
Contextual Pre-Planning on Reward Machine
Abstractions for Enhanced Transfer in Deep

Reinforcement Learning

Guy Azran
Faculty of Computer Science

Technion - Israel Institute of Technology
Haifa, Israel

guy.azran@campus.technion.ac.il

Mohamad H. Danesh
School of Computer Science

McGill University
Montreal, Canada

mohamad.danesh@mail.mcgill.ca

Stefano V. Albrecht
School of Informatics

University of Edinburgh
Edinburgh, Scotland

s.albrecht@ed.ac.uk

Sarah Keren
Faculty of Computer Science

Technion - Israel Institute of Technology
Haifa, Israel

sarahk@technion.ac.il

Abstract

Recent studies show that deep reinforcement learning (DRL) agents tend to over-
fit to the task on which they were trained and fail to adapt to minor environment
changes. To expedite learning when transferring to unseen tasks, we propose a
novel approach to representing the current task using reward machines (RMs),
state machine abstractions that induce subtasks based on the current task’s rewards
and dynamics. Our method provides agents with symbolic representations of op-
timal transitions from their current abstract state and rewards them for achieving
these transitions. These representations are shared across tasks, allowing agents
to exploit knowledge of previously encountered symbols and transitions, thus en-
hancing transfer. Empirical results show that our representations improve sample
efficiency and few-shot transfer in a variety of domains.

1 Introduction

Reinforcement learning (RL) methods, especially Deep RL (DRL) methods, have shown impressive 
capabilities in a wide variety of problems [Chen et al., 2021, Schrittwieser et al., 2020]. However, 
recent studies show that these algorithms have difficulty adapting to even the slightest variations 
in the agent’s objective or environment dynamics [Danesh and Fern, 2022, Agarwal et al., 2021a, 
Zhang et al., 2018, Leike et al., 2017]. Adapting quickly to new tasks is imperative in real-world 
scenarios, such as robotics [Ngo et al., 2018] and healthcare [Tseng et al., 2017], where agents re-
side in a dynamic world with ever-changing objectives and constraints. Consequently, agents require 
many interactions with the environment to learn to perform new tasks despite having mastered sim-
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Figure 1: (a) The general flow of transfer learning with a CMDP. (b) A visualization of the C-PREP
context representation function. Context c is used to generate a task-specific RM.

ilar ones. The problem is exacerbated for tasks with sparse reward signals [Gupta et al., 2022] and
long-term dependencies between actions [Langford, 2018].

Example 1 A housekeeper robot learns to do multiple tasks, one of which is to make coffee in a mug.
Next, the robot is tasked with making coffee in a glass, something it has never attempted. The two
tasks are similar in that they interact with many of the same objects (e.g. coffee, spoon, etc.) and
perform identical subtasks (e.g. boil water, fill cup, etc.). The robot is expected to use its experience
in making coffee in a mug to learn to achieve the new task more quickly.

A Contextual MDP (CMDP) [Langford, 2017, Hallak et al., 2015] models settings like Example 1
as a collection of tasks in the same environment, where each task is represented by the current
context. CMDPs have been used in recent work that aims to improve zero-shot transfer capabilities,
i.e., solving new tasks after training on a subset of them [Benjamins et al., 2022, Hallak et al.,
2015]. In contrast, we aim to improve few-shot transfer, in which the agent may continue training on
previously unseen tasks with the objective of minimizing the additional training required to achieve
desirable performance.

One of the key challenges when using a CMDP to model transfer learning settings is finding a con-
cise way to represent the current context while maximizing transfer capabilities. For this, we take
advantage of Reward Machines (RMs) [Toro Icarte et al., 2018], state-machine-based abstractions
that represent the structure of the reward function and the dynamics of a task and its subtasks. Tran-
sitions between abstract states in the RM occur when certain facts, represented as binary symbols,
hold true. As the agent traverses the environment, it keeps track of these facts and its current RM
state. Camacho et al. [2021] used RMs by providing the agent with the current abstract state and
showed that this can expedite learning on a single task. In contrast, we leverage RMs to improve
transfer.

Our novel technique, called Contextual PRE-Planning (C-PREP), takes as input a CMDP and an RM
generator function that represents contextual information through task-specific RM abstractions with
shared symbolic representations. Given a task, C-PREP finds an optimal policy in the corresponding
RM abstraction and gives the agent the next desired abstract transition according to that policy as
additional input. Furthermore, C-PREP uses the RM by reshaping the reward function according to
abstract state transitions within the RM, thus highlighting important transitions throughout learning.
When transferred to a new task, the agent can exploit abstract transitions that it has encountered
during training and needs only to adapt to symbols with which it has not previously interacted.

We empirically evaluate C-PREP in various environments with sparse rewards and varying difficul-
ties. In our experiments, a DQN agent [Mnih et al., 2015] is initially trained on a collection of source
contexts. Subsequently, we transfer the policy network to a different set of target contexts, where it
undergoes further training and evaluation. We observe an improvement in few-shot as well as zero-
shot transfer performance when using C-PREP compared to other context representation methods.
The performance gap grows as the problem difficulty increases, with improvements of 22.84% to
42.31% in time-to-threshold (few-shot transfer), and from 11.86% to 36.5% in jumpstart (zero-shot
transfer) for the most complex tasks compared to the next best baseline.
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2 Background

Reinforcement Learning (RL) is a method for agent learning through experiencing the world, act-
ing within it, and receiving rewards (both positive and negative) for achieving certain states or state
transitions. RL problems commonly model the world as a Markov Decision Process (MDP) [Bell-
man, 1957] M = ⟨S,A, T,R, γ⟩ where S is a set of possible states, A is a set of agent actions,
T : S ×A× S → [0, 1] is the state transition function, R : S ×A× S → R is the transition reward
function, and γ is the temporal reward discount factor. The objective is to find a policy π∗ such that:
π∗ ∈ argmaxπ E[J(π)], where J(π) = Est,st+1∼T ;at∼π [

∑∞
t=0 γ

tR(st, at, st+1)] is the expected
return of policy π in MDP M .

In this work, we focus on Transfer learning (TL), which is the improvement of learning a new
task through the transfer of knowledge from a related task that has already been learned [Torrey and
Shavlik, 2009]. We model a collection of MDPs using a Contextual MDP (CMDP) [Hallak et al.,
2015], a 4-tuple ⟨C, S,A,M⟩ where C is the context space, S and A are state and action spaces,
andM is a mapping from a context c ∈ C to an MDPMc consisting of S and A but with distinct
transition and reward functions, that is, Mc = ⟨S,A, Tc, Rc, γ⟩. We sometimes refer to context-
induced MDPs as “tasks”, and to the shared S and A as the “environment”. In Example 1, C is the
set of all house chores, S and A are the state of the house and the agent’s capabilities, andM maps
a chore c to an MDPMc that corresponds to completing the chore.

Fig. 1a depicts the general flow of transfer learning over a CMDP [Benjamins et al., 2022, Hallak
et al., 2015]. The input is the observed MDP state and the current context. Optionally, the state
representation is processed by a feature extractor to be represented as a vector. The context is
represented via a context representation function that maps a context to a vector representation. The
state representation is merged with the context representation (usually by concatenation), and the
new representation is fed into a policy network that will determine the next action.

Kirk et al. [2021] distinguish between two categories of context representations. The first type,
known as Controllable (CTL) context representations, includes the necessary information to gener-
ate the MDP, which can be thought of as a transparent implementation of the environment genera-
tion process (implemented inM). The second type, Procedural Content Generation (PCG) context
representations, conceal the MDP variables and only reveal information about the context identity,
operating as a black box with no insight into the generation process.

Given a CMDP ⟨C, S,A,M⟩, transfer learning algorithms attempt to leverage knowledge from
interactions with a set of source contexts Csrc ⊂ C to improve learning in a set of target contexts
Ctgt ⊂ C such that Csrc ∩ Ctgt = ∅. In Example 1, Csrc is the set of contexts representing the
chores it learns to do, including making coffee in a mug, and making coffee in a glass is a context in
Ctgt. Policies learned after training in Csrc and Ctgt from scratch are the source policy and the target
policy, respectively. The policy learned on Ctgt after training in Csrc is the transferred policy. Given
a distribution Ψ over C, the objective is to optimize a chosen transfer utility U in expectation over
sampled source and target context sets. Transfer utilities of interest in this work, suggested by Taylor
and Stone [2009], are jumpstart (JS), time to threshold (TT), and transfer ratio (TR). JS measures
(zero-shot transfer) performance on the target contexts without additional training. TT measures
the number of training timesteps taken until convergence to a policy of acceptable performance
threshold (few-shot transfer). TR measures the ratio of rewards accumulated over time by the agent
using knowledge transfer against the agent that is trained from scratch, that is, how much the agent
benefits from transfer (transfer relevance). Calculations of these utilities are available in Appendix F.

Reward Machines (RMs) [Toro Icarte et al., 2022] are state machine abstractions of MDPs. Given
a set of propositional symbols P , an RM is a 3-tuple R = ⟨U, δu, δr⟩ where U is a set of abstract
states, and δu : U × 2P → U and δr : U × 2P → R are the abstract transition and reward
functions, respectively. Given the current abstract state u ∈ U and a subset of propositional symbols
l ⊆ P that hold true, δu(u, l) is the next abstract state and δr(u, l) is the reward received for this
transition. When δu(u, l) = u′, l is called the abstract transition label from u to u′. To connect
between the abstraction and the underlying MDP, P is coupled with a transition labeling function
L : S×A×S → 2P that maps state-action-state transitions in the MDP to abstract transition labels
in the RM.

Fig. 2a textually describes an RM for the task of making coffee in Example 1. It defines abstract
states u0 to u3 that each represents a high-level stage within the task of making a cup of coffee. The
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Symbols:
    B - There is boiling water in the kettle.
    C - Coffee contents are in the cup.
    W - Boiling water poured into the cup.

Make-Coffee:
States - u0,u1,u2,u3
Transitions - 
    (u0, not B) --> next=u0;r=0
    (u0,     B) --> next=u1;r=0
    (u1, not C) --> next=u1;r=0
    (u1,     C) --> next=u2;r=0
    (u2, not W) --> next=u2;r=0
    (u2,     W) --> next=u3;r=1

(a)

Start

(b)

Start

(c)

Figure 2: (a) A textual representation of the RM in Example 1 describing the Make-Coffee task.
(b) A graph visualization of the textually defined RM. (c) An expansion of the RM that differentiates
between mug and glass receptacles, described in Section 3.

RM dictates that the agent must first boil some water, then put the coffee in the cup, and finally pour
boiling water into the cup. These relationships are graphically visualized in Fig. 2b.

The main benefits of RMs are that they represent transitions between abstract states using binary
symbols that pertain to the state of the underlying MDP (through L) and provide dense rewards via
reward shaping. As a result, an RM corresponding to some context divides its induced task into sub-
tasks that each describe a stage in the process of solving the overall task, rewarding the agent upon
completion of each sub-task. To employ sensible reward shaping, we use potential-based reward
shaping [Ng et al., 1999] which, given a potential function ϕ, define a new abstract reward function
δ′r(u, l) = δr(u, l)+γϕ(δu(u, l))−ϕ(u). Toro Icarte et al. [2022] prove that potential-based reward
shaping guarantees that optimal policies in an MDP for which rewards have been replaced with RM
rewards are optimal using the RM reshaped rewards. Moreover, it is empirically shown that using
RM-reshaped rewards can significantly expedite policy convergence for RL agents.

3 Contextual Pre-Planning (C-PREP) for Transfer Learning

We aim to improve transfer in multi-task domains modeled as Contextual MDPs (CMDPs). Ben-
jamins et al. [2022] proved that the policy must be conditioned on the context itself to guarantee
optimality. Therefore, it is crucial to represent the context such that the agent can generalize across
contexts. For this, we use RMs to represent contexts and offer a novel way to enhance the agent’s
ability to exploit its previous experiences in new settings. Since our focus is on exploiting the struc-
ture of the RMs for transfer and not on their generation, we assume that the RM generator function
is given as input, which can be based on domain knowledge, learned from demonstration [Camacho
et al., 2021], or learned via discrete optimization [Toro Icarte et al., 2019].

Camacho et al. [2021] exploited RMs to expedite learning in single-task domains by providing the
agent with the current abstract state. We instead focus on transfer learning and provide the next
desired abstract transition from the current RM abstract state as contextual input at each timestep.
Essentially, we guide the agent through optimal paths in the RM with abstract transitions represented
using a set of symbols that is shared across all tasks. Upon transfer, the agent can expedite transfer
learning by exploiting abstract transitions and leveraging prior knowledge of encountered symbols
in the new task. This may be beneficial for learning in general but is key in transfer settings as it
provides reusable representations between tasks.

C-PREP Context Representation Function. Based on the above intuition, we propose Contex-
tual PRE-Planning (C-PREP) for leveraging information in context-specific RMs. For each task,
C-PREP generates an RM ⟨U, δu, δr⟩ with abstract transitions represented using a shared symbol
set, i.e., the same symbol set P represents all RM transitions. Using Value Iteration (VI) [Bellman,
1957], we find an optimal policy in the RM. We then give the agent an optimal abstract transition la-
bel in the RM from the current abstract state u (as dictated by the RM policy), i.e., a transition label
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l such that δu(u, l) is the next state on a (discounted) reward-maximizing path in the RM. Intuitively,
we wish to guide the agent towards an optimal path within the RM.

C-PREP relies on providing the next desired abstract transition in the RM to the agent. However,
since there is no direct representation of actions in the RM, we cannot use standard planning methods
for this purpose. We, therefore, use a variant of value iteration, as suggested by Toro Icarte et al.
[2022], with the following update rule over the abstract states of RM R.

V k
R(u) = max

l∈2P

[
δr(u, l) + γV k−1

R (δu(u, l))
]

(1)

where V k
R is the value of abstract state u at iteration k (V 0

R = 0), and δu(u, l) and δr(u, l) are the next
abstract state and reward received for achieving transition label l at abstract state u, respectively. To
show the relationship between this rule and VI for MDPs, we define MR =

⟨
U, 2P , T, R, γ

⟩
where

T (u, l, δu(u, l)) = 1 and R(u, l, u′) = δr(u, l). We observe that the VI update rule for MR, denoted
V k, is equivalent to V k

R. Formally,

V k(u) =max
l∈2P

∑
u′∈U

T (u, l, u′)(R(u, l, u′) + γV k−1(u′))

=max
l∈2P

R(u, l, δu(u, l)) + γV k−1(δu(u, l))

=max
l∈2P

δr(u, l) + γV k−1(δu(u, l))) = V k
R(u)

Thus, to identify optimal abstract transitions, we can find an abstract optimal policy in RM R by
using VI to find an optimal policy π∗ in MR.

Given the current abstract state u, from which there may be multiple optimal abstract transitions,
C-PREP samples an optimal abstract transition l from π∗(·|u). Since π∗ is optimal in deterministic
MDP MR:

supp(π∗(·|u)) ⊂ argmax
l∈2P

(δr(u, l) + γV ∗(δu(u, l)))

where supp(π∗(·|u)) is the support set of probability distribution π∗(·|u). Thus, any transition we
sample from π∗ is one that maximizes discounted return in the RM.

Based on the above formulations, the C-PREP context representation function (depicted in Fig. 1b)
operates in a three-step process: (1) generate an RM R = G(Mc) for the current context c, (2) find
an optimal policy π∗ in MR, (3) at each timestep, sample an optimal transition l ∼ π∗(·, u) given
the current RM abstract state u and return it.

Throughout training, the C-PREP RM generation function updates its returned representation accord-
ing to the current abstract state. To notify the agent that a correct (or incorrect) abstract transition
has been completed, we provide additional rewards that emphasize the executed abstract transition’s
quality. For this, we employ potential-based reward-shaping as defined in Section 2. As it is already
calculated, we use V ∗ as the potential function ϕ to generate the reward signal that is provided to the
agent instead of the original MDP reward. In the RM described in Fig. 2a, the agent will receive a
higher reward for transitioning from state u0 to u1 rather than loop back to itself because this brings
it closer to the abstract goal state.

Transfer Learning with C-PREP The input to our setting includes a CMDP ⟨C, S,A,M⟩ and
an RM generator function G that maps each context-induced task Mc to its corresponding RM
G(Mc) = ⟨U c, δcu, δ

c
r⟩ which is defined over shared symbol set P .

The C-PREP context representation function can be integrated into any algorithm following the trans-
fer learning flow depicted in Fig. 1a. Algorithm 1 (Appendix G) demonstrates an implementation
of a DQN [Mnih et al., 2015] for transfer learning settings using C-PREP as the context represen-
tation function and RM reward shaping. The key differences between this implementation and the
standard DQN are that the algorithm initially generates an RM for the sampled context, calculates
its state values, and reshapes the RM rewards. States encountered in the episode are augmented by
the C-PREP context representation according to the RM transition. Rewards are replaced with the
reshaped rewards from the RM according to the achieved abstract transition at that timestep.

We note that the ability of C-PREP to support transfer depends on the resolution of the generated
RMs, i.e., how well the generated RMs represent the context space. If the set of propositional
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symbols P is too abstract, the generated RMs do not sufficiently distinguish between contexts. In
contrast, if it is too refined, computation time may increase due to running VI in huge tables for
every context.

In Example 1, when training to make coffee in a mug, the agent learns to pour water into the mug
and should exploit this capability upon transferring to the task of making coffee in a glass. Fig. 2
shows two different RMs that can be used to describe this setting. The RM in Fig. 2b does not
differentiate between a mug and a glass, as they are both encapsulated by the “cup” symbol C. In
contrast, the RM in Fig. 2c distinguishes between the tasks of making coffee in a mug and in a glass,
rewarding the agent only for the former (when transitioning from uM

2 to u3).

4 Empirical Evaluation

The objective of our empirical evaluation is to examine whether agents using C-PREP exhibit im-
proved performance on transfer utilities of interest.

4.1 Experimental Setup

Environments: We test our method in four environments with compound and long-horizon tasks
and sparse reward signals1:

Grid Navigation (GN): An agent must reach a specified destination on a grid. The state space
consists of the agent’s current location and the action space includes moving in one of the four
cardinal directions and a "done" action to be called upon arrival at the destination.
Multi Points-of-interest (MP): The agent navigates to multiple destinations in any order. The state
space consists of the agent’s location and an indicator of whether a certain destination has already
been visited. The action space is as in GN but with an "arrived" action replacing the "done" action.
Pick-up and drop-off (PD): An agent picks up and drops off passengers at their destinations. The
state space is as in MP with indicators for passengers that have been dropped off at their destinations.
In addition to navigation actions, the action space contains "pick-up" and "drop-off" actions.
Ordered Navigation (ON): The agent must navigate to specified destinations in a specific order.
The state and action spaces are as in MP.

All maps are 6× 6. At every timestep, the agent receives a reward of 1 when achieving the environ-
ment objective and 0 otherwise, and the discount factor is γ = 0.99.

Defining the CMDP Spaces: The environments described above include pairs of state and action
spaces. To define a CMDP we couple them with the following context spaces:

• Entity Location (EL): The context indicates the locations of core entities in the environment, e.g.,
passenger locations and drop-off destinations.

• Changing Map (CM): The context indicates the number and location of walls in the grid.

• Point-of-interest Order (PO): The context indicates the order of the locations to visit.

Each GN, MP, and PD environment is used with both the EL and CM context spaces. The ON
environment is paired with the PO context space. Contexts are represented using controllable (CTL)
representations (see Section 2). For full details on CTL context representations, see Appendix C.

Transfer Session: Each training session begins by randomly sampling two disjoint context sets
from the CMDPs described above; the source set Csrc and the target set Ctgt. We adopt “training
protocol B” of Kirk et al. [2021] such that the size of Csrc is much smaller than the size of the
context space. The agent initially trains on tasks induced by Csrc for Nsrc steps and then continues
its training in Ctgt for additional Ntgt steps. We record performance progress during and after training.
For full details see Appendix E.

Context Representations: We vary the RM information exposed to the agent, using the following
representations:

1Our code base is described in Appendix I.
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• CTL- Controllable context representation without RMs (same baseline in [Toro Icarte et al.,
2018]).

• CTL+RS [Toro Icarte et al., 2018] - Adds dense reshaped RM rewards to the current context’s
reward functions.

• CTL+LTL+RS [Camacho et al., 2021] - Adds the Last Transition Label (LTL) as an additional
context representation that is the current truth assignment of all propositional labels.

• CTL+C-PREP (ours) - Adds the C-PREP context representation, i.e., the Desired Transition Label
(DTL), with RS.

• C-PREP (ours) - The C-PREP context representation without a CTL context representation

In Appendix A we show additional experiments using PCG context representations in lieu of CTL.

Reported Metrics: During each training session, we evaluate the source, target, and transferred
policies on the context set on which it is trained at 100 uniformly spaced evaluation points. At
each evaluation point, we record the policy’s average return on 50 sampled contexts. Each training
session is repeated 5 times, using different random seeds. From the computed average returns, we
calculated the transfer utilities defined in Section 2: JS, TT, and TR (see Appendix F for the formula
used to compute these measures). We aggregate the results using interquartile mean (IQM) and
calculated the standard deviation and stratified bootstrap 95% confidence intervals [Agarwal et al.,
2021b]. To report results for different performance thresholds, we plot the TT as a function of the
threshold. We measure the IQM area under the curve (AUC) of this function, denoted TTAUC .

4.2 Results

First, to examine the performance over the entire transfer session, Table 1 shows the interquar-
tile mean (IQM) and standard deviation of the measured transfer utilities (TTAUC , JS, TR) for all
tested configurations using a CTL context representation. The best results for each CMDP (row) are
marked in bold. Negative TR values that indicate non-beneficial transfer are colored red.

Our method performed best in terms of TTAUC and JS in all but two CMDPs: (1) in GN (shortest
horizon) with both context spaces (EL and CM), CTL+LTL+RS performs best in terms of TTAUC ;
(2) in GN with EL context space, using CTL alone performs best in terms of JS. Notably, in PD,
which is the longest horizon task, our method outperforms all other configurations. Compared to
the highest performing baseline, we see TTAUC improvements of 22.84% in the context space CM
and 42.31% in the context space EL, and JS improvements of 11.86% in CM and 36.5% in EL. TR
results show low and negative TR values for most configurations. Our method is the only one with
positive TR throughout all tasks. In the PO environment (longest horizon), we see a performance
improvement of over 300% when using C-PREP compared to the next best configuration.

Next, we examine the achieved threshold performance throughout training. Fig. 3 visualizes the
IQM TT results, measured in training progress (percentage) as a function of the threshold, i.e., the
curve from which we derive TTAUC . The shaded areas are stratified bootstrap 95% confidence
intervals. Each row corresponds to a context space. Each column corresponds to an environment.
Agents using RS in environments tested with the CM and EL context show similar performance in
GN, but a performance gap (in favor of our method) widens as the task horizon grows. In the PO
environment, our method is the only one that can be seen converging to a high-performing policy.

Appendix A shows results of experiments wherein we replace the CTL representations with uninfor-
mative PCG representations. TT and JS results are similar to those presented with CTL representa-
tions. TR results show that for all configurations, it is non-beneficial to use PCG representations for
transfer due to severe overfitting.

Appendix B presents ablation results that show that all components of C-PREP are required to
achieve the best results. Appendix H shows results for additional experiments on sample efficiency
(in terms of number of contexts) and generalization capabilities of C-PREP using PCG.

4.3 Discussion

Results demonstrate that C-PREP improves transfer performance in more complex tasks without
hindering performance on simpler tasks. As visualized in Fig. 3a, all methods perform similarly in
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Table 1: IQM and standard deviation transfer utilities of configurations with CTL.

Utility Context Space Environment CTL CTL+RS CTL+LTL+RS CTL+C-PREP (ours) C-PREP (ours)

T
T
A
U
C

EL
GN 25.41 ± 7.27 6.37 ± 0.71 6.21 ± 0.42 6.42 ± 0.44 42.15 ± 3.95
MP 94.77 ± 6.02 44.78 ± 12.06 19.88 ± 9.36 18.32 ± 9.27 86.43 ± 1.89
PD 97.39 ± 1.57 95.18 ± 3.98 37.58 ± 23.38 21.68 ± 6.55 88.35 ± 1.59

CM
GN 42.18 ± 1.58 16.30 ± 2.35 7.14 ± 1.41 7.64 ± 1.72 32.98 ± 0.68
MP 71.90 ± 10.62 26.48 ± 15.51 14.24 ± 8.85 13.64 ± 8.60 47.74 ± 11.46
PD 86.30 ± 18.81 54.19 ± 21.64 37.52 ± 25.46 28.95 ± 24.15 51.02 ± 15.46

PO ON 98.04 ± 0.00 95.15 ± 7.66 97.50 ± 5.59 32.93 ± 10.21 22.54 ± 1.57

JS

EL
GN 0.28 ± 0.11 0.06 ± 0.06 0.07 ± 0.09 0.05 ± 0.05 0.01 ± 0.05
MP 0.03 ± 0.06 0.26 ± 0.15 0.48 ± 0.26 0.49 ± 0.17 0.01 ± 0.02
PD 0.02 ± 0.02 0.03 ± 0.01 0.34 ± 0.20 0.38 ± 0.12 0.00 ± 0.01

CM
GN 0.42 ± 0.03 0.55 ± 0.06 0.73 ± 0.05 0.75 ± 0.08 0.49 ± 0.06
MP 0.23 ± 0.09 0.49 ± 0.14 0.66 ± 0.11 0.68 ± 0.10 0.42 ± 0.10
PD 0.08 ± 0.19 0.28 ± 0.19 0.38 ± 0.27 0.52 ± 0.25 0.31 ± 0.19

PO ON 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.14 ± 0.26 0.75 ± 0.02

T
R

EL
GN -0.11 ± 0.10 0.13 ± 0.04 0.08 ± 0.03 0.07 ± 0.03 0.04 ± 0.02
MP -0.99 ± 0.01 0.24 ± 0.08 0.24 ± 0.18 0.16 ± 0.12 0.06 ± 0.11
PD -1.00 ± 0.00 -0.99 ± 0.21 -0.14 ± 0.38 0.14 ± 0.09 -0.05 ± 0.12

CM
GN -0.11 ± 0.04 0.08 ± 0.04 0.11 ± 0.01 0.11 ± 0.01 0.08 ± 0.04
MP -0.85 ± 0.32 0.29 ± 0.13 0.26 ± 0.06 0.21 ± 0.06 0.07 ± 0.05
PD -0.94 ± 0.25 -0.06 ± 0.29 -0.05 ± 0.20 0.06 ± 0.19 0.07 ± 0.07

PO ON 0.00 ± 0.00 2.04 ± 6.942 -0.87 ± 0.90 0.69 ± 0.20 0.31 ± 0.03
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Figure 3: The IQM TT of configurations using CTL as a function of the threshold.

the GN environment (short horizon), but C-PREP opens a performance gap in TT that increases with
the difficulty of the environment. The TR results show that only our method is beneficial for transfer
in all tasks, as is evidenced by the negative TR values reported for all other configurations. In the PO
environment, only agents using C-PREP achieve a threshold greater than 0.2. Furthermore, since the
RM in this case differentiates all tasks, it is preferable to use C-PREP without CTL. We observe that
the JS performance is approximately 93% of the maximum achieved performance threshold, which
is reached in less than 20% of the training progress.

We examine the performance of C-PREP using partial resolution RMs, i.e., some tasks may be repre-
sented with the same RM. For this, we remove CTL and use C-PREP alone. In the GN, MP, and PD
environments, the agent will achieve a threshold performance of no more than 50% of C-PREP’s per-
formance with CTL. Fig. 3a shows that C-PREP without CTL achieves medium to low performance
depending on the environment and context space. We attribute this to the low coverage of tasks with
the partial RM resolution. These RMs (describe in detail in Appendix D) cover approximately 25%
of the tasks in GN and approximately 6% of the MP and PD tasks. We conclude from this that C-
PREP with partial resolution RMs cannot compensate for missing contextual information. However,
Fig. 3b shows that in the ON environment, where the RMs are of full resolution, it is preferable
to use C-PREP without additional context. We hypothesize that this is due to the large overlap in
contextual data between the C-PREP context representation and CTL, making the information in
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CTL irrelevant. C-PREP’s zero-shot results in this setting compared to other baselines. This use of
local context illustrates the advantage of solving the context as a series of smaller, simpler contexts.

We show additional results in experiments using PCG in place of CTL in Appendix A to examine
the case of uninformative global context representations. Here, we notice that in 60% of the runs, it
was more beneficial to train from scratch in Ctgt than to transfer from Csrc. Fig. 4 in the appendix
visualizes TT performance of PCG configurations and shows hindered performance compared to
those in Fig. 3a that use CTL representations.

Ablation results (found in Appendix B) show the importance of every component of C-PREP. We
notice that both TTAUC and JS can be improved by up to 12% in five out of seven tasks by adding
the LTL modification to CTL+C-PREP in the most complex task. We hypothesize that this will yield
an even greater benefit in scenarios where it is harder to infer the current abstraction label.

Additional results in Appendix H reveal two interesting capabilities of C-PREP. First, C-PREP is
more sample efficient in terms of the number of source contexts it is trained on, that is, C-PREP
needs to train on fewer source contexts to achieve similar or better transfer performance than other
tested configurations. Second, adding RM information when using PCG significantly improves
generalization capabilities at the beginning of training. We see a spike in performance in the first 1M
training steps, hinting at the potential of using RMs for learning generalized state representations.

5 Related Work

DRL agents are extremely susceptible to overfitting to the context in which they were trained. Leike
et al. [2017] show that small changes to a single detail or obstacle could result in performance
degradation. Danesh et al. [2021] demonstrate that simple RL agents overfit to the training settings
such that they completely ignore observations. One solution is to train the agent on a distribution
of contexts, rather than a single one [Zhang et al., 2018]. However, once the context distribution
departs from the training distribution, the performance drops despite the knowledge obtained during
training [Agarwal et al., 2021a]. We focus on transferring knowledge to expedite training in novel
tasks.

There are several approaches to improve transfer learning in DRL. Some meta-learning methods
[Eghbal-zadeh et al., 2021, Papoudakis et al., 2021, Zintgraf et al., 2020, Wang et al., 2017, Duan
et al., 2016] learn to estimate a context representation based on accumulated experiences while
exploring. The model-agnostic approach [Finn et al., 2017] directly optimizes its parameters to min-
imize the number of gradient steps required to adapt the parameters to the current context. Model-
based methods [Shrestha et al., 2020, Tamar et al., 2017] learn an approximate model of the world,
use classical planning on them, and utilize the plan either explicitly or implicitly through another
learning component. In this case, different contexts will induce different plans within the model.
Techniques for improving exploration [Dorfman et al., 2021, Zintgraf et al., 2020] use Bayesian-
adaptive RL to learn how to best explore the environment based on past episodes. All of the above
rely on additional exploration to determine the context before learning to solve it. In contrast, we
use contextual information to understand the task a priori to reduce exploration. Using CMDPs, we
view the context as additional input to the agent [Langford, 2017, Hallak et al., 2015].

To improve few-shot transfer, our method represents different contexts as RMs [Toro Icarte et al.,
2022]. Previous work shows that RMs can be used to expedite learning of a single context
[Toro Icarte et al., 2022, Camacho et al., 2021]. We utilize RMs to represent contextual informa-
tion, resulting in better sample efficiency and few-shot transfer learning capabilities in multi-context
settings.

6 Conclusion

We presented Contextual PRE-Planning (C-PREP) as a novel context representation function and
showed how it enhances zero-shot and few-shot transfer for DRL agents. C-PREP exploits RMs
by planning on them and providing the agent with a representation of the next desired transition.
Our empirical evaluation demonstrates C-PREP’s ability to improve sample efficiency and different
transfer utilities, especially for tasks of increasing difficulty.
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To focus on the effect our RM-based representation has on transfer, we assumed the RM generation
function is given as input. Future work will include a theoretical analysis of the conditions under
which a context representation is guaranteed to enhance transfer and the development of methods
for learning the appropriate RMs through experience. As a second extension, we intend to examine
alternative symbolic representations beyond RMs for enhancing learning and transfer, as well as
consider the effect our suggested context representation function has in setting in which options
[Sutton et al., 1999, Illanes et al., 2020] are used to distinguish between sub-tasks. Finally, we plan
to examine our representation in real-world settings in which transfer may be beneficial.
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Table 2: IQM and standard deviation transfer utilities in tested CMDPS using PCG as the base
context representation. The best results for each CMDP (row) are marked in bold. Negative TR
values that indicate non-beneficial transfer are colored red.

Utility Context Space Environment PCG PCG+RS PCG+LTL+RS PCG+C-PREP (ours) C-PREP (ours)
T
T
A
U
C

EL
GN 84.95 +- 3.23 7.12 +- 0.66 5.89 +- 0.22 5.82 +- 0.28 42.15 +- 3.95
MP 98.04 +- 0.00 96.11 +- 1.14 95.02 +- 2.03 61.96 +- 9.37 86.43 +- 1.89
PD 98.04 +- 0.00 98.04 +- 0.00 96.75 +- 0.90 58.97 +- 6.69 88.35 +- 1.59

CM
GN 85.61 +- 12.21 20.01 +- 3.63 16.45 +- 2.37 14.58 +- 2.19 32.98 +- 0.68
MP 98.04 +- 0.00 51.29 +- 12.97 42.41 +- 12.14 32.73 +- 13.21 47.74 +- 11.46
PD 98.04 +- 0.00 55.94 +- 19.14 43.39 +- 16.48 39.95 +- 18.23 51.02 +- 15.46

PO ON 98.04 +- 0.00 92.56 +- 13.58 93.01 +- 3.80 37.65 +- 22.90 22.54 +- 1.57

JS

EL
GN 0.01 +- 0.03 0.00 +- 0.01 0.00 +- 0.01 0.00 +- 0.01 0.01 +- 0.05
MP 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.01 +- 0.02
PD 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.01

CM
GN 0.00 +- 0.05 0.00 +- 0.02 0.18 +- 0.14 0.10 +- 0.18 0.49 +- 0.06
MP 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.02 0.00 +- 0.00 0.42 +- 0.10
PD 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.13 0.31 +- 0.19

PO ON 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.00 +- 0.00 0.75 +- 0.02

T
R

EL
GN -0.86 +- 0.05 0.05 +- 0.01 0.05 +- 0.02 0.04 +- 0.02 0.04 +- 0.02
MP -1.00 +- 0.00 -0.85 +- 0.03 -0.93 +- 0.13 -0.31 +- 0.21 0.06 +- 0.11
PD -1.00 +- 0.00 -0.84 +- 0.09 -0.94 +- 0.07 -0.33 +- 0.16 -0.05 +- 0.12

CM
GN -0.77 +- 0.37 -0.02 +- 0.06 -0.02 +- 0.04 0.00 +- 0.02 0.08 +- 0.04
MP -1.00 +- 0.00 0.11 +- 0.18 -0.03 +- 0.08 -0.02 +- 0.03 0.07 +- 0.05
PD -0.60 +- 0.49 0.21 +- 0.21 0.06 +- 0.19 0.06 +- 0.06 0.07 +- 0.07

PO ON 0.00 +- 0.00 inf3 -0.71 +- 1.79 0.31 +- 0.55 0.31 +- 0.03
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Figure 4: The IQM TT of configurations with PCG base context representations as a function of the
threshold.

A PCG Experiments

Table 2 shows that among configurations that use PCG-based context representation, our CTL+C-
PREP performed best in all CMDPs of the GN, MP, and PD environments in the TTAUC utility. The
near-zero JS values and small (<0.1) to negative TR values indicate overfitting and nonbeneficial
transfer in all CMDPs for all configurations except PCG+RS, which shows positive transfer in CM
for MP and PD. In the PO environment, using C-PREP without the PCG context representation
shows an improvement of at least 120% in all CM tasks.
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Figure 5: The IQM TT of ablation test configurations as a function of the threshold.

B Ablation Tests

Table 3 shows the results of our ablation tests based on the C-PREP components. In the GN, MP,
and PD environments, we used CTL as the base context representation. The results show that all
components are necessary to achieve the highest transfer performance. As can be seen in Fig. 5a,
configurations that do not use RS show no performance improvement during transfer. We further
observe that adding LTL to our representation (CTL+LTL+C-PREP) outperforms CTL+C-PREP in
the TTAUC utility in five out of six of the CMDPs in these environments. In the ON environment,
due to the success of C-PREP without CTL, we additionally tested ablations in this environment
without CTL. From the ablation analysis in Fig. 5b we see that without all C-PREP components, the
agent cannot complete the tasks after transfer, which shows the significance of each component. In
this setting (ON) LTL+C-PREP performs on par with C-PREP, showing that our representation is
sufficient.

C Context Representations

In our experiments, we use both CTL and PCG context representations. CTL representations contain
all the information required to generate the MDP induced by the context. In practice, this is part
of the observation that is constant throughout the task. PCG representations are random indices
assigned to each context as an identifier. These indices are provided to the agent as one-hot-encoding
vectors. Fig. 6 illustrates the implementation of the corresponding context representation functions.

The EL contexts are represented by the location of the entities (passengers and their destinations)
in the environment. This is a pair of row-column coordinates for each entity. The CM contexts are
represented as a binary vector where each value indicates the existence of a wall at a certain position
in the environment map. The PO contexts are represented by a single index for each passenger that
is the position of the passenger in the pickup order. Fig. 7a shows two different contexts in the PD
environment coupled with the EL context space.

D Experiment Reward Machines

In the PO context space, there is an RM generator function of full resolution that generates simple
RMs where the number of propositional symbols abstract states is equal to the number of passen-
gers. The RM generator function template with variables i1,..., i2 that defines the passenger
pickup order is as follows:

Symbols:
P1 - Passenger 1 has been picked up
...
P5 - Passenger 5 has been picked up
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Max Supported Contexts

(a) (b)

Figure 6: Baseline context representation functions. (a) Controllable (CTL) environment context
representation function. Each context is represented using the original informative context represen-
tation offered by the environment. (b) Procedural content generation (PCG) context representation
function. Contexts have unique indices that are converted into binary indicator vectors (one-hot-
encoding) for the source and target contexts together. One-hot encoding context representations are
limited to a maximum number of supported contexts, determined ahead of time.

(a) Two different EL contexts in the PD
environment. The taxi icon is the acting
agent, the person icon is the passenger
to be picked up, and the flag icon is the
passenger’s destination. The agent can
navigate to any adjacent cell, but cannot
cross thick walls.

Start

(b) An example abstraction of a task in the PD environment on a 4×4
grid. The environment is split into four sectors of 2 × 2 cells. We
say that the agent is in sector i if it is currently located in one of the
cells within the sector. Symbol Si indicates the agent is in sector
i. Symbols P and D indicate the passenger has been picked up or
dropped off, respectively. The colors match abstract states to their
corresponding sectors.

Figure 7

Order-i1,i2,i3,i4,i5:
States - u0, ..., u5
Transitions -

(u0, not Pi1) --> next=u0;r=0
(u0, Pi1) --> next=u1;r=0
...
(u4, not Pi5) --> next=u4;r=0
(u2, Pi5) --> next=u5;r=1

For the EL context space, the entities may be anywhere on the map. This means that an RM gen-
erator function that differentiates between all contexts needs to use at least one symbol for every
possible position. Because the agent can potentially visit any of these positions during an episode,
we must have an abstract state for each position on the map and passenger status (waiting, picked up,
delivered). Such an RM is about the same size as the entire MDP, and so it would be more beneficial
to run VI on the MDP itself and guarantee a near-optimal policy rather than the RM. Similarly, the
CM contexts determine the locations of obstacles, and so the RM must account for every possible
transition in the map (which is also about the size of the MDP).

To overcome this issue, we use an RM generator function that groups adjacent cells into sectors
and symbols to indicate the agent’s presence in a specific sector. A transition between sectors is
possible if a transition between cells of those sectors is possible. Fig. 7b illustrates this in the PD

16



Table 4: DQN hyperparameters for all baseline configurations.
Parameter Value
Target Q-network update interval 10,000 steps
Exploration time 50% training duration
replay buffer size 1M
Discount factor 0.99
training frequency every 4 steps
gradient steps per training 4
sample batch size 32
Number of hidden layers 2
Hidden layer width 64
Hidden activations ReLU
learning rate 0.0001
Adam β1 0.9
Adam β2 0.999

environment. This significantly reduces the size of the generated RMs, but the RM can only account
for transitions between sectors (partial resolution).

E Training Technical Details

We trained each DQN agent on a single CPU core for four million steps on Csrc and Ctgt. For the EL
context space, we train on 100 source contexts and transfer to 200 target contexts. For the CM con-
text space, we train 250 source contexts and transfer to 500 contexts. The GN environment contains
only 36 possible entity positions and so with the EL context space, there are only 36 contexts. Thus,
we train on 8 source contexts and transfer to 16 target contexts in this environment, leaving room
for the sampled contexts to change between runs.

DQN hyperparameters were selected via grid search of potential candidates, followed by a manual
search in areas of interest. To demonstrate C-PREP’s resilience to hyperparameters, hyperparame-
ters were chosen to optimize the CTL configuration and used globally across all other configurations.
The Q-value estimator network is comprised of two hidden linear layers with Rectified Linear Unit
(ReLU) activations, ending with a linear output layer of width equal to the number of agent actions.
The parameters are optimized with Adam [Kingma and Ba, 2015]. Table 4 lists all hyperparameters.

F Evaluation

Agent policies are evaluated as deterministic policies every 1% of training completed. An additional
evaluation occurs before training to account for zero-shot transfer. Each evaluation records the
return acquired from running 50 episodes in randomly sampled contexts from the context set on
which we are training. The source policy is also evaluated in Ctgt to allow analysis of generalization
throughout training. The returns are averaged to estimate the expected discounted return, with which
we calculate the transfer utilities.

Let hπ be the training history of policy π, that is, a mapping from the number of timesteps trained
to the estimated expected discounted return of the policy at that time. For some training configura-
tion (environment, context space, hyperparameters, etc.), denote the target and transferred policies
by πCtgt and πCsrc,Ctgt , respectively. Denote some predetermined threshold by τ . We calculate our
transfer utilities as follows:

UTT (π, τ) = min {t|hπ(t) ≥ τ} (Time to Threshold)

UJS(πCsrc,Ctgt , πCtgt) = hπCsrc,Ctgt
(0) (Jumpstart)

UTR(πCsrc,Ctgt , πCtgt) =
AUC(hπCsrc,Ctgt

)−AUC(hπCtgt
)

AUC(hπCtgt
)

(Transfer Ratio)

2Target policy scored close to 0 on all seeds.
3Target policy scored 0 on all seeds.
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Algorithm 1 Training DQN with C-PREP

Input: π = Qθ - initial DQN policy
Input: C - contexts set
Input: N - number of episodes to train
Input: G - RM generator function
Input: L - transition labeling function
D ← empty experience replay buffer
for i ∈ [N ] do
c← sampleUniform(C)
⟨U, δu, δr⟩ ← generated RM for c
V ← value iteration on RM
δr(u, l)← δr(u, l) + γV (δu(u, l))− V (u) {reward shaping}
u← u0

for each step in episode ofMc do
l∗ ← argmax

l∈2P
δr(u, l) + γV (δu(u, l))

ŝ← ⟨s, l∗⟩ {using augmented state space}
q ← Qθ(ŝ)
a← ϵ-greedy(q)
s′ ←Mc.step(a)
u′ ← δu(u, L(s, a, s

′))
r ← δr(u, L(s, a, s

′)) {using RM reward}
l∗′ ← argmax

l∈2P
δr(u

′, l) + γV (δu(u
′, l))

ŝ′ ←
⟨
s′, l∗′

⟩
D.store(ŝ, a, r, ŝ′)
ŝ, a, r, ŝ′ ← D.sampleBatch()
l←

∑
batch

(r +maxa′ {Qθ(ŝ
′)[a′]} −Qθ(ŝ)[a])

2

θ ← ∇θl
s, u← s′, u′

end for
end for
Return Qθ

where AUC is the area under the curve, estimated by the average of all recorded values on the curve.
To provide a single TT value that considers all thresholds, we also calculate utility UTTAUC

(π) =
AUC

τ
(UTT (π, τ)).

G C-PREP with DQN

Algorithm 1 shows the DQN algorithm with C-PREP integration. A textual description of the algo-
rithm is available in Section 3.

H Additional Experiments

We perform two additional experiments. The first aims to show C-PREP’s sample efficiency in
terms of the number of source contexts on which it is trained. For this, we doubled the size of the
source context set and rerun the experiments. IQM transfer utilities for this experiment are available
in Table 5. Fig. 8 shows the TT performance over the achieved threshold for these settings in the
GN, MP, and PD environments. As we can see, the performance gap between our method and LTL
decreased when we doubled the size of Csrc. We conclude from this that C-PREP maintains its
transfer performance even when the size of the source context set shrinks.

The second experiment tested the generalization capabilities of C-PREP using PCG representations.
As we saw in Section 4.2 and analyzed in Section 4.3, we witness severe overfitting when using
PCG. However, we find that using RM information is not completely futile. Figure Fig. 9 shows the
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Table 5: IQM and standard deviation transfer utilities for all tested configurations (environment-
context space pairs) using CTL as the base context representation trained on doubly sized source
context set before transfer, aggregated over all seeds. The best results for each CMDP (row) are
marked in bold. Negative TR values that indicate non-beneficial transfer are colored red.

Utility Context Space Environment CTL CTL+RS CTL+LTL+RS CTL+C-PREP (ours) C-PREP (ours)
T
T
A
U
C

EL
GN 19.07 ± 3.10 6.26 ± 0.51 5.92 ± 0.27 6.13 ± 0.70 43.95 ± 4.74
MP 86.27 ± 7.70 18.63 ± 6.06 10.03 ± 0.69 10.24 ± 0.92 87.03 ± 1.74
PD 94.12 ± 15.42 68.17 ± 24.76 12.96 ± 3.58 11.70 ± 0.58 87.92 ± 1.39

CM
GN 37.99 ± 1.16 10.22 ± 2.15 5.40 ± 0.88 5.52 ± 1.09 34.74 ± 4.14
MP 67.83 ± 13.45 20.97 ± 16.25 10.96 ± 6.24 10.85 ± 4.82 49.75 ± 9.38
PD 78.22 ± 22.00 44.16 ± 23.82 27.30 ± 27.32 22.16 ± 19.23 48.33 ± 15.64

PO ON 98.04 ± 0.00 97.10 ± 16.40 96.31 ± 6.65 23.29 ± 12.84 22.69 ± 1.48

JS

EL
GN 0.42 ± 0.15 0.21 ± 0.06 0.08 ± 0.15 0.26 ± 0.12 0.00 ± 0.02
MP 0.13 ± 0.08 0.69 ± 0.04 0.87 ± 0.02 0.86 ± 0.04 0.03 ± 0.02
PD 0.06 ± 0.16 0.19 ± 0.23 0.78 ± 0.09 0.80 ± 0.03 0.00 ± 0.02

CM
GN 0.52 ± 0.06 0.76 ± 0.05 0.93 ± 0.01 0.91 ± 0.04 0.53 ± 0.06
MP 0.31 ± 0.13 0.66 ± 0.19 0.83 ± 0.11 0.84 ± 0.09 0.29 ± 0.14
PD 0.12 ± 0.23 0.43 ± 0.23 0.67 ± 0.29 0.66 ± 0.28 0.36 ± 0.17

PO ON 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.74 ± 0.31 0.78 ± 0.01

T
R

EL
GN -0.02 ± 0.07 0.14 ± 0.04 0.08 ± 0.03 0.08 ± 0.03 0.08 ± 0.04
MP -0.98 ± 0.12 0.56 ± 0.36 0.33 ± 0.07 0.27 ± 0.07 0.11 ± 0.15
PD -0.98 ± 0.03 0.61 ± 0.64 0.43 ± 0.48 0.32 ± 0.05 -0.00 ± 0.14

EL
GN -0.05 ± 0.07 0.23 ± 0.02 0.13 ± 0.01 0.14 ± 0.01 0.09 ± 0.04
MP -0.75 ± 0.30 0.36 ± 0.07 0.30 ± 0.09 0.28 ± 0.05 0.10 ± 0.04
PD -0.29 ± 0.37 0.36 ± 0.31 0.11 ± 0.24 0.26 ± 0.06 0.08 ± 0.04

PO ON 0.00 ± 0.00 0.45 ± 0.88 -0.80 ± 7.12 0.83 ± 0.34 0.33 ± 0.08

performance of the source policy during training in Csrc, evaluated in Ctgt in the PD environment with
the CM context space. We observe that in the first 30% of training, there is a spike in performance for
LTL +RS or C-PREP. These are the only configurations that use additional context representations
from RM information to augment the contextual PCG input. The performance spike is far too high
to be “luck” since otherwise, other configurations should also display this phenomenon. This begs
the question “What is learned before overfitting occurs and how can we preserve this knowledge”?
Furthermore, we still do not have a clear explanation as to why specifically RM information causes
this spike. We believe this has implications for representation learning, where agents learn latent
representations of the state space in a disentangled manner from the policy.

I Multi-Taxi Environment

Multi-Taxi is a highly configurable multi-agent environment, based on the OpenAI gym taxi envi-
ronment Brockman et al. [2016], which adheres to the PettingZoo API [Terry et al., 2021]. Fig. 10
shows a visualization of the environment. The environment’s configurable features allow the user
to set the number of passengers and taxis, the taxi’s capacity and fuel requirements, the actions’
stochasticity, the sensor function, and more. We note that while multi-taxi is natively a multi-agent
environment, we explore it as a single-agent setting. By leveraging the domain’s customizability we
define seven very different environment settings of varying complexity levels based on three context
spaces changing different aspects of the environment between tasks. The code is provided in the
supplementary materials.
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Figure 8: The IQM TT, measured in percentage of completed training, as a function of the threshold
in environments GN, MP, PD, with doubley sized Csrc. Each color represents a different configura-
tion, specified in the legend. The shaded areas indicate stratified bootstrap 95% confidence intervals.
Each row corresponds to a different context space, indicated to the left of the row. Each column
corresponds to a different environment, indicated above the column.
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Figure 9: The IQM performance of the source policy, evaluated on the target context set. in en-
vironment PD and context space CM with PCG configurations. Each color represents a different
configuration, specified in the legend. The shaded areas indicate stratified bootstrap 95% confidence
intervals. Each row corresponds to a different context space, indicated to the left of the row. Each
column corresponds to a different environment, indicated above the column.
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Figure 10: A visualization of the Multi-Taxi environment. Colored rectangles are taxi agents, and P
and D symbols indicate the location of a passenger and its corresponding destination (respectively).
’X’ and ’|’ values indicate different kinds of obstacles. ’F’ and ’G’ are two different kinds of fuel
stations.
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