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ABSTRACT

Pretrained vision-language models (VLMs), such as CLIP, have shown remark-
able potential in few-shot image classification and led to numerous effective
transfer learning strategies. These methods leverage the pretrained knowledge of
VLMs to enable effective domain adaptation while mitigating overfitting through
parameter-efficient tuning or instance-based consistency constraints. However,
such regularizations often neglect the geometric structure of data distribution,
which may lead to distortion of the overall semantic representation. To overcome
this limitation, we propose a novel fine-tuning method, Manifold-Preserving and
Sculpting Tuning (MPS-Tuning). Regarding the data distribution in feature space
as a semantic manifold, MPS-Tuning explicitly constrains the intrinsic geometry
of this manifold while further sculpting it to enhance class separability. Specifi-
cally, MPS-Tuning preserves both macroscopic and microscopic topological struc-
tures of the original manifold by aligning Gram matrices of features before and
after fine-tuning. Theoretically, this constraint is shown to approximate an up-
per bound of the Gromov-Wasserstein distance. Furthermore, features from the
image and text modalities are paired, and pairwise similarities are optimized to
enhance the manifold’s class discriminability. Extensive experiments demonstrate
that MPS-Tuning significantly improves model performance while effectively pre-
serving the structure of the semantic manifold. The code will be released.

1 INTRODUCTION

Vision-language models (VLMs), exemplified by CLIP (Radford et al., 2021), have made signif-
icant progress by training on massive image-text pairs using contrastive learning. These models
create joint embedding spaces where images and texts with similar meanings are well aligned. A
compelling example is how the visual representation of a “cat” becomes positioned near the tex-
tual representation of “feline” but far from semantically distant concepts like “truck”. This intuitive
structure of the embedding space directly contributes to the models’ exceptional ability to generalize
across diverse tasks.

However, preserving this intricate semantic structure presents significant challenges during task
adaptation, especially in few-shot learning scenarios. Standard fine-tuning approaches exhibit a
tendency toward semantic structure collapse , where limited training samples cause catastrophic for-
getting of pre-trained representations, ultimately manifesting as severe degradation in generalization
performance.

To address these challenges, two main paradigms of approaches have been proposed (Fig. 1). The
first paradigm encompasses parameter-efficient fine-tuning (PEFT) methods, including prompt-
based techniques such as CoOp (Zhou et al., 2022b) and adapter-based frameworks like CLIP-
Adapter (Gao et al., 2024a), which mitigate overfitting by constraining the number of trainable
parameters. The second paradigm comprises consistency-driven approaches, such as Prompt-
SRC (Khattak et al., 2023b), which enforce consistency between the features or logits of individual
samples before and after fine-tuning. Despite the demonstrated efficacy of these approaches, they
either rely on implicit regularization of few-parameter fine-tuning, which limits model flexibility, or
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“a photo of a [CLASS]”

(a) CLIP

Adapter

“a photo of a [CLASS]”

Point-wise
Consistency

Point-wise
Consistency
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Adapter

(b) PEFT-based

“a photo of a [CLASS]”

Manifold
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(d) Manifold Regularization (Ours)

Original Feature

Frozen

Trainable

Partial Trainable

Fine-Tuned Feature

Figure 1: Comparison of regularization paradigms for VLMs. Previous fine-tuning methods (b, c)
primarily constrain the number of tunable parameters or apply point-wise consistency constraints,
potentially limiting the model’s learning capacity while neglecting the complete semantic manifold
structure. In contrast, our method explicitly preserves the semantic manifold structure, significantly
enhancing both generalization and learning capabilities.

restrict variations in individual sample representations, which neglects the preservation of pretrained
model’s semantic structure.

In contrast to existing methods that treat image data as isolated points, we propose Manifold-
Preserving and Sculpting Tuning (MPS-Tuning), which views data distribution in the feature spaces
as continuous semantic manifold, and aims to enhance its discrimination for downstream tasks while
maintaining the intrinsic manifold structure. To preserve the manifold structure, we constrain the
Gromov-Wasserstein (GW) distance (Mémoli, 2011) between the semantic manifolds derived from
the features distributions of the fine-tuned and original models during training. Since directly com-
puting GW distance is NP-hard and impractical for optimization, we simplify this problem and the-
oretically prove that the Lp-norm of the difference between corresponding Gram matrices provides
an upper bound approximation to the GW distance of order p. Based on this theoretical insight,
we propose Manifold Alignment Regularization, which preserves global topological structure via
batch-level Gram matrices and maintains local geometric structure through token-level Gram ma-
trices. For manifold sculpting, we introduce Hierarchical Manifold Sculpting with a multimodal
query-support matching task, where each query achieves higher similarity with same-category pairs
and lower similarity with different-category pairs. This sculpting mechanism is extended from the
model’s output features to its intermediate layer features, further enhancing the discrimination of the
manifold. Through manifold alignment and sculpting, robust adaptation of vision-language models
is effectively achieved.

Our main contributions are summarized as follows:

• We propose a novel few-shot fine-tuning framework called MPS-Tuning, which enhances
model performance while alleviating overfitting by explicitly aligning and sculpting the
manifold geometry.

• We design a new regularization method, called Manifold Alignment Regularization, and
establish its theoretical connection to the Gromov-Wasserstein distance for the first time,
offering deeper insights into the preservation of manifold geometry.

• We introduce an optimization strategy called Hierarchical Manifold Sculpting to actively
enhance the discriminability of the manifold and further improve model performance.

• We evaluated the method’s performance on 11 datasets and conducted generalization eval-
uation on two datasets. Experimental results demonstrate that our method significantly
outperforms current state-of-the-art approaches in few-shot image classification tasks.

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

In recent years, vision-language models (Radford et al., 2021; Sun et al., 2023; Xu et al., 2024;
Gao et al., 2024b; Huang et al., 2024; Zhai et al., 2023; Tschannen et al., 2025; Pal et al., 2025)
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pretrained via contrastive learning on large-scale image-text pairs have demonstrated strong zero-
shot generalization capabilities by aligning correctly matched images and texts. This enables them to
be directly applied to various downstream tasks. Typically, such models consist of an image encoder
EV and a text encoder ET . For a given classification task, text prompts (e.g., “a photo of a {class}”)
are first constructed for each class, and a set of normalized class-specific textual features {t1, ..., tK}
is extracted using the text encoder ET , where K denotes the number of classes. Subsequently, for an
input image x, its normalized visual feature representation z is obtained through the image encoder
EV . The probability of the image belonging to each class is then computed by applying the softmax
function to the cosine similarities between z and each class text feature tk, i.e.,

P (y = ck|x) =
exp(⟨z, tk⟩/τ)∑K
j=1 exp(⟨z, tj⟩/τ)

, (1)

where τ is a learnable temperature coefficient, and ⟨·, ·⟩ represents the inner product between two
vectors. The model’s final prediction is given by the class with the highest probability, i.e.,

ŷ = argmaxck∈{c1,...,cK}P (y = ck|x) (2)

2.2 EFFICIENT TRANSFER LEARNING

To adapt VLMs efficiently while mitigating overfitting, two main transfer learning paradigms have
been explored (Yang et al., 2024; Zhu et al., 2023; Xie et al., 2024; khattak et al., 2025; Guo et al.,
2023; Zhu et al., 2024). The first comprises PEFT-based methods that reduce computational cost
through selective parameter updates, such as prompt-based approaches (e.g., CoOp (Zhou et al.,
2022b), CoCoOp (Zhou et al., 2022a)) and adapter-based designs (e.g., CLIP-Adapter (Gao et al.,
2024a), Tip-Adapter (Zhang et al., 2022)). The second paradigm emphasizes consistency regular-
ization, exemplified by PromptSRC (Khattak et al., 2023b), which applies feature-level L1 loss and
logit-level KL divergence (Kullback & Leibler, 1951) to retain pre-trained knowledge. While these
methods demonstrate impressive performance on few-shot tasks, their flexibility is constrained by
dependencies on PEFT strategies and point-based constraints. In contrast, our manifold alignment
regularization enhances adaptability while better preserving pre-trained knowledge.

2.3 GROMOV–WASSERSTEIN DISTANCE

The Gromov–Wasserstein (GW) distance (Mémoli, 2011) compares the intrinsic geometric struc-
tures of two metric measure spaces by matching their internal pairwise distance relations rather than
individual points. Consider two discrete metric spaces represented by their pairwise distance matri-
ces DX ∈ Rn×n and DY ∈ Rm×m. Let µ ∈ ∆n and ν ∈ ∆m be probability vectors supported on
these spaces, where ∆n = {u ∈ Rn

+ |
∑n

i=1 ui = 1}, then the set of couplings between µ and ν is

Π(µ, ν) = {π ∈ Rn×m
+ | π1m = µ, π⊤1n = ν}, (3)

where πik represents the joint probability mass assigned to the pair (xi, yk), and 1m ∈ Rm, 1n ∈ Rn

are vectors of ones.

For p ≥ 1, the discrete GW distance is defined as

GWp(µ, ν) =

 min
π∈Π(µ,ν)

n∑
i,j=1

m∑
k,l=1

|(DX )ij − (DY)kl|pπikπjl

1/p

. (4)

The GW objective seeks an optimal coupling π that minimizes the expected p-power discrepancy
between pairwise distances in the two spaces. By operating on the relational information encoded
in the distance matrices, rather than the coordinates of individual points, this objective naturally
becomes invariant to isometric relabelings. This invariance is precisely what enables GW distance
to robustly capture and compare intrinsic geometric structures. However, finding π is a significant
bottleneck, as it requires solving a nonconvex quadratic program reducible to the NP-hard quadratic
assignment problem, making it intractable for large-scale applications. To address this, we adopt a
fixed coupling scheme, which provides a tractable upper bound on the GW distance and transforms
it into a computationally feasible regularization. To the best of our knowledge, this work represents
the first application of GW distance theory to VLM fine-tuning, offering a principled approach to
preserving geometric knowledge in pretrained models. More details are in Sec. B.
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Figure 2: Overview of the MPS-Tuning, which integrates Manifold Alignment Regularization and
Hierarchical Manifold Sculpting. Manifold Alignment Regularization prevents knowledge degrada-
tion by aligning Gram matrices across fine-tuned and original CLIPs at both global and local scales.
Hierarchical Manifold Sculpting enhances local manifold adaptability via query-support matching,
tailoring representations to downstream tasks. Through Pseudo Forward, this sculpting process ex-
tends to intermediate layers , ensuring effective manifold refinement. EV denotes the visual encoder.

3 METHOD

To facilitate effective downstream adaptation without disrupting the inherent structure of the pre-
trained representation manifold, we propose a novel approach termed Manifold-Preserving and
Sculpting Tuning (MPS-Tuning). This method employs Manifold Alignment Regularization (MAR)
to prevent drastic alterations in the semantic structure of feature manifold and incorporates Hierar-
chical Manifold Sculpting (HMS) to progressively refine local manifold structures. Specifically,
MAR aligns the Gram matrices of the fine-tuned and the original models at both the batch and token
levels, thereby maintaining consistency in semantic geometry and mitigating overfitting risks. In
parallel, HMS refines local manifold structures by performing a multimodal query-support match-
ing task between image and text representations, optimizing similarity at both intermediate and
output feature levels. This results in more compact intra-class clusters and better separated inter-
class distributions. By jointly applying MAR and HMS, MPS-Tuning achieves robust and efficient
adaptation to new tasks, maintaining the valuable structural knowledge of the pre-trained model and
demonstrating strong performance in few-shot learning scenarios.

3.1 MANIFOLD ALIGNMENT REGULARIZATION

The feature distribution learned by a pre-trained model can be regarded as a well-structured seman-
tic manifold, whose geometric structure encodes rich prior knowledge. Preserving this geometric
structure allows for the retention of more comprehensive pre-trained knowledge. To this end, we pro-
pose Manifold Alignment Regularization (MAR), which enforces alignment between the geometric
structures of feature manifolds before and after fine-tuning, thereby enhancing model performance.

As a metric designed to quantify the similarity between different metric spaces, the GW distance
serves as a powerful tool for evaluating changes in the structure of feature manifolds induced by
model fine-tuning. Our MAR provides an efficient upper-bound approximation to the GW distance.
To formally justify this approximation, we present the following theorem:

Theorem 1 The alignment of the Gram matrices under the Lp-norm serves as an approximate upper
bound of the p-order Gromov-Wasserstein distance.
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Add & Norm

FFN

FFN

Attention

Pseudo Forward
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Parameter Sharing

Figure 3: Pseudo-Forward projection bypass the attention allocation component in the model, and
map intermediate layer features to the output feature space.

Proof Outline. We consider the feature spaces of the original CLIP model and the fine-tuned CLIP
model as two metric spaces. By fixing a natural coupling (i.e., assuming a one-to-one correspon-
dence between features of the same sample across the two models), the NP-hard computation of the
GW distance is reduced to an efficient upper-bound approximation. Specifically, the approximate
upper bound of the discrete GW p distance between the two metric spaces is given by the Lp-norm
of the difference between their respective Gram matrices. Refer to Sec. B for more details.

Guided by this theory, alignment regularizations are introduced at two distinct levels.

Global topological alignment To preserve the global manifold structure, relational constraints
among samples are enforced at the batch level. Given a mini-batch of N samples, we extract nor-
malized [CLS] token features from the pre-trained model as {z1, . . . , zN} ∈ RN×d and from the
fine-tuned model as {z′1, . . . , z′N} ∈ RN×d. The Gram matrices S,S′ ∈ RN×N are computed via
inner products Sij = ⟨zi, zj⟩ and S′

ij = ⟨z′i, z′j⟩. The global alignment loss is defined as

Lglobal
MAR =

1

N2

N∑
i=1

N∑
j=1

|Sij − S′
ij |1 . (5)

Local geometric alignment To retain the internal geometric structure within individual samples,
regularization is separately performed on the interactions between the [CLS] token and the patch
tokens, as well as on the internal relations among the patch tokens. For the i-th sample, we
collect features before fine-tuning as {z(i)cls , z

(i)
1 , . . . , z

(i)
M } ∈ R(M+1)×d and after fine-tuning as

{z′(i)cls , z
′(i)
1 , . . . , z′

(i)
M } ∈ R(M+1)×d, where M denotes the number of patch tokens. The intra-

sample Gram matrices Sintra
i ,S′intra

i ∈ R(M+1)×(M+1) are computed using inner products among
[CLS] and patch tokens. The local alignment loss is given by

Llocal
MAR =

1

N

N∑
i=1

(
1

(M + 1)2

M∑
k=0

M∑
l=0

∣∣∣Sintra
i,kl − S′intra

i,kl

∣∣∣
1

)
. (6)

The final manifold alignment regularization term is the sum of the above two terms, i.e.,

LMAR = Lglobal
MAR + Llocal

MAR . (7)

3.2 HIERARCHICAL MANIFOLD SCULPTING

To facilitate the acquisition of task-specific knowledge, we propose a hierarchical optimization of
the local feature manifold. This process is formulated as a query-support matching task, which aims
to encourage high similarity for positive image-text or image-image pairs and discourage incorrect
matches. Let Q = {q1,q2, . . . ,qN} be the set of normalized image features used as queries, and
let T = {t1, t2, . . . , tK} be the set of frozen text embeddings. The support set is then defined as
the union S = Q ∪ T . Positive matches are defined based on category identity. Since limited batch
sizes may lead to missing visual positives, data augmentation is applied to generate two augmented
views per image, enriching the image pool. The task is optimized via a sculpting loss, which applies
contrastive learning between each query and its positive matches:

Lquery
sculpt(q,S) = − 1

|Pq|
∑
s∈Pq

log
exp(⟨q, s⟩)/τ ′∑

s′∈S\q exp(⟨q, s′⟩)/τ ′
, (8)
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Figure 4: Performance comparison on 11 benchmark datasets.

where τ ′ is a temperature factor and Pq represents the set of samples from S that are positively
paired with the query q. The final objective over the batch is obtained by averaging this loss across
all queries:

Lsculpt(Q,S) = Eq∈Q[Lquery
sculpt(q,S)] , (9)

Furthermore, the manifold refinement is extended to intermediate transformer blocks to further
sculpt the manifold. However, intermediate features z′(l) are not compatible with text embeddings.
To address this issue, we implement a pseudo-forward projection (Fig. 3), skipping attention mod-
ules while retaining essential transformations in model , i.e.,

ẑ′(l) = FFN(L) ◦ V (L)
Proj ◦ · · · ◦ FFN(l+1) ◦ V (l+1)

Proj (z′
(l)
). (10)

The overall HMS loss thus aggregates both final and intermediate layer alignment as follows,

LHMS = Lsculpt(Q̂, Ŝ) +
∑

l∈Lblocks

Lsculpt(Q(l),S(l)) (11)

where Q̂, Ŝ are the output query and support sets, Q(l),S(l) are their counterparts at layer l after
pseudo forward projection, and Lblocks denotes the layer scope of HMS.

3.3 TRAINING AND INFERENCE

Leveraging the MPS-Tuning’s strong knowledge retention capability, we can fine-tune partial model
weights directly without causing overfitting, thereby substantially enhancing the model’s learning
capacity. See Sec. D for details.

During training and inference, the final logits are a weighted sum of fine-tuned and original outputs:

logits = α · logitsft + (1− α) · logitszs . (12)

The overall training loss incorporates the cross-entropy term alongside two regularization terms:

L = LCE + λ1LMAR + λ2LHMS (13)

where λ1 and λ2 are hyperparameters that balance the contributions of the regularization terms.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets Following previous work (Zhou et al., 2022b; Yu et al., 2023), we evaluated our
method on 11 datasets, including ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2007),
Food101 (Bossard et al., 2014), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGV-
CAircraft (Maji et al., 2013), Flowers102 (Nilsback & Zisserman, 2008), OxfordPets (Parkhi et al.,
2012), StanfordCars (Krause et al., 2013), SUN397 (Xiao et al., 2010), and UCF101 (Soomro et al.,
2012). Additionally, domain generalization capabilities were further assessed using the ImageNet-
Sketch (Wang et al., 2019) and ImageNet-V2 (Recht et al., 2019) datasets.

Implementation Following previous work (Zhou et al., 2022b; Yu et al., 2023), the model was
trained on K-shot settings (K = 1, 2, 4, 8, 16) and evaluated on the full test set using CLIP with
ViT-B/16 (Dosovitskiy et al., 2021) and predefined text templates. Optimization was performed
using SGD with cosine learning rate decay over 50 epochs, where a warm-up strategy increased
the learning rate linearly from 1e-5 to 0.002 during the first epoch. Data augmentation strategies
consistent with those used in CoOp, including random cropping and random flipping, were applied.
For hyperparameter configuration, the weights for MAR (λ1), HMS (λ2) and logits weight (α) were
set to 0.5, 0.1 and 0.3, respectively, with HMS applied to the last two layers. All results were
averaged over three random seeds.

Baselines To demonstrate the superiority of our method, comprehensive comparisons were con-
ducted against several SOTA methods, including CoOp (Zhou et al., 2022b), Tip-Adapter-F (Zhang
et al., 2022), PLOT++ (Chen et al., 2023), MaPle (Khattak et al., 2023a), PromptSRC (Khattak
et al., 2023b), AMU-Tuning (Tang et al., 2024), TCP (Yao et al., 2024), DePT (Zhang et al., 2024),
GalLop (Lafon et al., 2024), TextRefiner (Xie et al., 2024), MMRL (Guo & Gu, 2025), SkipT (Wu
et al., 2025), LDC (Li et al., 2025), and TAC (Hao et al., 2025).

4.2 EFFICACY STUDY

Classification Results As shown in Fig. 4, our method achieves superior average performance
across all shot settings compared to competing methods, with the performance gap widening as
the number of training samples increases. Specifically, under the 1-shot, 4-shot, and 16-shot condi-
tions, our approach improves accuracy by 0.88%, 1.27%, and 2.51%, respectively, over the strongest
baseline. On natural image datasets such as ImageNet and SUN397, where the pre-trained CLIP
model has already encoded rich visual knowledge, MAR facilitates the integration of downstream
task learning while preserving this prior knowledge, leading to significant performance gains. For
datasets with greater cross-domain challenges, such as StanfordCars, FGVCAircraft, and UCF101,
the synergistic operation of HMS and MAR enables our method to effectively balance novel knowl-
edge acquisition with pre-trained knowledge retention, yielding significant performance advantages.

Domain Generalization Results To validate the robustness of MPS-Tuning, models were trained
on the ImageNet dataset and subsequently evaluated on both ImageNet-V2 and ImageNet-Sketch
datasets. As demonstrated in Tab. 1, MPS-Tuning consistently outperforms all baseline methods
across the three datasets, thereby confirming its superior domain generalization capabilities.

Efficiency The training and inference FPS of MPS-Tuning were evaluated on the SUN397 dataset
on a single RTX 3090 GPU to assess its efficiency. As shown in Tab. 3, the method demonstrates
comparable efficiency to existing approaches.

4.3 ABLATION STUDY

Impact of Model Components To establish the individual contribution of each proposed module,
ablation studies were conducted on the ImageNet, StanfordCars, and SUN397 datasets under 16-
shot settings. Tab. 2 illustrates that both modules contribute meaningful performance gains over the
standard cross-entropy loss when applied separately, while their joint application achieves additional
improvements.

Impact of HMS depth The application scope of HMS was further explored. As shown in
Fig. 5, applying HMS to final layer and penultimate layer yields the best performance gain,
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Table 1: Generalization results on ImageNet
and its variants.

Method Source Target Avg
ImageNet -Sketch -V2

CLIP 66.73 46.15 60.83 57.90
Linear Probe CLIP 65.85 34.77 56.26 52.29
CoOp 71.92 46.71 64.18 60.94
PLOT++ 72.48 47.13 65.07 61.56
MaPLe 72.56 49.20 64.10 61.95
PromptSRC 73.17 49.10 65.70 62.66
TCP 72.40 48.17 64.83 61.80
DePT 73.35 46.43 64.63 61.47
AMU-Tuning 74.93 50.37 65.42 63.57
TextRefiner 70.90 48.07 63.37 60.78
MMRL 72.03 49.17 64.47 61.89
SkipT 72.77 49.73 65.67 62.72
LDC 73.88 48.85 66.10 62.94
TAC 73.67 48.93 66.23 62.94

MPS-Tuning (Ours) 75.60 50.10 67.53 64.41

Table 2: Ablation study on different compo-
nents. “Avg11” is the average over all 11 bench-
mark datasets.

Components Datasets
LCE LMAR LHMS ImageNet Cars SUN397 Avg11

✓ 72.93 90.00 76.30 85.41
✓ ✓ 75.30 90.80 78.07 86.44
✓ ✓ 74.77 90.77 77.80 86.20

✓ ✓ ✓ 75.60 91.13 78.47 86.85

Table 3: Efficiency comparison on SUN397.

Method Training FPS Inference FPS
CLIP - 617
CoCoOp 4.20 13.0
TCP 120.9 617
TextRefiner 85.30 553

MPS-Tuning (Ours) 95.65 535

Table 4: Ablation study on MAR. “Avg11” is the average over all 11 benchmark datasets.

Method 1-shot 4-shot 16-shot
ImageNet UCF101 Avg11 ImageNet UCF101 Avg11 ImageNet UCF101 Avg11

None 69.33 76.73 72.35 71.57 83.63 79.60 74.77 89.23 86.20
only Global 70.03 77.37 73.42 72.23 83.90 80.18 75.17 89.53 86.57
only Local 69.90 76.73 72.82 72.43 84.27 80.21 75.57 89.60 86.67

MAR (Global+Local) 70.37 77.40 73.55 72.57 84.30 80.47 75.60 89.87 86.85

Table 5: Ablation study of different consistency constraints. “Avg11” is the average over all 11
benchmark datasets.

Consistency Constraint 1-shot 4-shot 16-shot
ImageNet UCF101 Avg11 ImageNet UCF101 Avg11 ImageNet UCF101 Avg11

Feature-based
cos 69.73 75.37 72.77 71.83 82.63 79.36 74.73 88.20 86.07
ℓ1 69.43 76.73 72.41 71.63 83.63 79.66 74.83 89.23 86.24
ℓ2 69.33 76.80 72.35 71.63 83.60 79.65 74.77 89.17 86.20

Logits-based
kl 69.67 73.00 71.43 71.60 78.70 77.77 73.87 84.97 84.20
ℓ1 69.50 75.00 71.91 71.50 81.03 78.22 74.67 87.67 85.65
ℓ2 69.47 74.93 71.85 71.57 81.10 77.51 74.70 87.73 85.59

Manifold-based LMAR 70.37 77.40 73.55 72.57 84.30 80.47 75.60 89.87 86.85
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Figure 5: Ablation study on HMS depth. The x-
axis N means applying HMS to the last N layers.

while extending it to earlier layers results in
degradation. This finding aligns with the seman-
tic hierarchy in neural networks (Zeiler, 2014;
Krizhevsky et al., 2012; Gandelsman et al.,
2024): deeper layers encode class-specific fea-
tures that benefit from HMS, whereas intermedi-
ate layers capture more generic representations.
Applying HMS too early may induce premature
specialization, leading to overfitting. Therefore,
HMS is used in the last two layers to enhance
high-level representation learning while main-
taining generalization.

Impact of Global and Local Alignment To assess the roles of global topological and local geomet-
ric alignment, we perform ablation studies under 1-shot, 4-shot, and 16-shot settings. As shown in
Tab. 4, both alignments consistently improve performance, but exhibit different preferences across
sample sizes. Global alignment is more beneficial in low-shot scenarios, while local alignment be-
comes more effective as sample size increases. This is because global alignment offers essential
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Table 6: Performance of distinct tuning methods equipped with vs. without MPS-Tuning. “PFT”
indicates our default partial fine-tuning, and “FFT” stands for full fine-tuning.

Method Setting ImageNet Caltech101 OxfordPets StanfordCars OxfordFlowers Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Avg

FFT

1-shot

61.27 87.80 75.07 47.33 55.07 74.20 13.60 56.93 33.30 41.40 56.03 54.73
FFT+MPS-Tuning 66.67 90.97 84.23 59.17 71.27 82.87 19.07 64.13 36.50 43.47 61.77 61.83
LoRA 68.37 94.33 91.60 66.27 81.97 85.83 28.97 68.00 50.90 81.37 74.00 71.96
LoRA+MPS-Tuning 70.10 94.30 91.83 69.20 81.23 86.27 29.73 69.03 50.07 78.00 74.47 72.20
PFT 68.80 94.00 90.13 68.03 86.50 84.93 28.17 69.40 57.53 74.47 76.63 72.60
PFT+MPS-Tuning 70.37 94.47 91.17 70.17 86.50 86.10 29.97 70.40 56.47 76.10 77.40 73.55
FFT

4-shot

61.70 88.20 72.80 49.40 66.20 76.30 15.77 59.00 35.97 51.37 56.13 57.53
FFT+MPS-Tuning 66.47 92.83 84.93 60.87 80.30 83.83 20.77 64.13 43.87 54.30 64.93 65.20
LoRA 69.27 95.93 93.10 74.50 93.00 86.20 38.90 71.53 62.30 89.50 80.60 77.71
LoRA+MPS-Tuning 71.57 96.27 93.23 77.47 93.00 87.10 41.37 72.83 62.40 88.07 81.93 78.66
PFT 70.43 96.33 92.33 78.30 95.53 85.73 37.10 73.10 68.10 87.83 83.27 78.92
PFT+MPS-Tuning 72.57 96.80 93.67 81.17 96.00 87.17 41.97 74.53 68.50 88.50 84.30 80.47
FFT

16-shot

63.67 90.23 78.60 51.33 78.53 79.23 18.63 62.47 47.73 65.43 60.23 63.28
FFT+MPS-Tuning 68.83 93.07 85.00 63.93 85.47 82.90 22.67 64.80 55.10 69.00 68.03 68.98
LoRA 71.77 97.03 93.93 87.30 98.43 86.70 62.43 75.27 71.70 94.40 86.90 84.17
LoRA+MPS-Tuning 73.90 97.17 94.43 88.50 98.43 87.87 64.20 76.87 73.37 93.90 87.80 85.13
PFT 72.93 97.07 93.53 90.00 99.03 86.20 66.33 76.30 75.87 93.77 88.43 85.41
PFT+MPS-Tuning 75.60 97.37 94.77 91.13 99.37 88.13 69.03 78.47 77.20 94.37 89.87 86.85

relational priors when the model lacks enough data to capture inter-class structure, whereas local
alignment enhances robustness by preventing shortcut learning from incidental factors when more
data is available. Combining both leads to the best performance, confirming their complementary
nature at different structural levels.

Comparison to other Consistency Constraints The effectiveness of MAR was further validated
through performance comparisons with standard point-wise consistency constraints applied at fea-
ture and logit levels. As shown in Tab. 5, under 1-shot, 4-shot, and 16-shot settings, our method
outperformed the strongest baselines by 0.64%, 0.74%, and 0.77% on ImageNet, and by 0.78%,
0.81%, and 0.61% when averaged across all 11 datasets. These results confirm that manifold-based
consistency regularization yields superior performance improvements compared to point-alignment-
based consistency constraints.

Applicability Study We evaluate the versatility of MPS-Tuning by integrating it into both full-
parameter fine-tuning and LoRA (Hu et al., 2021). As shown in Tab. 6, our method yields consistent
performance improvements across these strategies, validating its broad applicability.
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Figure 6: Representation similarity analysis of
different consistency constraint mechanisms.
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Figure 7: Class separability assessment of
different component categories using Calinski-
Harabasz score.

4.4 INTERPRETABILITY STUDY

Quantitative Analysis of Manifold Preservation To further validate MAR’s manifold preservation
capabilities, representational similarity analysis (Kriegeskorte et al., 2008) was applied to models
before and after fine-tuning, enabling quantitative evaluation of semantic manifold structural vari-
ations. Fig. 6 shows that MAR achieves the best manifold structure preservation on natural image
datasets like ImageNet and SUN397, where pretrained CLIP already contains sufficient knowledge.
Furthermore, we find that MAR’s preservation capability spontaneously diminishes on datasets with
extensive novel task-relevant knowledge (UCF101, FGVCAircraft). This adaptive behavior results
from MAR’s relaxed Gram matrix alignment rather than rigid feature or logits constraints, enabling
knowledge preservation when beneficial while allowing adaptation when necessary. Additionally,
we find that cosine similarity and KL divergence impose stricter manifold structure preservation
compared to other point-based consistency constraints through their holistic vector-level restric-
tions, whereas L1 and L2 losses independently constrain each channel’s variation, potentially caus-
ing minimal per-channel changes but substantial overall vector modifications. However, their exces-
sive strictness can limit learning (e.g., UCF101 and Avg11 results in Tab. 5), whereas MAR’s Gram
matrix consistency provides dynamic constraints that balance preservation with learning capability.
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Quantitative Evaluation of Class Separation To assess feature clustering behavior, we apply the
Calinski-Harabasz Index (Calinski et al., 1974) on test sets from ImageNet, SUN397, UCF101 and
FGVCAircraft. As shown in Fig. 7, both HMS and MAR individually improve clustering perfor-
mance compared to cross-entropy loss, with HMS performing particularly well on cross-domain
dataset UCF101. The combination of HMS and MAR yields similar scores to those of HMS alone,
suggesting that our method effectively improves feature separability.
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Figure 8: Comparison of GW distance: Natural coupling upper bound vs. POT numerical solution.

4.5 TIGHTNESS ANALYSIS

We approximate the upper bound of the p-th order GW distance via a fixed natural coupling. Its
tightness is validated against exact GW distances calculated using POT (Flamary et al., 2021; 2024)
on natural (ImageNet, SUN397) and cross-domain (FGVCAircraft, UCF101) datasets, with negligi-
ble divergence (Fig. 8) confirming its reliability and precision.
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Figure 9: GW distances across manifold pairs.

5 DISCUSSION

5.1 GROMOV–WASSERSTEIN DISTANCE AND MANIFOLD ALIGNMENT

By minimizing intra-space distance discrepancies, the Gromov-Wasserstein distance aligns metric
measure spaces while ensuring invariance to rigid transformations and sampling. We verify this
using an S-shaped manifold A alongside its isometric variants A′, noisy perturbations Apert, and
topologically distinct rings B. Results in Fig. 9 corroborate the isometric invariance and noise ro-
bustness of GW metrics, highlighting their capacity to distinguish topological discrepancies.

5.2 LIMITATION

While our approach demonstrates robust performance gains across the majority of scenarios, it falls
short of SOTA results on specific 1-shot and 2-shot datasets. This could be attributed to the Gram
matrix alignment strategy in MAR which struggles to capture the semantic manifold structure under
extreme data scarcity. Future research could address this by incorporating unlabeled external data
or employing generative models for data augmentation to enhance manifold structure preservation.

6 CONCLUSION

In this work, we propose MPS-Tuning, a manifold alignment-based fine-tuning framework that pre-
serves the intrinsic structure of pre-trained models via Manifold Alignment Regularization, while
enhancing the discriminability of semantic manifolds through Hierarchical Manifold Sculpting. We
theoretically show that Manifold Alignment Regularization provides an approximate upper bound
of the Gromov-Wasserstein distance, establishing its theoretical soundness. Extensive experiments
demonstrate consistent improvements in few-shot VLM performance, positioning MPS-Tuning as a
promising paradigm for advancing fine-tuning methodologies across diverse domains.
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ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. We utilize pre-trained vision-language models
(e.g., CLIP) and are aware that such models may learn societal biases from their web-scale training
data. Our work is a fundamental algorithmic study on improving few-shot learning performance,
with experiments conducted solely on public academic datasets, involving no sensitive data or hu-
man subjects. We therefore consider the direct ethical risks of this research to be low. Nevertheless,
we urge any researchers or developers applying this technology to real-world applications to be
vigilant and proactively address potential issues of bias and fairness inherited from the foundation
models.

REPRODUCIBILITY STATEMENT

To support the reproducibility of this work, we provide comprehensive theoretical proofs and ex-
perimental details in the appendix. Detailed mathematical proofs for all theoretical claims in the
paper can be found in Sec. B. All key information required to reproduce our experimental results,
including detailed descriptions of the datasets (Sec. E) and complete hyperparameter configurations
(Sec. C), is also provided. We plan to publicly release our source code upon publication.
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A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, we utilized Large Language Models (LLMs), including ChatGPT,
Gemini, Claude, Qwen, etc., as general-purpose assistive tools. Their primary use was for improving
language expression, correcting grammatical errors, and polishing certain paragraphs to enhance the
overall readability of the manuscript. We confirm that all core research ideas, experimental designs,
result analyses, and final conclusions were conceived and executed by the human authors. The entire
content of the paper was carefully reviewed and revised by the authors, who bear full responsibility
for the final submission.

B DETAILED PROOF FOR THE UPPER BOUND ON GROMOV-WASSERSTEIN
DISTANCE

Theorem 2 The alignment of Gram matrices under the Lp-norm serves as a tractable upper bound
for the p-th order Gromov-Wasserstein distance (GWp), when the underlying metric is the cosine
distance.

Proof 1 The objective is to formally demonstrate that the Manifold Alignment Regularization
(MAR) strategy, which aligns Gram matrices, minimizes a computationally tractable upper bound
of the p-th order Gromov-Wasserstein (GW) distance between the feature manifolds of the original
pre-trained model and the fine-tuned model.

1. Definition of Metric Spaces. We consider two discrete metric probability spaces, (X , dX , µ)
and (Y, dY , ν).

• Space X : Represents the feature space of the original, frozen model. For a mini-batch of
N samples, we extract a set of normalized features Z = {z1, z2, . . . , zN}, where zi ∈ Rd.

• Space Y: Represents the feature space of the fine-tuned model. For the same mini-batch,
the corresponding set of normalized features is Z ′ = {z′1, z′2, . . . , z′N}, where z′i ∈ Rd.

• Metric d: We employ the Cosine Distance as the metric. For a pair of normalized vectors
a and b, the distance is d(a, b) = 1 − ⟨a, b⟩. The intra-space distance matrices, DZ and
DZ′ , are thus:

(DZ)ij = d(zi, zj) = 1− ⟨zi, zj⟩ (14)

(DZ′)ij = d(z′i, z
′
j) = 1− ⟨z′i, z′j⟩ (15)
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• Probability Distributions µ, ν: For a discrete batch of N samples, we assume a uniform
probability distribution, i.e., µ = ν = 1

N

∑N
i=1 δi, where δi is the Dirac measure.

2. Gromov-Wasserstein Distance and the Concept of Coupling. The discrete p-th order GW
distance is formulated as:

GWp(µ, ν) =

 min
π∈Π(µ,ν)

N∑
i,j=1

N∑
k,l=1

|(DZ)ij − (DZ′)kl|pπikπjl

1/p

(16)

Here, π ∈ Π(µ, ν) is a coupling, which is a joint probability distribution over the product space
X×Y . Intuitively, a coupling can be understood as a probabilistic transportation plan that describes
how to map or associate the points from space X (with distribution µ) to the points in space Y
(with distribution ν). The GW distance seeks the optimal coupling π∗ that minimizes the expected
difference between pairwise distances in the two spaces. Finding this optimal plan involves solving
a quadratic assignment problem, which is computationally intractable (NP-hard) for non-trivial
cases.

3. Simplification via a Fixed Coupling. To derive a computationally feasible upper bound, we
forgo the optimization over all possible couplings and instead select a single, fixed coupling. As
outlined in the paper, we adopt a natural coupling, πnat, which assumes a one-to-one correspondence
between the features of the same sample before and after fine-tuning. This coupling is formally
defined as:

πnat,ik =

{
1/N if i = k

0 if i ̸= k
(17)

By definition, the GW distance is the minimum over all couplings. Therefore, using our specific πnat
provides an upper bound on the true GW distance.

4. Derivation of the Upper Bound. We substitute our fixed coupling πnat into the p-th power of
the GW distance formula:

GWp(µ, ν)
p ≤

N∑
i,j=1

N∑
k,l=1

|(DZ)ij − (DZ′)kl|p · πnat,ikπnat,jl (18)

Due to the structure of πnat, the term πnat,ikπnat,jl is non-zero only when i = k and j = l, where it
evaluates to (1/N)(1/N) = 1/N2. This simplifies the quadruple summation into a double summa-
tion:

GWp(µ, ν)
p ≤ 1

N2

N∑
i=1

N∑
j=1

|(DZ)ij − (DZ′)ij |p (19)

5. Connection to Manifold Alignment Regularization (MAR). Let S and S′ denote the Gram
matrices (cosine similarity matrices). The absolute difference in distances can be expressed in terms
of the Gram matrices:

|(DZ)ij − (DZ′)ij | =|(1− ⟨zi, zj⟩)− (1− ⟨z′i, z′j⟩)|
=|S′

ij − Sij | (20)

Substituting this back into our inequality, we arrive at the final upper bound:

GWp(µ, ν)
p ≤ 1

N2

N∑
i=1

N∑
j=1

|S′
ij − Sij |p (21)

This expression shows that the p-th power of the GW distance is upper-bounded by the scaled Lp-
norm of the difference between the Gram matrices of the two feature spaces.
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Conclusion. We have formally shown that minimizing the Lp-norm of the difference between Gram
matrices corresponds to minimizing a tractable upper bound on the p-th power of the Gromov-
Wasserstein distance. The Manifold Alignment Regularization (MAR) loss presented in the paper,
LMAR, is a specific instance of this principle using the L1-norm (p = 1). This provides a strong
theoretical justification for how aligning Gram matrices effectively preserves the geometric structure
of the feature manifold during fine-tuning.

Table 7: Default hyperparameter settings used for training MPS-Tuning.

Hyperparameter Value

Optimizer SGD
Batch Size 32
Total Epochs 50
Peak Learning Rate 0.002
LR Scheduler Cosine Decay
Logits Weight α 0.3

MAR Loss Weight λ1 0.5
HMS Loss Weight λ2 0.1
HMS Depth 2

C HYPERPARAMETER SETTINGS

This section provides a detailed overview of the hyperparameter settings used in our experiments for
MPS-Tuning. The primary hyperparameter values, which serve as the default for most datasets, are
presented in Table 7. All experiments were conducted using the CLIP ViT-B/16 as the base model
and were averaged over three different random seeds to ensure the reliability of our results.

While most parameters were kept consistent to ensure a fair evaluation, certain key hyperparam-
eters were adjusted for specific datasets to optimize performance. Specifically, the weight for the
Manifold Alignment Regularization loss (λ1) was increased to 2.0 for datasets with natural images,
namely ImageNet, OxfordPets, Food101, and SUN397, to enforce stronger preservation of the rich
pre-trained manifold. For all other datasets, the default value of 0.5 was used. Similarly, the batch
size was set to 64 for the large-scale ImageNet dataset to ensure stable gradient estimation, while a
batch size of 32 was used for all other datasets.

Furthermore, we employed a dynamic temperature scheduling for the HMS loss (τ ′) using a cosine
annealing strategy over the training epochs. For datasets including OxfordPets, Food101, Describ-
ableTextures, EuroSAT, and UCF101, the temperature was annealed from an initial value of 0.5
down to 0.07. For the remaining datasets, a more conservative schedule from 0.1 to 0.05 was ap-
plied.

To mitigate the risk of overfitting caused by excessive category-specific supervision on intermediate
layers, we incorporate a simple layer-wise decay scheme in HMS. Concretely, the final layer is
assigned a weight of 1, and the weight of each preceding layer is defined recursively as half that of
its subsequent layer:

wL = 1, wl =
1

2
wl+1 for l = L− 1, L− 2, . . . , 1, (22)

where L denotes the total number of layers.

Regarding data augmentation, we followed the standard protocol used in CoOp. This includes ‘Ran-
domResizedCrop’ with a scale range of (0.3, 1.0) and random horizontal flipping. No other complex
augmentations were used.

D TRAINABLE MODULES

Benefiting from the powerful regularization capacity of MAR, direct fine-tuning of pre-trained mod-
els becomes feasible in few-shot scenarios. Specifically, a hierarchical fine-tuning strategy is em-
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ployed for the visual encoder. The modules in the ViT/B-16 backbone are grouped based on se-
mantic hierarchy (Gandelsman et al., 2024), with every four layers forming a group. The first group
remains frozen during training to retain general representation learning. In the second group, each
Transformer block is paired with a zero-initialized linear layer operating in parallel. Inputs are
processed by both branches, and their outputs are summed to allow lightweight adjustments in in-
termediate representations. The third group is fully fine-tuned to facilitate adaptation to downstream
tasks.

Table 8: Summary of 11 datasets for few-shot learning and 2 target datasets of domain general-
ization. The 7 selected templates (Zhang et al., 2022) for ImageNet series datasets are “itap of a
[class].”, “a bad photo of the [class].”, “a origami [class].”, “a photo of the large [class].”, “a [class]
in a video game.”, “art of the [class].” and “a photo of the small [class].”

Name Number of Classes Size (Train / Val / Test) Description Template

ImageNet (Deng et al., 2009) 1000 1.28M / - /50000 Recognition of generic objects
Ensemble of 7 selected templatesImageNet-V2 (Recht et al., 2019) 1000 - / - / 10000 New test data for ImageNet

ImageNet-Sketch (Wang et al., 2019) 1000 - / - / 50889 Sketch-style images of ImageNet classes

Caltech101 (Fei-Fei et al., 2007) 100 4128 / 1649 / 2465 Recognition of generic objects “a photo of a [class].”
OxfordPets (Parkhi et al., 2012) 37 2944 / 736 / 3669 Fine-grained classification of pets “a photo of a [class], a type of pet.”
StanfordCars (Krause et al., 2013) 196 6509 / 1635 / 8041 Fine-grained classification of cars “a photo of a [class].”
Flowers102 (Nilsback & Zisserman, 2008) 102 4093 / 1633 / 2463 Fine-grained classification of flowers “a photo of a [class], a type of flower.”
Food101 (Bossard et al., 2014) 101 50500 / 20200 / 30300 Fine-grained classification of foods “a photo of a [class], a type of food.”
FGVCAircraft (Maji et al., 2013) 100 3334 / 3333 / 3333 Fine-grained classification of aircrafts “a photo of a [class], a type of aircraft.”
SUN397 (Xiao et al., 2010) 397 15880 / 3970 / 19850 Scene classification “a photo of a [class].”
DTD (Cimpoi et al., 2014) 47 2820 / 1128 / 1692 Texture classification “[class] texture.”
EuroSAT (Helber et al., 2019) 10 13500 / 5400 / 8100 Land use & cover classification with satellite images “a centered satellite photo of [class].”
UCF101 (Soomro et al., 2012) 101 7639 / 1898 / 3783 Action recognition “a photo of a person doing [class].”

E DATASETS

In the main text, our method was assessed on the widely adopted CLIP Benchmark, in alignment
with previous work (Zhou et al., 2022b; Zhang et al., 2022; Yu et al., 2023). The benchmark com-
prises 11 diverse datasets, including ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2007),
Oxford Pets (Parkhi et al., 2012), Stanford Cars (Krause et al., 2013), Flowers102 (Nilsback & Zis-
serman, 2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), SUN397 (Xiao
et al., 2010), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), and UCF101 (Soomro
et al., 2012). These datasets span a broad range of image classification scenarios, encompassing
general object recognition, fine-grained object recognition, scene recognition, texture recognition,
and satellite imagery analysis, which allows for a thorough assessment of our model’s generalization
capabilities across various domains. To ensure consistency with previous work (Zhou et al., 2022b;
Zhang et al., 2022; Yu et al., 2023), the “BACKGROUND Google” and “Faces easy” classes were
excluded from the Caltech101 dataset. Additionally, robustness under domain shift was analyzed us-
ing two ImageNet variants: ImageNet-V2 (Recht et al., 2019), containing 200 overlapping classes,
and ImageNet-Sketch (Wang et al., 2019), encompassing 1,000 classes identical to ImageNet. Con-
sistent with earlier works, ImageNet was used as the source dataset, while the two variants served
as target datasets. An overview of these datasets is presented in Tab. 8.

F NUMERICAL RESULTS

F.1 CLASSIFICATION RESULTS

Comparative evaluations (Tab. 9) were conducted across 11 benchmark datasets against state-
of-the-art methods, including CoOp (Zhou et al., 2022b), Tip-Adapter-F (Zhang et al., 2022),
PLOT++ (Chen et al., 2023), MaPle (Khattak et al., 2023a), PromptSRC (Khattak et al., 2023b),
AMU-Tuning (Tang et al., 2024), TCP (Yao et al., 2024), DePT (Zhang et al., 2024), GalLop (Lafon
et al., 2024), TextRefiner (Xie et al., 2024), MMRL (Guo & Gu, 2025), SkipT (Wu et al., 2025),
LDC (Li et al., 2025), and TAC (Hao et al., 2025). Our approach achieved the highest average perfor-
mance under all few-shot settings (1, 2, 4, 8, and 16 shots), with its advantage becoming increasingly
pronounced as more samples were introduced, underscoring its robust learning capability.
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Table 9: Performance comparison on CLIP benchmark on ViT-B/16.

Method Setting ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

CLIP (Radford et al., 2021)

1-shot

66.73 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.87
CoOp (Zhou et al., 2022b) 66.33 92.60 90.37 67.43 77.53 84.33 21.37 66.77 50.23 54.93 71.23 67.56
Tip-adapter-F (Zhang et al., 2022) 69.83 93.83 90.84 67.88 87.37 86.17 30.39 67.42 53.72 64.35 73.70 71.41
PLOT++ (Chen et al., 2023) 66.45 94.34 91.89 68.81 80.48 86.16 28.60 66.77 54.57 65.41 74.31 70.71
TaskRes (Yu et al., 2023) 69.57 93.53 90.17 68.83 85.77 84.57 31.30 68.13 53.80 65.43 71.70 71.16
MaPLe (Khattak et al., 2023a) 68.73 93.67 91.53 68.07 78.80 84.40 27.97 68.40 50.97 41.90 72.60 67.91
PromptSRC (Khattak et al., 2023b) 68.13 93.67 92.00 69.40 85.93 84.87 27.67 69.67 56.23 73.13 74.80 72.32
AMU-Tuning (Tang et al., 2024) 67.37 94.51 91.01 65.65 80.29 85.15 27.20 65.11 51.77 70.76 71.89 70.07
TCP (Yao et al., 2024) 67.03 93.53 91.43 66.17 86.87 84.67 28.87 69.00 54.80 62.53 73.37 70.75
DePT (Zhang et al., 2024) 64.23 93.70 90.43 67.63 82.77 84.70 30.03 68.03 54.07 52.30 74.03 69.27
GalLop (Lafon et al., 2024) 69.79 94.11 91.59 71.47 86.12 84.81 32.52 68.82 57.15 63.58 73.11 72.10
TextRefiner (Xie et al., 2024) 69.00 92.13 88.17 65.07 70.10 85.40 25.63 67.97 44.83 53.93 69.93 66.56
MMRL (Guo & Gu, 2025) 69.00 94.17 90.87 68.70 85.97 84.87 28.53 68.90 56.37 76.00 75.97 72.67
SkipT (Wu et al., 2025) 69.20 93.87 91.60 69.63 83.63 85.67 29.93 69.10 54.50 72.23 75.30 72.24
LDC (Li et al., 2025) 69.54 93.79 91.25 68.24 83.64 85.88 27.57 67.99 58.22 78.49 73.20 72.53
TAC (Hao et al., 2025) 69.80 94.60 92.10 71.33 85.27 85.70 31.17 71.17 56.87 70.47 76.47 73.18
MPS-Tuning (Ours) 70.37 94.47 91.17 70.17 86.50 86.10 29.97 70.40 56.47 76.10 77.40 73.55
CLIP (Radford et al., 2021)

2-shot

66.73 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.87
CoOp (Zhou et al., 2022b) 67.07 93.07 89.80 70.50 87.33 84.40 26.20 66.53 53.60 65.17 73.43 70.65
Tip-adapter-F (Zhang et al., 2022) 70.04 94.20 91.47 70.91 89.65 86.39 33.51 68.64 55.91 73.17 76.10 73.64
PLOT++ (Chen et al., 2023) 68.28 94.69 92.29 73.17 89.81 86.33 31.14 68.06 56.72 76.80 76.76 74.00
TaskRes (Yu et al., 2023) 70.20 94.23 90.67 72.07 89.70 85.60 32.67 70.43 55.67 70.23 75.20 73.33
MaPLe (Khattak et al., 2023a) 69.47 94.20 92.63 69.80 84.47 85.03 30.93 70.53 55.63 72.30 74.30 72.66
PromptSRC (Khattak et al., 2023b) 69.77 94.53 92.50 73.40 91.17 85.70 31.70 71.60 59.97 79.37 78.50 75.29
AMU-Tuning (Tang et al., 2024) 69.62 94.86 90.41 68.52 83.31 85.51 31.15 67.67 54.04 72.55 74.85 72.04
TCP (Yao et al., 2024) 68.30 94.13 90.57 71.00 90.87 85.17 32.23 71.03 58.43 70.63 77.70 73.64
DePT (Zhang et al., 2024) 65.97 94.27 90.90 71.77 88.80 85.30 32.43 70.37 59.83 68.57 77.60 73.25
GalLop (Lafon et al., 2024) 70.57 95.25 93.09 75.03 91.81 85.42 36.74 71.17 61.90 67.83 77.81 75.15
TextRefiner (Xie et al., 2024) 70.10 93.37 90.10 65.17 73.37 85.70 26.63 69.07 48.70 53.40 69.77 67.76
MMRL (Guo & Gu, 2025) 70.30 94.83 91.57 72.93 91.20 85.53 34.23 71.53 61.37 82.87 78.50 75.90
SkipT (Wu et al., 2025) 70.23 95.10 92.43 73.17 90.33 85.90 33.53 70.60 58.83 78.50 78.37 75.18
LDC (Li et al., 2025) 69.86 94.32 91.17 70.75 88.71 86.07 28.98 69.61 62.17 81.73 75.95 74.48
TAC (Hao et al., 2025) 70.73 95.27 92.63 74.80 91.10 86.30 36.37 72.97 60.93 80.97 79.30 76.49
MPS-Tuning (Ours) 71.43 95.50 92.40 75.37 91.57 86.70 33.77 72.37 61.47 81.63 81.03 76.66
CLIP (Radford et al., 2021)

4-shot

66.73 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.87
CoOp (Zhou et al., 2022b) 68.73 94.40 92.57 74.47 92.17 84.47 30.83 69.97 58.70 70.80 77.10 74.02
Tip-adapter-F (Zhang et al., 2022) 70.70 95.01 92.04 74.57 92.61 86.67 36.45 70.77 61.70 79.22 79.51 76.30
PLOT++ (Chen et al., 2023) 70.40 95.13 92.55 76.25 92.93 86.46 35.29 71.73 62.43 83.21 79.76 76.92
TaskRes (Yu et al., 2023) 70.93 95.00 91.93 75.97 91.73 86.03 33.40 72.70 60.17 74.17 76.20 75.29
MaPLe (Khattak et al., 2023a) 70.77 95.30 93.27 71.97 90.47 85.67 32.63 72.73 61.17 76.57 77.93 75.32
PromptSRC (Khattak et al., 2023b) 71.07 95.27 93.43 77.13 93.87 86.17 37.47 74.00 65.53 86.30 81.57 78.35
AMU-Tuning (Tang et al., 2024) 71.69 96.21 92.31 71.52 86.28 85.77 34.48 70.24 59.32 78.63 76.67 74.83
TCP (Yao et al., 2024) 69.97 95.17 92.00 76.43 93.83 85.50 36.37 73.40 64.07 73.63 80.77 76.47
DePT (Zhang et al., 2024) 68.57 95.10 92.83 76.13 93.87 85.70 34.57 73.07 64.13 78.87 81.03 76.72
GalLop (Lafon et al., 2024) 71.67 95.60 93.22 79.69 95.58 86.08 42.65 73.42 66.88 74.05 81.23 78.19
TextRefiner (Xie et al., 2024) 70.70 93.13 92.57 67.90 76.17 87.03 29.43 70.80 51.37 56.00 71.87 69.72
MMRL (Guo & Gu, 2025) 71.40 96.03 92.57 78.17 94.60 85.77 40.47 73.93 67.87 87.67 82.67 79.20
SkipT (Wu et al., 2025) 71.40 95.60 93.33 77.60 94.27 86.00 39.90 73.07 65.70 83.40 82.53 78.44
LDC (Li et al., 2025) 71.04 95.25 91.80 75.13 93.95 86.71 31.92 72.92 66.43 86.37 79.75 77.39
TAC (Hao et al., 2025) 71.73 95.60 93.67 78.63 94.50 86.80 41.93 74.70 66.67 88.70 82.93 79.62
MPS-Tuning (Ours) 72.57 96.80 93.67 81.17 96.00 87.17 41.97 74.53 68.50 88.50 84.30 80.47
CLIP (Radford et al., 2021)

8-shot

66.73 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.87
CoOp (Zhou et al., 2022b) 70.63 94.37 91.27 79.30 94.97 82.67 39.00 71.53 64.77 78.07 80.20 76.98
Tip-adapter-F (Zhang et al., 2022) 72.01 95.17 91.88 77.91 94.88 86.80 41.94 73.93 67.91 84.35 82.37 79.01
PLOT++ (Chen et al., 2023) 71.31 95.51 93.02 81.26 95.44 86.58 41.42 73.93 66.49 88.37 82.80 79.65
TaskRes (Yu et al., 2023) 72.20 95.30 92.00 79.60 96.70 86.40 40.27 74.57 66.60 77.47 81.67 78.43
MaPLe (Khattak et al., 2023a) 71.63 95.40 93.07 74.63 94.27 86.47 36.97 74.00 65.57 84.60 81.03 77.97
PromptSRC (Khattak et al., 2023b) 72.33 95.67 93.50 80.97 96.27 86.90 43.27 75.73 69.87 88.80 84.30 80.69
AMU-Tuning (Tang et al., 2024) 73.56 96.74 93.34 74.62 89.38 86.04 38.86 71.32 61.39 80.78 79.59 76.87
TCP (Yao et al., 2024) 71.60 95.43 92.30 80.27 96.20 86.53 40.93 75.07 68.80 77.57 83.23 78.90
DePT (Zhang et al., 2024) 71.37 95.70 93.47 80.63 96.27 86.60 41.00 75.30 69.40 82.83 83.57 79.65
GalLop (Lafon et al., 2024) 72.86 96.19 93.73 84.42 97.90 86.79 48.48 75.51 71.89 84.04 84.40 81.48
TextRefiner (Xie et al., 2024) 70.77 95.17 92.70 69.87 84.07 86.97 31.00 72.17 55.23 59.57 75.37 72.08
MMRL (Guo & Gu, 2025) 72.33 96.27 93.03 82.57 96.60 86.33 48.07 76.00 71.60 88.73 84.67 81.47
SkipT (Wu et al., 2025) 72.40 95.90 93.40 82.33 96.60 86.73 46.50 74.77 69.77 86.57 85.60 80.96
LDC (Li et al., 2025) 72.48 95.86 92.48 79.69 95.98 86.94 37.98 75.56 71.51 90.80 80.91 80.02
TAC (Hao et al., 2025) 72.73 96.27 94.20 82.43 96.53 87.20 48.63 76.17 70.73 89.63 85.83 81.85
MPS-Tuning (Ours) 74.07 96.83 93.77 87.20 98.03 87.63 55.60 76.70 73.30 91.13 87.03 83.75
CLIP (Radford et al., 2021)

16-shot

66.73 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.87
CoOp (Zhou et al., 2022b) 71.87 95.57 91.87 83.07 97.07 84.20 43.40 74.67 69.87 84.93 82.23 79.89
Tip-adapter-F (Zhang et al., 2022) 73.71 96.11 93.02 83.68 96.26 87.34 45.03 76.30 72.46 88.47 85.12 81.59
PLOT++ (Chen et al., 2023) 72.60 96.04 93.59 84.55 97.56 87.11 46.74 76.03 71.43 92.00 85.34 82.09
TaskRes (Yu et al., 2023) 73.03 95.80 92.40 83.47 97.93 86.90 44.90 76.07 71.57 82.70 83.97 80.79
MaPLe (Khattak et al., 2023a) 72.57 95.67 93.30 78.00 95.80 87.37 40.63 75.47 70.50 89.03 82.70 80.09
PromptSRC (Khattak et al., 2023b) 73.17 96.07 93.67 83.83 97.60 87.50 50.83 77.23 72.73 92.43 86.47 82.87
AMU-Tuning (Tang et al., 2024) 74.93 97.04 93.46 78.10 90.95 86.40 43.12 72.78 64.66 82.14 80.54 78.56
TCP (Yao et al., 2024) 72.40 95.83 92.77 84.00 97.43 87.23 46.13 76.80 72.70 85.00 85.40 81.43
DePT (Zhang et al., 2024) 73.35 96.27 94.13 85.03 97.83 87.30 47.00 77.30 74.03 91.43 85.57 82.66
GalLop (Lafon et al., 2024) 74.11 96.64 94.30 88.24 98.67 87.42 55.16 77.25 75.00 89.24 86.64 83.88
TextRefiner (Xie et al., 2024) 70.90 95.27 93.13 72.10 92.37 87.23 34.37 74.33 61.93 64.30 79.63 75.05
MMRL (Guo & Gu, 2025) 73.40 97.13 93.83 86.43 98.40 87.03 57.60 77.70 75.30 93.37 87.60 84.34
SkipT (Wu et al., 2025) 73.83 96.77 94.00 87.43 98.17 87.13 55.57 76.80 74.07 91.57 87.70 83.91
LDC (Li et al., 2025) 73.88 96.63 93.35 84.11 97.85 87.31 47.88 76.91 77.07 92.16 84.46 82.87
TAC (Hao et al., 2025) 73.67 96.83 94.57 85.83 98.20 87.70 55.87 77.67 74.80 93.53 88.20 84.26
MPS-Tuning (Ours) 75.60 97.37 94.77 91.13 99.37 88.13 69.03 78.47 77.20 94.37 89.87 86.85

F.2 ABLATION STUDY

Additional ablation results for the 1-, 2-, 4-, 8-, and 16-shot settings are provided in Tab. 10, and
the overall trends are consistent with the main paper. A notable exception is the 1 shot case, where
HMS alone does not improve performance. This likely stems from the extremely limited positive
sample pool, containing only the sample itself, its augmentations, and the associated textual feature,
which encourages overfitting and weakens generalization. With more shots, the increased sample
diversity allows HMS to operate effectively and enhance performance.

G SENSITIVITY STUDY

We conducted sensitivity analyses for the weights of MAR (λ1), HMS (λ2), and the logits from the
fine-tuning branch (α), with the corresponding results shown in Tables Tab. 11, Tab. 12, and Tab. 13,
respectively. Regarding λ1, we found that setting it to 0.5 or 1 yields the best performance when a
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Table 10: More ablation results under 1, 2, 4, 8, and 16-shot settings. The best result in each setting
is highlighted in bold.

Method Setting ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

CE

1-shot

68.80 94.00 90.13 68.03 86.50 84.93 28.17 69.40 57.53 74.47 76.63 72.60
CE+MAR 70.30 94.07 91.10 70.73 86.93 85.80 30.60 70.20 56.40 75.73 76.93 73.53
CE+HMS 69.33 94.07 90.27 66.93 85.80 84.97 27.33 69.63 56.57 74.23 76.73 72.35
MPS-Tuning 70.37 94.47 91.17 70.17 86.50 86.10 29.97 70.40 56.47 76.10 77.40 73.55
CE

2-shot

69.63 95.27 91.30 72.53 91.67 85.60 30.90 71.07 61.97 81.00 80.20 75.58
CE+MAR 71.17 94.97 92.27 75.30 91.43 86.40 34.17 72.07 61.17 82.03 80.43 76.49
CE+HMS 70.33 95.23 91.33 73.77 91.00 85.50 32.93 71.10 61.63 80.97 80.37 75.83
MPS-Tuning 71.43 95.59 92.40 75.37 91.57 86.70 33.77 72.37 61.47 81.63 81.03 76.66
CE

4-shot

70.43 96.33 92.33 78.30 95.53 85.73 37.10 73.10 68.10 87.83 83.27 78.92
CE+MAR 72.23 96.13 93.23 80.70 95.90 87.00 41.07 74.23 68.03 87.90 83.97 80.04
CE+HMS 71.57 96.53 92.70 79.87 95.13 85.47 40.80 73.33 68.00 88.53 83.63 79.60
MPS-Tuning 72.57 96.80 93.67 81.17 96.00 87.17 41.97 74.53 68.50 88.50 84.30 80.47
CE

8-shot

71.90 96.73 92.50 85.17 97.75 86.20 51.63 75.17 72.30 90.13 86.10 82.32
CE+MAR 73.67 96.30 93.47 86.70 97.70 87.43 54.80 76.20 72.33 90.03 86.40 83.18
CE+HMS 73.17 96.50 93.07 86.60 97.47 85.87 55.20 75.93 72.67 80.83 86.43 83.07
MPS-Tuning 74.07 96.83 93.77 87.20 98.03 87.63 55.60 76.70 73.30 91.13 87.03 83.75
CE

16-shot

72.93 97.07 93.53 90.00 99.02 86.20 66.33 76.30 75.87 93.77 88.43 85.41
CE+MAR 75.30 97.00 94.27 90.80 99.23 88.03 68.47 78.07 77.27 93.47 88.90 86.44
CE+HMS 74.77 97.33 93.73 90.77 99.23 86.20 68.87 77.80 76.40 93.90 89.23 86.20
MPS-Tuning 75.60 97.37 94.77 91.13 99.37 88.13 69.03 78.47 77.20 94.37 89.87 86.85

Table 11: Sensitivity Study on MAR weight λ1

λ1 ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

0.01 74.80 97.33 93.67 90.70 99.23 86.27 68.43 77.87 76.53 94.20 89.17 86.20
0.1 74.97 97.43 94.33 90.97 99.33 87.13 68.60 78.07 76.97 94.40 89.67 86.53
0.2 74.97 97.43 94.37 90.90 99.33 87.20 68.83 78.07 77.10 94.43 89.80 86.58
0.5 75.23 97.43 94.53 91.13 99.37 87.70 69.03 78.37 77.20 94.37 89.87 86.74
1 75.43 97.43 94.70 90.97 99.40 88.00 68.83 78.43 77.30 93.37 89.63 86.76
2 75.60 97.23 94.77 90.77 99.20 88.13 68.23 78.47 76.93 92.10 88.90 86.39
5 75.47 96.93 94.37 90.03 98.83 88.03 66.50 78.13 76.33 91.30 88.20 85.83
10 75.13 96.73 94.13 88.30 98.53 88.00 64.43 77.90 76.07 91.27 87.47 85.27

Table 12: Sensitivity Study on HMS weight λ2

ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

0.01 75.37 97.13 94.37 91.03 99.27 88.03 68.93 78.10 77.20 93.73 89.17 86.58
0.1 75.60 97.37 94.77 91.13 99.37 88.13 69.03 78.47 77.20 94.37 89.87 86.85
0.2 75.63 97.47 94.87 91.07 99.20 88.07 66.73 78.50 76.93 94.33 89.77 86.60
0.3 75.60 97.27 94.73 91.00 99.13 87.87 66.93 78.30 76.97 94.40 89.63 86.53
0.5 75.50 95.27 94.57 90.67 99.10 87.07 67.63 77.77 76.80 94.27 89.33 86.18
0.8 74.90 93.70 94.13 88.73 98.80 86.57 63.37 66.33 75.77 93.63 88.23 84.02
1 74.90 96.37 93.93 88.17 98.27 86.33 50.83 67.87 75.83 94.17 88.07 83.16
2 69.07 91.93 93.27 80.03 86.60 84.77 24.43 64.53 43.20 87.30 83.83 73.82

Table 13: Sensitivity Study on logits weight α

ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

0.1 74.07 96.97 94.43 88.30 95.50 87.90 58.33 75.60 71.47 91.70 87.60 83.81
0.2 75.43 97.27 94.77 90.83 99.23 88.10 68.00 78.07 76.83 93.87 89.40 86.53
0.3 75.60 97.37 94.77 91.13 99.37 88.13 69.03 78.47 77.20 94.37 89.87 86.85
0.4 75.67 97.40 94.63 91.13 99.37 88.07 68.87 78.57 77.30 94.20 89.90 86.83
0.5 75.57 97.37 94.57 91.13 99.33 87.87 68.97 78.67 77.17 94.17 89.80 86.78
0.6 75.50 97.33 94.30 90.97 99.27 87.63 68.87 78.60 77.17 94.00 89.57 86.65
0.7 75.33 97.40 93.63 90.70 99.13 87.07 69.17 78.50 76.60 94.13 89.27 86.45
0.8 75.00 97.47 92.97 89.80 98.97 86.33 67.90 78.27 76.40 93.20 88.93 85.93
0.9 74.57 97.20 91.37 89.33 99.00 84.93 67.73 77.83 76.63 93.00 88.57 85.47
1.0 74.00 97.07 89.00 88.33 98.80 83.03 67.10 77.20 75.87 93.37 87.87 84.69

fixed value is applied across all datasets. To further improve performance, we divided the datasets
into two groups and set λ1 to 0.5 and 2 for each group (see Hyperparameter Settings), respectively.
As for λ2, we fixed it at 0.1 across all datasets, and similarly, α was set to 0.3 for all datasets.
Notably, the model’s performance exhibited minimal variation when these hyperparameters were
adjusted around their default values, demonstrating the robustness of our method to hyperparameter
choices.
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Table 14: Training cost under each method’s default settings on SUN397.

Time(min) Params(M) Mem(GB)
CoOp 170.4 0.008 7.7
Tip-Adapter 9.4 3.3 2.9
MaPLe 13.6 1.2 7.2
TCP 21.8 0.3 9.0
CoCoOp 252.4 0.04 7.1
MPS-Tuning (Ours) 54.23 31 9.3
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Figure 10: Comparison of different metrics and constraints: (a) Cosine, (b) Hellinger, (c) Spearman,
and (d) Silhouette.

H TRAINING COST

Due to the fixed text encoder design, our method achieves high training efficiency with GPU memory
usage and time costs comparable to previous methods (Tab. 14).

I MORE INTERPRETATION RESULTS

I.1 IMPACT OF CONSISTENCY CONSTRAINTS ON MODEL ADAPTATION

To substantiate the potential limitations of different consistency constraints discussed in the inter-
pretability section of the main text, we conducted quantitative experiments analyzing changes in
feature representations and logits distributions before and after fine-tuning.

1. Feature-Level Analysis We evaluated the cosine distance between model output features before
and after fine-tuning across multiple datasets. In CLIP’s normalized feature space used for similar-
ity computation, the difference between two vectors is measured by their angular separation. Since
angular alignment is equivalent to vector alignment in this context, a larger cosine distance between
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pre- and post-fine-tuning vectors indicates greater overall divergence. As shown in Fig. 10a, cosine
similarity constraints result in minimal angular changes between pre- and post-fine-tuning mod-
els, even in cross-domain scenarios (e.g., FGVCAircraft, where models typically require substantial
adjustments for effective downstream task adaptation). This demonstrates that cosine similarity im-
poses more stringent restrictions on feature variations compared to other feature-based constraints.

2. Logits-Level Analysis We assessed the variation in prediction probabilities using Hellinger
Distance and the consistency of prediction rankings via Spearman’s Rank Correlation, comparing
models before and after fine-tuning. The former quantifies differences between two probability
distributions, while the latter assesses the extent to which fine-tuned models maintain prediction
ranking consistency with original models. The experimental results documented in Fig. 10b and
Fig. 10c show that models constrained by feature-level cosine similarity and logits-level KL di-
vergence demonstrate markedly superior alignment with original model predictions compared to
their L1 and L2 constrained counterparts. This superiority manifests through consistently reduced
Hellinger Distance values and elevated Spearman’s Rank Correlation coefficients, with the most pro-
nounced differentiation occurring on the cross-domain FGVCAircraft dataset. These results confirm
that cosine similarity and KL divergence heavily constrain model predictions.

These findings indicate that cosine similarity and KL divergence may impose overly rigid con-
straints, potentially hampering the model’s learning capacity. In contrast, our proposed Mani-
fold Alignment Regularization (MAR) offers a dynamic constraint mechanism that adapts across
datasets, enabling models to engage in further learning when knowledge acquisition is necessary
while effectively preserving pre-trained knowledge when high consistency exists between pre-
trained and downstream task-required knowledge, thereby significantly enhancing model learning
capability.

I.2 IMPACT OF MAR AND HMS ON FEATURE DISCRIMINATION

We further employed a common clustering metric, the Silhouette Coefficient, to evaluate the class
separability of features in the representation space across different model components. As shown in
Fig. 10d, using MAR alone improves class separability in certain scenarios, while HMS alone sig-
nificantly enhances the distinction between categories. The combined use of MAR and HMS yields
results comparable to using HMS alone, indicating the effectiveness of our approach in facilitating
discriminative feature learning.

I.3 COMPARISON OF MANIFOLD ALIGNMENT PERFORMANCE

To rigorously verify manifold-level alignment, we employed Topological Data Analysis (TDA) via
Persistent Homology to quantify the topological consistency between the original CLIP manifold
and those generated by different fine-tuning methods. Specifically, we calculated the Wasserstein
distance on persistence diagrams for H0 (connected components, reflecting macro-separability)
and H1 (loops, reflecting fine-grained geometry) to measure structural deviation. Empirical re-
sults (Fig. 11) across multiple datasets demonstrate that MPS-Tuning achieves consistently lower
Wasserstein distances compared to baselines, indicating superior capability in preserving topologi-
cal structures. It is important to note that while we do not claim strict homeomorphism or homology
guarantees, which are intractable in deep representation learning, the TDA evidence confirms that
our regularization effectively preserves key homological features of the original manifold and pre-
vents structural distortion beyond simple semantic approximation.

J VISUALIZATION

We visualize the features using t-SNE on the ImageNet, StanfordCars, and FGVCAircraft datasets
under the 16-shot setting. As illustrated in Fig. 12, MPS-Tuning yields superior intra-class compact-
ness and inter-class separability compared to both the non-fine-tuned model and Cross-Entropy loss
(CEloss) fine-tuning. Notably, in scenarios where the original CLIP model performs well (e.g., Im-
ageNet and StanfordCars), MPS-Tuning more effectively preserves the original semantic structure
and inter-class relationships than CE loss tuning. In contrast, for datasets where CLIP underperforms

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

ImageNet SUN397 UCF101 FGVCAircraft
0

20

40

60

80

100

120

H
0 

W
as

se
rs

te
in

 D
is

ta
nc

e

MPS-Tuning (Ours)
CE Loss
Feature-based L1 Loss
Feature-based L2 Loss
Logits-based L1 Loss
Logits-based L2 Loss

(a) H0

ImageNet SUN397 UCF101 FGVCAircraft
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

H
1 W

as
se

rs
te

in
 D

is
ta

nc
e

MPS-Tuning (Ours)
CE Loss
Feature-based L1 Loss
Feature-based L2 Loss
Logits-based L1 Loss
Logits-based L2 Loss

(b) H1

Figure 11: A comparison of manifold alignment performance is conducted using TDA analysis,
where lower numerical values indicate better manifold alignment.

(e.g., FGVCAircraft), the global semantic structure is largely retained, while local adjustments fa-
cilitate improved classification.
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CLIP CE Loss MPS-Tuning (Ours)

(a) ImageNet
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Figure 12: The t-SNE visualization, with each color denoting a distinct class.
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