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Abstract

Current approaches for compressing the Segment Anything Model (SAM) yield
commendable results, yet necessitate extensive data to train a new network from
scratch. Employing conventional pruning techniques can remarkably reduce data
requirements but would suffer from a degradation in performance. To address
this challenging trade-off, we introduce SlimSAM, a novel data-efficient SAM
compression method that achieves superior performance with extremely less train-
ing data. The essence of SlimSAM is encapsulated in the alternate slimming
framework which effectively enhances knowledge inheritance under severely lim-
ited training data availability and exceptional pruning ratio. Diverging from prior
techniques, our framework progressively compresses the model by alternately
pruning and distilling distinct, decoupled sub-structures. Disturbed Taylor prun-
ing is also proposed to address the misalignment between the pruning objective
and training target, thereby boosting the post-distillation after pruning. Slim-
SAM yields significant performance improvements while demanding over 10
times less training data than any other existing compression methods. Even when
compared to the original SAM, SlimSAM achieves approaching performance
while reducing parameter counts to merely 1.4% (9.1M), MACs to 0.8% (23G),
and requiring only 0.1% (10k) of the SAM training data. Code is available at
https://github.com/czg1225/SlimSAM

1 Introduction

Segment Anything Model (SAM) [25] has attracted considerable attention from the community since
its inception. A plethora of studies [48, 19, 34, 43, 31, 2, 59, 55, 18, 53, 35] have achieved substantial
progress by incorporating SAM as a fundamental component. Nevertheless, despite its remarkable
performance, SAM’s substantial model size and high computational demands render it inadequate
for practical applications on resource-constrained devices. This limitation consequently hinders the
advancement and broader application of SAM-based models.

To mitigate these constraints, many efforts [29, 62, 60, 50, 63, 45] have been made to effectively
compress SAM. Without exception, these endeavors opt to replace the originally heavyweight image
encoder with a lightweight and efficient architecture. This invariably entails training a new network
from scratch. With regard to scratch training, an unavoidable challenging trade-off arises between
training costs and model performance. Existing methods all inevitably compromise performance
when training with very limited data.

The crux of the above issue is their inability to fully exploit the capability of pre-trained SAM. To
overcome the high training data demands by reusing the robust prior knowledge of pre-trained SAM,
a straightforward strategy involves the application of pruning techniques [38, 14, 3, 52, 8] to directly
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Figure 1: A simple overall diagram of the proposed alternate slimming process.

compress the sizable SAM by removing redundant parameters from the network and fine-tuning the
streamlined model with a minimal dataset [16, 36, 10, 30]. Nevertheless, following this conventional
procedure leads to unexpected steep performance degradation, particularly when the pruning ratio is
set aggressively high and the available data is extremely scarce.

In response to the challenges outlined above, we present SlimSAM, a data-efficient method for SAM
compression. Initiating with a standard pruning-finetuning workflow, we gradually “modernize”
the compression procedure by introducing our novel designs customized for severely limited data
availability and the intricate coupled structure of SAM, culminating in exceptional efficacy while
requiring minimal training data. Central to the method are our pioneering contributions: the alternate
slimming framework and the disturbed Taylor pruning.

The alternate slimming framework, presented in Figure 1, boosts performance by minimizing di-
vergence from the original model and enabling the intermediate feature alignment via consistent
dimensionality. Diverging from prior methods, it alternates between pruning and distillation within
decoupled model components. The process begins by targeting the embedding dimensions for pruning
and aligning the consistent bottleneck dimensions for distillation. It then shifts focus to pruning the
bottleneck dimensions in ViTs [6], aligning the unchanged embedding dimensions for distillation.
Observing the misalignment between the pruning object and the distillation target impedes the efficacy
of compression, we introduce a novel label-free importance estimation criterion called disturbed
Taylor importance to address this misalignment effectively, thereby enhancing the recovery process
and obviating the need for labeled data.

Comprehensive assessments across performance metrics, efficiency, and training data requirements
reveal that SlimSAM markedly enhances compression performance, concurrently achieving superior
lightweight and efficiency with markedly reduced training data requirements. Notably, our entire
compression can be completed using only 10k un-labeled images on a single Titan RTX GPU.

In summary, our contribution is a data-efficient SAM compression method called SlimSAM, which
effectively repurposes pre-trained SAMs without the necessity for extensive retraining. This is
achieved through a novel modernized pruning-distillation procedure. By proposing the alternate
slimming framework and introducing the concept of disturbed Taylor importance, we realize greatly
enhanced knowledge retention in data-limited situations. When compared to the original SAM-H,
SlimSAM achieves approaching performance while reducing the parameter counts to 1.4% (9.1M),
MACs to 0.8% (23G), and requiring mere 0.1% (10k) of the training data. Extensive experiments
demonstrate that our method realizes significant superior performance while utilizing over 10 times
less training data when compared to any other compression methods.

2 Related Works

Model Pruning. Due to the inherent parameter redundancy in deep neural networks [13], model
pruning [16, 14, 30, 3, 27, 33, 52, 36, 10] has proved to be an effective approach for accelerating
and compressing models. Pruning techniques can be generally classified into two main categories:
structural pruning [30, 27, 56, 8, 4, 56, 7, 9] and unstructured pruning [5, 26, 40, 42, 12]. Structural
pruning is focused on eliminating parameter groups based on predefined criteria, while unstructured
pruning involves the removal of individual weights, typically requiring hardware support.
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Efficient Learning. Efficient Learning refers to a range of techniques [54, 57, 20, 21, 58, 11, 22, 28]
aimed at reducing the training costs of deep models while maintaining performance. Knowledge
Distillation (KD) [17] is a prominent method under this category, where knowledge is transferred from
a larger, powerful teacher model to a smaller, more efficient student model. This approach leverages
soft targets and a temperature parameter to enable the student model to learn more effectively. KD
[46, 44, 61, 1, 51, 32, 47, 37, 39] has proven to be an effective strategy for model compression,
making it highly applicable in scenarios requiring resource-efficient deployment.

SAM Compression. The formidable model size and computational complexity of SAM pose
challenges for edge deployment, prompting an extensive array of research focused on devising
compression techniques for SAM to enhance its applicability. Notably, FastSAM [62] replaces
SAM’s extensive ViT-based architecture with the efficient CNN-based YOLOv8-seg [23] model,
while MobileSAM [60] adopts the lightweight Tinyvit [49] to replace the image encoder and employs
knowledge distillation from the original encoder. EdgeSAM [63] introduces the prompt-in-the-loop
knowledge distillation to accurately capture the intricate dynamics between user input and mask
generation. EfficientSAM [50] innovatively adapts MAE [15] framework to obtain efficient image
encoders for segment anything model but requires extensive training data even more than the SA-1B
dataset. However, the above approaches all inevitably suffer from scratch training, resulting in
unsatisfactory performance when training data is limited.

Remark. The application of common pruning and KD methods falls short in achieving superior
performance due to the unique challenges presented by limited training data and SAM’s coupled struc-
ture. To enhance performance, we propose an alternate slimming framework to minimize divergence
from the original model and enable the intermediate feature alignment by consistent dimensionality.
We also propose disturbed Taylor pruning to address the misalignment between pruning objectives
and training targets. In contrast to other SAM compression methods, our SlimSAM achieves superior
compression performance while significantly incurring lower training data requirements.

3 Methods

Our paramount objective is to achieve substantial compression of the large image encoder while
minimizing performance degradation in scenarios characterized by severe data limitations. To
navigate the challenging trade-off between maintaining remarkable performance and the necessity for
copious training data, we adopt a strategy of directly inheriting the core weights from the original
SAM. This approach capitalizes on SAM’s robust prior knowledge, derived from 11 million images.
Adhering to this foundational principle, we begin with a standard workflow: initial pruning of the
model followed by refinement through post-distillation.

3.1 Identifying SAM Redundancy

The initial phase is dedicated to the estimation of the importance of each parameter, determining the
non-essential and redundant parameters of the image encoder to be pruned. To fulfill this objective,
we endeavor to estimate the importance of a parameter through the quantification of prediction
errors engendered by its removal [38]. Given a labeled dataset with N image pairs {xi, yi}Ni=1 and a
model F with M parameters W = {wi}Mi=1. The output of the original model can be defined as
ti = FW (xi). Our objective is to identify the parameters that yield the minimum deviation in the
loss. Specifically, the importance of a parameter wi, can be defined as:

Iwi
= |∆L(xi, yi)| = |Lwi

(xi, yi)− Lwi=0(xi, yi)| , (1)

where L(xi, yi) is the loss between the model output and the label yi when input data is xi. We can
approximate Lwi=0 in the vicinity of wi by its first-order Taylor expansion:

Lwi=0(xi, yi) = Lwi
(xi, yi)−

∂L(xi, yi)

∂wi
wi +R1(wi = 0). (2)

Substituting equation 2 into equation 1, we can approximate the parameter importance as:

Iwi ≈
∣∣∣∣Lwi=0(xi, yi)− Lwi=0(xi, yi) +

∂L(xi, yi)

∂wi
wi

∣∣∣∣ = ∣∣∣∣∂L(xi, yi)

∂wi
wi

∣∣∣∣ . (3)
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However, there exist two distinct limitations associated with the above Taylor importance estimation
when pruning the image encoder of SAM. Firstly, the accuracy of Taylor importance relies heavily
on the availability of sufficiently accurate hard labels yi. Unfortunately, due to the intricate nature
of jointly optimizing the image encoder and combined decoder [60], the post-distillation process
necessitates performing on the image embedding ti, resulting in the utilization of soft labels exclu-
sively. Secondly, a concern arises regarding the consistency of loss functions when employing Taylor
importance estimation for SAM pruning. The importance estimation strategy’s primary objective
is to identify parameters wi that minimize the hard label discrepancy |∆L(xi, yi)|. In contrast, the
goal of the distillation-based recovery process is to minimize the soft label loss |∆L(xi, ti)|. This
misalignment in optimization objectives potentially impedes the efficacy of the distillation process.
The experimental results in Section 5 also strongly prove our conclusion.

Disturbed Taylor importance. To address the unique limitations associated with Taylor importance
estimation, we introduce an extremely simple yet effective solution known as disturbed Taylor
importance. Given the absence of hard labels and the incongruity of loss functions, a logical approach
is to identify parameters wi that minimize the soft label divergence |∆L(xi, ti)|. However, the
gradients ∂L(xi,ti)

∂wi
resulting from applying the loss between encoder’s outputs ti are consistently

zero. Consequently, we calculate gradients based on the loss function between the original image
embedding ti and disturbed image embedding ti +N (µ, σ2), where N is Gaussian noise with mean
µ = 0 and standard deviation σ = 0.01. As the expectation E(ti +N ) = ti, when the batch size is
large enough, the importance of a parameter wi can be approximated as:

Iwi
= |∆L(xi, ti)| ≈ |∆L(xi, ti +N )|
= |Lwi

(xi, ti +N )− Lwi=0(xi, ti +N )|

≈
∣∣∣∣∂L(xi, ti +N )

∂wi
wi

∣∣∣∣ . (4)

As the generated gradients ∂L(xi,ti+N )
∂wi

̸= 0, the importance can be estimated.

Remark. Leveraging our disturbed Taylor importance, the pruning objective is seamlessly aligned
with the optimization target of subsequent distillation. Compared to previous pruning techniques,
it results in a 0.85% MIoU enhancement when the pruning ratio reaches 77% and a 0.60% MIoU
improvement when the pruning ratio is set at 50%. Moreover, the adoption of disturbed Taylor
importance transforms the entire compression workflow into a convenient label-free framework
without incurring additional computational costs.

3.2 Alternate Slimming.

After estimating the weights’ importance, our approach advances to implementing channel-wise
structural pruning on the extensive image encoder, followed by distillation-based model finetuning.
To attain an unprecedentedly high compression rate, the pruning ratio in this study is necessitated
to be set significantly higher than in typical scenarios. With the pruning ratio exceeding 75%, we
observe a marked performance degradation between the pruned model and its original counterpart,
a consequence of employing the conventional single-step pruning technique. Additionally, the
extremely constrained data availability also poses unique challenges to distillation efficacy. Employing
merely 0.1% of the SA-1B dataset (10k images) for post-distillation underscores a significant
challenge in recuperating satisfactory performance for the pruned model.

To address identified challenges, we introduce an innovative alternate slimming framework, anchored
by two principles: reducing the divergence between the original and pruned models, and enhancing
post-distillation efficacy.

Our framework decomposes the model into two separate sub-structures: embedding (output di-
mensions of each block) and bottleneck (intermediate features of each block). By sequentially
pruning and restoring either sub-structure, we achieve a smoother compression loss, preventing
the steep performance degradation typically associated with extreme pruning ratios. To improve
post-distillation, we exploit the hidden state information of the original model. Due to the structural
resemblance between the pruned and original models, using intermediate hidden states for supervision
facilitates superior knowledge transfer. Traditional pruning workflow struggles with dimensionality
inconsistency, complicating hidden state supervision. Our method, by partitioning the model into
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Figure 2: The provided figure depicts our alternate slimming process with a 50% pruning ratio on
SAM-B. We utilize structural pruning at the channel-wise group level to compress SAM’s image
encoder, coupled with knowledge distillation from intermediate layers to restore the pruned encoder.
The red numbers highlight the pruned dimensions at each pruning step.

sub-structures, circumvents this issue. Whether pruning embedding or bottleneck dimensions, the
intact remaining dimensions enable alignment through loss backpropagation. The effectiveness of
this feature alignment, especially in data-scarce scenarios, highlights our framework’s efficacy.

An overview of the alternate slimming framework is detailed in Figure 2. Given the Vit-based image
encoder with k blocks, the output and intermediate features of each block within the encoder are
denoted as E = {ei}ki=1 and H = {hi}ki=1. Specifically, for Multi-Head Attention Blocks
(MHABs), the intermediate feature refers to the concatenated QKV features, while for the MLPs,
it refers to the hidden features between two linear layers. The final output image embedding is
represented as t. The original encoder is referred to as v0, while the pruned encoders after embedding
pruning and bottleneck pruning are denoted as v1 and v2, respectively. The alternate slimming process
can be described as the following progressive procedure: embedding pruning, bottleneck aligning,
bottleneck pruning, and embedding aligning.

Embedding Pruning. The embedding dimension significantly impacts the encoder’s performance
as it determines the width of features extracted within the encoder. To begin with, we prune
the embedding dimensions D(E) while keeping the bottleneck dimensions D(H) constant. The
presence of residual connections necessitates the preservation of uniformity in the pruned embedding
dimensions D({ei}Ki=1) across all blocks. Consequently, we employed uniform local pruning.

Bottleneck Aligning. In the context of incremental knowledge recovery, the pruned encoder learns
from the original encoder’s output tv0 and aligns with its dimensionality-consistent bottleneck features
Hv0

in each block. The distillation loss function for bottleneck aligning is a combination of bottleneck
feature loss and final image embedding loss:

LBn = α · LMSE(Hv0 , Hv1) + (1− α) · LMSE(tv0
, tv1), (5)

where LMSE(., .) is mean-squared error, the dynamic weight α of nth epoch is defined as:

α =

{
0.5 n < N
0 n >= N

. (6)

We set N = 10 for bottleneck aligning.

Bottleneck Pruning. Following the pruning of the embedding dimension D(E) and its coupled struc-
tures, we exclusively focus on pruning the bottleneck dimension. As the dimension of intermediate
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features D({hi}Ki=1) in each block are entirely decoupled, we can systematically apply dimension
pruning at various ratios for each block while maintaining the predetermined overall pruning ratio.
This approach involves utilizing a global ranking of importance scores to conduct global structural
pruning.

Embedding Aligning. The pruned encoder v2 will learn from the embeddings Ev1 and final image
embedding Tv1 from the pruned encoder v1 to expedite knowledge recovery. Simultaneously, it also
computes loss functions based on the final image embedding tv0 from the original encoder v0 to
enhance the precision of knowledge recovery. The total loss function for embedding aligning is
defined as:

LEmb = α · (LMSE(Ev1 , Ev2) + LMSE(tv1 , tv2))

+(1− α) · LMSE(tv0 , tv2),
(7)

where the dynamic weight α of nth epoch is defined as:

α =

{
N−n−1

N n < N
0 n >= N

. (8)

The dynamic weight α will progressively diminish to zero as the distillation process unfolds. This
transition in the learning objective of distillation gradually shifts from v1 to v0 contributing to a
smoother knowledge recovery. We also set N = 10 for embedding aligning.

Remark. The implementation of alternate slimming on decoupled sub-structures significantly reduces
the disruption to the original model, particularly when the pruning ratio is quite high. This strategy
also preserves consistent dimensionality, enabling effective intermediate feature distillation, which is
especially beneficial in data-scarce conditions. Consequently, in comparison to the previous pruning
and distillation methods, our alternate slimming achieves a 3.40% and 0.92% increase in MIoU when
the pruning ratios achieve 77% and 50%.

4 Experiments

4.1 Experimental Settings

Implementation Details. Our SlimSAM has been implemented in PyTorch [41] and trained on a
single Nvidia Titan RTX GPU using only 0.1% (10,000 images) of the SA-1B [25] dataset. The base
model of our framework is SAM-B [25]. The model’s parameters were optimized through the ADAM
[24] algorithm with a batch size of 4. Training settings for both bottleneck aligning and embedding
aligning are identical. The pruned models undergo distillation with an initial learning rate of 1e−4,
which will be reduced by half if validation performance does not improve for 4 consecutive epochs.
The total training duration is 40 epochs for SlimSAM-50 (with a 50% pruning ratio) and 80 epochs
for SlimSAM-77 (with a 77% pruning ratio). We exclusively compressed the image encoder while
retaining SAM’s original prompt encoder and mask decoder.

Evaluation Details. To ensure a fair quantitative evaluation of the compressed SAM models, we
compute MIoU between the masks predicted by the model and the ground truth masks of the SA-1B
dataset. We use the most challenging single-point prompts given in annotations for experiments. The
results using box prompts are also reported in our Appendix. For efficiency evaluation, we provide
information on parameter counts and MACs. Additionally, we present details about training data,
training iteration and training GPUs for evaluating the training cost. Qualitative comparison of results
obtained using point prompts, box prompts, and segment-everything prompts are also shown in the
following section.

4.2 Comparision and Analysis

Comparing with existing SAM compression methods. As depicted in Table 1, we conducted a
comprehensive comparison encompassing performance, efficiency, and training costs with other
SOTA methods. Our SlimSAM-50 and SlimSAM-77 models achieve a remarkable parameter
reduction to only 4.0% (26M) and 1.4% (9.1M)of the original count, while also significantly lowering
computational demands to just 3.5% (98G) and 0.8% (23G) MACs, all while maintaining performance
levels comparable to the original SAM-H. In contrast to other compressed models, our approach
yields substantial performance enhancements while simultaneously achieving greater lightweight
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Table 1: Comparing with other existing SAM compression methods on SA-1B dataset. We report
parameter counts, MACs, training costs, and Mean Intersection over Union (MIoU) for a comprehen-
sive and fair comparison.

Method Params↓ MACs↓ TrainSet BatchSize GPUs Iters MIoU↑

SAM-H [25] 641M 2736G 11M(100%) 256 256 90k 78.30%
SAM-L [25] 312M 1315G 11M(100%) 128 128 180k 77.67%
SAM-B [25] 93M 372G 11M(100%) 128 128 180k 73.37%

FastSAM-s [62] 11M 37G 220k(2%) 32 8 625K 30.72%
FastSAM-x [62] 68M 330G 220k(2%) 32 8 625K 35.41%
MobileSAM [60] 9.8M 40G 100k(1%) 8 1 100k 62.73%
EfficientSAM-t [50] 10M 28G 12.2M(110%) 128 64 450k 69.42%
EfficientSAM-s [50] 26M 94G 12.2M(110%) 128 64 450k 71.19%
EdgeSAM [63] 9.6M 23G 100k(1%) 64 8 50k 65.96%
SlimSAM-50(Ours) 26M 98G 10k(0.1%) 4 1 100k 72.33%
SlimSAM-77(Ours) 9.1M 23G 10k(0.1%) 4 1 200k 67.40%

Table 2: Comparing with other structural pruning methods. ’Ratio’ signifies the pruning ratio applied
to channel-wise groups. Training costs remain consistent for the same pruning ratio.

Ratio Method Labels Params↓ MACs↓ MIoU↑

Ratio=0%
SAM-H [25] ✔ 641M 2736G 78.30%
SAM-L [25] ✔ 312M 1315G 77.67%
SAM-B [25] ✔ 93M 372G 73.37%

Ratio=50%

Scratch Distillation ✘

26M 98G

1.63%
Random Pruning ✘ 71.03%
Magnitude Pruning [14] ✘ 69.96%
Hessian Pruning [30] ✔ 71.01%
Taylor Pruning [38] ✔ 71.15%
SlimSAM-50(Ours) ✘ 72.33%

Ratio=77%

Scratch Distillation ✘

9.1M 23G

1.34%
Random Pruning ✘ 62.58%
Magnitude Pruning [14] ✘ 61.60%
Hessian Pruning [30] ✔ 63.56%
Taylor Pruning [38] ✔ 64.26%
SlimSAM-77(Ours) ✘ 67.40%

and efficiency. SlimSAM consistently delivers more accurate and detailed segmentation results
across various prompts, preserving SAM’s robust segmentation capabilities to the greatest extent.
This qualitative superiority over other models is visually evident in Figure 5 and 6. Our approach
demonstrates outstanding levels of accuracy and correctness. Most notably, SlimSAM achieves
these remarkable outcomes with exceptionally low training data requirements, utilizing merely
0.1% (10k) images of the SA-1B dataset. This represents a significant reduction in data dependency,
requiring 10 times less data than both EdgeSAM and MobileSAM, and 1,100 times less data than
EfficientSAM.

Comparing with other structural pruning methods. Having demonstrated structural pruning’s
efficacy for SAM compression, we established a benchmark for evaluating various pruning methods.
SlimSAM is compared with four commonly used pruning methods: random pruning, magnitude
pruning, Taylor pruning, and Hessian pruning, each employing different criteria for pruning. Addi-
tionally, we conducted comparisons with scratch-distilled models, which are randomly initialized
networks sharing the same architecture as the pruned models. To ensure a completely equitable
comparison, models with the same pruning ratios were subjected to identical training settings. Table
2 showcases our method’s consistent superiority over other structural pruning techniques, particularly
at higher pruning ratios. SlimSAM-50 and SlimSAM-77 outperform existing methods, achieving a
minimum 1% and 3% MIoU improvement while incurring the same training cost. It is noteworthy
that the performance of scratch distillation is extremely low at such a limited training cost. This
further proves the effectiveness of our workflow in preserving knowledge from the original model.

5 Ablation Study and Analysis

We conducted a series of ablation experiments on the SlimSAM-77 model, which features an
ambitious 77% pruning ratio. To ensure a fair comparison in the ablation experiments, all evaluated
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Disturbed Taylor Importance Random Importance

Figure 3: Training results on SA-1B with the common one-step method and our alternate slimming
framework. Left and right are results with disturbed Taylor importance and random importance.

Table 3: Comparison between disturbed Tay-
lor pruning and original Taylor pruning.

Method MIoU↑

Taylor Pruning 62.04%
Disturbed Taylor Pruning 62.31%

SlimSAM-77 + Taylor 63.63%
SlimSAM-77 + Disturbed Taylor 64.48%

Table 4: Effect of distillation from intermediate
layers and final output image embeddings.

Step Distillation Objective MIoU↑

Step 1 Final Image Embeddings 65.10%
Step 1 + Bottleneck Features 66.32%

Step 2 Final Image Embeddings 63.91%
Step 2 + Embedding Features 64.48%

Figure 4: The intermediate dimensions of QVK Attention (top row) and MLP (bottom row) within
each ViT after pruning. We present the outcomes of local pruning and global pruning under five
distinct normalization methods.

models were trained for 40 epochs on the same 10k images from the SA-1B dataset. We also conduct
additional experiments to evaluate the performance of SlimSAM with even less training data.

Disturbed Taylor Pruning. First, we conducted an ablation study to assess the impact of our
proposed disturbed Taylor pruning on distillation. This innovative approach aligns the pruning
criteria with the optimization objectives of subsequent distillation, resulting in improved performance
recovery. As depicted in Table 3, our disturbed Taylor pruning consistently achieves significantly
superior performance at the same training cost. For both the common one-step pruning strategy and
our alternate slimming strategy, our method demonstrates MIoU improvements of 0.3% and 0.85%
over the original Taylor pruning, respectively.

Intermediate Aligning. We also evaluate the effect of incorporating aligning with intermediate
layers into the distillation process. As depicted in Table 4, distilling knowledge from intermediate
layers leads to significant improvements in training results. Specifically, learning from bottleneck
features and final image embeddings results in a 1.22% MIoU improvement for step 1 distillation,
compared to learning solely from image embeddings. Similarly, for step 2 distillation, learning from
embedding features and final image embeddings achieves a 0.57% MIoU improvement over the case
where learning is based solely on image embeddings.

Alternate Slimming. In addition, we conducted experiments to investigate the impact of our alternate
slimming framework. Unlike the common one-step pruning strategy, we partition the structural
pruning process into two decoupled and progressive steps. In the first step, only the dimensions
related to the embedding features are pruned, while in the second stage, only the dimensions
related to the bottleneck features are pruned. Following both embedding and bottleneck pruning,
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Table 5: Effect of global pruning evaluated un-
der five different normalization approaches.

Method Normalization MIoU↑

Local Pruning — 64.38%

Global Pruning

Mean 63.64%
Max 64.35%
Sum 63.55%

Gaussian 64.48%
Standardization 64.14%

Table 6: Comparision of training results using
varied amounts of training data.

Pruning Ratio Data Iters MIoU↑

Ratio=50%
10k 100k 72.33%
5k 100k 71.89%
2k 100k 69.79%

Ratio=77%
10k 200k 67.40%
5k 200k 64.47%
2k 200k 61.72%

knowledge distillation with intermediate layer aligning is employed on the pruned model to recover its
performance. For a more exhaustive analysis, we present the results obtained using different pruning
criteria to assess whether the effectiveness of our method is influenced by importance estimation. As
illustrated in Figure 3, our alternative slimming framework yields substantial improvements in MIoU,
with gains of 3.9% and 3.5% observed under disturbed Taylor importance estimation and random
importance estimation.

Global Pruning vs Local Pruning. Finally, we conducted experiments to evaluate the performance
of local pruning and global pruning in bottleneck pruning. Given that the bottleneck dimensions
in each block are entirely decoupled, we systematically applied channel-wise group pruning at
various ratios for each block while preserving the predefined overall pruning ratio in this step. To
obtain a consistent global ranking, we normalized the group importance scores IG of each layer in
five ways: (i) Sum: IGi =

IGi∑K
i=1 IGi

, (ii) Mean: IGi =
IGi∑K

i=1 IGi/K
, (iii) Max: IGi =

IGi

MaxK
i=1(IGi)

,

(iv) Standarization: IGi =
IGi−MaxK

i=1(IGi)

MaxK
i=1(IGi)−MinK

i=1(IGi)+1e−8
, (v) Gaussian: IGi =

IGi−
∑K

i=1 IGi/K

σK
i=1(IGi)+1e−8

.
As indicated in Table 5, local pruning ensures consistent performance, whereas global pruning
raises the model’s upper-performance limit. Global pruning’s efficacy is highly dependent on
the chosen importance normalization method. For our model, we opted for global pruning with
Gaussian normalization, which yielded the best training results. Following global pruning, Figure 4
illustrates the dimensions of bottleneck features (QKV embeddings and MLP hidden embeddings)
within each ViT in the image encoder. When applying mean, sum, or Gaussian normalization, the
ViTs in the middle exhibit more group redundancy compared to those at the beginning and end.
However, the pruned dimensions do not display distinct patterns when utilizing max or standardization
normalization. The impact of global pruning becomes more pronounced with an increased number of
training iterations. Specifically, when training extends to 80 epochs, the MIoU for global pruning
exceeds that of local pruning by approximately 2%.

Even less data. As shown in Table 6, with a pruning ratio of 50%, a reduction in the volume of
training data only marginally impacts the model’s performance. Notably, even when trained with a
limited dataset of just 2,000 images, our SlimSAM-50 model remarkably attains an MIoU of nearly
70%. However, as the pruning ratio is elevated to 77%, a decrease in training data more significantly
affects performance. This leads to the inference that although our methodology, which integrates
pruning and distillation techniques, mitigates the need for extensive training datasets, the availability
of more training data can still enhance model performance, particularly at higher pruning rates.

6 Conclusion

In this paper, we present a novel data-efficient SAM compression method, SlimSAM, which achieves
superior performance with minimal training data. The essence of our approach lies in the efficient
reuse of pre-trained SAM, avoiding the need for extensive retraining. We introduce key designs
to the compression method for enhancing knowledge retention from the original model in data-
limited situations. Specifically, our alternate slimming framework carefully prunes and distills
decoupled model structures in an alternating fashion, minimizing disruptions to the original model and
enabling the intermediate feature alignment by consistent dimensionality. Furthermore, the proposed
disturbed Taylor importance estimation rectifies the misalignment between pruning objectives and
training targets, thus boosting post-distillation after pruning. SlimSAM convincingly demonstrates its
superiority while imposing significantly lower training costs compared to any other existing methods.
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Figure 5: Comparison of segmentation results using segment everything prompts
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Figure 6: Left 3 columns: segmentation results obtained using point prompts; right 3 columns:
segmentation results achieved with box prompts.
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A Appendix

❈ In this document, we provide supplementary materials that extend beyond the scope of the main
manuscript, constrained by space limitations. These additional materials include in-depth information
about the ablation study of SlimSAM-50, further experiments assessing model efficiency, additional
evaluations of training costs, analysis of dynamic loss, limitation discussion, and supplementary
qualitative results.

A.1 Ablation Study on SlimSAM-50

We performed an extensive series of ablation studies on the SA-1B [25] dataset utilizing the SlimSAM-
50 model, characterized by its significant 50% pruning ratio. To guarantee a fair and consistent
comparison across these ablation studies, each model under evaluation was uniformly trained over a
span of 20 epochs, employing a training dataset comprising 10,000 images.

Disturbed Taylor Pruning. Initially, we executed an ablation study to evaluate the effects of our
innovative disturbed Taylor pruning technique on distillation processes. This approach strategically
aligns pruning criteria with the optimization goals of the ensuing distillation, thereby facilitating
enhanced performance recovery. As illustrated in Table 7, our disturbed Taylor pruning method
consistently outperforms, achieving markedly better results at equivalent training expenditures. In
comparison to the conventional one-step pruning strategy and our alternative slimming approach, our
methodology registers MIoU enhancements of 0.31% and 0.39% over the standard Taylor pruning
method [38], respectively.

Intermediate Aligning. We further investigated the impact of integrating alignment with intermediate
layers in the distillation process. As Table 8 illustrates, leveraging knowledge from these intermediate
layers substantially enhances the training outcomes. Specifically, when distillation in step 1 incorpo-
rates learning from both bottleneck features and final image embeddings, there is a notable 1.19%
improvement in MIoU compared to a methodology reliant solely on image embeddings. Similarly,
in step 2 of the distillation process, a strategy that utilizes both embedding features and final image
embeddings demonstrates a 0.29% MIoU improvement over approaches exclusively based on image
embeddings.

Table 7: Comparison between disturbed Tay-
lor pruning and original Taylor pruning.

Method MIoU↑

Taylor Pruning 70.02%
Disturbed Taylor Pruning 70.33%

SlimSAM-50 + Taylor 70.42%
SlimSAM-50 + Disturbed Taylor 70.81%

Table 8: Effect of distillation from intermediate
layers and final output image embeddings.

Step Distillation Objective MIoU↑

Step 1 Final Image Embeddings 70.86%
Step 1 + Bottleneck Features 72.07%

Step 2 Final Image Embeddings 70.52%
Step 2 + Embedding Features 70.81%

Alternate Slimming. Moreover, we conducted a series of experiments to examine the efficacy of
our novel alternate slimming strategy. Diverging from the traditional one-step pruning approach,
our method divides structural pruning into two distinct and progressive phases. In the initial phase,
pruning is exclusively focused on the dimensions pertaining to embedding features. The subsequent
stage then targets dimensions associated with bottleneck features. After completing both embedding
and bottleneck pruning, we employ knowledge distillation with intermediate layer alignment on

Table 9: Effect of global pruning evaluated under five different normalization approaches.

Pruning Method Normlization MIoU↑

Local Pruning — 70.81%

Global Pruning

Mean 70.76%
Max 70.77%
Sum 70.80%

Gaussian 70.83%
Standardization 70.78%
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Figure 7: The intermediate dimensions of QKV Attention (top row) and MLP (bottom row) within
each ViT after pruning. We present the outcomes of local pruning and global pruning under five
distinct normalization methods.

Figure 8: Training results on SA-1B with common one-step strategy and our alternate slimming
strategy.

the pruned model to facilitate performance restoration. The outcomes derived from our proposed
disturbed Taylor importance estimation are displayed in Figure 8. This figure demonstrates that
our alternative slimming strategy significantly boosts MIoU, achieving an increase of 0.5%. When
juxtaposed with the ablation study results of SlimSAM-77, it becomes evident that our strategy
exhibits a more pronounced improvement, particularly when applied to models with higher pruning
ratios.

Global Pruning vs Local Pruning. In our final set of experiments, we assessed the effectiveness
of both local and global pruning approaches in the context of bottleneck pruning. Considering
the complete decoupling of bottleneck dimensions in each block, we meticulously implemented
channel-wise group pruning at varying ratios across different blocks. This was done while main-
taining the predetermined overall pruning ratio for this phase of the study. To obtain a consistent
global ranking, we normalized the group importance scores IG of each layer in five ways: (i) Sum:
IGi =

IGi∑K
i=1 IGi

, (ii) Mean: IGi =
IGi∑K

i=1 IGi/K
, (iii) Max: IGi =

IGi

MaxK
i=1(IGi)

, (iv) Standarization:

IGi =
IGi−MaxK

i=1(IGi)

MaxK
i=1(IGi)−MinK

i=1(IGi)+1e−8
, (v) Gaussian: IGi =

IGi−
∑K

i=1 IGi/K

σK
i=1(IGi)+1e−8

. Table 9 reveals that
while local pruning maintains consistent performance, global pruning enhances the upper limit of
the model’s capabilities. In a departure from the findings observed with SlimSAM-77, various
normalization methods do not markedly influence post-pruning performance. This suggests that
the necessity of selecting an optimal normalization technique increases with the pruning ratio. For
our model, we chose global pruning combined with Gaussian normalization, which led to the most
favorable training outcomes. Figure 7 delineates the distribution of bottleneck feature dimensions
(including QKV and MLP hidden embeddings) across each Vision Transformer (ViT) [6] in the image
encoder. When mean, sum or Gaussian normalization is applied, the dimensions within the ViTs tend
to distribute more evenly. However, employing max or standardization normalization often results in
significant variances in the intermediate dimensions of each ViT.

A.2 More Analysis on Efficiency

In the principal manuscript, the high efficiency of our SlimSAM model is objectively substantiated
through the disclosure of parameter counts and Multiply-Accumulate Operations (MACs). This
section extends the evaluation by reporting on actual acceleration in inference, further affirming
the model’s efficiency. As delineated in Table 10, SlimSAM-50 outperforms the original SAM-H
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Table 10: Inference acceleration was empirically tested on an NVIDIA TITAN RTX GPU, revealing
that higher pruning rates significantly improve inference speed.

Pruning Ratio Method Speed Up↑

Ratio=0%
SAM-H [25] Faster×1.0
SAM-L [25] Faster×1.7
SAM-B [25] Faster×4.3

Ratio=50% SlimSAM-50(Ours) Faster×6.9

Ratio=77% SlimSAM-77(Ours) Faster×8.6

Table 11: The training results were compared using the varied amounts of training data but maintaining
the same training iterations.

Pruning Ratio Training Data Training Iters MIoU↑

Ratio=50%
10k 100k 72.33%
5k 100k 71.89%
2k 100k 69.79%

Ratio=77%
10k 200k 67.40%
5k 200k 64.47%
2k 200k 61.72%

model by achieving a 6.9-fold increase in inference speed, while SlimSAM-77 attains an 8.3-
fold acceleration. Our compression methodology markedly diminishes the actual inference time,
concurrently effecting substantial reductions in both model size and MACs. The inference acceleration
metrics were tested using an NVIDIA TITAN RTX GPU.

A.3 More Analysis on Training Costs

In our foundational manuscripts, we demonstrate that SlimSAM exhibits exceptional compression
performance with minimal training cost. A pertinent inquiry emerges: can SlimSAM maintain
its competitive performance with reduced training costs? To address this, we have undertaken
supplementary experiments focusing on the interplay between training cost and performance.

In Table 11, we present the results of additional experiments conducted with varying quantities
of training data, while keeping the number of training iterations constant. We observe that with
a pruning ratio of 50%, a reduction in the volume of training data only marginally impacts the
model’s performance. Notably, even when trained with a limited dataset of just 2,000 images, our
SlimSAM-50 model remarkably attains an MIoU of nearly 70%. However, as the pruning ratio is
elevated to 77%, a decrease in training data more significantly affects performance. This leads to
the inference that although our methodology, which integrates pruning and distillation techniques,
mitigates the need for extensive training datasets, the availability of more training data can still
enhance model performance, particularly at higher pruning rates. It can be anticipated that with an
increase in the volume of training data, our model may potentially achieve lossless compression of
SAM.

Table 12 showcases the outcomes of experiments conducted by modifying the parameters for training
iterations, while maintaining a constant training dataset size. The results clearly illustrate a direct
relationship between the quantity of training iterations and the effectiveness of the model compression.
It is evident that more extensive training significantly improves the performance of our compressed
models. Remarkably, SlimSAM maintains its superiority over other methods even when the training
iterations are halved, demonstrating its robustness and efficiency in achieving high-performance
compression.

A.4 More Analysis on Dynamic Loss

Further experiments were undertaken to assess the efficacy of employing dynamic loss within our
intermediate feature alignment procedure. The outcomes of these ablation studies are detailed in Table
13. It was observed that a constant weight mechanism is more apt for scenarios involving a robust
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Table 12: Training outcomes were evaluated using the same amount of training data across different
numbers of training iterations.

Pruning Ratio Training Data Training Iters MIoU↑

Ratio=50%
10k 50k 70.83%
10k 100k 72.33%

Ratio=77%
10k 100k 64.43%
10k 200k 67.40%

Table 13: Ablation study on dynamic loss weights for distillation

Step Model Constant (α = 0.5) Dynamic (α = N−n−1
N )

1
SlimSAM-50 MIoU:72.07% MIoU:71.60%
SlimSAM-77 MIoU:66.32% MIoU:65.79%

2
SlimSAM-50 MIoU:70.42% MIoU:70.83%
SlimSAM-77 MIoU:63.63% MIoU:64.48%

teacher model, whereas the implementation of a dynamic weight strategy enhances performance in
instances where the teacher model exhibits lesser strength.

A.5 Limitations

In this analysis, we critically examine the constraints of our methodology.

First, our approach demonstrates robust compression performance with minimal training data.
Nonetheless, an expanded training dataset could further enhance the model’s capabilities. Our
current pre-trained SlimSAMs, limited by hardware constraints, are trained on a dataset of only
10,000 images from the SA-1B dataset. Utilizing a more comprehensive training dataset could
potentially enable our method to achieve lossless compression.

Second, the essence of our method lies in employing structural pruning and knowledge distillation to
preserve the knowledge of original pre-trained SAMs. This strategy inherently sets the performance
ceiling of our model at the level of the original SAM. We found it challenging to surpass the
performance of the original SAM, which acted as both the target for pruning and the target for
optimization. A key area for future research will be exploring how to surpass the performance of the
original SAM with limited parameter counts and reduced training costs.

A.6 More Qualitative Results

We present more visual comparisons with other existing compressed models and the original SAM-H.
Figure 9 provide a detailed visual comparison using the segment-everything prompt, while Figures
10 and 11 showcase additional qualitative results obtained with box prompts and point prompts,
respectively. Relative to established compression models such as MobileSAM [60], FastSAM [62],
EdgeSAM [63] and EfficientSAM [50], our model distinctly outperforms in achieving more precise
segmentation, particularly noticeable at the object edges. Notably, even when benchmarked against
SAM-H, our model demonstrates commensurate segmentation capabilities.

A.7 Societal impacts

In this paper, we introduce SlimSAM, a novel data-efficient SAM compression method that delivers
superior performance using minimal training data. SlimSAM achieves an outstanding compression
ratio while preserving robust segmentation capabilities. This advancement enables the deployment of
SAM on resource-constrained edge devices, underscoring its significant practical applications.
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Figure 9: Comparison of segmentation results using segment everything prompts
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Figure 10: Comparison of segmentation results using box prompts
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Figure 11: Comparison of segmentation results using point prompts
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in our abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitation of our work in the Appendix.A.5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provide the full set of assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of our method along with extensive experi-
mental results.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We offer the full code along with relevant instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the details about the experiment in our paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the details about initialization and dataset split.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details about the computation resources we used in the experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We strictly adhere to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impacts in the Appendix.A.7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models) used in the
paper are properly credited, and the license and terms of use are explicitly mentioned and
properly adhered to.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets introduced in the paper are well documented, and the documenta-
tion is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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