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Abstract. The shape of the face of cleft lip patients varies significantly
from a regular face due to the unique form and differing levels of severity
of their condition. The first step in cleft lip repair requires surgeons to
mark anthropometric landmarks that are used as a guide to conduct
surgical incisions. These landmarks are different from the ones that are
deemed important in a regular face and cannot be detected by existing
facial landmark detection frameworks.

We propose a AI/ML based assistive tool that can automatically mark
the anthropometric landmarks for cleft repair on the image of the cleft lip
patient. We use a novel method for training a convolutional neural net-
work that detects the anthropometric landmarks for patients with cleft
lip without requiring a large number of images for training. By utilizing
image ROI (region of interest) warp and direct regression, the proposed
approach is able to accurately detect landmarks despite variation in the
appearance of the cleft. Further, we show the significant improvement
ROI warp has on the prediction of anthropometric landmarks used for
cleft surgeries. We collaborate closely with reputed craniofacial surgeons
to build our training datasets and validate the accuracy of our automated
markings.

This tool is anticipated to have a tremendous impact on building surgical
capacity for cleft repair surgeries, which has a huge shortage, in particular
in rural areas, especially in emerging global areas of South America,
Africa, and India.

Keywords: Convolutional Neural Network - Facial Landmark Detection
- Keypoint Detection - Cleft Surgery - ROI Warp.

1 Introduction

Every year, around 195,000 babies globally are born with oral or facial clefts.
4.62 million people in the world today are living with an unrepaired cleft, which
increases their chances of suffering from life-threatening problems like malnutri-
tion, or death due to choking, by 2.15 times. Other life-impacting effects include
speech impediment, deafness, malocclusion, gross facial deformity, and severe
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psychological problems [30]. Therefore, children born with a cleft lip must un-
dergo reconstructive surgeries that aim to stitch the lip and palette together. The
first reconstructive surgery must happen before the 18th month when the facial
tissue is soft, malleable, and therefore, more amenable to repair. As the child
grows older and the face shape changes with age, they may require follow-up
corrective surgeries up until the age of 14-15 years [12].

(a) cleft anthropometric (b) Millard repair (c) post-surgery
landmark

Fig. 1: 21 cleft anthropometric landmarks from anterior view (a), surgery guide-
line used for Millard repair (b), and post surgery incision marks with blue stitches
outlining the incision (c¢). ¢’ stands for cleft side and nc’ stands for non-cleft
side.

Cleft surgery is one of the most challenging surgeries. Most of the time,
surgery is performed on infants 3-6 months old where the surgical area is less
than 4 x4 cm. in size. Cleft lip deformations come in several levels of complexities
and severities. Around 85% of surgeries utilize the rotation technique, named so
due to the skin flap moving in a curved path during surgery. Successful planning
and execution of the different kinds of incisions (e.g. Millard, Tennison-Randall,
Mulliken) all start with a precision marking of 21 anatomical points of reference
[26], called anthropometric landmarks, that are used to plan the incision (see
Figure-1). Surgeons use these points to make measurements and guide the cleft
repair surgery. They mark incisions using these points, and then during the
surgery, they try to align the landmarks on either side of the cleft to reconstruct
a balanced, symmetric, and aesthetically pleasing lip. Figure-1 show an example
of techniques used.

Accurate markings of these points directly impact the quality and accuracy
of the repair, which in turn determines the number of corrective surgeries re-
quired in the future. Cleft surgery is very sensitive to anthropometric landmarks.
Incorrect marking can lead to an asymmetric reconstructed lip that requires fur-
ther corrective surgeries, thereby increasing costs and discomfort to the patient.
Despite years of experience, surgeons put in tremendous effort and time to mark
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the 21 keypoints precisely due to their short-term and long-term impact on the
surgical outcome. Getting to a level of accuracy that assures good outcome takes
a lot of repetitive practice and is a skill built by the surgeon with years of expe-
rience.

Imagine an assistive tool that can collect data from expert surgeons during
surgical planning and use an AI/ML-based method to predict the 21 anthropo-
metric landmarks automatically. This assistive tool can be used in the following
scenarios:

— Practicing surgeons can use this tool for skill building. Perform repetitive
hands-on training on a large database of images even when they do not have
access to an in-person trainer with direct feedback. They can even practice
on a 3D mannequin, and the markings on its pictures can provide feedback
on the accuracy they achieved.

— AR-based expert surgical assistance is becoming common in remote areas
with low surgical capacity (see Figure-2). When a novice surgeon is per-
forming a complex surgery with expert guidance using an AR application
on a tablet, the predicted markings provide a great starting point. The ac-
curacy of these predicted points provides a great foundation and reference
for the remote expert to guide the surgeon. We are working closely with Dr.
Raj Vyas and Dr. Ross Sayadi of the University of California, Irvine (UCI)
and Children’s Hospital of Orange County (CHOC) to provide such an as-
sistive tool as part of a bigger effort on novel AR systems for remote surgical
guidance [27,29].

Remote Surgeon

Augmented Reality Surgical
Assistance International Surgeon

Fig. 2: Example of a remote surgery done through augmented reality proctoring
on a tablet.

1.1 Owur Contributions

In this paper, we propose a novel method that uses convolutional neural networks
(CNNs) to develop an assistive tool that automatically detects and labels the
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anthropometric landmarks used in cleft surgeries. The input to our tool is a
database of images of cleft lip patients with anthropometric marks. Such data
can easily be collected during the planning phase of any cleft repair surgery. Our
main contributions are as follows:

— An end-to-end network for accurately detecting all 21 anthropometric land-
marks in an image of a face with cleft lip deformity. We make use of transfer
learning to avoid building an entirely new solution for the cleft lip. Instead,
we leverage the large amount of work done on detecting general facial fea-
tures and the large training datasets thereof. This allows us to achieve high-
accuracy detection very efficiently with training datasets that are an order
of magnitude smaller in size.

— We show that warping the input image to a pre-computed template face
and extracting the predicted landmark coordinates from this ROT (region of
interest)-warped space significantly improves precision.

— We also build an efficient GUT that can help surgeons mark the 21 anthropo-
metric landmarks on a cleft lip image which is subsequently used for training.

Both the AI/ML-based automatic landmark prediction method and the GUI
can be adapted for different kinds of surgeries in the future. We find, talking to
our surgeon collaborators, that almost all surgeries involve such marking of key
landmarks before planning the incisions.

2 Related Work

Recent advances in artificial intelligence and machine learning, especially in the
subfield of face detection and recognition, can be used to assist surgeons with the
marking process by automatically detecting the keypoints from a single capture
of a face with a cleft lip. However, current state-of-the-art methods would not
be able to detect landmarks accurately. This is because a cleft face has unique
features that are not present in normal faces (see Figure-4). This makes it harder
for convolutional models to extract correct feature maps. However, they can
be leveraged to help us in detecting landmark points for faces with cleft lip
deformities.

2.1 Regression Based Facial Landmark Detection

Regression-based methods are a more traditional approach to landmark detec-
tion and can be further divided into direct regression and cascaded regression
models. Facial landmark detection through direct regression [3,32,33,35,38,41]
predict landmarks by passing an image through a backbone, then putting the
output into a fully-connected network to predict the coordinates. Here, the back-
bone network can be any network (e.g. ResNet or HRNet) that can extract
necessary features from a given image to predict the coordinates. Cascaded re-
gression models [18,21, 23,39, 40, 43] take regression models a step further by
using coarse-to-fine methods [43] to predict coordinates. These models use the
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previously detected landmarks to iteratively update the coordinates, generating
predicted landmark coordinates after a certain number of iterations. Though cas-
caded regression models tend to be more effective as they use iterative steps for
prediction, they need a large training set to attain prior knowledge of predefined
face shapes.

2.2 Heatmap Based Facial Landmark Detection

Inspired by fully-convolutional networks [20], heatmap-based methods aim to
predict landmark coordinates without the use of a fully-connected layer. There-
fore, most heatmap facial landmark detection models use coordinated predic-
tion to generate a semantic map i.e. a heatmap that has Gaussian distributions
around the predicted landmark coordinates [2,4,16,19,25,37]. Softmax function
is then used to force the sum of elements to one. The coordinate is then extracted
by the argmax function. As information gathered from a local view of an image
does not give a full understanding of the image, Wei et al. [31] proposed an alter-
native convolutional pose model where the heatmap is generated in stages, slowly
increasing the effective receptive field, an area of the image that the regressor
focuses on. Although designed to be used for human pose estimation, it is often
altered and trained to detect facial landmarks as well. When compared to re-
gression models, heatmap facial landmark detection often shows superior results
in terms of accuracy. However, as heatmaps are highly vulnerable to correlated
features, in cases where there are only a few training images, heatmap-based
methods will often exhibit noise, reducing the robustness and making it harder
to assess the usefulness of the model.

2.3 One-Hot Facial Landmark Detection

Region-based Convolutional Neural Network (R-CNN) [11], a network built to
detect objects in an image through region proposals, is also used for facial land-
mark detection. An initial CNN is used to extract rectangular region proposals,
which are then used to classify each region using a separate classifier. To en-
hance this method to an even finer level of detection and classification, Mask
R-CNN [13] was developed on top of Faster R-CNN [24]. This replaces the clas-
sification head with a region-of-interest pooling, reducing the overhead as well
as allowing the model to give pixel-wise classification of the image.

2.4 Other Techniques for Facial Landmark Detection

Although most prior works put a heavy focus on the model architecture for the
performance of their methods, other aspects of learning such as loss function
and image pre-processing can affect the final results. While not studied as much,
there are a few cases where such methods have shown to have a significant im-
pact on the results. As all training sequences aim to reduce the value of their loss
functions [7,22,34], choosing the right function is crucial to any machine learning
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model. In the domain of facial landmark detection using regression techniques,
Feng et al. [7] proposed a wing-shaped loss function to improve the accuracy
of facial detection models by increasing the impact of small to medium errors
using a combination of linear and non-linear parts, while Fard et al. [22] pro-
posed an adaptive loss function using a difference between predicted landmarks
and ground truth. In heatmap-based techniques, Yan et al. [34] calculates the
difference between two probability distributions using Wasserstein distance to
output its value. In the domain of image pre-processing, Zhao et al. [42] uses
a correction network in the image pre-processing stage to enhance the result
of the detection network. It corrects an image that has been warped by a fish-
eye lens (e.g. the ones used with doorbell cameras for wider view angle). This
is done by using two networks in sequence. Correction networks predict coefhi-
cients for their radial transformation equation, and alignment networks generate
a projective transformation matrix.

2.5 Medical Domain

Facial landmark detection is used widely in the medical field, especially in the
field of plastic surgery, to analyze facial structures before suggesting treatment
plans [5,9,10]. Freitas et al. [9] proposed a facial feature detection network ex-
tracting facial contour, contour simplification, and point localization from a side
face profile image to be used for general facial plastic surgery (e.g. reconstruc-
tive nose surgery). AI/ML based landmark prediction for landmark detection
in cleft-lip faces was suggested first by our collaborator Sayadi et al. [28] in a
medical journal which is developed into a comprehensive method and system in
this work.

3 Method

Our method seeks to detect 21 anthropometric cleft-lip landmarks (CLL) that
surgeons use to guide the surgery (see Figure-1). These landmarks are located
around the cleft and are unique to the cleft side, denoted by the prefix ¢’, as
well as the non-cleft side, denoted by the prefix nc’. Five of these 21 landmarks
that are least subjective to the surgeon preferences are: (a) prn: the tip of the
nose; (b) c’ala, nc’ala: the wings of the nostrils on the cleft and non-cleft side,
respectively; and (¢) ¢’ch, nc’ch: the junction of the upper and lower lips on the
cleft and non-cleft side, respectively.

Our method uses a network that consists of four main components: (a) de-
tection of landmark points in the face outline of the input image to cut out a
region of interest (ROI) that focuses on the cleft lip deformity, (b) creating a
rectangular input image from just the ROI via a warp-and-crop; (c) detection
of cleft landmarks in the warped and cropped image, and finally, (d) inverse
cropping and warping on the detected landmarks to find their location in the
original image. Figure-3 shows the outline of our network.
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Fig. 3: Flowchart of proposed method. FOL Detection: The Facial Outline Land-
marks (FOLs) are shown in yellow. ROI Warp & Crop: The ROI, drawn in green,
is triangulated and is used to warp and crop the image. Cleft Keypoint Detec-
tion: The cleft landmarks are then detected on the warped image. Inverse Warp:
Finally, the keypoints are inverse-warped to determine their correct locations in
the original image.

3.1 Facial Outline Landmark (FOL) Detection

In order to detect the face outline that focuses on the cleft deformity, we use 27
landmarks along the mandible and the eyebrows of the face. These facial outline
landmark (FOL) points were computed by taking the average of all training
images’ reference points. The face was cropped and resized into a 1024 x 1024
image, which was then passed through HRNet [17] to detect the landmarks along
the mandible and eyebrows for each image. For each of these FOL points, the
mean coordinate was calculated after excluding the outliers that were unusually
far from the mean.

We start by detecting FOL points since the presence of a cleft lip has almost
no effect on the landmarks on the facial outline (see Figure-4). The deformity
affects the nasolabial region most significantly, and therefore any heatmap-based
FOL point detection method can still accurately detect landmarks along the
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(a) normal face (b) cleft patient

Fig.4: Comparison of detected FOL points on a sample face from the 300W
dataset and cleft lip patient. Incorrectly detected landmarks with large errors
on nasolabial region of cleft lip patients are marked in red.

mandible and eyebrows for cleft faces. Heatmap-based methods work better for
this purpose than regression-based methods since they deliberately focus on
regions near the landmark for prediction, allowing the FOL points with sufficient
distance from the nasolabial region to be detected correctly.

We use HRNet [17] that has been trained over the 300W dataset to detect
the FOL of the cleft face. This dataset consists of images of faces with varying
poses, expressions, skin tones, and lighting conditions and has been labeled with
68 facial landmarks along the mandible, eyes, nose, and mouth. In our work, we
detect all 68 facial landmarks but only retain the 27 points comprising the facial
outline. Figure-4 compares the detected FOL points for a normal face and a cleft
lip face. Note how the points on the cleft are incorrectly detected. However, the
outline is still detected accurately.

3.2 ROI Warp and Crop

The detected FOL cut out a region of interest (ROI) in the image that focuses
only on the cleft deformity. However, though we use front-face images, they may
be somewhat different in scale and orientation. Therefore, we want to cast all
images to a general template to make the subsequent detection of CLL points
more robust. Therefore, we use piecewise affine transformation to warp the ROI
to a template ROI. The template ROI is generated by taking the average of facial
outlines of 50 images, following the concept presented by Felzenswalb et al. [6],
where intended detection objects are given deformable templates in the form
of triangular meshes. Piecewise affine transformation separates the image into
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(c) (d)

Fig.5: (a) Input image of a cleft patient with the FOL points (in yellow) carving
out the ROL (b) The template ROI in red. (¢) Warped image where the ROI
of the input image is warped to the template ROI. (d) The warped image is
cropped to retain only the minimal rectangle enclosing the warped ROI.

triangular segments for warping, allowing the warping of images using multiple
reference points as shown in Figure-5. As shown by Ye et al. [36], due to the use
of multiple anchor points for warping, piecewise affine transformation results in
a much more controlled transformation compared to a general error-minimizing
non-linear transformation. It also preserves the local shape of sub-regions in the
area of cleft deformity. Finally, we crop the warped image to retain the minimal
rectangle enclosing the warped ROI. Since our cleft lip dataset is small, and a
large variation in the appearance occurs due to the severity and shape of the
cleft as well as their scale and orientation, the previously mentioned warp-and-
crop applied to each input image standardizes the appearance of the ROI for
more accurate predictions. Figure-6 shows the triangulations used for warping
for different images in greater detail.
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Fig. 6: Triangulations used for piecewise affine transform for different kinds of
cleft lip patients. This demonstrates the generality of our method on multiple
images with different attributes (e.g. skin tone color, illumination, type of cleft).

3.3 Cleft Lip Landmark (CLL) Detection

Following the warp, we proceed to detecting the cleft lip landmarks (CLL) using a
small dataset of 200 images. As noted in Section-2, although heatmap regression
has proven to produce slightly better results in facial landmark detection, our
dataset is not sufficiently large for the model to reach convergence. Therefore, we
use ResNet-50 [14] with direct regression trained over the Wingloss [7] function.

ResNet [14] proposes a solution to the vanishing gradient problem by intro-
ducing a residual block, which merges previous input with outputs to prevent
harmful layers from affecting the result. Wingloss [7] is a loss function used in
network training in which a wing-shaped function is used to control the linearity
of the training. Feng et al. [8] have shown Wingloss to significantly improve the
accuracy of facial landmark detection models using direct regression.

3.4 Inverse Image Warp

Finally, the predicted CLL points need to be inverse-warped to determine their
locations in the original image domain. Figure-7 shows the results and compares
the predictions with ground truth hand-marked by collaborating surgeons. We
employ the same technique used for transforming ground truth to the warped
image domain for creating an inverse warp.
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(a) - (b)

Fig. 7: Detected landmarks on warped ROI (a). In a view zoomed in on the cleft
lip deformity (b), we show the predictions in red and the ground truth in blue.
Note the precision alignment of red and blue points.

4 Implementation and Results

4.1 Dataset

Our dataset consists of 500 unilateral cleft lip photos provided to us by the
Global Smile Foundation and is approved by the Institutional Review Boards,
a group that has been formally designated to review and monitor biomedical
research involving human subjects. Of the 500 images, approximately 200 frontal
images of patients with cleft lips were labeled with 21 keypoints that are used for
cleft surgery techniques, such as one shown in Figure-1. These images capture
a frontal view of the entire face of patients and were carefully labeled by our
surgeon collaborators who have deep experience in performing cleft lip repair.
Almost all patients are less than 2 years which is the typical age range for cleft
lip repair surgery. Excluding incompletely labeled images, we train our model
on 150 images and evaluate our approach on the remaining 50.

Table 1: Interocular NME for cleft lip dataset

Method Test | Full 90% 80%
Wingloss [7] 2.84e-2 | 2.81e-2 | 2.38e-2 2.12e-2
Wingloss - Warped|2.35e-2(2.35e-2| 1.84e-2 (1.71e-2
'Sayadi et al. [28] | N/A |3.87e-2 N/A N/A
'Only Full NME is provided by Sayadi et al. [28]
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Fig. 8: Cleft anthropometric landmark predictions. Original image (left), predic-
tions on warped ROI (left-middle), predictions on original image (right-middle),
zoomed in predictions on original image (right).
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Fig.9: NME for all 21 cleft anthropological landmark predictions with Warped
Wingloss, without Warp-and-Crop Wingloss [7], and Sayadi et al. [28].

4.2 Evaluation Metric

In this work, we measure the accuracy of the detected keypoints by reporting
the interocular Normalized Mean Error (NME), €;, computed as:

ez:vizvijfj: (1)
JjeEK

where K is the set of all 21 keypoints, d;; is the Euclidean distance (in pixels)
between the j-th detected keypoint in image ¢ and its ground truth location, v;;
is a binary variable that is 1 if the keypoint is visible in image ¢ and 0 otherwise,
L; is the interocular distance i.e. the normalized Euclidean distance between the
f:enters‘ of the pupils and V; = Y ek Vijs the number of unoccluded points in
image 1.

4.3 Training

We train two networks separately: one where the input images have been ROI-
warped and one where the input images are not ROI-warped. Both networks are
trained on 150 training images.

4.4 Results

The test dataset consists of 50 cleft images of various face shapes, skin tones, and
severity of cleft lip to best analyze the accuracy of the networks with minimal
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Table 2: Interocular NME Comparison for All 21 Landmarks.

Name [Wingloss [7][Warped-Wingloss| 'Sayadi et al. [28]
prn 3.75e-02 1.51e-02 4.10e-02
c’ala 2.32e-02 1.53e-02 2.90e-02
mrl 4.55e-02 1.70e-02 4.80e-02
c’'nt2 2.61e-02 1.85e-02 4.50e-02
c’rl 2.18e-02 1.89e-02 4.30e-02
nc’c 3.71e-02 1.92e-02 3.80e-02
c¢’ntl 2.55e-02 2.04e-02 4.50e-02

Is 3.66e-02 2.06e-02 4.20e-02
sn 3.22e-02 2.18e-02 2.90e-02
nc’ala 2.99e-02 2.21e-02 3.10e-02
nc’cphs|  3.23e-02 2.42e-02 3.10e-02
c’cphs 3.76e-02 2.48e-02 3.10e-02
Ichpi 3.26e-02 2.64e-02 4.80e-02
c’sbal 2.24e-02 2.67e-02 3.40e-02
c’cphi 3.03e-02 2.70e-02 5.50e-02
nc’sbal| 2.44e-02 2.70e-02 3.50e-02
sto 2.92e-02 2.75e-02 4.30e-02
c’ch 3.48e-02 2.93e-02 3.70e-02
c'c 4.19e-02 3.02e-02 3.40e-02
nc’cphi|  3.69e-02 3.14e-02 4.30e-02
nc’ch 5.64e-02 3.41e-02 3.10e-02

ISayadi et al. [28] values are approximated from provided graph.

bias. The full set is evaluated using all 200 marked images. Figure-8 shows our
predicted points compared with ground truth for some of these images. Note that
despite having a large variation in the cleft lip deformity, our method is able to
predict the CLLs accurately. Table-1 lists the average NMEs for our dataset both
with and without the warp-and-crop. Figure-9 compares our method to one that
does not perform the warp-and-crop and also with those reported by Sayadi
et al. [28]. Our network provides superior performance with warp-and-crop and
has a higher NME without warp-and-crop. Additionally, both versions of our
network perform better than Sayadi et al. [28] on the full dataset (see Table-1).

Table-2 shows the NME for all 21 keypoints detected by the proposed method
with and without warp-and-crop and compares them to the results reported by
Sayadi et al. [28]. Our algorithm accurately and precisely predicts the anthro-
pometric landmarks well within the boundaries set forth by benchmarks [1,44].
The landmarks c’ala, nc’ala, and prn, all on the nose, have the lowest NME
whereas c’ch, the cleft-side lip corner, was close to the median NME. nc’ch, the
lip corner on the non-cleft side, showed the highest NME. Overall, our network,
both with and without warp-and-crop, detects all keypoints, except nc’ch, with
a lower NME than Sayadi et al. [28].
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(a) with apparatus

(b) tilted face (c) adult face

Fig. 10: Examples of failure cases. (a) FOLs could not be detected for images of
patients with surgical apparatus, (b) images where the camera is oriented more
than 10° from the frontal view, and (c) cleft lip deformity in adult faces.

Table-3 notes the average computation time for the major components of the
network: FOL detection, ROI warp, and cleft keypoint detection. Our machine
used for computation was equipped with 11900K processor, RTX 4090 GPU, and
128GB 3600MHz DDRA4. Note that inverse warp is omitted from the Table-3 as
it takes less than 1 ms.

Table 3: Computation time on network components.

FOL Detection|ROI Warp| Cleft Keypoint Detection
358 ms 661 ms 950 ms

*Computation time calculated on 11900K with RTX 4090.

*Inverse warp not shown as computation takes less than 1 ms.

4.5 Discussion and Limitations

The results show that our network has a lower error for certain landmarks but a
higher error for others. For example, ¢’ch, ¢’ala, and nc’ala have the lowest NME,
whereas c¢’ch and nc’ch have the highest NME. c’ala, nc’ala, and prn, all on the
nose, have the lowest NME as they are anchor points that are the least subjective
to surgeon preferences. In comparison, c¢’ch and nc’ch, the corners of the mouth,
have a larger region of acceptable marking, and therefore, it is harder for our
model to pinpoint the exact location. In marking the anthropometric landmarks,
c’cphi, ¢’ntl, ¢’'nt2, and c¢’rl are most subjective to surgeon preferences. However,
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as all images were marked by Dr. Ross Sayadi, they did not show high NME in
our study.

Benefiting from ROI warp, our network can accurately detect cleft landmarks
on images at a camera angle between -10° and 10°. Any camera angle beyond
this range results in incorrect detections, as our data does not contain enough
example images to train the network. Despite thorough training, certain image
features have been shown to cause performance drops and failure (see Figure-
10). Such cases are (i) facial occlusion by apparatus, e.g. due to breathing tubes,
band-aids, etc., (ii) non-frontal views of the cleft, (iii) adult patients with cleft-
lip and (iv) patients with eyes closed. We suspect the small size and variety of
our dataset to be the root cause of most of the failure cases. As our dataset
consists mainly of full frontal face view images of patients less than two years
of age with eyes open, our network is more likely to fail on images not meeting
these criteria.

The proposed method initially detects FOL for warp-and-crop. This means
that the network would fail to detect keypoints in an image where the facial
boundary is not visible. The trained model also shows significant performance
drops in subnasal views of the cleft. This is because the dataset used for train-
ing does not have any subnasal images. However, as long as the angle is not
severely skewed, the warp-and-crop step of the proposed method corrects the
image enough for the detection to operate correctly.

5 Conclusion

In summary, we have presented the first method to accurately detect cleft lip
landmarks using an AI/ML based training method. In order to enhance the ac-
curacy of this detection, we have used a warp-and-crop method that standard-
izes the image to counterbalance the facial deformations caused by the cleft-lip
condition. Not only does it improve the performance of detection, but it also
allows an end-to-end detection of cleft landmarks. With the help of ResNet-50
and Wingloss function, we optimize the network for use in cleft-lip surgeries.
The empirical results show that the proposed method outperforms prior meth-
ods significantly. In the future, we would like to enhance this technique in the
following ways.

— First, we would like our technique to be robust to different camera angles
by expanding our training data set to non-frontal views.

— In addition, we would like to use temporal coherence and GPUs to enhance
the performance of the prediction to get it near real-time so that the pre-
dicted markings stick to the face in AR based video surgical assistance ses-
sions. Finally, we are also building a Spatially Augmented Reality (SAR)
system that

— Spatially augmented reality (SAR) based system exist today that use a pro-
jector and RGBD camera (e.g. Azure Kinect) to illuminate surgical guidance
marks directly on the surgical site. A remote expert marks the landmark
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points or lines on the 3D model of the surgical site (captured by a struc-
tured light scan) using a GUI that shows up on-site in the surgical area in
real-time [15]. We would like to extend our predictions to 3D models (in-
stead of 2D images) to be used as a starting point on SAR systems. VR
headset-based systems can also benefit from this.

— We would like to forge new directions by adapting the same technique for
critical landmark detection for other surgeries as well.
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