC Subj | Avg.
MI (Zhang et al., 2023b) 93.68 91.40 88.75 42.90 70.63 50.60 49.75 71.07
NI (Mishra et al., 2022c) 92.86 90.90 89.60 48.64 48.89 55.00 52.55 68.21
PromptSource (Bach et al., 2022) || 93.03 - - - 45.43 36.20 - -
APE (Zhou et al., 2022) 93.450.14) 91.1300.45) 89.98(029) 46.32(0.49) 71.7602.81) 58.731137)  64.18059) || 73.80
APO (Pryzant et al., 2023) 93.87039) 91.200.04) 89.8500.35 - - - 70.55¢1.02) -
76.25

EVOPROMPT (GA) 95.13021) 91.270.06) 90.07025 49.91061) 72.810.61) 64.000.16)  70.5502.5%)
94.75021)  91.40004) 90.220.09 49.89(1.73) 73.82(035) 63.73(1.54)  75.5502.26)

EvoPrROMPT (DE) 77.05

Table 1: Main results on language understanding (accuracy) on Alpaca-7b.

Method I Alpaca | GPT-3.5

H ROUGE-1 ROUGE-2 ROUGE-L \ ROUGE-1 ROUGE-2 ROUGE-L
MI (Sanh et al., 2021) 35.92 11.16 31.67 43.95 17.11 39.09
APE (Zhou et al., 2022) 35.440.79)  10.600.38)  31.80(0.50) | 43.43 16.72 38.25
EVOPROMPT (GA) 38.46(1.45)  13.36(0.75)  34.20(1.40) | 45.22 18.52 41.06
EvoProMPT (DE) 39.46051) 13.930.33) 3549056 | 46.49 19.49 41.96

Table 2: Main results on SAMSum dataset (summarization task) for Alpaca-7b and GPT-3.5.

4.2 LANGUAGE UNDERSTANDING

Datasets and Settings We first conduct experiments on language understanding tasks across 7
datasets to validate our methods, including sentiment classification (SST-2 (Socher et al., 2013),
MR (PANG, 2005), CR (Hu & Liu, 2004), SST-5 (Socher et al., 2013)), topic classification (AG’s
News (Zhang et al., 2015), TREC (Voorhees & Tice, 2000)) and subjectivity classification (Subj (Pang
& Lee, 2004)). To constrain the output label space, we prepend the demonstration consisting of one
example per class before the test case. See Appendix B for more details.

Main Results Table 1, shows that: 1) Compared with previous works on prompt generation and
human written instructions, EVOPROMPT based on both GA and DE delivers significantly better
results. 2) EVOPROMPT (GA) is slightly better than EVOPROMPT (DE) on sentiment classification
datasets. When it comes to topic classification datasets, EVOPROMPT (DE) performs better. Notably,
on the subjectivity classification task (Subj), EVOPROMPT (DE) exhibits a substantial improvement
over its GA counterpart, achieving a 5% accuracy advantage. This may be contributed by the
exceptional ability of DE to evade local optima when the initial prompts are not of high quality.

4.3 LANGUAGE GENERATION

Datasets and Settings For language genera-

tion, we evaluate our EVOPROMPT on text sum- Method H Alpaca GPT-3.5
marization and simplification tasks. For summa- ~ MI (Zhang et al., 2023c) H 43.03 43.80
rization, we adopt SAMSum (Gliwa et al., 2019), ~ APE (Zhou etal., 2022) || 45.900.09)  46.71

a challenging and intricate dialogue summariza-  EvoProMPT (GA) 46.430.19) 47.36
tion dataset, and report ROUGE-1/2/L scores on ~ EvOPROMPT (DE) H 46.210027) 47.40
Alpaca-7b and GPT-3.5. For text simplification,

which aims to simplify the source text while Taple 3: Main results (SARI) on simplification

preserving its original meaning, we employ the (ASSET) for Alpaca-7b and GPT3.5.
ASSET dataset (Alva-Manchego et al., 2020), a

benchmark known for its multiple reference translations. We apply SARI score (Xu et al., 2016)
as the evaluation metric, an n-gram-based scoring system extensively utilized for text editing tasks.
Additional details regarding our experimental setup can be found in Appendix B.

Main Results The summarization and simplification results are presented in Tables 2 and 3.
EVOPROMPT achieves a substantial performance gain over manually designed prompts, exhibiting
an improvement of over 3 points in SARI scores across both Alpaca and GPT-3.5 API. Furthermore,
EVOPROMPT consistently outperforms the APE approach across the evaluated scenarios, indicating
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Figure 3: Normalized scores on BBH tasks for EVOPROMPT (GA) and EVOPROMPT (DE).

that the generated prompts effectively harness the capabilities of LLMs for superior performance.
Moreover, EVOPROMPT (DE) notably outperforms EVOPROMPT (GA) in the summarization task,
while demonstrating comparable performance in the text simplification task. This suggests that the
DE variant is particularly effective for more complex language generation tasks like summarization.

4.4 BiG BENCH HARD (BBH)

Datasets and Settings To validate our methods on diverse tasks, we apply BBH (Suzgun et al.,
2022) including a suite of 23 challenging BIG-Bench tasks requiring multi-step reasoning. Since
these tasks are challenging, we focus on optimizing the prompts for GPT-3.5. We sample a subset
from the test set as the development set and report the normalized scores' in comparison to the
prompt “Let’s think step by step.” (Kojima et al., 2022) with 3-shot Chain-of-Thought demonstrations
(following Fu et al. (2023)) on the test set. We use task IDs to simplify the denotation of each
task and remove one since the accuracy already reaches 100% with the manual prompt. Please see
Appendix C.2 and Table 17 for details, as well as further comparisons with previous works.

Main Results EVOPROMPT obtains better prompts for all 22 tasks (Figure 3). Specifically, Evo-
PROMPT (DE) achieves up to a 25% improvement with an average of 3.5%, whereas EVOPROMPT
(GA) reaches a peak improvement of 15% with a 2.5% average. Though for some tasks the GA coun-
terpart outperforms the DE version, the performance gap remains relatively small (i.e., around 1%).
Meanwhile, EVOPROMPT (DE) surpasses EVOPROMPT (GA) by over 2% on 6 tasks. Accordingly,
the DE version is generally a good choice for these challenging tasks.

5 ANALYSIS

5.1 DESIGNS IN GA

For EVOPROMPT (GA), we apply the roulette  Strategy || SST-5 ASSET Avg.

wheel selection strategy by default to select parental ,

prompts, contributing to the offspring. To further ex- random 48.67097) 4632032 47.50
. . . tournament || 49.7000.60) 46.2900.18)  48.00

plore the effect of various selection strategies, we 4991061, 4643019 4817

compare our approach with another two popular
strategies, i.e., tournament (Wikipedia contributors,
2023) and random selection, as presented in Table 4.
We observe that EVOPROMPT (GA) with roulette wheel achieves higher scores, showcasing the
effectiveness of this selection method.

Table 4: Designs in EVOPROMPT (GA).

5.2 DESIGNS IN DE

For EvOPROMPT (DE), we delve into two key design considerations in adapting the evolutionary
operators of DE to discrete prompts: 1) mutation on different parts, and 2) choosing the current
top-performing prompt as “Prompt 3” in Figure 2. We assess the impact of these design choices on

!The accuracy difference between a given prompt and the baseline prompt “Let’s think step by step.” A score
of 0 corresponds to the normalized score of the baseline prompt.
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two datasets: Subj, an understanding dataset where EVOPROMPT (DE) outperforms EVOPROMPT
(GA), and ASSET, a generation dataset where both variants demonstrate similar performance.

Mutation on Different Parts To illustrate the

benefits of mutating only the different parts, we Mutation Prompt 3 || Subj ASSET
replace the first two steps in Figure 2 with the  Diff best 75.5502.26)  46.21(0.27)
instruction “Randomly mutate Prompt 1 and  All best 69.87082)  45.73(0.45)
Prompt 2” to allow mutation on all contents in ~ Diff random 69.820.47)  45.890.37)
Prompts 1 and 2’ denoted as “All” in Table 5. Diff eliminate 69.074.21)  45.90(0.23)
Meanwhile, the original design in EVOPROMPT, o

which mutates only the different parts, is denoted Table 5: Designs in EVOPROMPT (DE).

as “Diff”. As shown in Table 5, the design of mutation on only the different parts consistently yields
performance gains across two tasks.

Selection of Prompt 3 Applying one of the variants of the DE algorithm, in EVOPROMPT (DE),
we pick the best prompt in the current population as Prompt 3 in Figure 2. We validate this design
via the following settings: 1) Prompt 3 is randomly sampled from the current population, denoted as
“random” in Table 5; 2) Eliminate the use of Prompt 3 by letting the Basic Prompt directly cross over
with the mutated different parts (i.e., remove Step 3 in Figure 2), denoted as “eliminate” in Tabel 5.
Table 5 clearly demonstrates the importance of introducing Prompt 3. Moreover, it is shown that
choosing the best prompt as Prompt 3 is more effective than random sampling.

5.3 POPULATION INITIALIZATION

We investigate the effect of initial population quality
on EVOPROMPT. We conduct pilot experiments to
sort the prompts (designed manually or generated by ~ bottom-10 || 47.8000.92)  48.64(0.15)
GPT-3.5) according to their performance on the dev  1140m-10 4934053  50.03(1.08)
set. We then select bottom, random and top prompts  random-5 + var-5 H 49.84(1.49)  49.53(1.04)
along with their corresponding variations as initial
prompts. These variations are generated using the
resampling template designed in Zhou et al. (2022),
shown in Figure 4 in the Appendix B.2, which is used
to introduce randomness to the initialization.

Initialization I GA DE

top-10 49.62(1.00)  49.61(2.30)
top-5 + var-5 49.910.61) 49.89(1.73)

Table 6: Ablations of the initial population on
SST-5, where top-n, random-n, bottom-n de-
Table 6 demonstrates that: 1) Crafted design of ini- notes the top-performing, randomly selected,
tial prompts is not essential, as randomly selecting bottom-performing n prompts, and var-n de-
prompts can achieve a similar performance to select- notes the number of generated n variations.
ing the top-performing ones; 2) When selecting the top-performing prompts, introducing randomness
by allowing GPT-3.5 to generate variations can lead to a slight improvement in overall performance;
however, when randomly selecting prompts, there is no need to introduce additional randomness
for EVOPROMPT (DE); 3) When using top-performing initial prompts, EVOPROMPT (GA) per-
forms slightly better than EVOPROMPT (DE); however, when starting with bottom-performing initial
prompts, EVOPROMPT (DE) outperforms EVOPROMPT (GA), which indicates that DE is a better
choice when the available manual prompts are not of high quality.

6 CONCLUSIONS

We introduce EVOPROMPT to optimize discrete prompts, which connects LLMs with evolutionary
algorithms. Extensive experiments on 31 datasets demonstrate the superiority of EVOPROMPT,
yielding consistent performance gains over both manual instructions and existing methods. Besides,
We validate that LLMs can serve as an effective, interpretable interface for implementing evolutionary
algorithms like GA and DE. While this study focused on EAs, the extensibility of our approach opens
avenues for applying LLMs to other conventional algorithms, such as particle swarm optimization
(PSO) (Kennedy & Eberhart, 1995), ant colony optimization (ACO) (Dorigo & Gambardella, 1997)
and more recent Quality-Diversity (QD) optimization algorithms. Our findings aim to inspire future
research at the intersection of LLMs and traditional algorithms, encouraging innovative applications.
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Algorithm 2 Discrete prompt optimization: EVOPROMPT (GA)

Require: Initial prompts Py = {p1,p2,-..,pn}, size of population N, a dev set D
1: Initial fitness evaluation: Sy < {s; = f(p;, D)|i € [1, N]}
2: fort =1to 7T do > T': Number of iterations
3: fori=1to N do

4: Selection based on fitness using roulette wheel: p,, , pr, ~ Pi_1
5: Evolution: p}, + GA(p,,,pr,) (Refer to Figure 1)

6: Evaluation: s; < f(p}, D)

7: end for

8: Sy« {s;li € [1, N}, P, < {p}]i € [1,N]}

9: Update score: S; < Top-N{S;_1,S}}

10 Update: P, + Top-N{P,_1, P/} using S;_1, SJ,
11: end for
12: Return the best prompt, p*, among the final population Pr: p* < argmaxy,ep, f(p, D)

Algorithm 3 Discrete prompt optimization: EVOPROMPT (DE)

Require: Initial prompts Py = {p1,p2,..., PN}, size of population N, a dev set D

1: fort =1to 7 do > T": Number of iterations

2 for p; in P;_1 do

3: Sample donors: p,1,po ~ Pi_1,171 #12 #14

4 Evolution: p, < DE(p;, Dr,, Prys Dbest) Where Dpes: is the current best prompt. (Refer
to Figure 2)

5: Selection: p} = argmax f(p, D) > Keep the better one in the population

p€{pi,p;}

6: end for

7: Update: P, < {p}|i € [1, N|}

8: end for

9: Return the best prompt, p*, among the final population Pr: p* < argmazyep, f(p, D)

A DETAILS OF ALGORITHM IMPLEMENTATION

We instantiate EVOPROMPT two representative evolutionary algorithms, GA and DE. Though both
algorithms use consistent general selection processes, creating offspring, and updating, it is worth
noting that the selection strategies, ways of mutation and crossover, and the updating strategies in
these two algorithms are different. The specific algorithms for each of them are shown in Algorithm 2
and Algorithm 3.

B EXPERIMENTAL SETTINGS

B.1 DATASETS

Table 7 shows the statistics of the text classification, simplification and summarization datasets. For
Big-Bench Hard, We use serial numbers to denote 22 tasks, the descriptions are reported in Table 17.
Note that for the task of “web of lies”, the accuracy of the baseline is 100%, so here we have not
included this task for prompt optimization. Additionally, both tasks of “logical deduction objects”
and “tracking shuffled objects” have three sub-tasks.

Template for Variation

B.2 TEMPLATES Generate a variation of the following
instruction while keep the semantic meaning.

I :
Templates for Task Implementation For different mod- gf;tut:

els, we apply different templates shown in Table 8, 9 and
10, referring to the previous works (Iyer et al., 2022; Taori
etal., 2023; Zhang et al., 2023b; Li et al., 2023; Fu et al., Figure 4: Template used for resam-
2023). pling (Zhou et al., 2022).
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Dataset H Type Label space [Testl
SST-2 Sentiment {positive, negative} 1,821
CR Sentiment {positive, negative} 2,000
MR Sentiment {positive, negative } 2,000
SST-5 Sentiment {terrible, bad, okay, good, great} 2,210
AG’s News News topic {World, Sports, Business, Tech} 7,600
TREC Question topic {Description, Entity, Expression, Human, Location, Number} 500

Subj Subjectivity {subjective, objective} 2,000
SAMSum Summarization - 819

ASSET Simplification - 359

Table 7: Statistics for natural language understanding and generation datasets used in this work.

Template for Prompt Generation We apply the resampling template, shown in Figure 4, to
generate variations of manual initial prompts. For our EVOPROMPT, the complete DE algorithm
implemented by LLMs is shown in Figure 5. For both DE and GA, we prepend a one-shot example
of the algorithm execution, guiding LLMs to operate precisely.

INSTRUCTIONAL PROMPTS

Below is an instruction that describes a task, paired with an input that provides further context. Write a response
that appropriately completes the request.

##+# Instruction:
<PROMPT>

### Input:
<INPUT>

### Response:
<COMPLETE>

Zero-shot Example:
Below is an instruction that describes a task, paired with an input that provides further context. Write a response
that appropriately completes the request.

F##+# Instruction:
Please perform Sentiment Classification task. Given the sentence, assign a sentiment label from ['negative’,
’positive’]. Return label only without any other text.

### Input:

beautifully observed , miraculously unsentimental comedy-drama .

77 Response:
<COMPLETE>

Table 8: Template used for Alpaca (referring to Taori et al. (2023)).

B.3 HYPER PARAMETERS

The parameters for the experiments are shown in Table 1 1. For evolutionary algorithms implemented
by GPT-3.5, following previous work (Shi et al., 2024), we use Top-p decoding (temperature=0.5,
P = 0.95). For the task implementation, we use greedy decoding and the default temperature for
Alpaca. For the generation tasks implemented by GPT-3.5, the temperature is 0.0.
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Differential Evolution (DE) Algorithm Implemented by LLMs

Query:

Please follow the instruction step-by-step to generate a better prompt.
1. Identify the different parts between the Prompt 1 and Prompt 2:
Prompt 1:

Prompt 2:

2. Randomly mutate the different parts

3. Combine the different parts with Prompt 3, selectively replace it with the different parts
in Step 2 and generate a new prompt.

Prompt 3:

4. Cross over the prompt in the Step 3 with the following basic prompt and generate a final
prompt bracketed with <prompt> and </prompt>:

Basic Prompt: Here, you'll be given sentences from reviews about products and you'll need
to decide if it's a positive or a negative review.

Response:

1. Identifying the different parts between Prompt 1 and Prompt 2:

Prompt 1:
Prompt 2: A
Different parts: bre

"tweet" vs "sentence"
"Categorize" vs "Carry out sentiment analysis"

2. Randomly mutate the different parts:

"tweet" -> "review" F(b—c)
"Categorize" -> "Analyze"

"Sentiment analysis" -> "Sentiment identification"

3. Combine the different parts with Prompt 3, selectively replace it with the different
parts in Step 2 and generate a new prompt:

Prompt 3:

a+F(b-c)
New Prompt:

4. Cross over the prompt in Step 3 with the following basic prompt and generate a final
prompt bracketed with <prompt> and </prompt>:

Basic Prompt: Here, you'll be given sentences from reviews about products and you'll

need to decide if it's a positive or a negative review.
Crossover

Final Prompt: <prompt>Here, you'll be given reviews about products and you'll need /
to </prompt>

\ /

Figure 5: DE algorithm implemented by LLMs for discrete prompt optimization with complete

response (Evo(-) in Algorithm 1). In Step 1, LLMs find the different parts (words in =~ and )

between and (b — c in typical DE). In Step 2, LLMs perform mutation (words in
) on them (imitation of F(b — c¢)). Next, LLMs incorporate the as

with the mutated results in Step 2, to generate a new prompt (counterpart of a + F(b — ¢) in DE).

Finally, LLMs perform crossover upon the p; and the in Step

3.
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TEMPLATE FOR SIMPLIFICATION

<PROMPT>
<INPUT>
The simplification of the sentence is <COMPLETE>

Zero-shot example:

Simplify the text.

Subsequently, in February 1941, 600 Jews were sent to Buchenwald and Mauthausen concentration camps.
The simplification of the sentence is <COMPLETE>

TEMPLATE FOR SUMMARIZATION

<PROMPT>
<INPUT>
TL;DR: <COMPLETE>

Zero-shot example:

How would you rephrase that in a few words?

Theresa: have you been at Tom’s new place? Luis: yes, it’s nice Marion: He invited us for a dinner Adam: where
is it? Marion: a bit outside the city Adam: where exactly? Marion: Fiesole Luis: very nice!

TL;DR: <COMPLETE>

Table 9: Templates of summarization (following Sanh et al. (2021); Qin et al. (2023)), simplification
(following Li et al. (2023)) and the corresponding zero-shot examples.

TEMPLATE FOR BIG-BENCH HARD

<DESC>

Q: <INPUT>
A: <PROMPT>
<COMPLETE>

Zero-shot example:

Questions that involve enumerating objects and asking the model to count them.

Q: I have a flute, a piano, a trombone, four stoves, a violin, an accordion, a clarinet, a drum, two lamps, and a
trumpet. How many musical instruments do I have?

A: Let’s think step by step.

<COMPLETE>

Table 10: Template for Big-Bench Hard (following Suzgun et al. (2022)) used for GPT-3.5 and the
corresponding zero-shot examples. <DESC> refers to the specific description of each task.
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Figure 6: Effect of population size on SST-5 (left), Subj (middle), and ASSET (right). All the results
are averaged over 3 random seeds.

Text Classification The population of

o . . . Task LM [Populationl IStepsl [Devl [Shots|
prompts is initialized with widely used in- I P s

structions in the previous works (Mishra Text classification
et al., 2022b; Zhang et al., 2022). We para-  Alpaca-7b || 10 10 200 1
phrase and rewrite them to initialize the T
. . Alpaca-7b 10 10 100 0
population. The size of the development
s 200. Wi h ] h GPT-3.5 10 10 100 0
set 18 . e report the resu ts.on the Big-Bench Hard
full test set (the same as the previous re-  GpT.3.5 | 10 10 50 3

lated works (Deng et al., 2022; Zhang et al.,
2023a)), as shown in Table 11.

Table 11: Settings for experiments. IShots| refers to the
number of examples in the demonstration. For the text
Text Generation For the initial popula- classification task, we set the value as 1, which means
tion, we collect instructions for summa- we prepend with 1 sample of each category, to constrain
rization and simplification from Li et al. the output in the label space.

(2023); Sanh et al. (2021); Zhang et al.

(2023c) and augment them to the expected size (10 in our setting), either written manually or
generated by GPT-3.5.

C ADDITIONAL RESULTS

C.1 PARAMETERS IN EVOLUTIONARY ALGORITHMS

Effect of Population Size Intuitively, a trade-off exists between the performance and the overhead
caused by the population size. We explore the performance of EVOPROMPT (DE) and EVOPROMPT
(GA) respectively at varying population sizes from 4 to 12. The results are plotted in Figure 6.

For classification datasets, as the size increases, curves for DE and GA show an ascending trend.
Furthermore, the increase in DE attributed to population diversity was greater than that in GA since
DE focuses on different parts. Differences among prompts within populations bring about substantial
mutations, leading DE to explore potential prompts since keeping common parts balances exploration
and exploitation effectively.

For the relatively simple generation task (i.e., ASSET), a population size of 6 demonstrates a
comparable performance to a population size of 10, though with a 2.5-fold increase in overhead. This
suggests that for relatively simple tasks large populations are unnecessary, while for complex tasks
(i-e., Subj), a larger population with diversity brings improvement.

Effect of Number of Iterations To further explore the process of convergence, for SST-5, Subj
and ASSET, we plot the best and average scores on the development set for EVOPROMPT for DE and
GA over the whole population after each iterative step (Figure 7). Curves of best and average scores
gradually converge with an increasing trend as evolution proceeds, indicating that the population’s
quality as a whole is steadily increasing as the evolution process.
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Figure 7: The best and average scores of each iteration on SST-5 (left), Subj (middle), and ASSET
(right) development set on Alpaca-7b. All the results are averaged over 3 random seeds.
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Figure 8: Normalized scores on BBH tasks for APE, EVOPROMPT (GA) and EVOPROMPT (DE).

C.2 COMPARISON ON BBH TASKS

APE (Zhou et al., 2022) optimizes the Chain-of-Thought (CoT)

prompt for reasoning tasks on InstructGPT. Considering that Method | Ave.
both InstructGPT and GPT-3.5 belong to the GPT family and baseline H 71.49
we may observe similar trends, we evaluate the CoT prompt APE 71.85
proposed by APE, “Let’s work this out in a step by step way to EVOPROMPT (GA) || 74.18
be sure we have the right answer.”, on reasoning tasks and plot EVOPROMPT (DE) H 75.03

the 3-shot performance in Figure 8. For simplicity, we use the
same initial population for all the 22 BBH tasks without priori  Taple 12: Average accuracy over 23
knowledge of each task. In future works, by incorporating BRBH tasks for different methods.
task-specific prompts, either manually designed or generated

by LLMs, we may further enhance the performance.

I SST-5 \ Subj
|| APE EVOPROMPT (GA) EVOPROMPT (DE) | APE EVOPROMPT (GA) EVOPROMPT (DE)

Same iteration

# iterations || 9 9 9 15 15 15

# tokens 539M 540M 552M 566 M 573M 593 M

score 45.79 50.23 49.23 67.20 70.10 79.35
Until convergence

# iterations || 9 7 11 15 15 17

# tokens 539M 420M 6.75 M 566 M 573M 6.72M

score 45.79 50.23 51.13 67.20 70.10 79.35

Table 13: Number of iterations, tokens within the API requests (including prompt optimization and
evaluation) and the corresponding score for our methods and APE. We choose the iteration that APE
converges as the Same iteration for comparison. Until convergence means that the improvement of
the average score is less than 0.3% for continuous two iterations.
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Figure 9: Statistics about the prompt length, including average values over the whole population (a),
variance over the prompt length (b), and number of new words evolved after each step (c). Note that
all the values are averaged over 8§ datasets, including 7 understanding datasets and one simplification
dataset, and 3 random seeds.

C.3 CoST ANALYSIS

Overhead mainly comes from prompt evaluation and generation. For evaluation, our overhead is
N x|D|+T, where N is the size of the population, | D] is the size of the development set, and T is the
number of iterations. These parameters differ from the task and can be found in Appendix B.3. For
the cost from prompt generation, the cost mainly depends on the number of API results, 7"« N. So
the total number of API requests is N « T (1 + | D|), the same as APE. Moreover, given that the API
of LLMs is typically billed based on the number of tokens used, we also estimate the total number
of tokens used in the API requests during the prompt optimization process, as shown in Table 13.
All the scores reported are over the test set on one random seed. We analyze the overhead mainly
from two aspects: 1) the performance of our methods compared with APE under the same number of
iterations; 2) the performance until convergence measured by the average score on the dev set.

We can observe that with the same number of iterations, both GA and DE outperform APE signifi-
cantly while introducing only a slight overhead in terms of the number of tokens. The convergence
rates of APE and GA are similar while DE is slightly slower, but it delivers better performance. This
implies the relatively high ceiling of EVOPROMPT.

C.4 ANALYSIS OF PROMPT

Diversity Analysis We further investigate the diversity of prompts generated by GA and DE after
each iterative step respectively. We mainly plot the average prompt length, variance and number
of new words mutated after each step, as shown in Figure 9. It can be observed that EVOPROMPT
(DE) generates longer prompts with higher variances than EVOPROMPT (GA), which implies that
DE prefers exploration for diversity. In the latter iterations, DE mutates more new words than GA,
and thus shows better potential to escape from the local optimum.

Optimal Prompts We release the optimal prompts generated by EVOPROMPT for understanding
(Table 14), text simplification (Table 16), summarization (Table 15) and BBH tasks (Table 17, 18) .

D FUTURE WORKS

There are several promising directions for future investigation:

* Based on our framework, more applications can be explored, including game levels generation,
text-to-images generation, non-trivial NP-hard problems (e.g. traveling salesman problem), etc.

* There exist many variants of DE and we give priority to the most canonical and classical ones
for current exploration. In future work, it will be interesting to consider more advanced DE-
variants (Das et al., 2016; Das & Suganthan, 2010). For example, some recent DE-variants have
been investigating adaptive control parameters. The main challenge in applying these variants to
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Dataset Method Content Score
SST-2 Manual Instruction ,Plea.5§ p?rform Sentiment Class.iﬁcation task. Given the sentence, assign a sentiment label from ['negative’, 93.68
positive’]. Return label only without any other text.
Natural Instruction  In this task, you are given sentences from movie reviews. The task is to classify a sentence as "great" if the 92.86
sentiment of the sentence is positive or as "terrible" if the sentiment of the sentence is negative.
PromptSource Does the following sentence have a positive or negative sentiment? 93.03
EVOPROMPT Examine the movie reviews and classify them as either positive or negative. 95.61
CR Manual Instruction ,l>le£1§§ p?rform Sentiment Classiﬁcation task. Given the sentence, assign a sentiment label from [’negative’, 91.40
positive’]. Return label only without any other text.
Natural Instruction  In this task, you are given sentences from movie reviews. The task is to classify a sentence as "great" if the ~90.90
sentiment of the sentence is positive or as "terrible" if the sentiment of the sentence is negative.
EvVOPROMPT Analyze customer reviews and categorize each sentence as either ’positive’ or "negative’. 91.75
MR Manual Instruction ,Plea.5§ pe,:rform Sentiment Classiﬁcation task. Given the sentence, assign a sentiment label from ['negative’, 88.75
positive’]. Return label only without any other text.
Natural Instruction  In this task, you are given sentences from movie reviews. The task is to classify a sentence as "great" if the ~ 89.60
sentiment of the sentence is positive or as "terrible" if the sentiment of the sentence is negative.
EvVOPROMPT Identify if a movie review is positive or negative by accurately categorizing each input-output pair into either  91.35
’positive’ or “negative’.
SST5 Manual Instruction ,Plea’se’perfo’m’l Sent’irr}ent C}assiﬁcalion task. Givgn the sentence, assign a sentiment label from [’terrible’, 42.90
bad’, *okay’, "good’, *great’]. Return label only without any other text.
Natural Instruction  In this task, you are given sentences from movie reviews. Based on the given review, classify it to one of the = 48.64
five classes: (1) terrible, (2) bad, (3) okay, (4) good, and (5) great.
EvVOPROMPT Have your friend evaluate the movie they had just seen and provide a summary opinion (e.g. terrible, bad, 52.26
okay, good, or great) to determine the sentiment of the movie review.
AG’s News Manual Instruction ?lea§e pe’rf?rm I\’Iews Classification tas_kA Given the news item, assign a label from [*World’, ’Sports’, 70.63
Business’, *Tech’]. Return label only without any other text.
Natural Instruction  In this task, you are given a news article. Your task is to classify the article to one out of the four topics  48.89
"World", "Sports", "Business", "Tech" if the article"s main topic is relevant to the world, sports, business,
and technology, correspondingly. If you are not sure about the topic, choose the closest option.
PromptSource What label best describes this news article? 45.43
EVOPROMPT Assess the entire concept of the news story and choose from the World, Sports, Business or Tech categories ~ 76.21
to categorize it into the correct category.
TREC Manual Instruction %ease ge_rfo’m} Questif)n, Cla‘ssi_ﬁcz’lti’on task. given the question, assi_gn a label from [Description’, *Entity’,  50.60
xpression’, "Human’, "Location’, "Number’]. Return label only without any other text.
Natural Instruction ~ You are given a question. You need to detect which category better describes the question. Answer with ~ 55.00
"Description", "Entity", "Expression", "Human", "Location", and "Number".
PromptSource Which category best describes the following question? Choose from the following list: Description, Entity, 36.20
Abbreviation, Person, Quantity, Location.
EVOPROMPT Recognize the inputs (explanations, entities, or humans) and provide the suitable outputs (numbers, descrip-  68.00
tions, or entities) to answer the questions in a way that is understandable for non-native English speakers.
Subj Manual Instruction }’le_a\se_peyrform Subjectivity Cle_xssiﬁcalion task. Given the sentence, assign a label from [’subjective’, 49.75
objective’]. Return label only without any other text.
Natural Instruction  In this task, you are given sentences from reviews. The task is to classify a sentence as "subjective” if the 52.55
opinion of the sentence is subjective or as "objective" if the opinion of the sentence is objective.
EVOPROMPT Construct input-output pairs to demonstrate the subjectivity of reviews and opinions, distinguishing between ~ 77.60

objective and subjective input while producing examples of personal opinions and illustrations of subjective
views, so it can illustrate the subjectivity of judgments and perspectives.

Table 14: Manual Instructions (following Zhang et al. (2023b) and Zhang et al. (2023c)), Natural
Instructions (Mishra et al., 2022b), PromptSource (Bach et al., 2022) as baselines and instructions
with best performance on Alpaca-7b generated by EVOPROMPT (either DE or GA) on classification
datasets.

Method Model Content ROUGE-1/2/L
. Alpaca-7b How would you rephrase that in a few words? 35.92/11.16/31.67
Manual Instruction A N
GPT How would you rephrase that in a few words? 43.95/17.11/39.09
EVOP Alpaca-7b  Carefully examine the text or listen to the conversation to identify the key ideas, comprehend  39.86/14.24/36.09
VOPROMPT the main idea, and summarize the critical facts and ideas in the concise language without any
unnecessary details or duplication.
GPT Reduce the core by reading or listening carefully to identify the main ideas and key points, so ~ 46.49/19.49/41.96

readers can comprehend the important concepts and essential information.

Table 15: Manual Instructions (following Sanh et al. (2021) as the baseline and instructions with best
performance on Alpaca-7b and GPT3.5 generated by EVOPROMPT (either DE or GA) on SAMSum.
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Method Model Content SARI
aca- implif} . 3.03

Manual Instruction Alpaca-7b Sfmplgy the text. 43.0.
GPT-3.5 Simplify the text. 43.80
EVOPROMPT Alpaca-7b  Rewrite the input text into simple English to make it easier to comprehend for non-native English speakers.  46.67
GPT-3.5 Rewrite the given sentence to make it more accessible and understandable for both native and non-native ~ 47.40

English speakers.

Table 16: Manual Instructions (following Zhang et al. (2023c¢) as the baseline and instructions with
best performance on Alpaca-7b and GPT3.5 generated by EVOPROMPT (either DE or GA) on

ASSET dataset.
Task ID Task Description Prompt Score
01 hyperbaton Order adjectives correctly in English ~ Verify the answer by splitting it into components ~ 81.20
sentences. and inspecting each part closely and logically, so
we can progress thoughtfully and methodically as
we break the task into pieces and explore each part
systematically and rationally to reach our goal.
02 temporal_sequences Answer questions about which times  Start by breaking this conundrum into manageable ~ 78.80
certain events could have occurred. ~ chunks, carefully analyzing each component of
this problem and thoroughly inspecting each aspect
collaboratively, tackling it together progressively to
ensure the correct answer and the desired outcome.
03 object_counting Questions that involve enumerating ~ Examine this logically and assess this methodically, 87.60
objects and asking the model to so that we can obtain a precise result by thinking
count them. critically and dissecting this math task systemati-
cally.
04 disambiguation_ga Clarify the meaning of sentences First, let us ponder and start off by taking our time, 71.20
with ambiguous pronouns. going step by step, and using our logic to approach
this before we dive into the answer.
05 logical_deduction_three_objects A logical deduction task which re- Let’s approach it cautiously, examining it thor- 94.40
quires deducing the order of a se- oughly and methodically, and then approach it in-
quence of objects. crementally towards a resolution.
05 logical_deduction_five_objects A logical deduction task which re- Split the problem into steps and thoughtfully 65.20
quires deducing the order of a se- progress through them to find the answer after the
quence of objects. proof.
05 logical_deduction_seven_objects A logical deduction task which re- Let’s take a step-by-step approach to systematically  54.40

quires deducing the order of a se-
quence of objects.

dissect this math task.

Table 17: Instructions with the best performance on GPT3.5 generated by EVOPROMPT (either DE
or GA) on BBH datasets. Duplicate IDs are due to the tasks with several sub-tasks.

prompt optimization within the discrete language space lies in assessing the capacity of LLMs to
adapt to these continuous control parameters.

* We hope our study can inspire further exploration of the connection between LLMs and other
traditional algorithms, extending beyond EAs. The main challenge is adapting the specific elements
of traditional algorithms to work within LLMs. For example, these elements may include direction
of motion, velocity in partial swarm optimization (PSO) (Kennedy & Eberhart, 1995), the path in
ant colony optimization algorithms (APO) (Dorigo & Gambardella, 1997), and characteristic in
MAP-Elites (Mouret & Clune, 2015).
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Task ID  Task Description Prompt Score
06 causal_judgement Answer questions about causal attri- At first, let’s handle things cautiously and resolve  65.78
bution. this by examining every detail and dealing with
one problem at a time.
07 date_understanding Infer the date from context. Be realistic and practical like a detective, and use ~ 85.60
evidence to solve the problem in a logical, step-by-
step approach.
08 ruin_names Select the humorous edit that 'ru- Break down a math task into smaller sections and  69.60
ins’ the input movie or musical artist ~ solve each one.
name.
09 word_sorting Sort a list of words. Analyze each part of the problem logically to solve ~ 56.40
it like a detective.
10 geometric_shapes Name geometric shapes from their ~ We’ll methodically work through this problem to-  64.00
SVG paths. gether.
11 movie_recommendation Recommend movies similar to the Before exploring the answer, 86.00
given list of movies.
12 salient_translation_error_detection Detect the type of error in an En- Break down the problem into individual steps in ~ 62.80
glish translation of a German source  order to solve it.
sentence.
13 formal_fallacies Distinguish deductively valid argu- Let’s be realistic and evaluate the situation system-  56.00
ments from formal fallacies. atically, tackling it gradually.
14 penguins_in_a_table Answer questions about a table of Let’s start by taking a rational and organized ap- 84.25
penguins and their attributes. proach, breaking it down into smaller parts and
thinking it through logically, while being realistic
and handling it carefully and methodically to en-
sure the right solution.
15 dyck_languages Correctly close a Dyck-n word. Let’s be realistic and solve this challenge carefully  44.40
and slowly, taking it slow to complete it correctly,
so we can be realistic and cautiously reach the goal.
16 multistep_arithmetic_two Solve multi-step arithmetic prob- Before we dive into the answer, 51.60
lems.
17 navigate Given a series of navigation instruc- Let’s logically work together to systematically 94.20
tions, determine whether one would ~ solve this math problem one step at a time in uni-
end up back at the starting point. son.
18 reasoning_about_colored_objects Answer extremely simple questions  Using a detective’s mindset, break down each ele-  88.00
about the colors of objects on a sur- ment of this mathematical reasoning challenge one
face. step at a time and reason like a detective to uncover
the solution.
19 boolean_expressions Evaluate the result of a random Let’s gradually unravel this mathematical chal- 90.80
Boolean expression. lenge by methodically addressing it by examining
each element and investigating each factor.
20 tracking_shuffled_objects_three_objects A task requiring determining the fi- Progress slowly and carefully through this mathe- 69.20
nal positions of a set of objects given  matical reasoning challenge one step at a time.
their initial positions and a descrip-
tion of a sequence of swaps.
20 tracking_shuffled_objects_five_objects A task requiring determining the fi- Using a logical, step-by-step approach, work 81.20
nal positions of a set of objects given  through this task to find the correct answer.
their initial positions and a descrip-
tion of a sequence of swaps.
20 tracking_shuffled_objects_seven_objects A task requiring determining the fi- Examine this issue logically and in detail, step-by- 84.80
nal positions of a set of objects given  step, analyzing each part of the problem one at a
their initial positions and a descrip- time.
tion of a sequence of swaps.
21 sports_understanding Determine whether an artificially ~Break down the problem into steps and start solv-  96.80
constructed sentence relating to ingit.
sports is plausible or not.
22 snarks Determine which of two sentences Break down and analyze each part of the problem  77.53

is sarcastic.

in a step by step way to ensure the right answer is
obtained.

Table 18: Instructions with the best performance on GPT3.5 generated by EVOPROMPT (either DE
or GA) on BBH datasets. Duplicate IDs are due to the tasks with several sub-tasks.
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