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Abstract

While several recent matrix completion methods are developed to deal with non-
uniform observation probabilities across matrix entries, very few allow the missing-
ness to depend on the mostly unobserved matrix measurements, which is generally
ill-posed. We aim to tackle a subclass of these ill-posed settings, characterized by a
flexible separable observation probability assumption that can depend on the matrix
measurements. We propose a regularized pairwise pseudo-likelihood approach
for matrix completion and prove that the proposed estimator can asymptotically
recover the low-rank parameter matrix up to an identifiable equivalence class of
a constant shift and scaling, at a near-optimal asymptotic convergence rate of the
standard well-posed (non-informative missing) setting, while effectively mitigating
the impact of informative missingness. The efficacy of our method is validated
via numerical experiments, positioning it as a robust tool for matrix completion to
mitigate data bias.

1 Introduction

The goal of matrix completion is to recover a target matrix from its noisy and incomplete measure-
ments. It is a modern high-dimensional missing data problem. Despite various significant advances
made in the last two decades [e.g., 7, 17, 20, 18], many works on matrix completion still focus
on the missing-at-random mechanism. Although such an assumption is doubtful in many real-life
applications, there are very few options available for more general missing data mechanism, espe-
cially those with theoretical guarantees. This work aims to provide a principled and theoretically
well-supported alternative method for missing-not-at-random settings, where missingness could
depend on the measurements that are mostly unobserved.

A usual assumption to allow for succeeding matrix completion is that the unknown matrix is low-
rank or approximately low-rank. The noiseless setting has been studied in [7] using nuclear norm
minimization. The vast majority of existing theories on matrix completion assume that entries are
revealed with a constant probability with respect to both entry location and measurement value.
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Recent approaches to handling entries revealed with nonuniform probabilities, depending on the entry
location, have shown the strength to improve matrix completion with solid theoretical guarantees [e.g.,
31, 11, 28, 25, 23, 35]. These works aim to mitigate the effects due to the non-uniformity in
observation probabilities [30]. When additional row/column attributes are available, it is also possible
to use this additional information for handling the non-uniform missing [e.g., 24]. Although the
non-uniform missing mechanism is quite flexible, it is fundamentally different from the missing-not-
at-random mechanism. The key difference is whether the missing probability depends on the possibly
unobserved measurement, which we will highlight below. In a missing-not-at-random setting, the
methods developed for the non-uniform missing mechanism could still be biased in matrix recovery.
See Section 6 for a numerical example. The method we propose in this work not only deals with
(a flexible subclass of) missing-not-at-random settings, but it is also applicable in the non-uniform
missing settings mentioned above.

In the missing data literature, likelihood-based methods for missing-not-at-random settings commonly
involve specifying a parametric distribution of the missing data mechanism. However, this assumption
should be used with caution, as it is highly sensitive and may easily induce a misspecified model,
resulting in biased estimation and inaccurate results. To circumvent such issues, it is preferable
to adopt a missingness assumption as flexible and generally applicable as possible. This type of
assumption, often referred to as an unspecified missing data mechanism [37], avoids explicitly
specifying a parametric model. Instead of using the full likelihood for estimation, certain unspecified
missing-not-at-random assumption allows for the derivation of a non-standard likelihood [22], which
serves as the foundation for subsequent estimation. Such non-standard likelihood approaches have
been used in regression analysis [32] and variable selection when confronted with informative
missing [37]. One disadvantage of this approach is that not all the unknown parameters are estimable
due to certain non-identification issues [16, 22].

In this work, we extend the pairwise pseudo-likelihood approach [22] to matrix completion with
a mild separable informative missingness assumption (see Assumption 2.1 in Section 2), which is
very flexible and generally applicable. While not all the parameters are estimable, we can identify
the dispersion-scaled matrix up to a constant shift without suffering from bias due to informative
missingness. This shows great promise to be applied in practice, for example, in recommendation
systems where the rankings of entries are of interest.

Apart from the informative missing mechanism, our matrix completion method is based on the
exponential family model, which has received extensive attention within the matrix completion litera-
ture for its efficacy in modeling non-Gaussian data, particularly discrete data. Notably, researchers
have investigated its application in specific scenarios such as one-bit matrix completion [10] and
multinomial matrix completion [4, 19]. The application of the exponential family model also extends
to accommodating unbounded non-Gaussian observations, including Poisson matrix completion [8]
and exponential family matrix completion [13, 21].

Overall, the combination of the separable missing-not-at-random mechanism and the exponential
family model allows the proposed method to be applicable in a wide range of settings. We summarize
the major contributions of this work as follows.

1. We formulate the pairwise pseudo-likelihood approach for matrix completion under in-
formative missingness and exponential family model. To the best of our knowledge, the
pairwise pseudo-likelihood approach has never been adopted in the matrix completion setup
before. As opposed to the classical applications of pairwise pseudo-likelihood that assume
i.i.d. sampling, matrix completion problems exhibit a non-identical and high-dimensional
sampling structure.

2. We investigate the identifiability issues of the crucial separable missingness structures
(Assumption 2.1) which lies at the core of the pairwise pseudo-likelihood approach.

3. We provide a non-trivial convergence analysis of the proposed estimator up to an identifiable
equivalence class. Such analysis involves a novel concentration analysis of matrix-valued
U -statistics where existing works on this type of concentration is sparse.

Related Work: To the best of our knowledge, we are one of the first works that consider the missing
not at random (MNAR) setting in matrix completion and provide solid theoretical guarantees. [2]
claims that they can deal with the MNAR setting. However, they assume selections and noise are
independent conditioned on latent factors, as shown in their Assumption 2. On the contrary, our
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setting allows missingness to depend on noise. [15] also addresses informative missingness in matrix
completion. However, they require additional covariate information to complete the matrix. Compared
to the above two works, our setting is more general as we do not require independence between
selections and noise given the true matrix, and we do not need additional covariate information.
However, we do require that ϵi is independent of ϵj for i ̸= j or |i− j| > 1, while [2] allows selection
to be dependent among different entries. Regarding to the theoretical bounds, [2] requires additional
technical conditions to develop finite sample error bounds, and their bound is point-wise, i.e., the
bound is for a given location i. [15] also requires additional conditions on the likelihood and restricted
eigenvalues to obtain convergence. Our error bound is developed under relatively weak conditions
and achieves the minimax convergence rate.

2 Models

Let A⋆ = (A⋆,ij)
m1,m2

i,j=1 ∈ Rm1×m2 be the matrix of interest, which is related to the observation
through a generalized linear model. More specifically, we posit that the measurements Yij of the
(i, j)-th entry possesses a probability density/mass function of the exponential family form:

Yij ∼ fij(y|A⋆, ϕ⋆), fij(y|A⋆, ϕ⋆) := h(y;ϕ⋆)exp

(
A⋆,ijy −G(A⋆,ij)

ϕ⋆

)
, (1)

where h : R → R+ and G : R → R are the base measure function and log-partition function
associated with the canonical representation, and ϕ⋆ > 0 is the dispersion parameter. Note that this
family of distributions covers a wide variety of popular distributions including Bernoulli, Gaussian,
and Poisson distributions. For matrix completion problems, we do not have measurements from
every single entry. Let Tij be the observation indicator variable of the (i, j)-th entry, with value 1 if
Yij is observed and 0 otherwise. We assume that {((Yij , Tij) : i = 1, . . . ,m1; j = 1, . . . ,m2} are
independent.

Uniform-sampling-at-random (USR) mechanism is regarded as one of the simplest missing structures
for matrix completion. Under USR, Pr(Tij = 1|Yij) is a constant across all i, j, which implies that
the observation indicator Tij is independent of the measurement Yij . While this has been widely
used to simplify theoretical analyses in many prior ground works [e.g., 7, 6, 17], USR is a strong
assumption that can be violated in many applications. To address this issue, a few analyses and
methods [e.g., 31, 11, 28, 18, 4, 25, 23, 35] have been developed based on the non-uniform missing
structures, where Pr(Tij = 1|Yij) = tij for 0 < tij ≤ 1. Here the observation probabilities are
allowed to differ across i, j, but the missingness remains independent of the measurement Yij . In
this paper, we relax this restriction and allow whether an entry is observed or not to depend on the
corresponding possibly unobserved measurement, leading to a challenging missing-not-at-random
(MNAR) setup.

Matrix completion under general MNAR is ill-posed, leading to non-identifiability of A⋆ (even
under standard low-rank assumption). Indeed, general MNAR is ill-posed [33] not only in matrix
completion, but also in regression [28, 31] and statistical inference [26] in general. However, some
additional structure imposed within the MNAR setting can ensure identifiability. To proceed, we
make the following assumption, which corresponds to a flexible subclass of MNAR settings. This
assumption makes it possible to identify A⋆ up to some equivalence relations (see Section 3).
Assumption 2.1. The observation probability is separable in the following sense: Pr(Tij = 1|Yij) =
tijs(Yij), for some tij ∈ (0, 1] and some non-negative function s(·) : R → R+.

As will be made clear later, the proposed technique does not require the knowledge of s(·) and {tij}.
A similar condition has been widely used in various regression problems [e.g., 22, 29, 37]. These
works posit an i.i.d. setup with additional covariates, while our setup does not imply an identically
distributed assumption across locations and has no covariates. Moreover, in our setup, it is not
possible to observe replicates in the same location, while the i.i.d. setup generally allows replicates.
Assumption 2.1 is flexible and widely applicable. Not only does it accomodate USR, it also includes
non-uniform missing mechanism as a special case, where we can set s(·) ≡ 1 and leave {tij} variable
to account for the non-uniform missing. Obviously, as the observation probability is allowed to
depend on possibly unobserved Yij , it also includes many MNAR settings.

Clearly, we only have access to the observed data, i.e., Yij conditional on Tij = 1. To estimate
A⋆, we first look at the observed data likelihood of the (i, j)-th entry: Pr(Yij |Tij = 1;A, ϕ) for
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A ∈ Rm1×m2 and ϕ > 0. By the Bayes’ Theorem and Assumption 2.1,

Pr(Yij |Tij = 1;A, ϕ) =
Pr(Tij = 1|Yij)fij(Yij ;A, ϕ)∫

Pr(Tij = 1|Yij)fij(Yij ;A, ϕ)dYij
= s(Yij)

1∫
s(y)fij(y;A, ϕ)dy

fij(Yij ;A, ϕ) = s(Yij)bij(A, ϕ)fij(Yij |X;A, ϕ),

where bij(A, ϕ) = 1/
∫
s(y)fij(y|A, ϕ)dy. We see that the conditional likelihood involves unknown

functions s(·) and bij(·), which makes the estimation of A⋆ difficult. To address this issue, we adopt
a pseudo-likelihood approach [22] based on local ranks.

3 Pseudo-likelihood approach

Let E = (e1, . . . , en) ⊆ {1, . . . ,m1} × {1, . . . ,m2} be a lexicographically ordered set of n unique
locations {(i, j) : Tij = 1}. (Indeed, the specific choice of ordering does not matter.) Let the
corresponding measurements be Ỹ = (Ỹ1, . . . , Ỹn) := (Ye1 , . . . , Yen) and the observation indicator
be T̃ = (T̃1, . . . , T̃n) := (Te1 , . . . , Ten). We also write Ãk = Ãek for k = 1, . . . , n. We decompose
the vector Ỹ into two vectors: the order statistics Ỹ(·) = (Ỹ(1), . . . , Ỹ(n)) and the rank statistics
R = (R1, . . . , Rn). Precisely, Ỹ(j) is the j-th smallest entry in Ỹ and Rk is the rank of the k-th entry
in Ỹ. To motivate the proposed pseudolikelihood in (3), we first consider the conditional likelihood
based on the full rank statistics given the observed data:

Pr(R|Ỹ(·), T̃ = 1;A, ϕ) =

∏n
k=1 s(Ỹk)tekfek(Ỹk;A, ϕ)∑

π∈Ξ

∏n
k=1 s(Ỹπ(k))tekfek(Ỹπ(k);A, ϕ)

=

∏n
k=1 exp(ÃkỸk/ϕ)∑

π∈Ξ

∏n
k=1 exp(ÃkỸπ(k)/ϕ)

, (2)

where Ξ is the set of all one-to-one maps from {1, . . . , n} to {1, . . . , n}, i.e., permutations. We
notice that (2) does not involve unknown components s(·) and tij due to the separable assumption
(Assumption 2.1), and does not depend on the base measure h(·) and the log-partition function G(·).
However, (2) is computationally infeasible due to the summation over all permutations. The proposed
pairwise pseudo-likelihood consider local ranks for pairs of observations. For any k and k′, let RL

kk′

denote the local rank statistic of Ỹk and Ỹk′ among the pair (Ỹk, Ỹk′). We denote Ỹ
L

(k,k′) as the
local order statistics (min{Ỹk, Ỹk′},max{Ỹk, Ỹk′}). Instead of the full conditional probability (2),
we consider the product of all possible combinations of the local rank conditional probability on
observations:∏
k<k′

Pr(RL
kk′ = rLkk′ |Ỹ

L

(k,k′), T̃k = T̃k′ = 1;A, ϕ)

=
∏
k<k′

exp
(

ÃkỸk+Ãk′ Ỹk′
ϕ

)
exp

(
ÃkỸk+Ãk′ Ỹk′

ϕ

)
+ exp

(
ÃkỸk′+ÃkỸk′

ϕ

) =
∏
k<k′

1

1 + exp(−(Ỹk − Ỹk′)(Ãk − Ãk′)/ϕ)
.

(3)

Similar to (2), this pairwise pseudo-likelihood (3) (of A and ϕ) does not contain unknown functions
and quantities. However, unlike (2), it does not involve all permutations and is therefore significantly
easier to compute.

The negative logarithm of the pairwise pseudo-likelihood reads∑
1≤k<k′≤n

log(1 +Rkk′(ϕ−1A)), (4)

where Rkk′(ϕ−1A) = exp{−(Ỹk − Ỹk′)(ϕ−1Ãk − ϕ−1Ãk′)} = exp{−(Ỹk − Ỹk′)(ϕ−1Ãk −
ϕ−1Ãk′)}. We notice two immediate issues with estimating A⋆ (and ϕ⋆) via minimizing (4).

Scale Equivalence: The values of (4) evaluated at any two pairs (A1, ϕ1) and (A2, ϕ2) are the same
when ϕ−1

1 A1 = ϕ−1
2 A2. Therefore, (4) does not have the ability to distinguish between these pairs.
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In other words, if ϕ⋆ > 0 is unknown, (4) would not be able to identify elements in the equivalence
class of A⋆ under equivalence relation: A ∼ c1A for any c1 > 0. Instead, we try to estimate the
dispersion-scaled matrix ϕ−1

⋆ A⋆. Therefore, we consider

ℓ(A) =
∑

1≤k<k′≤n

log(1 +Rkk′(A)).

However, this does not solve all the identifiability issues, and, indeed, ℓ cannot identify a shift-
equivalence class described below.

Shift Equivalence: Let J be a matrix with all entries being one. Consider A+ c2J for any c2 ∈ R.
Then

ℓ(A+ c2J) = Rkk′((A+ c2J)) = exp{−(Ỹk − Ỹk′)(Ãk + c2 − Ãk′ − c2)}
= exp{−(Ỹk − Ỹk′)(Ãk − Ãk′)} = ℓ(A).

Combining the scale and shift equivalence, we can only estimate A⋆ up to an equivalence relation
A ∼ c1A+ c2J for any c1 > 0 and c2 ∈ R, which we will refer to as scale-shift equivalence. We
remark that the scale-shift equivalence still allows the identification of much useful information
from A⋆, such as ranking an arbitrary set of entries of A⋆. For example, in recommender system
applications, one is mostly interested in the ranking within each row/column. Among the elements in
the scale-shift equivalence class, we choose to estimate the following representer

Ā⋆ = ϕ−1
⋆ A⋆ −

⟨J, ϕ−1
⋆ A⋆⟩

⟨J,J⟩ J = ϕ−1
⋆ A⋆ −

⟨J, ϕ−1
⋆ A⋆⟩

m1m2
J. (5)

by imposing the constraint ⟨J,A⟩ = 0 in the optimization. Here ⟨A,B⟩ = ∑
i,j AijBij for any

matrices A,B ∈ Rm1×m2

Overall, we propose the following penalized pairwise pseudo-likelihood estimator

Â = argmin
⟨J,A⟩=0,∥A∥∞≤a

ℓ(A) + λ ∥A∥⋆ , (6)

where ∥A∥⋆ and ∥A∥∞(= maxi,j Aij) represent the nuclear norm and the entrywise max norm
of a matrix A respectively, and a, λ ≥ 0 are tuning parameters. We also use ∥A∥F to denote the
Frobenius norm of a matrix A. Nuclear norm regularization has been commonly used to promote
low-rankness in the estimation [25, 24, 14]. Since ℓ is convex, this optimization is convex. The
discussion of the optimization algorithm is given in Appendix C. One natural question is whether
there would be further hidden identifiability issues beyond scale-shift equivalence. In Section 5,
we will provide a finite-sample error bound of the proposed estimator (6) based on the pairwise
pseudo-likelihood, which indicates convergence to Ā⋆, eliminating the possibility of additional
identifiability issues.

4 Identifiability based on separable assumption

One of the major difficulties associated with informative missing is non-identifiability. We first
emphasize the non-identifiability for constant shift is not an artifact of the pseudo-likelihood approach.
The root cause is the informative missingness (Assumption 2.1). Here is a simple univariate example
inspired from [27] to illustrate this point. Suppose we observe from two data-generating models,
whose observations are identical in distributions.

Model I: Y1 ∼ N (−1, 1) with observation probability Pr(T1 = 1|Y1 = y) = exp(y)
1+exp(y) , then

Pr(T1 = 1, Y1 = y) = pN (y + 1)
exp(y)

1 + exp(y)
,

where pN (·) is the p.d.f. of standard normal distribution.

Model II: Y2 ∼ N (0, 1) with observation probability Pr(T2 = 1|Y2 = y) = exp(−1/2) exp(−y)
1+exp(−y) ,

then

Pr(T2 = 1, Y2 = y) = pN (y + 1) exp(−1) exp(y + 1)
exp(−y)

1 + exp(−y)

=pN (y + 1)
exp(y)

1 + exp(y)
= Pr(T1 = 1, Y1 = y).
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Extending to the matrix form, the observation probabilities of the following two models, where
Y1,Y2 ∈ Rm1×m2 , are exactly the same. Model I: vec(Y1) ∼ N (−1, I), t1,ij = 1 for any
(i, j) and s1(y) =

exp(y)
1+exp(y) . Model II: vec(Y2) ∼ N (0, I), t2,ij = 1 for any (i, j) and s2(y) =

exp(−1/2) exp(−y)
1+exp(−y) .

As such, under Assumption 2.1, we cannot identify the constant shift. We note that, low-rank
assumption generally would not provide enough additional information to eliminate this identifiability
issue, as constant shift corresponds to at most a rank-1 perturbation.

The identification of the dispersion parameter is a difficult task because of the fact that at most
one observation is available for each entry. Interestingly, as we have shown in the Appendix
(Theorem B.2), under Assumption 2.1, the identification of the dispersion parameter is actually
feasible in Gaussian distributions with replicates. However, it is unclear whether the dispersion
parameter can be identified in a typical matrix completion setup, which often does not allow replicates.
That said, previous works on exponential family matrix completion [21, 13] assume the dispersion
parameter is known, under which there would not be a related identifiability issue.

5 Theoretical guarantee

Recall that A⋆ ∈ Rm1×m2 . We denote some convenient notation for dimensions, i.e., m =
min{m1,m2},M = max{m1,m2}, d = m1 + m2. We use the notation ≲ (≳) to denote less
(greater) than up to an absolute multiplicative constant. We write a ≍ b if a ≲ b and b ≳ a. Further-
more, define πL = mini∈[m1],j∈[m2] Pr(Tij = 1) and πU = maxi∈[m1],j∈[m2] Pr(Tij = 1). We use
[n] to represent {1, . . . , n} for integer n. In this section, we derive the convergence of ∥Â− Ā⋆∥F .
Recall that Ā⋆, defined in (5), is the representer in the equivalence class of A⋆.

Assumption 5.1. The following conditions hold.

(C1) There exists an absolute constant ρ > 0 such that πU/πL ≤ ρ.

(C2) There exists a constant B such that ∥Y∥∞ ≤ B almost surely.

(C3) There exists some constant κ > 0 (where κ can depend on ∥Ā⋆∥∞) such that E(Z2
ij,i′j′) ≥ κ

for any i, i′ ∈ [m1], j, j′ ∈ [m2], where

Zij,i′j′ = (Yij − Yi′j′)×
exp((Yij − Yi′j′)(Aij −Ai′j′)/2)

1 + exp((Yij − Yi′j′)(Aij −Ai′j′))
.

Condition (C1) is posited to avoid some specific entries being sampled with very low probability in a
relative sense, where the trace-norm penalization fails to work [11, 31]. Note that both πU and πL
are allowed to diminish to zero as m1,m2 → ∞, but Condition (C1) implies that their diminishing
orders are the same. Condition (C2) is a technical assumption for analyzing the concentration
inequalities of the involved U-statistics in pairwise pseudolikelihood. Note that this does not violate
the parametric assumption on the distribution of Y . For example, truncated normal distribution
satisfies both. We leave the extension to a light-tail type of assumption for future work. Condition
(C3) is a technical condition, and is used in deriving the (expected) Hessian of the loss function with
respect to A (see (8) in Appendix A). Note that (expected) Hessian of the loss is often important for
deriving the convergence rate and so it is reasonable that a related term shows up in our condition.
Indeed, this assumption Here, we provide further discussion to show that it is indeed a mild condition.
Intuitively, it posits a positive lower bound for an expectation of a squared random variable. This
expectation is always non-negative and is zero only when Zij,i′j′ is exactly zero almost everywhere.
For noisy matrix completion settings, this assumption is very mild because, when there are noises,
this variable is not exactly zero almost surely. Next, we show that with the exponential family model,
we can explicitly characterize κ. First note that when

∥∥Ā⋆

∥∥
∞ ≤ a as assumed in Theorem 5.3 and

∥Y∥∞ ≤ B as in Condition (C2), we have EZ2
ij,i′j′ ≥ exp(4aB)

[1+exp(4aB)]2E
{
Y 2
ij + Y 2

i′j′ − 2YijYi′j′
}
≥

exp(4aB)
[1+exp(4aB)]2 [Var(Yij) + Var(Yi′j′)]. Recall the density of Yij (1), one can derive Var(Yij) =

G′′(A⋆,ij)ϕ, where G′′(·) is nonnegative, from the well-known variance formula for exponential
family. Therefore one can take κ = mini,j

exp(4aB)
[1+exp(4aB)]2 2ϕ[G

′′(A⋆,ij)].
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Lemma 5.2. We have E{∇ℓ(A⋆)} = 0, where E(·) is the expectation under the true parameter A⋆.

Theorem 5.3. Assume rank(Ā⋆) ≤ r and
∥∥Ā⋆

∥∥
∞ ≤ a for some positive constants

r, a > 0, under Assumptions 2.1 and 5.1, if we further assume mπU ≳ log(d2) and λ ≍
B2 log(d)

[
m1m2πU

√
MπU

]
, then with probability at least 1− 6/d, the following holds:

1

m1m2

∥∥∥Â− Ā⋆

∥∥∥2
F
≲ max

{
B4[log d]2

κ2
ρ3

Mr

m1m2πL
,
B2 log(d)

κ
ρ2
√

1

m1m2πL

}
. (7)

Our result implies that the penalized pairwise pseudolikelihood approach can consistently estimate Ā⋆.
Note that the difference between rank(Ā⋆) and rank(A⋆) is at most 1. So a low-rank assumption
on A⋆ automatically translates to a low-rank assumption on Ā⋆. Most existing work present the
upper bound concerning the number of observed entries n and treat the matrix completion as a trace
regression problem [e.g. 28, 18, 5, 25]. One can take n as m1m2πL in their bound to compare their
results with ours. Similar to the bound established in [18], our bound has two components and
matches with the rates in their upper bound (up to some constants and logarithmic factor). [17] and
[28] show a bound that has the same order as the first term (up to some constants and logarithmic
factor) with some additional assumptions. [17] adopts the uniform sampling and boundedness of the
condition number for ∥Ā⋆∥. [28] assumes that the sampling distribution follows a product distribution
and the “spikiness ratio" (see αsp in [28] ) is bounded. Besides the above matrix completion methods
that use the nuclear norm regularization, the estimators utilizing the max-norm regularization [e.g.
5, 35] establish the same bound as the second term(up to some constants and logarithmic factor) when
they assume the max-norm of Ā⋆ is bounded. While the aforementioned methods address various
missing mechanisms, it is important to emphasize that none of them can handle MNAR setting, where
the missingness may depend on the observations. However, our method can tackle such informative
missingness. It is interesting to see that our error bound resembles the same convergence rate as [18]
(minimax optimal rate) up to a logarithmic order, despite that our setup allows MNAR mechanism.

In terms of theoretical analysis, the most notable distinction between our estimator with other existing
ones lies in the objective function. The pairwise pseudo-likelihood we employ imposes unique
theoretical challenges. Firstly, the gradient and Hessian are no longer as straightforward as those in
the the commonly used squared loss or negative log-likelihood loss (for exponential family). We
carefully derive these two terms, expressing them as pairwise summations (see exact forms in Eq. (8)
and Eq. (9)). Secondly, the elements in these pairwise summations are not mutually independent,
posing difficulties in establishing the concentration inequality to bound them. Indeed, we need to
develop corresponding theoretical tools for tackling the corresponding matrix concentration of a
matrix-valued U-statistics. To address this challenge, we leverage the grouping lemma (Lemma
A.5) to decouple these summations into different groups where mutual independence holds within
each group. To obtain the efficient grouping, the decoupling is applied to those observed entries.
Additionally, while the trace regression model provides a convenient tool for analyzing the sampling
distribution, it implicitly assumes “sampling with replacement", i.e., every entry can be observed
repeatedly. We adopt the framework of the Bernoulli model for the observation indicator to avoid
the issue. However, theoretical analysis become more challenging. A conditional argument (see the
conditional event E in (10)) is developed to address the discrepancy between these two frameworks.
In addition, Lemma A.6 is established to marginalize the conditional event.

Finally, we remark that, while pseudo-likelihood approaches have been applied in regression analy-
sis [32] and variable selection [37] to deal with informative missingness, such analyses mainly focus
on i.i.d. design and usually make direct restricted eigenvalue condition of the (high-dimensional)
Hessian matrix. In our problem, the eigenvalue condition is related to the observation probabilities.
As in typical analysis of matrix completion, one is interested in the dependence on these probabilities,
as they are allowed to diminish as m1,m2 → ∞. As such, we also analyze the corresponding
restricted eigenvalue bound, under the complicated grouping nature and identifiability issue. By
adapting the techniques aforementioned, we provide a rigorous convergence result in non-i.i.d. design,
which involves analyzing the concentration of a matrix-valued U-statistics (i.e., the Hessian matrix).
This analysis distinguishes our work from a mere application of standard pseudo-likelihood theory,
and the techniques used in the proof contribute to the field on their own merit.
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6 Numerical experiments

We conduct the following simulation study to demonstrate the efficacy of the proposed method. We
generate a 50× 50 matrix A⋆ with rank r = 5. The observations Yij are generated from a Gaussian
distribution with mean A⋆,ij and variance σ2 independently. In our study, we have settings with
different variances σ2. The probability of each entry being observed is related to the value of the
entry itself: P(Tij = 1|Yij) = 1/[1 + exp(3Yij)]. Since the observation probability is smaller for
larger Yij , there exists a distinctive distributional shift between the observed and unobserved entries,
as shown in Figure 1
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Figure 1: Observation bias with variance σ2 = 1.
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We use the observed entries as training data and equally split the unobserved data as validation and
test data. We compare our method with SoftImpute [26], CZ [5], MFW [35] and SNN [2]. The
validation data is used for hyper-parameter tuning in each method. Since the objective function is
convex in the proposed method, we only tune the regularization parameter λ, and fix the number of
iterations as T = 100 and step size η = 1.0 in Algorithm 1. We use the output of SoftImpute [26]
with the same regularization parameter λ as a warm-up initialization to shorten the training time. For
SoftImpute [26], CZ [5] and MFW [35], we tune the hyper-parameters involved in the optimization
and regularization as suggested. As for SNN [2], we choose uniform weights and spectral threshold
suggested in [12], and choose the number of neighbors between 1 and 2. Due to the identifiability
issue, the validation data is also used to learn a shift and scale parameter (via a simple linear
regression) for the proposed method, which is then used in reporting error metrics on test data.
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Figure 3: The recovered entries are left skewed from other methods with σ2 = 1.

Before getting into the error metric, a simple check on the bias of each method is via histograms. We
pick one run with σ2 = 1 and plot the distribution of recovered entries without any transformation
for each method, as shown in Figure 3. It shows that only the proposed method is able to mitigate
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Table 1: Computational time comparison with σ2 = 1.
Methods Time (s)

Soft Impute 0.01± 0.005
Max Norm (CZ) 0.22± 0.09

Model Free Weighting (MFW) 1.90± 0.75
Synthetic NN (SNN) 15.23± 1.39

Pseudolikelihood 8.67± 1.23

the observational bias due to the underlying informative missing structure, and exhibits a symmetric
distribution, while the distributions generated by other methods are left-skewed, due to the left-
skewness of distribution of the observed entries.

We added comparisons of the computational time regarding the setting in Figure 2 (σ2 = 1). The
computational times are listed in Table 1. While incorporating more complex missing mechanisms,
our method and SNN also take the most time. One practical way to speed up the computation of our
method is to use a stochastic version of Algorithm 1 (i.e., training in batches). The focus of this paper
is more on the robust recovery when encountering informative missing, and less on the computational
efficiency with the knowledge that it could be theoretically slower than other SVD-based methods.
However, our method is still faster than SNN, where both methods consider more complex missing
mechanisms. Given the promising statistical properties of the proposed method, a future direction is
to develop scalable algorithms for the proposed estimator or its variants.

To further validate the effectiveness of the proposed method, we vary the variances σ2 in the
simulation. This setting is designed to differentiate non-uniform missingness and informative
missingness. When the variance is small, the informative missingness is less severe, and non-uniform
missingness might be used to approximately describe the missing mechanism. When the variance
is large, the observational probability is more affected by the outcome as in a typical informative
missingness setting. We choose the variances σ2 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. For each setting,
we repeat the simulation 9 times and report the average test root mean squared errors (TRMSE)
with standard errors, shown in Figure 2. We see that as the variance gets larger, there is a larger
improvement in the proposed method with the design to account for informative missing over other
methods. SNN [2] performs the worst when the variance is large, as it mainly borrows information on
observed entries which introduces a substantial bias. It demonstrates the robustness of the proposed
method in difficult settings where the missing structure is informative.

7 Real data application

In this section, we use three data examples to illustrate the robust performance of the proposed
method. These are the Tobacco Dataset [9], Coat Shopping Dataset [30] and Yahoo! Webscope
Dataset1. These datasets have been used in prior works for the demonstration of matrix completion
methods [e.g., 2, 35]. Due to space limitation, we refer the readers to Appendix C.2 for more detailed
discussions of the datasets and our analyses. Following the details of the implementation in Section
6, we report the results in Table 2. For the Coat Shopping Dataset and Yahoo! Webscope Dataset,
the evaluations are based on associated test sets from the original data sources. As for the Tobacco
Dataset, following [2], the missing data are randomly generated 100 times according to cigarette
sales. Here is a summary of the results.

Tabacco Dataset. As we can see from Table 2, our method only performs worse than SNN for this
MNAR dataset, with significantly smaller TRMSE than the other three methods. Note that in this
synthetic missing data, the way to generate missingness is adapted from the SNN paper. When one
entry is missed in Tobacco dataset, the entries in the following period are also missed. This does not
satisfy the assumption of our work. So it is not surprising to see our method perform sub-optimality.
However, the performance of our method still remains strong.

1https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=3
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Table 2: Test root mean squared errors (TRMSE) for Tabacoo Dataset, Coat Shopping Dataset and
Yahoo! Webscope Dataset. For Tabacoo Dataset, the average of TRMSE with standard errors (SE) in
parentheses under 100 random missing data generations are presented.

Method Tabacco Dataset Coat Shopping Dataset Yahoo! Webscope Dataset (subset)

SoftImpute 19.20 (0.28) 1.41 1.84
CZ 20.45 (0.51) 1.19 1.58

MFW 15.89 (0.24) 1.07 1.28
SNN 12.09 (0.16) 2.06 1.27

Our method 14.14 (0.36) 1.20 1.12

Coat Shopping Dataset. As Table 2 shows, SNN performs much worse than the remaining methods
for this dataset. MFW has the smallest TRMSE. Our method has smaller errors than SoftImpute and
has comparable performance to CZ.

Yahoo! Webscope Dataset. Due to its large size and to simplify the computation, we conducted a
selection procedure to reduce the size of the matrix. Please see details in Appendix C.2 about how
to obtain the subset of the matrix. From Table 2, we can see that the two methods (SNN and our
method) that are designed for MNAR have better performance than the remaining methods, and our
method has the smallest TRMSE.

Overall, our method performs robustly well across all these three datasets. In our comparison, a few
alternatives can perform very well in one example, but badly in another. For example, SNN has an
excellent performance in the Tobacco Dataset while performing very poorly in the Coat Shopping
Dataset. The robust performance of our method is appealing in practice, as the missing mechanism is
often unknown.

8 Conclusion
In this paper, we tackle the matrix completion problem where missingness could depend on the
possibly unobserved measurements, constituting a challenging missing-not-at-random setting. The
proposed method is developed under a flexible separable missingness assumption, which allows us to
develop a pairwise pseudo-likelihood approach. Corresponding identification is investigated. We also
provide a non-trivial convergence analysis, as well as some numerical experiments to illustrate the
efficacy of the proposed estimation. Due to the flexibility in both the missing structure (separable
missingness) and measurement model (exponential family model), the proposed technique would be
useful in a wide range of applications.

The grouping nature of the proposed method poses an additional burden in computation, particularly
when dealing with a large number of observed entries. For future works, we consider adapting the
stochastic grouping idea to reduce the computational cost and exploring its application in large-scale
recommender systems.
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A Proof of Theorem 5.3

We provide the proof of our theoretical results and discussion about identifiability and pseudo-
likelihood approach below. The proof follows the roadmap from [18] to construct the convergence,
whereas the details differ because we deal with a matrix-valued U-statistic type estimator. We mainly
rely on Lemma S.4. from [36] to decouple the dependence in U-statistic structure. See Lemma A.5
in Section A.4.

We start by rewriting the pairwise pseudo-likelihood as

ℓ(A) =
∑

1≤k<k′≤n

{ψ(Ỹk\k′Ãk\k′)− Ỹk\k′Ãk\k′}

=
∑

1≤i,i′≤m1

1≤j,j′≤m2

TijTi′j′{ψ(Yij\i′j′Aij\i′j′)− Yij\i′j′Aij\i′j′},

where Ỹk\k′ := Ỹk − Ỹk′ = Yij − Yi′j′ =: Yij\i′j′ , and ψ(t) = log(1 + exp(t)). Simply,
we obtain that ψ′(t) = exp(t)/{1 + exp(t)}, ψ′′(t) = exp(t)/{(1 + exp(t))2} and ψ′′′(t) =
exp(t)(1− exp(t))/{(1 + exp(t))3}.

Therefore, the first and second order derivatives of ℓ(A) are

∇ℓ(A) =
∑

1≤i,i′≤m1,1≤j,j′≤m2

Ti′j′Tij × {(ψ′(Yij\i′j′Aij\i′j′)− 1)Yij\i′j′Eij\i′j′}, (8)

and

∇2ℓ(A) =
∑

1≤i,i′≤m1,≤j,j′≤m2

Ti′j′Tij × {ψ′′(Yij\i′j′Aij\i′j′)Y
2
ij\i′j′vec(Eij\i′j′)

⊗2}, (9)

where Eij\i′j′ = Eij −Ei′j′ , Eij ∈ Rm1×m2 is the canonical basis with value 1 at the (i, j)-th entry
and 0 elsewhere, vec(X) is the standard vectorization of matrix X and v⊗2 = vv⊤ for v ∈ Rm1m2 .

A.1 Lemmas about gradient

Note that

∇ℓ(Ā⋆) = −
∑

1≤k<k′≤n

Rkk′(Ā⋆)

1 +Rkk′(Ā⋆)
(Ỹk − Ỹk′)(Eek −Eek′ )

= −
∑

(i,j),(i′,j′)∈[m1]×[m2]
(i,j)≺(i′,j′)

Rij,i′j′(Ā⋆)

1 +Rij,i′j′(Ā⋆)
(Ỹij − Ỹi′j′)(Eij −Ei′j′)TijTi′j′

= −1

2

∑
(i,j),(i′,j′)∈[m1]×[m2]

Rij,i′j′(Ā⋆)

1 +Rij,i′j′(Ā⋆)
(Ỹij − Ỹi′j′)(Eij −Ei′j′)TijTi′j′ ,

where (i, j) ≺ (i′, j′) means (i, j) appears before (i′, j′) with the same ordering rule within E , e.g.,
dictionary order.

Proof of Lemma 5.2. Note that

E{∇ℓ(Ā⋆)} = E

−
∑

(i,j),(i′,j′)∈[m1]×[m2]
(i,j)≺(i′,j′)

Rij,i′j′(Ā⋆)

1 +Rij,i′j′(Ā⋆)
(Ỹij − Ỹi′j′)(Eij −Ei′j′)TijTi′j′


= −E


∑

(i,j),(i′,j′)∈[m1]×[m2]
(i,j)≺(i′,j′)

E
{

Rij,i′j′(Ā⋆)

1 +Rij,i′j′(Ā⋆)
(Ỹij − Ỹi′j′)(Eij −Ei′j′)

∣∣∣∣Tij = Ti′j′ = 1

} .
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The proof of E
{

Rij,i′j′ (Ā⋆)

1+Rij,i′j′ (Ā⋆)
(Ỹij − Ỹi′j′)(Eij −Ei′j′)

∣∣∣Tij = Ti′j′ = 1
}

= 0 directly follows
Theorem 4.1 from [29].

To simplify the notation, we denote

Sij,i′j′ = − Rij,i′j′(Ā⋆)

1 +Rij,i′j′(Ā⋆)
(Ỹij − Ỹi′j′)(Eij −Ei′j′)TijTi′j′ .

Recall that m = min{m1,m2}, d = m1 +m2, M = max{m1,m2}, |Yk| ≤ B almost surely.
Lemma A.1. With the condition that mπU ≳ log(d2). We have

Pr
{∥∥∇ℓ(Ā⋆)

∥∥ ≳
√
B2 log(d)

[
m1m2πU

√
MπU

]}
≤ 3

d
.

Denote

Cij,i′j′ = − Rij,i′j′(Ā⋆)

1 +Rij,i′j′(Ā⋆)
(Ỹij − Ỹi′j′).

First of all, we can verify that

E(Cij,i′j′TijTi′j′) = E {E[Cij,i′j′TijTi′j′ | Tij = 1, Ti′j′ = 1]} = 0.

Define the event

E = {
∑
i,j

Ti,j = n with sampling matrices X1, . . . ,Xn} (10)

, where Xk = Eik,jk for some index (ik, jk), k = 1, . . . , n. Without loss of generality, we consider
the case when n is even. Therefore, by Lemma A.5, we have the following decomposition.

∇ℓ(A) | E =

n−1∑
g=1

∑
(k,k′)∈Gg

Ck,k′ [Xk −Xk′ ],

where Ck,k′ = Cik,jk,ik′ ,jk′ . Within every group Gg, there is no repeated index. Therefore, every
element in the group Gg is independent of other elements in Gg conditioned on E .

E(Ck,k′ | E) = 0, ∀k, k′ = 1, . . . , n.

Next, we use Matrix Bernstein’s inequality to bound ∥∑(k,k′)∈Gg
Ck,k′ [Xk −Xk′ ]∥ conditioned on

the event E .

Take Sk,k′ = Ck,k′ [Xk −Xk′ ] and we have∥∥∥∥∥∥E
∑

(k,k′)∈Gg

Sk,k′S⊺
k,k′ | E

∥∥∥∥∥∥
=

∥∥∥∥∥∥E[
∑

(k,k′)∈Gg

C2
k,k′ [Xk −Xk′ ][Xk −Xk′ ]⊺ | E ]

∥∥∥∥∥∥
≤ B2

∥∥∥∥∥∥
∑

(k,k′)∈Gg

[Xk −Xk′ ][Xk −Xk′ ]⊺

∥∥∥∥∥∥
≤ B2

∥∥∥∥∥∥
∑

(k,k′)∈Gg

XkX
⊺
k +Xk′X⊺

k′

∥∥∥∥∥∥+
∥∥∥∥∥∥

∑
(k,k′)∈Gg

XkX
⊺
k′ +Xk′X⊺

k

∥∥∥∥∥∥
 .

Take ik and jk as the corresponding row index and column index for Xk such that Xk = Eik,jk .∥∥∥∥∥∥
∑

(k,k′)∈Gg

XkX
⊺
k +Xk′X⊺

k′

∥∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=1

Eik,ik

∥∥∥∥∥ = 1.
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The last inequality is due to the fact that the diagonal matrices have the operator norm 1.∥∥∥∥∥∥
∑

(k,k′)∈Gg

XkX
⊺
k′ +Xk′X⊺

k

∥∥∥∥∥∥ ≤
∑

(k,k′)∈Gg

∥XkX
⊺
k′ +Xk′X⊺

k ∥ ≤
∑

(k,k′)∈Gg

21{jk = jk′}.

Then ∥∥∥∥∥∥E
∑

(k,k′)∈Gg

Sk,k′S⊺
k,k′ | E

∥∥∥∥∥∥ ≤ B2

1 + ∑
(k,k′)∈Gg

21{jk = jk′}


Similarly, ∥∥∥∥∥∥E

∑
(k,k′)∈Gg

S⊺
k,k′Sk,k′ | E

∥∥∥∥∥∥ ≤ B2

1 + ∑
(k,k′)∈Gg

21{ik = ik′}


Take

ξn,g = max{
∑

(k,k′)∈Gg

21{jk = jk′},
∑

(k,k′)∈Gg

21{ik = ik′}}. (11)

Then by Theorem 6.1 from [34], we have

Pr


∥∥∥∥∥∥
∑

(k,k′)∈g

Sk,k′

∥∥∥∥∥∥ ≥ c
√
B2(1 + ξn,g)[2 log(d) + 2 log(m1m2)] | E


≤d exp{−[2 log(m1m2) + 2 log(d)]} = d

(
1

(m1m2)2d2

)
=

1

(m1m2)2d
,

for some constant c > 0.

Note that
∥∥∇ℓ(Ā⋆)

∥∥ | E ≤ ∑n−1
g=1

∥∥∥∑(k,k′)∈g Sk,k′

∥∥∥. By applying the union bound over all the
groups, we obtain

Pr

{∥∥∇ℓ(Ā⋆)
∥∥ ≥ c

n−1∑
g=1

√
B2(1 + ξn,g)[2 log(d) + 2 log(m1m2)] | E

}
≤ n

1

(m1m2)2d
≤ 1

(m1m2)d
.

Marginalize the event E and we have

Pr

{∥∥∇ℓ(Ā⋆)
∥∥ ≥ c

n−1∑
g=1

√
B2(1 + ξn,g)[2 log(d) + 2 log(m1m2)]

}
≤ 1

(m1m2)d
.

Note that
n−1∑
g=1

√
B2(1 + ξn,g)[2 log(d) + 2 log(m1m2)]

≤
n−1∑
g=1

√
B2[2 log(d) + 2 log(m1m2)] +

n−1∑
g=1

√
B2ξn,g[2 log(d) + 2 log(m1m2)]

≤ (n− 1)
√
B2[2 log(d) + 2 log(m1m2)] +

√
n− 1

√√√√B2[2 log(d) + 2 log(m1m2)](

G∑
g=1

ξn,g)

≤ n
√
B2[2 log(d) + 2 log(m1m2)] +

√
n

√√√√B2[2 log(d) + 2 log(m1m2)](

G∑
g=1

ξn,g).
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Therefore, we have

Pr

∥∥∇ℓ(Ā⋆)
∥∥ ≥ c

n√B2[2 log(d) + 2 log(m1m2)] +
√
n

√√√√B2[2 log(d) + 2 log(m1m2)](

G∑
g=1

ξn,g)


≤ 1

(m1m2)d
.

By Lemma A.6, we adopt the bound for n and
∑n−1

g=1 ξn,g and further obtain that

Pr

{∥∥∇ℓ(Ā⋆)
∥∥ ≥ c

√
B2[2 log(d) + 2 log(m1m2)]

[
3m1m2πU +

√
3m1m2πU

√
2m1m2Mπ2

U

]}
≤ 1

(m1m2)d
+ exp(−m1m2πL) + 2M exp(−m1m2π

2
U/2).

Pr
{∥∥∇ℓ(Ā⋆)

∥∥ ≳
√
B2[log(d) + log(m1m2)]

[
m1m2πU (1 +

√
MπU )

]}
≤ 1

(m1m2)d
+ exp(−m1m2πL) + 2M exp(−m1m2π

2
U/2).

With the condition that mπU ≳ log(d2). We have

Pr
{∥∥∇ℓ(Ā⋆)

∥∥ ≳
√
B2[log(d) + log(m1m2)]

[
m1m2πU

√
MπU

]}
≤ 3

d
.

The conclusion follows by assimilating universal constants in ≳.

A.2 Lemmas about Hessian

Recall that ψ(t) = log(1+exp(t)), ψ′(t) = exp(t)/{1+exp(t)}, ψ′′(t) = exp(t)/{(1+exp(t))2}
and ψ′′′(t) = exp(t)(1− exp(t))/{(1+exp(t))3}. It is simple to verify |ψ′(t)| ≤ 1, |ψ′′(t)| ≤ 0.25
and |ψ′′′(t)| ≤ 0.1.

The Hessian matrix reads

∇2ℓ(A) =
∑

1≤k<k′≤n

{ψ′′(Yij\i′j′Aij\i′j′)Y
2
ij\i′j′vec(Eij\i′j′)

⊗2}

=
∑

1≤k<k′≤n

(Yk − Yk′)2
exp((Ỹk − Ỹk′)(Ãk − Ãk′))

(1 + exp((Ỹk − Ỹk′)(Ãk − Ãk′)))2
vec(Ek −Ek′)⊗2

=
1

2

∑
(i,j),(i′,j′)∈[m1]×[m2]

TijTi′j′(Yij − Yi′j′)
2 exp((Yij − Yi′j′)(Aij −Ai′j′))

(1 + exp((Yij − Yi′j′)(Aij −Ai′j′)))2
vec(Eij −Ei′j′)

⊗2

=
1

2

∑
(i,j),(i′,j′)∈[m1]×[m2]

TijTi′j′Z
2
ij,i′j′vec(Eij −Ei′j′)

⊗2,

where

Zij,i′j′ = (Yij − Yi′j′)
exp((Yij − Yi′j′)(Aij −Ai′j′)/2)

1 + exp((Yij − Yi′j′)(Aij −Ai′j′))
.

Lemma A.2. For any U ∈ Rm1×m2 such that ⟨J,U⟩ = 0, and assume that E(Z2
ij,i′j′) ≥

κ,∀(i, j), (i′, j′) ∈ [m1]× [m2] when ∥A∥∞ ≤ a for some constant a > 0, we have that

Evec(U)⊤∇2ℓ(A)vec(U) ≥ κm1m2π
2
L ∥U∥2F .
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Proof. We derive the quadratic form first and take the expectation to obtain that

Eu⊤∇2ℓ(A)u =
1

2

∑
(i,j),(i′,j′)∈[m1]×[m2]

E{TijTi′j′Z2
ij,i′j′(Uij − Ui′j′)

2}

≥ 1

2
κ

∑
(i,j),(i′,j′)∈[m1]×[m2]

E{TijTi′j′(Uij − Ui′j′)
2}

≥ 1

2
κπ2

L

∑
(i,j),(i′,j′)∈[m1]×[m2]

(Uij − Ui′j′)
2

=
1

2
κπ2

L

∑
(i,j),(i′,j′)∈[m1]×[m2]

U2
ij + U2

i′j′ − 2UijUi′j′

= κm1m2π
2
L ∥U∥2F .

We now start to lower bound u⊤∇2ℓ(A)u. We consider the following constraint set

C =

{
U ∈ Rm1×m2

∣∣∣∣ ⟨J,U⟩ = 0

}
,

Still, we derive the argument by conditioning on the event E defined in (10).

vec(U)⊤∇2ℓ(A)vec(U) | E =
1

2

∑
k,k′=1,...,n

Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2.

where (ik, jk) is the entry where Eik,jk = 1.

By Lemma A.5, WLOG, we assume n is even. We decompose the summation into

vec(U)⊤∇2ℓ(A)vec(U) | E =

n−1∑
g=1

∑
(k,k′)∈Gg

Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2,

where within every group Gg , there is no repeated index. Denote

Σg =
∑

(k,k′)∈Gg

εk,k′Zikjk,ik′ jk′ (Xk −Xk′).

where εk,k′ are independent Radamacher variables. For convenience, we denote u = vec(U) ∈
Rm1m2 for any U ∈ Rm1×m2 .
Lemma A.3. For all U ∈ C, the following holds∣∣u⊤∇2ℓ(A)u− Eu⊤∇2ℓ(A)u

∣∣ ≳ B2∥U∥∗
√

log(d)
[
m1m2πU

√
MπU

]
+B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2

with probability at least 1− 3/d.

Proof. Denote
CT := {U ∈ C : ∥U∥∗ ≤ T}.

WT = sup
U∈C(T )

∣∣u⊤∇2ℓ(A)u− Eu⊤∇2ℓ(A)u
∣∣ ,

Let v =
√
mπU/πL. By Lemma A.4, we have with probability at least 1− 1/d,∣∣u⊤∇2ℓ(A)u− Eu⊤∇2ℓ(A)u

∣∣ ≳ B2 log(d)(m1m2πU )
2(m1m2πL)

−1/2.

Next, we focus on the case when ∥U∥∗ ≥ v. We will show that the probability of the following bad
event is small

B =
{
∃U ∈ C such that

∣∣u⊤∇2ℓ(A)u− Eu⊤∇2ℓ(A)u
∣∣ ≳ B2∥U∥∗

√
log(d)

[
m1m2πU

√
MπU

]
, ∥U∥∗ ≥ v

}
.
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We use a standard peeling argument. For l ∈ N set

Sl =
{
U ∈ C(r) : αlν ≤ ∥U∥∗ ≤ αl+1ν

}
.

For each T > ν, define the following event

Bl =
{
∃U ∈ Sl such that

∣∣u⊤∇2ℓ(A)u− Eu⊤∇2ℓ(A)u
∣∣ ≳ B2∥U∥∗

√
log(d)

[
m1m2πU

√
MπU

]}
.

By lemma A.4, with probability smaller than (m1m2) exp
{

−T 2πL

mπU
log(d3)

}
, we have that

WT ≥ B2T
√

log(d)
[
m1m2πU

√
MπU

]
.

Therefore, we obtain that

Pr(Bl) ≤ (m1m2) exp

{
− (α2lv2)πL

mπU
log(d3)

}
.

Using the union bound, we have

Pr(B) ≤
∞∑
l=0

Pr(Bl) ≤
∞∑
l=1

(m1m2) exp

{−(α2lv2)πL
mπU

log(d3)

}
+ 1/d

≤
∞∑
l=1

(m1m2) exp

{−(v2)πL
mπU

log(d3)2l log(α)

}
+ 1/d

≤
∫ ∞

l=1

(m1m2) exp

{−(v2)πL
mπU

log(d3)2l log(α)

}
+ 1/d

≤ (m1m2) exp{−2 log(α) log(d3)}+ 1/d ≤ 2/d.

Combine two cases, and the conclusion follows.

We now make up the concentration property on WT .

Lemma A.4. Conditioned on event E , For any T > ν, we denote

C(T ) := {U ∈ C(r) : ∥U∥∗ ≤ T} and WT := sup
U∈C(T )

∣∣u⊤∇2ℓ(A)u− Eu⊤∇2ℓ(A)u
∣∣ .

When T ≤
√
mπU/πL, we have

P
(
WT ≳ B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2

)
≤ 1/d.

When T ≥
√
mπU/πL, By taking t = T

√
3 log d

√
MπU

m1m2πU
, we have

P
(
WT ≳ B2T

√
log(d)

[
m1m2πU

√
MπU

])
≤ (m1m2) exp

{
−−T 2πL

mπU
log(d3)

}
.

Proof. Still, without generality, we focus on the case when n is even. Recall that conditioned on
event E , we have

WT = sup
U∈C(r,T )

∣∣u⊤∇2ℓ(A)u− Eu⊤∇2ℓ(A)u
∣∣

= sup
U∈C(r,T )

∣∣∣∣∣∣
∑
g

∑
(k,k′)∈Gg

Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2 − E
∑
g

∑
(k,k′)∈Gg

Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2

∣∣∣∣∣∣
≤
∑
g

sup
U∈C(r,T )

∣∣∣∣∣∣
∑

(k,k′)∈Gg

Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2 − E
∑

(k,k′)∈Gg

Z2
k,k′(Uikjk − Uik′ jk′ )

2

∣∣∣∣∣∣ ,
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and

Zg,T = sup
U∈C(r,T )

∣∣∣∣∣∣
∑

(k,k′)∈Gg

Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2 − E
∑

(k,k′)∈Gg

Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2

∣∣∣∣∣∣ .
Note that conditioned on the event E , within each grouping Gg, every term Z2

ikjk,ik′ jk′ (Uikjk −
Uik′ jk′ )

2 is independent of the others. The standard symmetrization trick still applies here,

EZg,T | E ≤ 2E sup
U∈C(T )

∣∣∣∣∣∣
∑

(k,k′)∈Gg

εk,k′Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2

∣∣∣∣∣∣ .
Since |Zikik′ | ≤ 2B and ∥U∥∞ = 1, Z2

ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )
2 ≤ 16B2 for every (k, k′).

Therefore, ϕ(u) = u2, |ϕ(u) − ϕ(v)| ≤ |u + v||u − v| ≤ 8B|u − v|. The contraction inequality
yields

EZg,T | E ≤ 2E sup
U∈C(T )

∣∣∣∣∣∣
∑

(k,k′)∈Gg

εk,k′Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2

∣∣∣∣∣∣
≤ 16BE sup

U∈C(T )

∣∣∣∣∣∣
∑

(k,k′)∈Gg

εk,k′Zikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

∣∣∣∣∣∣
≤ 16BE

 sup
U∈C(T )

∣∣∣∣∣∣
∑

(k,k′)∈Gg

εk,k′Zikjk,ik′ jk′ ⟨Xk −Xk′ ,U⟩

∣∣∣∣∣∣ | E


≤ 16BE

 sup
U∈C(T )

∣∣∣∣∣∣
〈 ∑

(k,k′)∈Gg

εk,k′Zikjk,ik′ jk′ (Xk −Xk′),U

〉∣∣∣∣∣∣ | E


≤ 16BE

∥∥∥∥∥∥
∑

(k,k′)∈Gg

εk,k′Zikjk,ik′ jk′ (Xk −Xk′)

∥∥∥∥∥∥ | E

 sup
U∈C(T )

∥U∥⋆

≤ 16BTE (∥Σg∥ | E) .

Take γk,k′(U) = Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2 − EZ2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2 Note that

|Z2
ikjk,ik′ jk′ (Uikjk − Uik′ jk′ )

2| ≤ 16B2.

Then

Eγk,k(U) = 0

sup
(k,k′)

sup
U∈C(T )

γk,k′(U)/(32B2) ≤ 1

By Massart’s concentration inequality (e.g., Theorem 14.2 in [3]). We have that conditioning on the
event E , for any t > 0,

Pr

∣∣∣∣∣∣ sup
U∈C(T )

1

n/2

∑
(k,k′)∈Gg

γk,k′(U)/(32B2)

∣∣∣∣∣∣ > E

∣∣∣∣∣∣ sup
U∈C(T )

1

n/2

∑
(k,k′)∈Gg

γk,k′(U)/(32B2)

∣∣∣∣∣∣+ t


≤ exp(−(n/2)t2/8)

Pr

∣∣∣∣∣∣ sup
U∈C(T )

1

n/2

∑
(k,k′)∈Gg

γk,k′(U)

∣∣∣∣∣∣ > E

∣∣∣∣∣∣ sup
U∈C(T )

1

n/2

∑
(k,k′)∈Gg

γk,k′(U)

∣∣∣∣∣∣+ 32B2t

 ≤ exp(−(n/2)t2/8)

Pr
(
Zg,T > EZg,T + 16nB2t

)
≤ exp(−nt2/16).
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Apply a union bound, we have

Pr

(
WT >

n−1∑
g=1

EZg,T + 16n(n− 1)B2t | E
)

≤ (n− 1) exp(−nt2/16).

Next, we marginalize the event E .

Pr

(
WT >

n−1∑
g=1

EZg,T + 16n2B2t

)
≤ E[n exp(−nt2/16)] ≤ (m1m2)E[exp(−nt2/16)]

≤ (m1m2) exp(−E(n)t2/16) ≤ (m1m2) exp(−m1m2πLt
2/16).

Next, we considering bounding
∑n−1

g=1 EZg,T . Note that

n−1∑
g=1

EZg,T ≤ 16BTE

[
E

(
n−1∑
g=1

∥Σg∥ | E
)]

.

By using a similar argument in Lemma A.1, we are able to show that for any x > 0,

Pr

{
n−1∑
g=1

∥Σg∥ ≳ x
√
B2 log(d)

[
m1m2πU

√
MπU

]}
≤ 3

d
exp{−x log(d2)}.

Therefore,
n−1∑
g=1

EZg,T ≲ 16B2T
√
log(d)

[
m1m2πU

√
MπU

]
.

Combining the result from Lemma A.6, we have

Pr
(
WT ≳ B2T

√
log(d)

[
m1m2πU

√
MπU

]
+ (m1m2πU )

2B2t
)
≤ (m1m2) exp(−m1m2πLt

2/16).

When T ≤
√
mπU/πL, we have

Pr
(
WT ≳ B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2

)
≤ 1/d.

When T ≥
√
mπU/πL, By taking t = T

√
3 log d

√
MπU

m1m2πU
, we have

Pr
(
WT ≳ B2T

√
log(d)

[
m1m2πU

√
MπU

])
≤ (m1m2) exp

{−T 2πL
mπU

log(d3)

}
.

A.3 Proof of Theorem 5.3

Proof. It follows from the definition of the estimator Â that

ℓ(Â) + λ
∥∥∥Â∥∥∥

⋆
≤ ℓ(Ā⋆) + λ

∥∥Ā⋆

∥∥
⋆
,

equivalently
ℓ(Â)− ℓ(Ā⋆) ≤ λ

(∥∥Ā⋆

∥∥
⋆
−
∥∥∥Â∥∥∥

⋆

)
which implies

⟨∇ℓ(Ā⋆), vec(Â− Ā⋆)⟩+ vec(Â− Ā⋆)
⊤∇2ℓ(Ã)vec(Â− Ā⋆) ≤ λ

(∥∥Ā⋆

∥∥
⋆
−
∥∥∥Â∥∥∥

⋆

)
.

where Ã = tĀ⋆ + (1− t)Â for some t ∈ [0, 1].

Let’s denote ∆ = Â− Ā⋆.
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From Lemma A.3 and Lemma A.2, we have

u⊤∇2ℓ(A)u ≳ E
{
u⊤∇2ℓ(A)u

}
−B2∥U∥∗

√
log(d)

[
m1m2πU

√
MπU

]
−B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2

≳ κm1m2π
2
L∥U∥2F −B2∥U∥∗

√
log(d)

[
m1m2πU

√
MπU

]
−B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2.

with probability at most 1− 3/d.

Therefore with probability at most 1− 3/d,

κm1m2π
2
L∥∆∥2F ≲ B2∥∆∥∗

√
log(d)

[
m1m2πU

√
MπU

]
+B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2

+vec(Â− Ā⋆)
⊤∇2ℓ(Ã)vec(Â− Ā⋆)

≲ B2∥∆∥∗
√

log(d)
[
m1m2πU

√
MπU

]
+B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2

+λ
(∥∥Ā⋆

∥∥
⋆
−
∥∥∥Â∥∥∥

⋆

)
+
∥∥∇ℓ(Ā⋆)

∥∥ ∥∆∥⋆ .

Let {uk ∈ Rm1} and {vk ∈ Rm2} be the left and right singular vectors of Ā⋆ respectively. For
any matrix A ∈ Rm1×m2 , we let row(A) ⊆ Rm2 and col(A) ⊆ Rm1 denote its row space and
column space respectively. Let the column and row span of Ā⋆ be U⋆ = col(Ā⋆) = span{uk} and
V⋆ = row(Ā⋆) = span{vk} respectively. Define

M := {A : row(A) ⊆ V⋆, col(A) ⊆ U⋆},
M⊥

:= {A : row(A) ⊆ V⊥
⋆ , col(A) ⊆ U⊥

⋆ }.
It is easy to see that M ⊆ M, but M ≠ M. The subspace compatibility of M is upper bounded by√
2r, i.e.,

sup
A∈M\{0}

∥A∥⋆
∥A∥F

≤
√
2r.

We observe that∥∥∥Â∥∥∥
⋆
=
∥∥Ā⋆ +∆M +∆M⊥

∥∥
⋆
≥
∥∥Ā⋆ +∆M⊥

∥∥
⋆
−∥∆M∥

⋆
=
∥∥Ā⋆

∥∥
⋆
+
∥∥∆M⊥

∥∥
⋆
−∥∆M∥

⋆
.

By choosing λ ≳ 2(
∥∥∇ℓ(Ā⋆)

∥∥+B2
√

log(d)
[
m1m2πU

√
MπU

]
), we have

κm1m2π
2
L∥∆∥2F

≲
(∥∥∇ℓ(Ā⋆)

∥∥+B2
√

log(d)
[
m1m2πU

√
MπU

])
(
∥∥∆M⊥

∥∥
⋆
+ ∥∆M∥

⋆
)

+ λ(∥∆M∥
⋆
−
∥∥∆M⊥

∥∥
⋆
) +B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2

≲ 3λ ∥∆M∥
⋆
+B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2 ≤ 3λ

√
2r∥∆∥F +B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2

Then, we could derive

∥∆∥2F ≲
3λ

√
2r

κm1m2π2
L

∥∆∥F +
B2 log(d)(m1m2πU )

2(m1m2πL)
−1/2

κm1m2π2
L

1

m1m2
∥∆∥F ≲ max

{
λ2r

m1m2(κm1m2π2
L)

2
,
B2 log(d)

κ

(
πU
πL

)2√
1

m1m2πL

}

Due to Lemma A.1,

Pr
{
∥∇ℓ(A)∥ ≳

√
B2[log(d) + log(m1m2)]

[
m1m2πU

√
MπU

]}
≤ 3

d
.

we can take λ ≍ (B2 log(d)
[
m1m2πU

√
MπU

]
), and with probability at least 1− 6/d, we have

1

m1m2
∥∆∥2F ≲ max

{
B4[log d]2

κ2

(
πU
πL

)3
Mr

m1m2πL
,
B2 log(d)

κ

(
πU
πL

)2√
1

m1m2πL

}
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A.4 Auxiliary lemmas

Lemma A.5. For any collection of individual index pairs {(j, j′) : 1 ≤ j < j′ ≤ n},

(a) (From Lemma S.4. in [36]) When n is even, we can decompose it into (n− 1) groups such
that within each group, there are n/2 pairs and no repeated individuals.

(b) When n is odd, we can decompose it into n groups such that within each group, there are
(n− 1)/2 pairs and no repeated individuals.

Proof. The proof for part (a) is done in [36].
For part (b), when n is odd, we consider an extra index n+ 1 and add all the pairs {(j, n+ 1) : 1 ≤
j ≤ n} to the original collection. For the new collection of individual index pairs {(j, j′) : 1 ≤ j <
j′ ≤ n+ 1}, since n+ 1 is even, we can apply part (a) and get n groups such that within each group,
there are (n+ 1)/2 pairs and no repeated individuals. Therefore, every index appears in each group
exactly once. In each group, we remove the pair with n + 1 in it. We now obtain n groups such
that within each group, there are (n− 1)/2 pairs and no repeated individuals for the collection of
individual index pairs {(j, j′) : 1 ≤ j < j′ ≤ n}.

Recall that

Zij,i′j′ = (Yij − Yi′j′)
2 exp((Yij − Yi′j′)(Aij −Ai′j′)/2)

1 + exp((Yij − Yi′j′)(Aij −Ai′j′))
,

Σg =
∑

(ij,i′j′)∈g

εij,i′j′TijTi′j′Zij,i′j′(Eij −Ei′j′),

for any collection of non-overlap index pairs.

We analyze the upper bound for E ∥Σg∥ to prove Corollary 5.3.
Lemma A.6. Take n =

∑
i,j Ti,j and ξn,g defined in (11). We have

Pr

n ≥ e(
∑
i,j

πi,j)

 ≤ exp(−m1m2πL).

Pr

(
n−1∑
g=1

ξn,g > 2m1m2Mπ2
U

)
≤ 2M exp

{
−m1m2π

2
U/2

}
.

Proof. Note that Ti,j are independent Bernoulli random variables and En =
∑

i,j πi,j . We apply
Chernoff’s inequality and obtain

Pr (n ≥ t) ≤ exp{−
∑
i,j

πi,j}
(
e(
∑

i,j πi,j)

t

)t

,

for any t > En. Take t = e(
∑

i,j πi,j) and we have

Pr

n ≥ e(
∑
i,j

πi,j)

 ≤ exp{−
∑
i,j

πi,j} ≤ exp(−m1m2πL).

Note that

n−1∑
g=1

ξn,g = max


n∑

k ̸=k′

1{ik = ik′},
n∑

k ̸=k′

1{jk = jk′}


= max


m1∑
i=1

m2∑
j ̸=j′

TijTij′ ,

m2∑
j=1

m1∑
i̸=i′

TijTij′

 .
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We consider bounding
∑n

i=1

∑m2

j ̸=j′ Ti,jTi,j′ . Similarly, without loss of generality, we assume j is
even, and by Lemma A.5, we can decompose

m1∑
i=1

m2∑
j ̸=j′

Ti,jTi,j′ =

m2−1∑
g=1

(

m1∑
i=1

∑
(j,j′)∈G′

g

TijTij′).

Within every group G′
g, every pair Ti,jTi,j′ is independent of others. Then we apply Bernstein

inequality to bound
∑m1

i=1

∑
(j,j′)∈G′

g
Ti,jTi,j′ .

Pr

m1∑
i=1

∑
(j,j′)∈G′

g

TijTij′ −
m1∑
i=1

∑
(j,j′)∈G′

g

πi,jπi,j′ ≥ t

 ≤ exp

{
−t2/2∑m1

i=1

∑
(j,j′)∈G′

g
ET 2

ijT
2
ij′ + t

}

≤ exp

{ −t2/2
π2
Um1m2/2 + t

}
.

Take t = m1m2π
2
U , we have

Pr

m1∑
i=1

∑
(j,j′)∈G′

g

TijTij′ ≥ 2m1m2π
2
U

 ≤ exp
{
−m1m2π

2
U/3

}
. (12)

Take a union bound over g = 1, . . . ,m2 − 1, we have

Pr

m1∑
i=1

m2∑
j ̸=j′

TijTij′ > 2m1m2(m2 − 1)π2
U

 ≤ m2 exp
{
−m1m2π

2
U/3

}
.

Pr

m1∑
i=1

m2∑
j ̸=j′

TijTij′ > 2m1m2Mπ2
U

 ≤M exp
{
−m1m2π

2
U/3

}
.

With the same argument, we have

Pr

m2∑
j=1

m1∑
i ̸=i′

TijTij′ > 2m1m2Mπ2
U

 ≤M exp
{
−m1m2π

2
U/3

}
.

And therefore

Pr

(
n−1∑
g=1

ξn,g > 2m1m2Mπ2
U

)
≤ 2M exp

{
−m1m2π

2
U/3

}
.

B Identifiability of dispersion parameter in Gaussian distributions

Assume Yij ∼ N (µij , σ
2) with missing mechanism:

Pr(Tij = 1|Yij = y) = cijs(y), (13)

where cij , s(·) ∈ [0, 1].

Lemma B.1. Assume that

lim
y→∞

cijs(y)

c′ijs
′(y)

= bij or lim
y→−∞

cijs(y)

c′ijs
′(y)

= b′ij ,

where bij , b′ij can not be both 0 or ∞ simultaneously.
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If σ ̸= σ′, then for any (cij , c
′
ij , s(y), s

′(y)), at least one of the following two statements holds:

lim
y→+∞

ϕ
(

y−µij

σ

)
ϕ
(

y−µ′
ij

σ′

) cijs(y)
c′ijs

′(y)
= +∞ or 0 (14)

lim
y→−∞

ϕ
(

y−µij

σ

)
ϕ
(

y−µ′
ij

σ′

) cijs(y)
c′ijs

′(y)
= −∞ or 0. (15)

Proof. We observe that

ϕ
(

y−µij

σ

)
ϕ
(

y−µ′
ij

σ′

) cijs(y)
c′ijs

′(y)
= exp

{
(σ2 − σ′2)y2

2σ2σ′2 +
(σ′2µ− σ2µ′)y

σ2σ′2 +
σ2µ′2 − σ′2µ2

2σ2σ′2

}
cijs(y)

c′ijs
′(y)

,

With our assumption, assume limy→∞
cijs(y)
c′ijs

′(y) = bij and limy→−∞
cijs(y)
c′ijs

′(y) = b′ij .

When bij ∈ (0,∞), if σ > σ′, when y → ∞, (14) converges to ∞.. If σ < σ′, when y → ∞, (14)
converges to 0.

When bij = 0 and b′ij ̸= 0, if σ < σ′, when y → ∞, (14) converges to 0 is still true. If σ > σ′, when
y → −∞, (15) converges to ∞. as b′ij ̸= 0.

When bij = ∞ and b′ij ̸= ∞, if σ > σ′, when y → ∞, (14) converges to ∞. still holds. If σ < σ′,
when y → −∞, (15) converges to 0, as b′ij ̸= ∞.

Theorem B.2. Assume at most one of limy→−∞ s(y) = 0 and limy→∞ s(y) = 0 is true, σ2 is
identifiable.

Proof. Proof by contradiction. Suppose that there are two sets of parameters satisfying the same
observed distribution:

1

σ
ϕ

(
y − µij

σ

)
cijs(y) =

1

σ′ϕ

(
y − µ′

ij

σ′

)
c′ijs

′(y).

Therefore,
ϕ
(

y−µij

σ

)
ϕ
(

y−µ′
ij

σ′

) cijs(y)
c′ijs

′(y)
=

σ

σ′ ∈ (0,∞).

However, if σ ̸= σ′, by Lemma B.1, we know that the left-side will converge to 0 or ∞, which
violates the above equation. Thus, we must have σ = σ′. σ2 is identifiable.

C Algorithm and experiments

Note that the objective function and the constraint set are both convex, and the constraint set is
a closed convex set. So (6) is a convex optimization problem. To deal with the constraint on A,
one can use the Alternating Direction Method of Multipliers (ADMM) to tackle it. However, the
comuptation of ADMM can be slow in practice. We propose a practically more efficient algorithm
based on the idea of proximal gradient descent with an additional projection as detailed in Algorithm
1. The code is publically available on GitHub2. In the algorithm, POCS is the projection onto
the intersection of two convex sets {A : ⟨J,A⟩ = 0} and {A : ∥A∥∞ ≤ a} (see Algorithm
2). The notation Sλ(·) is the soft-thresholding operator defined by Sλ(A) = UDλV

⊤, where
Dλ = diag[(d1 − λ)+, . . . , (dr − λ)+] with t+ = max(t, 0), and Udiag[d1, . . . , dr]V

⊤ is the
singular value decomposition of A.
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Algorithm 1 Projected gradient descent

Initialize: Initialize A(0) randomly, set learning rate η.
for t = 0 to T do

K(t) = A(t)− η∇ℓ(A(t))
Q(t) = Sλ(K(t))
A(t+ 1) = POCS(Q(t))

end for

Algorithm 2 POCS

Initialize: Input matrix Q ∈ Rm1×m2 . t = 0.
while Q′ ̸= Q do Q = Q′

Q̃ = Q−
(

1
m1m2

∑m1

i=1

∑m2

j=1Qi,j

)
J

Q′
i,j = 1

(
|Q̃i,j | ≤ α

)
Q̃i,j + 1

(
|Q̃i,j | > α

)
sign

(
Q̃i,j

)
α

end while

Due to space constraints, we present the test mean absolute errors (TMAE) curve (Figure 4) for
simulation setting in Section 6. Note that the trend is consistent on both TRMSE and TMAE with
multiple runs.

C.1 More simulation: missing on small entries

We conduct more simulation studies in higher dimensions with a different missing mechanism where
the observation probability reads

Pr(Tij = 1|Yij) =
1

1 + exp(−3(Yij − 2))
,

which means larger potential observations imply higher observation probabilities, as shown in
Figure 5. We generate a 100× 100 matrix A⋆ with rank r = 5. The observations Yij are generated
from a Gaussian distribution with mean A⋆,ij and variance 1 independently. Note that compared with
experiments shown in Section 6, the dimension is larger and the observation probability is flipped.

As shown in Figure 6, other methods suffer from a severe observation bias, and the recovered entries
are right-skewed, whereas the distribution of true entries is symmetric. Our method alleviates the
observation bias and recovers the symmetric pattern of the distribution on recovered entries. The test
root mean squared errors (TRMSE) and test mean absolute errors (TMAE) of recovered entries are
reported in Table 3. The experiments are repeated with 9 runs, and the standard deviation of both
metrics is included. Our method shows a significant advantage when the observation bias persists.

2https://github.com/jiangyuan-li/mc-w-pseudolikelihood
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Figure 4: TMAE with standard error for different variances σ2 = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0.
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Figure 5: Distribution of observed and unobserved entries, implying the existence of observation
bias.

Method TRMSE TMAE

SoftImpute 1.3973 ± 0.0844 1.014 ± 0.0636
CZ 1.410 ± 0.0938 1.0177 ± 0.0752
MFW 2.6763 ± 0.0864 2.2405 ± 0.0728
SNN 5.8402 ± 5.5596 2.7677 ± 0.1323
Our method 0.6482 ± 0.0396 0.4920 ± 0.0237

Table 3: Test root mean squared errors (TRMSE) and test mean absolute errors (TMAE) with standard
deviations.
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Figure 6: The recovered entries are right skewed from other methods.

C.2 Real data application: more details

In this section, we use three data examples to illustrate the robust performance of the proposed
method. Similar to the implementation procedures in Section 6, we equally separate half of the testing
data points and use them as the validation dataset to tune the hyper parameters for all the methods
mentioned in Section 6 and learn the shift and scale parameters for the proposed method. Then we
used the remaining half of the test data points to evaluate their performance.

26



C.2.1 Tobacco Dataset

This dataset is available in Table 11 in [9] and has been widely studied for synthetic control methods
[e.g. 1]. From Table 11 in [9], we can obtain the Tax-Paid Per Capita Sales in Number of Packs for
51 states across the US from year 1950 to year 2014. California implemented a large-scale tobacco
control program in 1988 and we consider it as the “treated" state. We take the remaining 50 states as
the control states. For the detailed background, we refer readers to [1] and [2].

We collect data from year 1970 to year 2000 and restrict our focus to the 50 control states, which
results in a 50 by 31 matrix. Following the same experimental setup in [2], we generate MNAR
data. We introduce “interventions" to a subsets of states in 1989 based on their change in the mean
of cigarette sales during 1989-2000 versus that during 1970-1988. See details of the intervention
probabilities in Section 6.3 in [2]. As long as an intervention is adopted for state i, all sales under
control after 1988 are unobserved, i.e. Ti,j = 0 for j > 19. And we take Yi,j , j > 19 as the test data
points.

Table 2 provides the results for five methods under 100 randomizations on the intervention based on
the intervention probability for every state. As we can see, our method only performs worse than
SNN for this MNAR dataset, with significantly smaller TRMSE than other three methods. Note that
in order to compare the errors, we need to perform a transformation on our estimated matrix. For this
study, the untransformed data can also provide valuable information about the trend of sales change
for every state during this 30 years. For example, as illustrated in Figure 7, using untransformed
estimated result from our method, we are able to capture the overall trend of the sales change for state
KS across 30 years. Our method is able to capture the increasing trend of sales for state KS after year
1988.

Figure 7: The first plot shows the observed sales for State KS across 30 years. The second plot is
the untransformed estimated sales by our method from 1970 to 2000. The rest four plots are the
estimated sales from SNN, SoftImpute, CZ and MFW from 1970 to 2000 for state KS.

C.2.2 Coat Shopping Dataset

This dataset is available at https://www.cs.cornell.edu/~schnabts/mnar/. It contains ratings
from 290 Turkers on an inventory of 300 items [30]. Training set contains 6960 self-selected ratings
and the test set consists of 4640 entries. This dataset has been used as an illustration for the
nonuniform missingness [e.g. 30, 35].

As Table 2 shows, SNN performs a lot worse than the remaining methods for this dataset. MFW
has the smallest TRMSE. Our method has smaller errors than SoftImpute and has comparable
performance to CZ.

C.2.3 Yahoo! Webscope Dataset

This dataset is available at https://webscope.sandbox.yahoo.com/catalog.php?datatype=
r&did=3, which contains ratings from 15,400 users on 1000 songs. The IDs for users and songs
are randomly assigned. The training set includes approximately 300,000 ratings from these 15,400
users. The ratings from the training set are collected during normal use of Yahoo! Music services for
each user. The test set was constructed by surveying the first 5,400 users. And each surveyed-user
provides ratings for exactly 10 additional songs.
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Due to its large size and to simplify the computation, we conducted a selection procedure to reduce
the size of the matrix. First, we focus on the users with ID 1-50, 5401-5550 and songs with ID 1-250,
which results in a matrix where we have 50 surveyed users and 150 unserveyed users. Next, we
construct the training (test) matrix from the original training (test) dataset with selected user IDs and
selected song IDs. Then, we remove those users and songs who have no single observation in the
training matrix. In the end, we obtain a matrix with 199 users and 219 songs.

From Table 2, we can see that the two methods (SNN and our method) that are designed for MNAR
have better performance than the remaining methods, and our method has the smallest TRMSE.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contributions are adequately described in the abstract and introduc-
tion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of this work such as identifiability issue is discussed in Section
4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The theoretical assumptions and proofs are provided in Section 5 and Appendix
A as a main contribution of this work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a complete description of experiments in Section 6&7 and Ap-
pendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data used in the paper has been cited and linked properly (Section 7). The
implementation detail has been described in detail in Appendix C and the code will be made
available on GitHub after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details can be found in Section 6&7 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The error bars and statistical significance has been shown and discussed in
Section 6 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments performed in the paper don’t require intense computer
resources, and can be reproduced on a personal computer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work abides by the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets (data) used in the paper are open for non-commercial use by
academics and have been properly credited in Section 7.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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