
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEFOG: DEFOGGING DISCRETE FLOW MATCHING
FOR GRAPH GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph generation is fundamental in diverse scientific applications, due to its
ability to reveal the underlying distribution of complex data, and eventually
generate new, realistic data points. Despite the success of diffusion models in this
domain, those face limitations in sampling efficiency and flexibility, stemming
from the tight coupling between the training and sampling stages. To address this,
we propose DeFoG, a novel framework using discrete flow matching for graph
generation. DeFoG employs a flow-based approach that features an efficient
linear interpolation noising process and a flexible denoising process based on
a continuous-time Markov chain formulation. We leverage an expressive graph
transformer and ensure desirable node permutation properties to respect graph
symmetry. Crucially, our framework enables a disentangled design of the training
and sampling stages, enabling more effective and efficient optimization of model
performance. We navigate this design space by introducing several algorithmic
improvements that boost the model performance, consistently surpassing existing
diffusion models. We also theoretically demonstrate that, for general discrete data,
discrete flow models can faithfully replicate the ground truth distribution - a result
that naturally extends to graph data and reinforces DeFoG’s foundations. Exten-
sive experiments show that DeFoG achieves state-of-the-art results on synthetic
and molecular datasets, improving both training and sampling efficiency over dif-
fusion models, and excels in conditional generation on a digital pathology dataset.

1 INTRODUCTION

Graph generation has become a fundamental task across diverse fields, from molecular chemistry
to social network analysis, due to graphs’ capacity to represent complex relationships and generate
novel, realistic structured data. Diffusion-based graph generative models (Niu et al., 2020; Jo et al.,
2022), particularly those tailored for discrete data to capture the inherent discreteness of graphs (Vi-
gnac et al., 2022; Siraudin et al., 2024), have emerged as a compelling approach, demonstrating
state-of-the-art performance in applications such as molecular generation (Irwin et al., 2024),
reaction pathway design (Igashov et al., 2024), neural architecture search (Asthana et al., 2024), and
combinatorial optimization (Sun & Yang, 2024). However, the sampling processes of these methods
remain highly constrained due to a strong interdependence with training: design choices made
during training mostly determine the options available during sampling. Therefore, optimizing pa-
rameters such as noise schedules requires re-training, which incurs significant computational costs.

Recently, Campbell et al. (2024); Gat et al. (2024) introduced a discrete flow matching (DFM)
framework, which maps noisy to clean discrete data with iterations similar to diffusion models.
However, DFM has demonstrated superior performance compared to discrete diffusion models
by leveraging a straightforward and efficient noising process, and a flexible formulation based
on continuous-time Markov chain (CTMC) for denoising. Specifically, its noising process in-
volves a linear interpolation in the probability space between noisy and clean data, displaying
well-established advantages for continuous state spaces in terms of performance (Esser et al., 2024;
Lipman et al.) and theoretical properties (Liu et al., 2023). Most notably, the denoising process in
DFM uses an adaptable sampling step scheme (both in size and number) and CTMC rate matrices
that are independent of the training setup. Such a decoupling allows for the design of sampling
algorithms that are disentangled from training, enabling efficient performance optimization at the
sampling stage without extensive retraining. However, despite its promising results, the applica-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

bility of DFM to graph generation remains unclear, and the proper exploitation of its additional
training-sampling flexibility is still an open question in graph settings.

In this work, we propose DeFoG, a novel and versatile DFM framework for graph generation
that operates under theoretical guarantees, featuring a linear interpolation noising process and
CTMC-based denoising process inherited from the DFM model. Our contribution begins by
proposing the first discrete flow matching model tailored to graphs, ensuring node permutation
equivariance to respect graph symmetry and addressing the model expressivity limitations inherent
to this data modality (Morris et al., 2019). Additionally, to “defog” the design space of this
decoupled training-sampling framework, we extend and propose novel training and sampling
algorithms, including alternative initial distributions, modifications of the CTMC rate matrices that
govern the denoising trajectory, and time-adaptive strategies designed to align with dataset-specific
characteristics. We explicitly demonstrate that these algorithmic improvements, which can be
seamlessly integrated into training and sampling, accelerate convergence and enhance generation
performance by a large margin. To assert DeFoG’s strong theoretical foundation, we extend existing
guarantees of DFM models for general discrete data. First, we reinforce the pertinence of the
loss function by explicitly relating it to the model estimation error. Then, we demonstrate that the
distribution generated by the denoising process in DFM models remains faithful to the ground truth
distribution. Both theorems extend naturally to graph data, providing strong support for the design
choices of our new graph generative framework.

Our experiments show that DeFoG achieves state-of-the-art performance on both synthetic graph
datasets with diverse topologies and complex molecular datasets. Notably, while the vanilla DeFoG
framework performs on par with diffusion models, our tailored training-sampling optimization
pipeline permits DeFoG to consistently outperform these models. Furthermore, DeFoG achieves
performance comparable to certain diffusion models with only 5 to 10% of the sampling steps,
highlighting significant efficiency gains. We also underscore DeFoG’s versatility through a con-
ditional generation task in digital pathology, where it notably outperforms existing unconstrained
models. In a nutshell, DeFoG opens the door to more flexible graph generative models that can
efficiently handle a wide range of tasks in diverse domains with improved performance and reduced
computational costs.

2 RELATED WORK

Graph Generative Models Graph generation has applications across various domains, including
molecular generation (Mercado et al., 2021), combinatorial optimization (Sun & Yang, 2024), and
inverse protein folding (Yi et al., 2024). Existing methods for this task generally fall into two main
categories. Autoregressive models progressively grow the graph by inserting nodes and edges (You
et al., 2018; Liao et al., 2019). Although these methods offer high flexibility in sampling and facil-
itate the integration of domain-specific knowledge (e.g., for molecule generation, Liu et al. (2018)
perform valency checks at each iteration), they suffer from a fundamental drawback: the need to
learn a node ordering (Kong et al., 2023), or use a predefined node ordering (You et al., 2018) to
avoid the overly large learning space. In contrast, one-shot models circumvent such limitation by
predicting the entire graph in a single step, enabling the straightforward incorporation of node per-
mutation equivariance/invariance properties. Examples of these approaches include graph-adapted
versions of VAEs (Kipf & Welling, 2016), GANs (De Cao & Kipf, 2018), or normalizing flows (Liu
et al., 2019). Among these, diffusion models have gained prominence for their state-of-the-art
performance, attributed to their iterative mapping between noise and data distributions.

Graph Diffusion One of the initial research directions in graph diffusion sought to adapt continu-
ous diffusion frameworks (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) for graph-
structured data (Niu et al., 2020; Jo et al., 2022; 2024), which introduced challenges in preserving
the inherent discreteness of graphs. In response, discrete diffusion models (Austin et al., 2021) were
effectively extended to the graph domain (Vignac et al., 2022; Haefeli et al.), utilizing Discrete-Time
Markov Chains to model the stochastic diffusion process. However, this method restricts sampling
to the discrete time points used during training. To address this limitation, continuous-time discrete
diffusion models incorporating CTMCs have emerged (Campbell et al., 2022), and have been
recently applied to graph generation (Siraudin et al., 2024; Xu et al., 2024). Despite employing
a continuous-time framework, their sampling optimization space remains limited by training-
dependent design choices, such as fixed rate matrices, which hinders further performance gains.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

<latexit sha1_base64="jmRX2/SF6BdCUdKL2pITg9VlZcM=">AAACBXicbVC7SgNBFJ2NrxhfUUstBoMQm7ArEi2DFlpGMA9I1mV2dpIMmZ1dZu4KYZPGxl+xsVDE1n+w82+cPApNPHDhcM693HuPHwuuwba/rczS8srqWnY9t7G5tb2T392r6yhRlNVoJCLV9IlmgktWAw6CNWPFSOgL1vD7V2O/8cCU5pG8g0HM3JB0Je9wSsBIXv4wvm9DjwHxUmcII1xs0yACPMTXHpx4+YJdsifAi8SZkQKaoerlv9pBRJOQSaCCaN1y7BjclCjgVLBRrp1oFhPaJ13WMlSSkGk3nXwxwsdGCXAnUqYk4In6eyIlodaD0DedIYGenvfG4n9eK4HOhZtyGSfAJJ0u6iQCQ4THkeCAK0ZBDAwhVHFzK6Y9oggFE1zOhODMv7xI6qclp1wq354VKpezOLLoAB2hInLQOaqgG1RFNUTRI3pGr+jNerJerHfrY9qasWYz++gPrM8fVJaX0w==</latexit>

p✓1|t(·|Gt)

… …

xn
t + R⋆(xn

t , xn
t+Δt | ̂xd

t)Δt = p(xn
t+Δt |xn

t , ̂xn
t)

xn
t

+

=

p(xn
t+Δt |xn

t , ̂xn
t)

xn
t R*(xn

t , xn
t+Δt |xn1)Δt p(xn

t+Δt |xn
t)+ =

xd
t pd

t|1

Manuel’s proposal

<latexit sha1_base64="OyXCnz6PSeq02nTCi9oMtnXIXog=">AAACGHicbVDLSgMxFM3UV62vUZdugkVw1c6oVJcFNy4r2Ad0hpJJb9vQTGZIMmIZ+hlu/BU3LhRx251/Y9oOYlsPhBzOuZd77wlizpR2nG8rt7a+sbmV3y7s7O7tH9iHRw0VJZJCnUY8kq2AKOBMQF0zzaEVSyBhwKEZDG+nfvMRpGKReNCjGPyQ9AXrMUq0kTp22Qugz0QahERL9jTGbvkSe97CB6L763fsolNyZsCrxM1IEWWodeyJ141oEoLQlBOl2q4Taz8lUjPKYVzwEgUxoUPSh7ahgoSg/HR22BifGaWLe5E0T2g8U/92pCRUahQGptLsN1DL3lT8z2snunfjp0zEiQZB54N6Ccc6wtOUcJdJoJqPDCFUMrMrpgMiCdUmy4IJwV0+eZU0LkpupVS5vypWnSyOPDpBp+gcuegaVdEdqqE6ougZvaJ39GG9WG/Wp/U1L81ZWc8xWoA1+QGW3J41</latexit>2
4

1/3
1/3
1/3

3
5

<latexit sha1_base64="cWWo/kZ3qNrdeL/sBZCV+xTNTM4=">AAACEnicbVDLSsNAFJ34rPUVdelmsAi6KYlIdVlw47KCfUATymRy0w6dTMLMRCyh3+DGX3HjQhG3rtz5N07bINp6YIbDOfdy7z1BypnSjvNlLS2vrK6tlzbKm1vbO7v23n5LJZmk0KQJT2QnIAo4E9DUTHPopBJIHHBoB8Orid++A6lYIm71KAU/Jn3BIkaJNlLPPvUC6DORBzHRkt2PsYs9DzvFByL8cXp2xak6U+BF4hakggo0evanFyY0i0FoyolSXddJtZ8TqRnlMC57mYKU0CHpQ9dQQWJQfj49aYyPjRLiKJHmCY2n6u+OnMRKjeLAVJr9Bmrem4j/ed1MR5d+zkSaaRB0NijKONYJnuSDQyaBaj4yhFDJzK6YDogkVJsUyyYEd/7kRdI6q7q1au3mvFJ3ijhK6BAdoRPkogtUR9eogZqIogf0hF7Qq/VoPVtv1vusdMkqeg7QH1gf3653nNE=</latexit>2
4

1
0
0

3
5

<latexit sha1_base64="3jz8SGsPU3KxCDLt9ObW+5On9RI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqngqeNBjRfsBbSib7aRdutmE3Y1QQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxLBtXHdL6ewsrq2vlHcLG1t7+zulfcPWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsYX8/89iMqzWP5YCYJ+hEdSh5yRo2V7m/6br9ccavuHOQv8XJSgRyNfvmzN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n81Ck5scqAhLGyJQ2Zqz8nMhppPYkC2xlRM9LL3kz8z+umJrz0My6T1KBki0VhKoiJyexvMuAKmRETSyhT3N5K2IgqyoxNp2RD8JZf/ktaZ1WvVq3dnVfqV3kcRTiCYzgFDy6gDrfQgCYwGMITvMCrI5xn5815X7QWnHzmEH7B+fgGwKGNcQ==</latexit>

G0

<latexit sha1_base64="moT4lc/8jXOhvvnZLJBUGu4qKBE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqngqeNBjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Hrmtx+5NiJWDzhJuB/RoRKhYBStdH/Tx3654lbdOchf4uWkAjka/fJnbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JiVUGJIy1LYVkrv6cyGhkzCQKbGdEcWSWvZn4n9dNMbz0M6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWX/5LWWdWrVWt355X6VR5HEY7gGE7Bgwuowy00oAkMhvAEL/DqSOfZeXPeF60FJ585hF9wPr4BJ8CNtQ==</latexit>

Gt

<latexit sha1_base64="MCCiAvqaSrxjwc9FKhNJRGoe8e4=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoMgCGFXJIqngIIeI5gHJGuYncwmQ2YfzPQqYcl/ePGgiFf/xZt/4yTZgyYWNBRV3XR3ebEUGm3728otLa+sruXXCxubW9s7xd29ho4SxXidRTJSLY9qLkXI6yhQ8lasOA08yZve8GriNx+50iIK73EUczeg/VD4glE00sNNN8WTzjWXSAmOu8WSXbanIIvEyUgJMtS6xa9OL2JJwENkkmrdduwY3ZQqFEzycaGTaB5TNqR93jY0pAHXbjq9ekyOjNIjfqRMhUim6u+JlAZajwLPdAYUB3rem4j/ee0E/Qs3FWGcIA/ZbJGfSIIRmURAekJxhnJkCGVKmFsJG1BFGZqgCiYEZ/7lRdI4LTuVcuXurFS9zOLIwwEcwjE4cA5VuIUa1IGBgmd4hTfryXqx3q2PWWvOymb24Q+szx/pVpIg</latexit>

Gt+�t
<latexit sha1_base64="xlgv+ilReYdCqcOA3VbSQTojbb8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqngqeNBjRfsBbSib7aZdutmE3YlQQn+CFw+KePUXefPfuG1z0OqDgcd7M8zMCxIpDLrul1NYWV1b3yhulra2d3b3yvsHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Hrmtx+5NiJWDzhJuB/RoRKhYBStdH/T9/rlilt15yB/iZeTCuRo9MufvUHM0ogrZJIa0/XcBP2MahRM8mmplxqeUDamQ961VNGIGz+bnzolJ1YZkDDWthSSufpzIqORMZMosJ0RxZFZ9mbif143xfDSz4RKUuSKLRaFqSQYk9nfZCA0ZygnllCmhb2VsBHVlKFNp2RD8JZf/ktaZ1WvVq3dnVfqV3kcRTiCYzgFDy6gDrfQgCYwGMITvMCrI51n5815X7QWnHzmEH7B+fgGwiWNcg==</latexit>

G1

<latexit sha1_base64="gPq47M0ymDkLLlJrgy73ZwRZ8bM=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCIJREpIqngh48VrAf0Iaw2W7bpZtN2J0IIda/4sWDIl79Id78N27bHLT1wcDjvRlm5gWx4Boc59sqrKyurW8UN0tb2zu7e/b+QUtHiaKsSSMRqU5ANBNcsiZwEKwTK0bCQLB2ML6e+u0HpjSP5D2kMfNCMpR8wCkBI/l2OfYzOMW9GyaAYMCPGCa+XXGqzgx4mbg5qaAcDd/+6vUjmoRMAhVE667rxOBlRAGngk1KvUSzmNAxGbKuoZKETHvZ7PgJPjZKHw8iZUoCnqm/JzISap2GgekMCYz0ojcV//O6CQwuvYzLOAEm6XzRIBEYIjxNAve5YhREagihiptbMR0RRSiYvEomBHfx5WXSOqu6tWrt7rxSv8rjKKJDdIROkIsuUB3dogZqIopS9Ixe0Zv1ZL1Y79bHvLVg5TNl9AfW5w9xg5P8</latexit>pt+�t|t

<latexit sha1_base64="YZKsT6rkRf98gO3Ngq4lawsGNMo=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXJHoM6MFjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rSdUmsfywYwT9CM6kDzkjBor1S96xZJbducgq8TLSAky1HrFr24/ZmmE0jBBte54bmL8CVWGM4HTQjfVmFA2ogPsWCpphNqfzA+dkjOr9EkYK1vSkLn6e2JCI63HUWA7I2qGetmbif95ndSEN/6EyyQ1KNliUZgKYmIy+5r0uUJmxNgSyhS3txI2pIoyY7Mp2BC85ZdXSfOy7FXKlfpVqXqXxZGHEziFc/DgGqpwDzVoAAOEZ3iFN+fReXHenY9Fa87JZo7hD5zPH3WxjLw=</latexit>

+ <latexit sha1_base64="t/tslDnH0vy0slI2k5mHjAGDHlM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRC9CQA8eEzAPSJYwO+lNxszOLjOzQgj5Ai8eFPHqJ3nzb5wke9DEgoaiqpvuriARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0e3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7TK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZa9SrtQvS9W7LI48nMApnIMHV1CFe6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCQ+YzO</latexit>=
<latexit sha1_base64="wRXtjAcRWIvR+CNl8HsPcxucvgo=">AAAB7XicbVDLSgNBEJyNrxhfUY9eBoPgKezmED0GvHiMaB6QLGF20puMmccyMyuEJf/gxYMiXv0fb/6Nk2QPmljQUFR1090VJZwZ6/vfXmFjc2t7p7hb2ts/ODwqH5+0jUo1hRZVXOluRAxwJqFlmeXQTTQQEXHoRJObud95Am2Ykg92mkAoyEiymFFindS+JyLhMChX/Kq/AF4nQU4qKEdzUP7qDxVNBUhLOTGmF/iJDTOiLaMcZqV+aiAhdEJG0HNUEgEmzBbXzvCFU4Y4VtqVtHih/p7IiDBmKiLXKYgdm1VvLv7n9VIbX4cZk0lqQdLlojjl2Co8fx0PmQZq+dQRQjVzt2I6JppQ6wIquRCC1ZfXSbtWDerV+l2t0qjncRTRGTpHlyhAV6iBblETtRBFj+gZvaI3T3kv3rv3sWwtePnMKfoD7/MHirGPFQ==</latexit>

Sample

<latexit sha1_base64="FvYY1WdtpHQDAknX0q6OGSDLN2o=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolIFU8FLx4r2g9oQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91iPXRsTqAccJ9yM6UCIUjKKV7p962CuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTTPK161Ur27KNeu8zgKcAwncAYeXEINbqEODWAwgGd4hTdHOi/Ou/Mxb11x8pkj+APn8wdyZo3m</latexit>xt
<latexit sha1_base64="DcDccdc2xBSwv//s1OrpE2a2Do4=">AAAB9XicbVDLSgNBEJyNrxhfUY9eBoMgCGFXJIqngB48RjAPSNYwO+lNhsw+mOlVw5L/8OJBEa/+izf/xkmyB00saCiquunu8mIpNNr2t5VbWl5ZXcuvFzY2t7Z3irt7DR0likOdRzJSLY9pkCKEOgqU0IoVsMCT0PSGVxO/+QBKiyi8w1EMbsD6ofAFZ2ik+6duiieda5DIKI67xZJdtqegi8TJSIlkqHWLX51exJMAQuSSad127BjdlCkUXMK40Ek0xIwPWR/ahoYsAO2m06vH9MgoPepHylSIdKr+nkhZoPUo8ExnwHCg572J+J/XTtC/cFMRxglCyGeL/ERSjOgkAtoTCjjKkSGMK2FupXzAFONogiqYEJz5lxdJ47TsVMqV27NS9TKLI08OyCE5Jg45J1VyQ2qkTjhR5Jm8kjfr0Xqx3q2PWWvOymb2yR9Ynz82JpJR</latexit>xt+�t

<latexit sha1_base64="Gx2dRwCDDdVKo/SEtitaQv10OGI=">AAAB/HicbVDJSgNBEO2JW4zbaI5eGoPgKcyIRPEU0IPHKGaBJA49nZqkSc9Cd40whPgrXjwo4tUP8ebf2FkOmvig4PFeFVX1/EQKjY7zbeVWVtfWN/Kbha3tnd09e/+goeNUcajzWMaq5TMNUkRQR4ESWokCFvoSmv7wauI3H0FpEUf3mCXQDVk/EoHgDI3k2cW7hw4OAJmHtHMNEhlFzy45ZWcKukzcOSmROWqe/dXpxTwNIUIumdZt10mwO2IKBZcwLnRSDQnjQ9aHtqERC0F3R9Pjx/TYKD0axMpUhHSq/p4YsVDrLPRNZ8hwoBe9ifif104xuOiORJSkCBGfLQpSSTGmkyRoTyjgKDNDGFfC3Er5gCnG0eRVMCG4iy8vk8Zp2a2UK7dnperlPI48OSRH5IS45JxUyQ2pkTrhJCPP5JW8WU/Wi/Vufcxac9Z8pkj+wPr8AQXDlFs=</latexit>

R✓
t�t

<latexit sha1_base64="+y20TjnvLuNdH5a5u2DTTUKuFs8=">AAAB8HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5SRLEKaGEZwSRKcoS9zV6yZD+O3T0hHPkVNhaK2Ppz7Pw3bpIrNPHBwOO9GWbmRQlnxvr+t1dYW9/Y3Cpul3Z29/YPyodHbaNSTWiLKK70Q4QN5UzSlmWW04dEUywiTjvR+Hrmd56oNkzJeztJaCjwULKYEWyd9HhDpWKGyWG/XPGr/hxolQQ5qUCOZr/81RsokgoqLeHYmG7gJzbMsLaMcDot9VJDE0zGeEi7jkosqAmz+cFTdOaUAYqVdiUtmqu/JzIsjJmIyHUKbEdm2ZuJ/3nd1MaXYcZkkloqyWJRnHJkFZp9jwZMU2L5xBFMNHO3IjLCGhPrMiq5EILll1dJu1YN6tX6Xa3SuMrjKMIJnMI5BHABDbiFJrSAgIBneIU3T3sv3rv3sWgtePnMMfyB9/kD5PSQdQ==</latexit>

Denoising

Noising pt|1 = (1 − t)p0 + t ⋅ p1

<latexit sha1_base64="V7ZE7dApo2JLTqrClbhl9Q1FqJQ=">AAACG3icbVDLSgMxFM3UV62vqks3wVaoqGWmiyoVoeDGlVSwD2jLkEnTNjSTGZI7Qhn7H278FTcuFHEluPBvTB8LtR5IODnnXm7u8ULBNdj2l5VYWFxaXkmuptbWNza30ts7NR1EirIqDUSgGh7RTHDJqsBBsEaoGPE9were4HLs1++Y0jyQtzAMWdsnPcm7nBIwkpsuXAdcc9krYZwN3RjunRG+wDnnBA5x6xiHro1b5/jIXDB9O1k3nbHz9gR4njgzkkEzVNz0R6sT0MhnEqggWjcdO4R2TBRwKtgo1Yo0CwkdkB5rGiqJz3Q7nuw2wgdG6eBuoMyRgCfqz46Y+FoPfc9U+gT6+q83Fv/zmhF0z9oxl2EETNLpoG4kMAR4HBTucMUoiKEhhCpu/oppnyhCwcSZMiE4f1eeJ7VC3inmizeFTLk0iyOJ9tA+yiEHnaIyukIVVEUUPaAn9IJerUfr2Xqz3qelCWvWs4t+wfr8BjpVnH0=</latexit>

Noising: pt|1 = (1� t) p0 + t p1
<latexit sha1_base64="Tj4GIrgdhOiYM2baqU344xphm0M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqngqePFY0X5AG8pmu2mXbjZhdyKU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYkUBl332ymsrW9sbhW3Szu7e/sH5cOjlolTzXiTxTLWnYAaLoXiTRQoeSfRnEaB5O1gfDvz209cGxGrR5wk3I/oUIlQMIpWekj6br9ccavuHGSVeDmpQI5Gv/zVG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyZpUBCWNtSyGZq78nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK6qHq1au3+slK/yeMowgmcwjl4cAV1uIMGNIHBEJ7hFd4c6bw4787HorXg5DPH8AfO5w//F42a</latexit>p0

<latexit sha1_base64="6NJ2DJtsbvOEf+6/3P8S/ay6Xr4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqngqePFYwX5AG8pmO2mX7m7C7kYooX/BiwdFvPqHvPlvTNoctPpg4PHeDDPzglhwY133yymtrW9sbpW3Kzu7e/sH1cOjjokSzbDNIhHpXkANCq6wbbkV2Is1UhkI7AbT29zvPqI2PFIPdhajL+lY8ZAzanMpHnqVYbXm1t0FyF/iFaQGBVrD6udgFLFEorJMUGP6nhtbP6XaciZwXhkkBmPKpnSM/YwqKtH46eLWOTnLlBEJI52VsmSh/pxIqTRmJoOsU1I7MateLv7n9RMbXvspV3FiUbHlojARxEYkf5yMuEZmxSwjlGme3UrYhGrKbBZPHoK3+vJf0rmoe4164/6y1rwp4ijDCZzCOXhwBU24gxa0gcEEnuAFXh3pPDtvzvuyteQUM8fwC87HNzW6ja8=</latexit>p1<latexit sha1_base64="o5xMFkAkwmAVkNopZ8LYtyUOB3Q=">AAAB8HicdVDLSgNBEJyNrxhfUY9eBoPgadkNIZpbQA8eI5iHJEuYncwmQ2Zml5leIYR8hRcPinj1c7z5N84mEXwWNBRV3XR3hYngBjzv3cmtrK6tb+Q3C1vbO7t7xf2DlolTTVmTxiLWnZAYJrhiTeAgWCfRjMhQsHY4vsj89h3ThsfqBiYJCyQZKh5xSsBKt71LJoBgKPSLJc8t12o1z8e/ie96c5TQEo1+8a03iGkqmQIqiDFd30sgmBINnAo2K/RSwxJCx2TIupYqIpkJpvODZ/jEKgMcxdqWAjxXv05MiTRmIkPbKQmMzE8vE//yuilE58GUqyQFpuhiUZQKDDHOvscDrhkFMbGEUM3trZiOiCYUbEZZCJ+f4v9Jq+z6Vbd6XSnVK8s48ugIHaNT5KMzVEdXqIGaiCKJ7tEjenK08+A8Oy+L1pyznDlE3+C8fgBIRZAP</latexit>

�t

<latexit sha1_base64="CqGi6enbFtuFv0Qi/+fz0LtDD0c=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vjw4rGC/YA2lM120i7dTeLuRiihf8GLB0W8+oe8+W/ctDlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pR8AhbhhuB3UQhlYHATjC5zf3OEyrN4+jBTBP0JR1FPOSMmlzqC3wcVKpuzZ2DrBKvIFUo0BxUvvrDmKUSI8ME1brnuYnxM6oMZwJn5X6qMaFsQkfYszSiErWfzW+dkXOrDEkYK1uRIXP190RGpdZTGdhOSc1YL3u5+J/XS01442c8SlKDEVssClNBTEzyx8mQK2RGTC2hTHF7K2FjqigzNp6yDcFbfnmVtC9rXr1Wv7+qNtwijhKcwhlcgAfX0IA7aEILGIzhGV7hzZHOi/PufCxa15xi5gT+wPn8ARMpjjk=</latexit> <latexit sha1_base64="N1k7HwW0c8epXRur0RmZbu57UXU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWvK7U3TyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Ad0GMrQ==</latexit>

0

Figure 1: Overview of DeFoG. One node x, with 3 potential states {green, yellow, red}, is selected
to illustrate both noising and denoising processes. For noising, DeFoG follows a straight path from
the one-hot encoding p1 of the clean node to the initial distribution p0. For denoising, a network
parameterized by θ predicts the marginal distributions of the clean graph, pθ1|t(·|Gt). The predicted
distribution for the node x is then used to compute its rate matrix Rθ

t and, subsequently, its proba-
bility at the next time point. This is applied to all nodes and edges to denoise the entire graph.

Discrete Flow Matching Flow matching (FM) models emerged as a compelling alternative to
diffusion models in the realm of iterative refinement generative approaches for continuous state
spaces (Lipman et al.; Liu et al., 2023). This framework has been empirically shown to enhance
performance and efficiency in image generation (Esser et al., 2024; Ma et al., 2024). To address
discrete state spaces, such as those found in protein design or text generation, a DFM formulation
has been introduced (Campbell et al., 2024; Gat et al., 2024). This DFM approach theoretically
streamlines its diffusion counterpart by employing linear interpolation for the mapping from data
to the prior distribution. Moreover, its CTMC-based denoising process accommodates a broader
range of rate matrices, which need not be fixed during training. In practice, DFM consistently
outperforms traditional discrete diffusion models. In this paper, we build on the foundations of
DFM with the aim of further advancing graph generative models.

3 DISCRETE FLOW MATCHING

In this section, we introduce the DFM framework as originally proposed by Campbell et al. (2024).
We adopt their notation for clarity and illustrate it under the graph setting in Figure 1.

3.1 CONTINUOUS-TIME MARKOV CHAINS AND DISCRETE FLOW MATCHING

In generative modeling, the primary goal is to generate new data samples from the underlying
distribution that produced the original data, pdata. An effective approach is to learn a mapping
between a simple distribution pϵ, which is easy to sample from, and pdata. DFM models achieve
this mapping via a stochastic process over the time interval t ∈ [0, 1] for variables in discrete
state spaces. The initial distribution, p0 = pϵ, is a predefined noise distribution, while p1 = pdata
represents the target data distribution.

Univariate Case At any time t, we consider a discrete variable with Z possible values, denoted
zt ∈ Z = {1, . . . , Z}. The marginal distribution of zt is represented by the vector pt ∈ ∆Z−1,
where ∆Z−1 represents the corresponding probability simplex1. Since handling pt directly is not
straightforward, DFM establishes a conditioned noising trajectory from the chosen datapoint z1 to
the initial distribution through a simple linear interpolation:

pt|1(zt|z1) = t δ(zt, z1) + (1− t) p0(zt). (1)

where δ(zt, z1) is the Kronecker delta which is 1 when zt = z1. Importantly, the original marginal
distribution can be backtracked via pt(zt) = Ep1(z1)[pt|1(zt|z1)].
In the denoising stage, DFM reverses the previous process using a CTMC formulation. In general,
a CTMC is characterized by an initial distribution, p0, and a rate matrix, Rt ∈ RZ×Z that models
its evolution across time t ∈ [0, 1]. Specifically, the rate matrix defines the instantaneous transition
rates between states, such that:

1∆K =
{
x ∈ RK+1 |

∑K+1
i=1 xi = 1, xi ≥ 0, ∀i

}
3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

pt+dt|t(zt+dt|zt) = δ(zt, zt+dt) +Rt(zt, zt+dt)dt. (2)

Intuitively, Rt(zt, zt+dt)dt yields the probability that a transition from state zt to state zt+dt will
occur in the next infinitesimal time step dt. By definition, we have Rt(zt, zt+dt) ≥ 0 for zt ̸= zt+dt.
Consequently, Rt(zt, zt) = −∑

zt+dt ̸=zt
Rt(zt, zt+dt) to ensure

∑
zt+dt

pt+dt|t(zt+dt|zt) = 1.
Under this definition, the marginal distribution and the rate matrix of a CTCM are related by a
conservation law, the Kolmogorov equation, given by ∂tpt = RT

t pt. If expanded, this expression
unveils the time derivative of the marginal distribution as the net balance between the inflow and
outflow of probability mass at that state. When this relation holds, we say that Rt generates pt.

Since we aim to reverse a z1-conditional noising process pt|1(·|z1) ∈ ∆Z−1 (recall Eq. (1)), DFM
instead considers a z1-conditional rate matrix, Rt(· , ·|z1) ∈ RZ×Z that generates it. Under mild
assumptions, Campbell et al. (2024) present a closed-form for a valid conditional rate matrix (though
others exist), i.e., that verifies the corresponding Kolmogorov equation, defined as:

R∗
t (zt, zt+dt|z1) =

ReLU[∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)]
Z>0
t pt|1(zt|z1)

for zt ̸= zt+dt, (3)

and Z>0
t = |{zt : pt|1(zt|z1) > 0}|. Again, normalization is performed for the case zt = zt+dt.

Intuitively, R∗
t redistributes probability mass by applying a positive rate to states needing more mass

than the current state zt.

Multivariate Case We jointly model D variables, (z(1), . . . , z(D)) = z1:D ∈ ZD.
The noising process defined in Eq. (1) is performed independently for each variable, i.e.,
pt|1(z1:Dt |z1:D1) =

∏D
d=1 pt|1(z

(d)
t |z(d)1). For the denoising process, Campbell et al. (2024) propose

the utilization of an efficient approximation for CTMC simulation on multivariate non-ordinal data,
where an Euler step is applied independently to each dimension d, with a finite time step ∆t:

p̃t+∆t|t(z
1:D
t+∆t|z1:Dt) =

D∏

d=1

(
δ(z

(d)
t , z

(d)
t+∆t) + E

p
(d)

1|t (z
(d)
1 |z1:D

t)

[
R

(d)
t (z

(d)
t , z

(d)
t+∆t|z

(d)
1)

]
∆t

)

︸ ︷︷ ︸
p̃
(d)

t+∆t|t(z
(d)
t+∆t|z1:D

t)

.

(4)
3.2 MODELING

Next, we discuss the practical implementation of the framework above, focusing on its two main
components: the training loss formulation and the iterative sampling algorithm for denoising.

Training Eq. (4) employs E
p
(d)

1|t (z
(d)
1 |z1:D

t)

[
R

(d)
t (z

(d)
t , z

(d)
t+∆t|z

(d)
1)

]
, which requires computing the

expectation under the condition p
(d)
1|t (z

(d)
1 |z1:Dt). This term consists of a prediction of the clean

data z1 from the noisy joint variable z1:Dt . However, unlike the noising process, the denoising
process does not factorize across dimensions, rendering such predictions intractable in general. In-
stead, we use a neural network, fθ, parameterized by θ, to approximate it, i.e., pθ,(d)1|t (z

(d)
1 |z1:Dt) ≈

p
(d)
1|t (z

(d)
1 |z1:Dt). In DFM, the network is trained by minimizing the sum of the cross-entropy losses

over all variables:

LDFM = Et∼U [0,1], p1(z1:D
1), pt|1(z

1:D
t |z1:D

1)

[
−
∑

d

log(p
θ,(d)
1|t (z

(d)
1 |z1:Dt))

]
, (5)

where U [0, 1] denotes the uniform distribution between 0 and 1.

Sampling Generating new samples using DFM amounts to simulate the CTMC formulated with
rate matrices for the denoising process. This is accomplished by sampling an initial datapoint, z1:D0

sampled from the initial distribution p0 and iteratively applying Eq. (4), using p
θ,(d)
1|t (z

(d)
1 |z1:Dt).

4 DISCRETE FLOW MATCHING FOR GRAPHS

In this section, we introduce DeFoG, a novel and flexible DFM framework for graph generation.
We first describe the necessary components and desired properties for extending the method to
graph data. Then, we explore various algorithmic improvements designed to enhance performance.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 ADAPTATION OF DFM TO GRAPHS

Instead of considering the general multivariate data denoted as z1:D, we now instantiate undirected
graphs with N nodes as a D-dimensional variable. We define the node set x1:n:N = (x(n))1≤n≤N

and the edge set e1:i<j:N = (e(ij))1≤i<j≤N . A graph corresponds to G = (x1:n:N , e1:i<j:N), such
that x(n) ∈ X = {1, . . . , X}, e(ij) ∈ E = {1, . . . , E}, and D = N +N(N − 1)/2, thus amenable
to the DFM framework. However, graphs are not merely joint variables of nodes and edges; they
encode complex structures, relationships, and global properties essential for modeling real-world
systems, while adhering to specific invariances. To address these graph-specific challenges, we
propose DeFoG (Discrete Flow Matching on Graphs), a framework tailored to develop graph
generation based on the DFM paradigm. Below, we outline how DeFoG achieves these desired
properties for graphs.

Denoising Neural Architecture The denoising of DFM requires a noisy graph Gt as in-
put and predicts the clean marginal probability for each node x(n) via p

θ,(n)
1|t (·|Gt) ∈ ∆X−1

and for each edge e(ij) via p
θ,(ij)
1|t (·|Gt) ∈ ∆E−1. They are gathered in pθ1|t(·|Gt) =

(pθ,1:n:N1|t (·|Gt), p
θ,1:i<j:N
1|t (·|Gt)). In practice, the model receives a noisy graph where node

and edge features are one-hot encoded representations of their states and returns a graph of the same
dimensionality, with features corresponding to the node and edge marginal distributions at t = 1.
This formulation boils down the graph generative task to a simple graph-to-graph mapping. There-
fore, it is crucial to ensure maximal expressivity while preserving node permutation equivariance,
making a Graph Transformer (fθ) a suitable choice for this mapping (Vignac et al., 2022).

Enhancing Model Expressivity Graph neural networks suffer from inherent expressivity
constraints (Xu et al., 2019). A usual approach to overcome their limited representation power
consists of explicitly augmenting the inputs with features that the networks would otherwise
struggle to learn. We adopt Relative Random Walk Probabilities (RRWP) encodings that are
proved to be expressive for both discriminative (Ma et al., 2023) and generative settings (Siraudin
et al., 2024). RRWP encodes the likelihood of traversing from one node to another in a graph
through random walks of varying lengths. In particular, given a graph with an adjacency matrix
A, we generate K − 1 powers of its degree-normalized adjacency matrix, M = D−1A, i.e.,[
I,M,M2, . . . ,MK−1

]
. We concatenate the diagonal entries of each power to their corresponding

node embedding, while combining and appending the non-diagonal to their corresponding edge
embeddings. RRWP features also stand out for being efficient to compute compared to the spectral
and cycle features used in Vignac et al. (2022), as demonstrated in Appendix G.3.

Loss Function The nodes and edges of graphs encode distinct structural information, justifying
their differential treatment in a graph-specific generative model. This distinction should be reflected
in the training loss function. We define LDeFoG = Et∼U [0,1],p1(G1),pt|1(Gt|G1) CEλ(G1, p

θ
1|t(·|Gt))

similarly to LDFM, in Eq. (5), with CEλ defined as follows:

CEλ(G1, p
θ
1|t(·|Gt)) = −

∑

n

log
(
p
θ,(n)
1|t (x

(n)
1 |Gt)

)
− λ

∑

i<j

log
(
p
θ,(ij)
1|t (e

(ij)
1 |Gt)

)
, (6)

where λ ∈ R+ adjusts the weighting of nodes and edge. Empirically, setting λ > 1 improves
generative performance by emphasizing edges to better capture underlying node interactions.

The resulting training and sampling processes are detailed in Algs. 1 and 2.

Algorithm 1 DeFoG Training

1: Input: Graph dataset D = {G1, . . . , GM}
2: while fθ not converged do
3: Sample G ∼ D
4: Sample t ∼ U [0, 1]
5: Sample Gt ∼ pt|1(Gt|G) ▷ Noising

6: h← RRWP(Gt) ▷ Extra features

7: pθ1|t(Gt)← fθ(Gt, h, t) ▷ Denoising

8: loss← CEλ(G, pθ1|t(·|Gt))

9: optimizer. step(loss)

Algorithm 2 DeFoG Sampling

1: Input: # graphs to sample S
2: for i = 1 to S do
3: Sample N from train set ▷ # Nodes

4: Sample G0 ∼ p0(G0)
5: for t = 0 to 1−∆t with step ∆t do
6: h← RRWP(Gt) ▷ Extra features

7: pθ1|t(Gt)← fθ(Gt, h, t) ▷ Denoising

8: Gt+∆t ∼ p̃t+∆t|t(Gt+∆t|Gt) ▷ Eq. (4)

9: Store G1

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Node Permutation Equivariance We now expose DeFoG’s equivariance properties in Lemma 1.
(See Appendix D.2.2 for proof.)

Lemma 1 (Node Permutation Equivariance and Invariance Properties of DeFoG). The DeFoG model
is permutation equivariant, its loss function is permutation invariant, and its sampling probability
is permutation invariant.

4.2 EXPLORING DEFOG’S DESIGN SPACE

While discrete diffusion models offer a broader design space compared to one-shot models,
including noise schedules and diffusion trajectories (Austin et al., 2021), its exploration is costly.
In contrast, flow models enable greater flexibility and efficiency due to their decoupled noising
and sampling procedures. For instance, the number of sampling steps and their sizes are not fixed
as in discrete-time diffusion (Vignac et al., 2022), and the rate matrix design can be adjusted
independently, unlike continuous-time diffusion models (Siraudin et al., 2024; Xu et al., 2024).
In this section, we exploit this rich design space and propose key algorithmic improvements to
optimize both the training and sampling stages of DeFoG.

4.2.1 TRAINING STAGE OPTIMIZATION

Initial Distribution An essential aspect to consider is the choice of the initial distribution. This
distribution cannot be arbitrary. To ensure that DeFoG’s sampling probabilities are permutation
invariant (Lemma 1), the initial distribution must generate all permutations of a graph with equal
probability. A suitable distribution is pϵ =

∏
n p

X
ϵ

∏
i<j p

E
ϵ , where pXϵ and pEϵ represent shared dis-

tributions across nodes and edges, respectively. Campbell et al. (2024) propose two distributions that
fit such model: uniform, where all states have equal mass, and masked, where an additional virtual
state, “mask”, accumulates all mass at t = 0. We also explore additional initial distributions, includ-
ing the marginal distribution (Vignac et al., 2022), which represents the dataset’s marginal distribu-
tion, and the absorbing distribution, which places all mass at the most prevalent state in the dataset.

Empirically, the marginal distribution outperforms the others with a single exception, as detailed
further in Appendix C.1. This is supported by two key observations: first, Vignac et al. (2022)
demonstrate that, for any given distribution, the closest distribution within the aforementioned class
of factorizable initial distributions is the marginal one, thus illustrating its optimality as a prior.
Second, the marginal initial distribution preserves the dataset’s marginal properties throughout the
noising process, maintaining graph-theoretical characteristics like sparsity (Qin et al., 2023). We
conjecture that this fact facilitates the denoising task for the graph transformer.

Train Distortion From Alg. 1, line 4, vanilla DeFoG samples t from a uniform distribution.
However, in the same vein as adjusting the noise schedule in diffusion models, we can modify
this distribution to allow the model to refine its predictions differently across various time regions.
We implement this procedure by sampling t from a uniform distribution and applying a distortion
function f such that t′ = f(t). The specific distortions used and their corresponding distributions
for t′, are detailed in Appendix B.1. In contrast to prior findings in image generation, which suggest
that focusing on intermediate time regions is preferable (Esser et al., 2024), we observe that for
most graph generation tasks, the best performing distortion functions particularly emphasize t
approaching 1. Our key insight is that, as t approaches 1, discrete structures undergo abrupt tran-
sitions between states — from 0 to 1 in a one-hot encoding — rather than the smooth, continuous
refinements seen in continuous domains. Therefore, later time steps are critical for detecting errors,
such as edges breaking planarity or atoms violating molecular valency rules.

4.2.2 SAMPLING STAGE OPTIMIZATION

Sample Distortion In DeFoG’s vanilla sampling process, the discretization is performed using
equally sized time steps (Alg. 2, line 5). Instead, we propose employing variable step sizes. This
adjustment is motivated by the need for more fine-grained control during certain time intervals,
for instance, to ensure that cluster structures are properly formed before focusing on intra-cluster
refinements, or to prevent edge alterations that could compromise global properties once the overall
structure is established. By allocating smaller, more frequent steps to these critical intervals, the
generated graph can better capture the true properties of the data. To achieve this, we modify

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the evenly spaced step sizes using distortion functions (see Appendix B.1). Although the optimal
distortion function is highly dataset-dependent, in Appendix C.2 we propose a method to guide the
selection of the distortion function based on the observed training dynamics. Notably, in diffusion
models, the design for diffusion steps such as noise schedule is typically identical for training and
sampling. However, in flow models, the time distribution for training detailed in Sec. 4.2.1 and the
time steps used for sampling can be more flexibly disentangled. In practice, applying distortion
only during sampling already yields notable performance improvements.

Target Guidance To ensure robust denoising performance, diffusion and flow matching mod-
els are designed to predict the clean data directly and subsequently generate the reverse trajectory
based on that prediction (Ho et al., 2020; Lipman et al.; Vignac et al., 2022). Inspired by that, we
propose an alternative sampling mechanism by modifying the rate matrices to Rt(zt, zt+dt|z1) =
R∗

t (zt, zt+dt|z1) +Rω
t (zt, zt+dt|z1) for zt ̸= zt+dt. , such that:

Rω
t (zt, zt+dt|z1) = ω

δ(zt+dt, z1)

Z>0
t pt|1(zt|z1)

, (7)

with ω ∈ R+. This adjustment biases the transitions toward the clean data state z1. Lemma 10, in
Appendix B.2, demonstrates that this modification introduces an O(ω) violation of the Kolmogorov
equation. Consequently, choosing a small value of ω is experimentally shown to be highly benefi-
cial, while a larger ωrestricts the distribution to regions of high probability, increasing the distance
between the generated data and the training data, as indicated in Appendix B.4, Figure 8.

Stochasticity The space of valid rate matrices, i.e., those that satisfy the Kolmogorov equa-
tion, is not exhausted by the original formulation of R∗

t (zt, zt+dt|z1). Campbell et al. (2024)
investigate this and show that for any rate matrix RDB

t that satisfies the detailed balance condi-
tion, pt|1(zt|z1)RDB

t (zt, zt+dt|z1) = pt|1(zt+dt|z1)RDB
t (zt+dt, zt|z1), the modified rate matrix

Rη
t = R∗

t + ηRDB
t , with η ∈ R+, also satisfies the Kolmogorov equation. Increasing η introduces

more stochasticity into the trajectory of the denoising process, while different designs of RDB
t en-

code different priors for preferred transitions between states. This mechanism can be interpreted as
a correction mechanism, as it enables transitions back to states that would otherwise be disallowed
according to the rate matrix formulation, as described in Appendix B.5. The effect of η across
different datasets is illustrated in detail in Figure 9, Appendix B.4. To further improve the sampling
performance of DeFoG, we also investigate the different formulations of RDB under the detailed
balance condition. Additional details and discussions are provided in Appendix B.3.

Exact Expectation for Rate Matrix Computation The execution of line 8 in Alg. 2 requires com-
puting E

p
θ,(d)

1|t (z
(d)
1 |z1:D

t)

[
R

(d)
t (z

(d)
t , z

(d)
t+∆t|z

(d)
1)

]
. In practice, Campbell et al. (2024) sample z

(d)
1 ∼

p
θ,(d)
1|t (z

(d)
1 |z1:Dt) to directly approximate the expectation with R

(d)
t (z

(d)
t , z

(d)
t+∆t|z

(d)
1). Although this

procedure converges in expectation to the intended value, it introduces more stochasticity into the
denoising trajectory compared to computing the exact expectation. Given that the cardinalities of
each dimension are relatively small (X and E), we explore the exact computation of the expectation.
This approach is especially useful in settings where precision is prioritized over diversity, ensuring
high confidence in the validity of generated samples, even at the expense of reduced variability.

5 THEORETICAL GUARANTEES

In this section, we present novel theoretical results on general multivariate data, which are naturally
extendable to our graph-based framework, as introduced in Sec. 4.1. Their complete versions and
proofs are available in Appendix D.1. We begin by presenting a theoretical result that further
justifies the design choice for the loss function of DFM, and thus of DeFoG.

Theorem 2 (Simplified - Bounded estimation error of unconditional multivariate rate matrix). Given
t ∈ [0, 1], z1:Dt , z1:Dt+dt ∈ ZD and z1:D1 ∼ p1(z

1:D
1), there exist constants C0, C1 > 0 such that the

rate matrix estimation error can be upper bounded by:

|Rt(z
1:D
t , z1:Dt+dt)−Rθ

t (z
1:D
t , z1:Dt+dt)|2 ≤ C0 + C1Ep1(z1:D

1)

[
pt|1(z1:Dt |z1:D1)

∑D
d=1− log p

θ,(d)
1|t (zd1 |z1:Dt)

]
. (8)

By taking the expectation over t ∼ U [0, 1] and summing over the resulting z1:Dt , minimizing the
derived upper bound with respect to θ shown in the right-hand side (RHS) of Eq. (8) corresponds

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Graph generation performance on the synthetic datasets: Planar, Tree and SBM. We present
the results from five sampling runs, each generating 40 graphs, reported as the mean ± standard
deviation. Full version in Tab. 7.

Planar Tree SBM

Model Class V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓
Train set — 100 1.0 100 1.0 85.9 1.0

GraphRNN (You et al., 2018) Autoregressive 0.0 490.2 0.0 607.0 5.0 14.7
GRAN (Liao et al., 2019) Autoregressive 0.0 2.0 0.0 607.0 25.0 9.7
SPECTRE (Martinkus et al., 2022) GAN 25.0 3.0 — — 52.5 2.2
DiGress (Vignac et al., 2022) Diffusion 77.5 5.1 90.0 1.6 60.0 1.7
EDGE (Chen et al., 2023) Diffusion 0.0 431.4 0.0 850.7 0.0 51.4
BwR (EDP-GNN) (Diamant et al., 2023) Diffusion 0.0 251.9 0.0 11.4 7.5 38.6
BiGG (Dai et al., 2020) Autoregressive 5.0 16.0 75.0 5.2 10.0 11.9
GraphGen (Goyal et al., 2020) Autoregressive 7.5 210.3 95.0 33.2 5.0 48.8
HSpectre (Bergmeister et al., 2023) Diffusion 95.0 2.1 100.0 4.0 75.0 10.5
GruM (Jo et al., 2024) Diffusion 90.0 1.8 — — 85.0 1.1
CatFlow (Eijkelboom et al., 2024) Flow 80.0 — — — 85.0 —
DisCo (Xu et al., 2024) Diffusion 83.6±2.1 — — — 66.2±1.4 —
Cometh (Siraudin et al., 2024) Diffusion 99.5±0.9 — — — 75.0±3.7 —

DeFoG (# steps = 50) Flow 95.0±3.2 3.2±1.1 73.5±9.0 2.5±1.0 86.5±5.3 2.2±0.3

DeFoG (# steps = 1,000) Flow 99.5±1.0 1.6±0.4 96.5±2.6 1.6±0.4 90.0±5.1 4.9±1.3

directly to minimizing the DFM loss in Eq. (5). This further reinforces the pertinence of using such
loss function, beyond its ELBO maximization motivation as proposed by Campbell et al. (2024).

Next, we demonstrate that the distributional deviation caused by the independent-dimensional Euler
step remains bounded, validating its utilization.

Theorem 3 (Simplified - Bounded deviation of the generated distribution). Let p1 be the marginal
distribution at t = 1 of a groundtruth CTMC, {z1:Dt }0≤t≤1, and p̃1 be the marginal distribution at
t = 1 of its independent-dimensional Euler sampling approximation, with a maximum step size ∆t.
Then, the following total variation (TV) bound holds:

∥p1 − p̃1∥TV ≤ UZD + B(ZD)2∆t+ O(∆t), (9)

with U and B representing constant upper bounds for the right-hand side of Eq. (8) and for the
denoising process relative to its noising counterpart, respectively, for any t ∈ [0, 1].

This result parallels Campbell et al. (2022), who established a similar bound for continuous time
discrete diffusion models using τ -leaping for sampling. However, Theorem 3 extends that result to
the DFM framework, employing the independent-dimensional Euler method. Specifically, the first
term of the upper bound results from the estimation error, i.e., using the neural network approxima-
tion p

θ,(d)
1|t (z

(d)
1 |z1:Dt) instead of the true p

(d)
1|t (z

(d)
1 |z1:Dt). As seen from Theorem 2, this term can be

bounded. The remaining terms arise from the time discretization and approximated simulation of
the CTMC, respectively. Since these terms are O(∆t), their impact can be controlled by arbitrarily
reducing the step size, ensuring that the generated distribution remains faithful to the ground truth.

6 EXPERIMENTS

First, we present DeFoG’s performance in generating graphs with diverse topological structures and
molecular datasets with rich prior information. A systematic evaluation of the proposed training
and sampling algorithms is provided later to demonstrate the efficiency gains. Finally, we extend
its efficacy to a real-world application in digital pathology through conditional generation. In each
setting, we highlight the best result, underline the second-best, and report DeFoG’s performance
with a reduced number of steps to emphasize its sampling efficiency.

6.1 SYNTHETIC GRAPH GENERATION

We evaluate DeFoG using the widely adopted Planar, SBM (Martinkus et al., 2022), and Tree
datasets (Bergmeister et al., 2023), along with the associated evaluation methodology. In Tab. 1, we
report the proportion of generated graphs that are valid, unique, and novel (V.U.N.), as well as the
average ratio of distances between graph statistics of the generated and test sets relative to the train
and test sets (Ratio) to assess sample quality.

As shown in Tab. 1, for the Planar dataset, DeFoG achieves the best performance across both
metrics. On the Tree dataset, it is only surpassed by HSpectre, which leverages a local expansion

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Large molecule generation performance. Only iterative denoising-based methods are re-
ported here. Respecive full versions in Tab. 9 (MOSES) and Tab. 10 (Guacamol), Appendix G.2.

MOSES Guacamol

Model Val. ↑ Unique. ↑ Novelty ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑ Val. ↑ V.U. ↑ V.U.N.↑ KL div↑ FCD↑
Training set 100.0 100.0 0.0 100.0 0.01 0.64 99.1 100.0 100.0 0.0 99.9 92.8

DiGress (Vignac et al., 2022) 85.7 100.0 95.0 97.1 1.19 0.52 14.8 85.2 85.2 85.1 92.9 68.0
DisCo (Xu et al., 2024) 88.3 100.0 97.7 95.6 1.44 0.50 15.1 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2024) 90.5 99.9 92.6 99.1 1.27 0.54 16.0 98.9 98.9 97.6 96.7 72.7

DeFoG (# steps = 50) 83.9 99.9 96.9 96.5 1.87 0.50 23.5 91.7 91.7 91.2 92.3 57.9
DeFoG (# steps = 500) 92.8 99.9 92.1 98.9 1.95 0.55 14.4 99.0 99.0 97.9 97.7 73.8

procedure particularly well-suited to hierarchical structures like trees. On the SBM dataset, DeFoG
attains the highest V.U.N. score and an average ratio close to the optimal. Notably, across all
datasets, DeFoG secures second place in 4 out of 6 cases while using only 5% of the sampling steps.

6.2 MOLECULAR GRAPH GENERATION

Molecular design is a prominent real-world application of graph generation. We evaluate DeFoG’s
performance on this task using the QM9 (Wu et al., 2018), MOSES (Polykovskiy et al., 2020),
and Guacamol (Brown et al., 2019) datasets. For QM9, we follow the dataset split and evaluation
metrics from Vignac et al. (2022), presenting the results in Appendix F.1.2, Tab. 8. For the larger
MOSES and Guacamol datasets, we adhere to the training setup and evaluation metrics established
by Polykovskiy et al. (2020) and Brown et al. (2019), respectively, with results in Tabs. 9 and 10.

As illustrated in Tab. 2, DeFoG outperforms existing diffusion models. It achieving state-of the
Validity while preserving high uniqueness on MOSES. On Guacamol, it consistently ranks best,
followed by Cometh, another work utilizing a continuous-time framework. Notably, DeFoG ap-
proaches the performance of existing diffusion models with only 10% of the sampling steps. This
result is further investigated in the following section.

6.3 EFFICIENCY IMPROVEMENT

Sampling Efficiency As highlighted in Tabs. 1, 2 and 8, DeFoG attains similar performance, and
in some cases even outperforms, several diffusion-based methods with just 5% or 10% of their sam-
pling steps. This efficiency is a result of DeFoG’s sampling stage flexibility, whose optimization
is enabled due to the flexible and disentangled training-sampling procedure within DFM. To fur-
ther demonstrate the advantages of sampling optimization, Figure 2a shows the cumulative effect of
each optimization step discussed in Sec. 4.2.2. As illustrated, starting from a vanilla DeFoG model,
which initially performs slightly worse than DiGress, we sequentially incorporate algorithmic im-
provements, with each stage indicated by an increasing number of + symbols. Each addition leads
to a progressive improvement over the previous stage across both the Planar and QM9 datasets un-
der various numbers of steps for sampling, with the final performance significantly surpassing the
vanilla model using only 50 steps on the Planar dataset. While the benefits of each optimization
component may vary across datasets, the sampling optimization pipeline remains highly efficient,
enabling quick hyperparameter exploration without requiring retraining, which is a significantly
more resource-intensive stage (see Appendix F.2). We provide more details on the impact of each
sampling optimization strategy across datasets in Appendix B.4.

Training Efficiency While our primary focus is on optimizing the sampling process given its
computational efficiency, we emphasize that DeFoG’s training optimization strategies can further
push its performance. To illustrate this, Figure 2b shows the convergence curves for the tree and
MOSES datasets. We first observe that, with the same model, leveraging only sampling distortion
can further enhance its performance beyond the vanilla implementation. This suggests that optimiz-
ing the sampling procedure can be particularly useful in settings where computational resources are
limited and the model is undertrained, as detailed in Appendix B.6. Moreover, when an appropriate
sample distortion is known (e.g., polydec distortion is shown to be particularly preferred across
molecular datasets), applying it to both train distortion and sample distortion typically further
improves performance. Although DeFoG achieves faster convergence with both distortions, we
remark that DiGress also shows good convergence speed on the Tree dataset, due to the well-tuned
noise schedule employed for joint training and sampling. The mutual impact of training and sam-
pling distortion is discussed in Appendix C.2. Besides, in the same section, we discuss a heuristic

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 10 50 100 1000
Steps

0.0

0.3

0.6

0.9

V
.U

.N
.

(P
la

n
ar

)

5 10 50 100 500
Steps

60

80

100

V
al

id
it

y
(Q

M
9)

++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

(a) Sampling efficiency improvement.

1 2 3 4 5 6 7
Training time (h)

0.0

0.4

0.8

V
.U

.N
.

(T
re

e)

5 10 15 20 25
Training time (h)

0.6

0.8

V
al

id
it

y
(M

O
S

E
S

)

++ Train Distortion

+ Sample Distortion

Vanilla DeFoG

DiGress

(b) Training efficiency improvement.

Figure 2: DeFoG’s improvements on sampling and training efficiency.

on which distortion to use for each dataset according to DeFoG’s vanilla dynamics. Further details
on how the initial distribution affects training efficiency are provided in Appendix C.1.

6.4 CONDITIONAL GENERATION

Setup Tertiary Lymphoid Structure (TLS) graph datasets have been recently released with graphs
built from digital pathology data (Madeira et al., 2024). These graphs are split into two subsets —
low TLS and high TLS — based on their TLS content, a biologically informed metric reflecting the
cell organization in the graph structure. Previously, models were trained and evaluated separately for
each subset. To demonstrate the flexibility of DeFoG, we conditionally train it across both datasets
simultaneously, using the low/high TLS content as a binary label for each graph. More details on
the used conditional framework in Appendix E.

Table 3: TLS conditional generation results.

TLS Dataset

Model V.U.N. ↑ TLS Val. ↑
Train set 0.0 100

GraphGen (Goyal et al., 2020) 40.2±3.8 25.1±1.2

BiGG (Dai et al., 2020) 0.6±0.4 16.7±1.6

SPECTRE (Martinkus et al., 2022) 7.9±1.3 25.3±0.8

DiGress+ (Madeira et al., 2024) 13.2±3.4 12.6±3.0

ConStruct (Madeira et al., 2024) 99.1±1.1 92.1±1.3

DeFoG (# steps = 50) 44.5±4.2 93.0±5.6

DeFoG (# steps = 1,000) 94.5±1.8 95.8±1.5

We evaluate two main aspects: first, how frequently
the conditionally generated graphs align with the
provided labels (TLS Validity); and, second, the
validity, uniqueness, and novelty of the generated
graphs (V.U.N.). Graphs are considered valid if they
are planar and connected. For comparison, we report
the average results of existing models across the two
subsets, as they were not trained conditionally.

Results From Tab. 3, DeFoG significantly outper-
forms the unconstrained models (all but ConStruct).

Notably, we outperform ConStruct on TLS validity with even 50 steps. For V.U.N., while ConStruct
is hard-constrained to achieve 100% graph planarity, making it strongly biased toward high validity,
DeFoG remarkably approaches these values without relying on such rigid constraints.

7 CONCLUSION

We introduce DeFoG, a flexible discrete flow-matching framework for graph generation. Our
theoretical contributions ensure that the denoising process preserves the graph distribution. Exten-
sive experiments show that DeFoG achieves state-of-the-art results across tasks such as synthetic,
molecular, and TLS graph generation, demonstrating real-world applicability and efficiency
with just 50 sampling steps. Although limited computational resources restricted a thorough
hyperparameter search, leaving room for further optimization, DeFoG’s performance highlights its
potential. While our work focuses on graphs, the flexibility of DeFoG and the proposed theoretical
guarantees suggest that some of our techniques may generalize to other data modalities, opening
interesting avenues for future research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

All authors of this paper have read and adhered to the ICLR Code of Ethics. We explicitly acknowl-
edge our commitment to these ethical guidelines throughout the submission process.

Regarding impact, the primary objective of this paper is to advance graph generation under a more
flexible framework, with applications spanning general graph generation, molecular design, and
digital pathology. The ability to generate graphs with discrete labels can have broad-reaching im-
plications for fields such as drug discovery and diagnostic technologies. While this development
has the potential to bring about both positive and negative societal or ethical impacts, particularly
in areas like biomedical and chemical research, we currently do not foresee any immediate societal
concerns associated with the proposed methodology.

REPRODUCIBILITY STATEMENT

All experiments in this paper are fully reproducible, and the code is provided in the supplementary
material to facilitate this process. We include detailed descriptions of the datasets, experimental
setup and methodologies used in Sec. 6 and appendix F. In particular, the specific hyperparameters
employed in our experiments are documented in this paper in Appendix F.3 and in the corresponding
code repository. This ensures that researchers can easily replicate our results and build upon our
work. The full version and proofs of theoretical results can be found in Appendix D.

REFERENCES

Rohan Asthana, Joschua Conrad, Youssef Dawoud, Maurits Ortmanns, and Vasileios Belagiannis.
Multi-conditioned Graph Diffusion for Neural Architecture Search. Transactions on Machine
Learning Research, 2024. URL http://arxiv.org/abs/2403.06020v2. 1, 18

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. In Advances in Neural Information
Processing Systems (NeurIPS), 2021. URL http://arxiv.org/abs/2107.03006v3. 2,
6, 19

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
and Scalable Graph Generation through Iterative Local Expansion. In International Conference
on Learning Representations (ICLR), 2023. 8, 18, 46, 52

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. GuacaMol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019. URL http://arxiv.org/abs/1811.09621v2. 9, 47, 53

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. In Advances in
Neural Information Processing Systems (NeurIPS), 2022. URL http://arxiv.org/abs/
2205.14987v2. 2, 8, 19, 33, 36, 38, 39

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Pro-
tein Co-Design. In International Conference on Machine Learning (ICML), 2024. URL
http://arxiv.org/abs/2402.04997v2. 1, 3, 4, 6, 7, 8, 19, 21, 23, 24, 25, 30, 33,
36, 55

Yu Cao, Jingrun Chen, Yixin Luo, and Xiang Zhou. Exploring the optimal choice for generative
processes in diffusion models: Ordinary vs stochastic differential equations. In Advances in
Neural Information Processing Systems (NeurIPS), 2023. URL http://arxiv.org/abs/
2306.02063v2. 24

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. In International Conference on Machine Learning (ICML), 2023.
URL http://arxiv.org/abs/2305.04111v4. 8, 18, 52

11

http://arxiv.org/abs/2403.06020v2
http://arxiv.org/abs/2107.03006v3
http://arxiv.org/abs/1811.09621v2
http://arxiv.org/abs/2205.14987v2
http://arxiv.org/abs/2205.14987v2
http://arxiv.org/abs/2402.04997v2
http://arxiv.org/abs/2306.02063v2
http://arxiv.org/abs/2306.02063v2
http://arxiv.org/abs/2305.04111v4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating con-
ditional diffusion models for inverse problems through stochastic contraction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12413–12422, 2022.
19

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative mod-
eling for sparse graphs. In International Conference on Machine Learning (ICML), 2020. URL
http://arxiv.org/abs/2006.15502v1. 8, 10, 18, 52

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs. arXiv, 2018. URL http://arxiv.org/abs/1805.11973v2. 2

Nathaniel Lee Diamant, Alex M Tseng, Kangway V Chuang, Tommaso Biancalani, and Gabriele
Scalia. Improving graph generation by restricting graph bandwidth. In International Conference
on Machine Learning (ICML), 2023. URL http://arxiv.org/abs/2301.10857v2. 8,
18, 52

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped langevin diffusion. arXiv preprint arXiv:2112.07068, 2021. 19

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
van de Meent. Variational flow matching for graph generation. arXiv preprint arXiv:2406.04843,
2024. 8, 18, 52

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In International Conference on Machine Learning (ICML),
2024. 1, 3, 6, 20

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete Flow Matching. arXiv, 2024. URL http://arxiv.org/abs/
2407.15595v1. 1, 3

Daniel T Gillespie. A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. Journal of computational physics, 22(4):403–434, 1976. 36

Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The journal of
physical chemistry, 81(25):2340–2361, 1977. 36

Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems.
The Journal of chemical physics, 115(4):1716–1733, 2001. 36

Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: A scalable approach to domain-
agnostic labeled graph generation. In Proceedings of The Web Conference 2020, 2020. URL
http://arxiv.org/abs/2001.08184v2. 8, 10, 18, 52

Alex Graves and Alex Graves. Long short-term memory. Supervised sequence labelling with recur-
rent neural networks, pp. 37–45, 2012. 53

Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Diffu-
sion Models for Graphs Benefit From Discrete State Spaces. In Advances in Neural Information
Processing Systems (NeurIPS). 2, 18, 19

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021. 45

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems (NeurIPS), 2020. URL http://arxiv.org/abs/
2006.11239v2. 2, 7

Ilia Igashov, Arne Schneuing, Marwin Segler, Michael M Bronstein, and Bruno Correia. Retro-
Bridge: Modeling Retrosynthesis with Markov Bridges. In International Conference on Learning
Representations (ICLR), 2024. URL http://arxiv.org/abs/2308.16212v2. 1, 18

12

http://arxiv.org/abs/2006.15502v1
http://arxiv.org/abs/1805.11973v2
http://arxiv.org/abs/2301.10857v2
http://arxiv.org/abs/2407.15595v1
http://arxiv.org/abs/2407.15595v1
http://arxiv.org/abs/2001.08184v2
http://arxiv.org/abs/2006.11239v2
http://arxiv.org/abs/2006.11239v2
http://arxiv.org/abs/2308.16212v2

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ross Irwin, Alessandro Tibo, Jon-Paul Janet, and Simon Olsson. Efficient 3D Molecular Generation
with Flow Matching and Scale Optimal Transport. arXiv, 2024. URL http://arxiv.org/
abs/2406.07266v2. 1, 18

Guillaume Jaume, Pushpak Pati, Behzad Bozorgtabar, Antonio Foncubierta, Anna Maria Anniciello,
Florinda Feroce, Tilman Rau, Jean-Philippe Thiran, Maria Gabrani, and Orcun Goksel. Quanti-
fying explainers of graph neural networks in computational pathology. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021. URL http://arxiv.org/abs/
2011.12646v2. 47

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International Conference on Machine Learning (ICML), 2018.
URL http://arxiv.org/abs/1802.04364v4. 53

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. In International Conference on Machine Learning
(ICML), 2022. URL http://arxiv.org/abs/2202.02514v3. 1, 2, 18, 47, 53

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. In
International Conference on Machine Learning (ICML), 2024. 2, 8, 18, 52, 53

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,
2021. 19

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems (NeurIPS),
2022. URL http://arxiv.org/abs/2206.00364v2. 19, 24

Diederik P Kingma. Auto-encoding variational bayes. arXiv, 2013. 53

Thomas N Kipf and Max Welling. Variational Graph Auto-Encoders. stat, 1050:21, 2016. URL
http://arxiv.org/abs/1611.07308v1. 2

Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya Prakash, and Chao Zhang.
Autoregressive diffusion model for graph generation. In International Conference on Machine
Learning (ICML), 2023. URL http://arxiv.org/abs/2307.08849v1. 2

Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta mathematicae,
15(1):271–283, 1930. 32

Youngchun Kwon, Dongseon Lee, Youn-Suk Choi, Kyoham Shin, and Seokho Kang. Compressed
graph representation for scalable molecular graph generation. Journal of Cheminformatics, 12:
1–8, 2020. 53

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention net-
works. In Advances in Neural Information Processing Systems (NeurIPS), 2019. URL http:
//arxiv.org/abs/1910.00760v3. 2, 8, 18, 52

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow Match-
ing for Generative Modeling. In International Conference on Learning Representations (ICLR).
1, 3, 7

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph normalizing flows. In
Advances in Neural Information Processing Systems (NeurIPS), 2019. URL http://arxiv.
org/abs/1905.13177v1. 2

Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph varia-
tional autoencoders for molecule design. In Advances in Neural Information Processing Systems
(NeurIPS), 2018. URL http://arxiv.org/abs/1805.09076v2. 2

13

http://arxiv.org/abs/2406.07266v2
http://arxiv.org/abs/2406.07266v2
http://arxiv.org/abs/2011.12646v2
http://arxiv.org/abs/2011.12646v2
http://arxiv.org/abs/1802.04364v4
http://arxiv.org/abs/2202.02514v3
http://arxiv.org/abs/2206.00364v2
http://arxiv.org/abs/1611.07308v1
http://arxiv.org/abs/2307.08849v1
http://arxiv.org/abs/1910.00760v3
http://arxiv.org/abs/1910.00760v3
http://arxiv.org/abs/1905.13177v1
http://arxiv.org/abs/1905.13177v1
http://arxiv.org/abs/1805.09076v2

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow Straight and Fast: Learning to Generate and
Transfer Data with Rectified Flow. In International Conference on Learning Representations
(ICLR), 2023. URL http://arxiv.org/abs/2209.03003v1. 1, 3

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates,
Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing.
In International Conference on Machine Learning (ICML), 2023. URL http://arxiv.org/
abs/2305.17589v1. 5, 42

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv, 2024. URL http://arxiv.org/abs/2401.08740v2. 3

Manuel Madeira, Dorina Thanou, and Pascal Frossard. Tertiary Lymphoid Structures Generation
Through Graph-Based Diffusion. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, 2023. URL http://arxiv.org/abs/2310.06661v1.
47

Manuel Madeira, Clement Vignac, Dorina Thanou, and Pascal Frossard. Generative Modelling
of Structurally Constrained Graphs. arXiv, 2024. URL http://arxiv.org/abs/2406.
17341v1. 10, 47

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invert-
ible flow model for generating molecular graphs. arXiv, 2019. URL http://arxiv.org/
abs/1905.11600v1. 53

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph generators. In Interna-
tional Conference on Machine Learning (ICML), 2022. 8, 10, 18, 46, 52, 53

David Mendez, Anna Gaulton, A Patrı́cia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
Marı́a Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał Nowotka, et al. ChEMBL:
towards direct deposition of bioassay data. Nucleic acids research, 47(D1):D930–D940, 2019.
47

Rocı́o Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2(2):025023, 2021. 2, 53

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence (AAAI), number 01, 2019. URL http://arxiv.
org/abs/1810.02244v5. 2, 42

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking Guidance
for Discrete State-Space Diffusion and Flow Models. arXiv, 2024. URL http://arxiv.
org/abs/2406.01572v2. 45

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS), 2020. URL http://arxiv.org/
abs/2003.00638v1. 1, 2, 18

Pushpak Pati, Guillaume Jaume, Antonio Foncubierta-Rodriguez, Florinda Feroce, Anna Maria An-
niciello, Giosue Scognamiglio, Nadia Brancati, Maryse Fiche, Estelle Dubruc, Daniel Riccio,
et al. Hierarchical graph representations in digital pathology. Medical image analysis, 75:102264,
2022. URL http://arxiv.org/abs/2102.11057v2. 47

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, et al. Molecular sets (MOSES): a benchmarking platform for molecular generation
models. Frontiers in pharmacology, 11:565644, 2020. 9, 46, 47

14

http://arxiv.org/abs/2209.03003v1
http://arxiv.org/abs/2305.17589v1
http://arxiv.org/abs/2305.17589v1
http://arxiv.org/abs/2401.08740v2
http://arxiv.org/abs/2310.06661v1
http://arxiv.org/abs/2406.17341v1
http://arxiv.org/abs/2406.17341v1
http://arxiv.org/abs/1905.11600v1
http://arxiv.org/abs/1905.11600v1
http://arxiv.org/abs/1810.02244v5
http://arxiv.org/abs/1810.02244v5
http://arxiv.org/abs/2406.01572v2
http://arxiv.org/abs/2406.01572v2
http://arxiv.org/abs/2003.00638v1
http://arxiv.org/abs/2003.00638v1
http://arxiv.org/abs/2102.11057v2

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yiming Qin, Clement Vignac, and Pascal Frossard. Sparse Training of Discrete Diffusion Models
for Graph Generation. arXiv, 2023. URL http://arxiv.org/abs/2311.02142v2. 6

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration
of 166 billion organic small molecules in the chemical universe database GDB-17. Journal of
chemical information and modeling, 52(11):2864–2875, 2012. 46

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022. 19

Guillaume Sanchez, Alexander Spangher, Honglu Fan, Elad Levi, and Stella Biderman. Stay on
topic with classifier-free guidance. In International Conference on Machine Learning (ICML),
2024. URL https://arxiv.org/abs/2306.17806. 45

Antoine Siraudin, Fragkiskos D Malliaros, and Christopher Morris. Cometh: A continuous-time
discrete-state graph diffusion model. arXiv, 2024. URL http://arxiv.org/abs/2406.
06449v1. 1, 2, 5, 6, 8, 9, 18, 19, 30, 42, 52, 53, 54

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing (ICML), 2015. URL http://arxiv.org/abs/1503.03585v8. 2

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In Inter-
national Conference on Learning Representations (ICLR), 2020. URL http://arxiv.org/
abs/2011.13456v2. 2, 19

Teague Sterling and John J Irwin. ZINC 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015. 46, 47

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022. 19

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial op-
timization. In Advances in Neural Information Processing Systems (NeurIPS), 2024. URL
http://arxiv.org/abs/2302.08224v2. 1, 2, 18

Alex M Tseng, Nathaniel Lee Diamant, Tommaso Biancalani, and Gabriele Scalia. Complex Pref-
erences for Different Convergent Priors in Discrete Graph Diffusion. In International Conference
on Machine Learning (ICML), 2023. URL http://arxiv.org/abs/2306.02957v2. 30

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal
Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv, 2022. URL
http://arxiv.org/abs/2209.14734v4. 1, 2, 5, 6, 7, 8, 9, 18, 19, 27, 30, 43, 47,
52, 53, 54

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018. URL http://arxiv.org/abs/1703.
00564v3. 9, 46

Zhenqin Wu, Alexandro E Trevino, Eric Wu, Kyle Swanson, Honesty J Kim, H Blaize D’Angio,
Ryan Preska, Gregory W Charville, Piero D Dalerba, Ann Marie Egloff, et al. Graph deep learn-
ing for the characterization of tumour microenvironments from spatial protein profiles in tissue
specimens. Nature Biomedical Engineering, 6(12):1435–1448, 2022. 47

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neu-
ral Networks? In International Conference on Learning Representations (ICLR), 2019. URL
https://openreview.net/forum?id=ryGs6iA5Km. 5, 42

Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
sampling for improving generative processes. In Advances in Neural Information Processing
Systems (NeurIPS), 2023. URL http://arxiv.org/abs/2306.14878v2. 24

15

http://arxiv.org/abs/2311.02142v2
https://arxiv.org/abs/2306.17806
http://arxiv.org/abs/2406.06449v1
http://arxiv.org/abs/2406.06449v1
http://arxiv.org/abs/1503.03585v8
http://arxiv.org/abs/2011.13456v2
http://arxiv.org/abs/2011.13456v2
http://arxiv.org/abs/2302.08224v2
http://arxiv.org/abs/2306.02957v2
http://arxiv.org/abs/2209.14734v4
http://arxiv.org/abs/1703.00564v3
http://arxiv.org/abs/1703.00564v3
https://openreview.net/forum?id=ryGs6iA5Km
http://arxiv.org/abs/2306.14878v2

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng,
Mahashweta Das, and Hanghang Tong. Discrete-state Continuous-time Diffusion for Graph Gen-
eration. arXiv, 2024. URL http://arxiv.org/abs/2405.11416v1. 2, 6, 8, 9, 18, 19,
30, 34, 52, 53, 54

Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Liò, and Yuguang Wang. Graph denoising diffusion for
inverse protein folding. In Advances in Neural Information Processing Systems (NeurIPS), 2024.
2

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International Conference on Machine
Learning (ICML), 2018. URL http://arxiv.org/abs/1802.08773v3. 2, 8, 18, 52

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
arXiv preprint arXiv:2204.13902, 2022. 19

16

http://arxiv.org/abs/2405.11416v1
http://arxiv.org/abs/1802.08773v3

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Contextualizing Related Research 18

A.1 Overview of Compared Methods . 18
A.2 DeFoG and Graph Diffusion Models . 18

B Sample Optimization 20
B.1 Time Distortion Functions . 20
B.2 Target Guidance . 20
B.3 Detailed Balance, Prior Incorporation, and Stochasticity 23
B.4 Hyperparameter Optimization Pipeline . 24
B.5 Understanding the Sampling Dynamics of R∗

t 25
B.6 Performance Improvement for Undertrained Models 27

C Train Optimization 30
C.1 Initial Distributions . 30
C.2 Interaction between Sample and Train Distortions 30

D Theoretical Results 33
D.1 Domain Agnostic Theoretical Results . 33
D.2 Graph Specific Theoretical Results . 42

E Conditional Generation 45

F Experimental Details 46
F.1 Dataset Details . 46
F.2 Resources . 47
F.3 Hyperparameter Tuning . 47

G Additional Results 52
G.1 Synthetic Graph Generation . 52
G.2 Molecular Graph Generation . 53
G.3 Impact of Additional Features . 54
G.4 Computation Cost for Exact Expectation of Rate Matrix 55

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A CONTEXTUALIZING RELATED RESEARCH

In this section, we further contextualize DeFoG within the scope of related work. We begin by
introducing the methods used for comparison with DeFoG in Appendix A.1. Subsequently, we
outline the key distinctions between DeFoG and existing diffusion-based graph generative models
in Appendix A.2.

A.1 OVERVIEW OF COMPARED METHODS

In Sec. 6, we evaluate DeFoG against a diverse set of graph generative models, which we introduce
below:

• GraphRNN (You et al., 2018) and GRAN (Liao et al., 2019), two pioneering autoregressive
models for graph generation;

• SPECTRE (Martinkus et al., 2022), a spectrally conditioned GAN-based model for graph
generation;

• DiGress (Vignac et al., 2022), the first discrete diffusion model for graph generation;
• EDGE (Chen et al., 2023), a discrete diffusion model leveraging graph sparsity and degree

guidance for scalability.
• BwR (Diamant et al., 2023), which focuses on efficient graph representations via bandwidth

restriction schemes that are compatible with various graph generation models. We report
its results in combination with EDP-GNN (Niu et al., 2020), which was the first graph
diffusion model;

• BiGG (Dai et al., 2020), an autoregressive model that exploits graph sparsity and training
parallelization to scale to larger graphs;

• GraphGen (Goyal et al., 2020), a scalable autoregressive approach utilizing graph can-
onization with minimum DFS codes, notable for being domain-agnostic and inherently
supporting attributed graphs;

• HSpectre (Bergmeister et al., 2023), a hierarchical graph generation method that utilizes a
score-based formulation for iterative local expansion steps;

• DisCo (Xu et al., 2024) and Cometh (Siraudin et al., 2024), two continuous-time discrete
diffusion models for graph generation;

• GruM (Jo et al., 2024), which employs a diffusion mixture to explicitly learn the final graph
topology and structure;

• CatFlow (Eijkelboom et al., 2024), which results from the instantiation of variational flow
matching to graph generation.

A.2 DEFOG AND GRAPH DIFFUSION MODELS

In this section, we contextualize DeFoG in relation to existing graph diffusion models.

A.2.1 FROM CONTINUOUS TO DISCRETE STATE-SPACES

Early diffusion-based graph generative models extended continuous diffusion and score-based
methods from image generation to graphs by relaxing adjacency matrices into continuous state-
spaces (Niu et al., 2020; Jo et al., 2022). However, this approach overlooks the inherent discreteness
of graph-structured data, resulting in topologically uninformed noising processes. For instance,
these methods often destroy graph sparsity and generate noisy complete graphs (Vignac et al., 2022;
Xu et al., 2024; Siraudin et al., 2024), making it more challenging for denoising neural networks to
recover meaningful structural properties from the noisy inputs. Some recent formulations operating
on continuous state-spaces have tried to overcome these limitations: GruM (Jo et al., 2024) intro-
duces an endpoint-conditioned diffusion mixture strategy to enhance accuracy by explicitly learning
final graph structures, while CatFlow (Eijkelboom et al., 2024) proposes variational flow matching
to handle categorical data more effectively.

Alternatively, discrete diffusion models have emerged as a more natural solution, directly preserving
the discrete nature of graph data (Vignac et al., 2022; Haefeli et al.). These models have demon-
strated state-of-the-art performance across a variety of applications, including neural architecture
search (Asthana et al., 2024), combinatorial optimization (Sun & Yang, 2024), molecular genera-
tion (Irwin et al., 2024), and reaction pathway design (Igashov et al., 2024).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

DeFoG aligns with this second family of methods, modeling nodes and edges in discrete state-spaces
to leverage the structural properties of graph data effectively.

A.2.2 FROM DISCRETE TO CONTINUOUS TIME

The initial discrete-time diffusion frameworks for graph generation (Vignac et al., 2022; Haefeli
et al.) were built upon Discrete Denoising Diffusion Probabilistic Models (D3PMs) (Austin et al.,
2021), which operate with a fixed partitioning of time. This discretization constrains the model to
denoise at specific time points and ties the sampling process to the same fixed time steps used during
training, leading to a rigid coupling between the training and sampling stages. Such inflexibility in
time discretization can limit the quality of generated graphs.

In contrast, continuous-time discrete diffusion frameworks (Campbell et al., 2022; Sun et al., 2022)
overcome these limitations by enabling the model to denoise at arbitrary time points within a contin-
uous interval (typically between 0 and 1). This flexibility allows the time discretization strategy for
sampling to be selected post-training, enabling the use of advanced sampling techniques (Jolicoeur-
Martineau et al., 2021; Zhang & Chen, 2022; Salimans & Ho, 2022; Chung et al., 2022; Song et al.,
2020; Dockhorn et al., 2021) to improve generation performance. These continuous-time frame-
works have been successfully extended to graph generative models (Xu et al., 2024; Siraudin et al.,
2024), achieving notable improvements.

DeFoG follows a continuous-time formulation, leveraging its flexibility in sampling to achieve en-
hanced performance while maintaining the strengths of discrete state-space modeling.

A.2.3 FROM CONTINUOUS-TIME DISCRETE DIFFUSION TO DISCRETE FLOW MATCHING

While both continuous-time discrete diffusion and discrete flow matching (DFM) share the CTMC
formulation for the denoising process, they differ fundamentally in the formulation of the noising
process. Continuous-time discrete diffusion-based graph generative models (Xu et al., 2024; Sir-
audin et al., 2024) define the noising process as a CTMC, akin to the denoising process. However,
this approach imposes two significant limitations:

1. Incomplete Coupling of Training and Sampling: The rate matrices of the noising and
denoising processes are explicitly interrelated, and the noising rate matrix must be fixed
during training. This restricts the sampling stage, preventing full decoupling of training
and sampling.

2. Limited Design Space: The noising process must be derived analytically, which is not
straightforward and is only feasible for rate matrices suitable for matrix exponentiation.
Additionally, the denoising rate matrix is implicitly defined during training, constraining
the flexibility of the denoising trajectory at sampling time (e.g., fixing the level of stochas-
ticity).

In contrast, DeFoG allows for direct prescription of the noising process, pt|1, without these con-
straints. The rate matrix for the denoising process is selected exclusively at sampling time, fully
decoupling the training and sampling stages. This flexibility enables performance optimization dur-
ing sampling, such as tuning the stochasticity of the denoising trajectory via RDB

t or adjusting target
guidance magnitude with Rω

t .

The benefits of this decoupled framework are evident in Figures 2, 6 and 7, which demonstrate that
the vanilla DeFoG configuration alone does not outperform existing diffusion-based graph genera-
tive models. However, our extensive sampling optimization pipeline capitalizes on DeFoG’s flexible
design space to achieve state-of-the-art results. These observations align with findings in iterative
refinement methods across other data modalities. For instance, Karras et al. (2022) elaborate on
the benefits of stochasticity adjustment in denoising trajectories within diffusion models for image
generation.

For a comprehensive discussion of the differences between continuous-time discrete diffusion and
DFM frameworks, see Appendix H of (Campbell et al., 2024).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B SAMPLE OPTIMIZATION

In this section, we explore the proposed sampling optimization in more detail. We start by analysing
the different time distortion functions in Appendix B.1. Next, in Appendix B.2, we prove that the
proposed target guidance mechanism actually satisfies the Kolmogorov equation, thus yielding valid
rate matrices and, in Appendix B.3, we provide more details about the detailed balance equation
and how it widens the design space of rate matrices. In Appendix B.4, we also describe the adopted
sampling optimization pipeline. Finally, in Appendix B.5, we provide more details to better clarify
the dynamics of the sampling process.

B.1 TIME DISTORTION FUNCTIONS

In Sec. 4, we explore the utilization of different distortion functions, i.e., functions that are used
to transform time. The key motivation for employing such functions arises from prior work on
flow matching in image generation, where skewing the time distribution during training has been
shown to significantly enhance empirical performance (Esser et al., 2024). In practical terms, this
implies that the model is more frequently exposed to specific time intervals. Mathematically, this
transformation corresponds to introducing a time-dependent re-weighting factor in the loss function,
biasing the model to achieve better performance in particular time ranges.

In our case, we apply time distortions to the probability density function (PDF) by introducing
a function f that transforms the original uniformly sampled time t, such that t′ = f(t) for t ∈
[0, 1]. These time distortion functions must satisfy certain conditions: they must be monotonic, with
f(0) = 0 and f(1) = 1. Although the space of functions that satisfy these criteria is infinite, we
focus on five distinct functions that yield fundamentally different profiles for the PDF of t′. Our goal
is to gain intuition about which time ranges are most critical for graph generation and not to explore
that function space exhaustively. Specifically:

• Polyinc: f(t) = t2, yielding a PDF that decreases monotonically with t′;
• Cos: f(t) = 1−cosπt

2 , creating a PDF with high density near the boundaries t′ = 0 and
t′ = 1, and low for intermediate t′;

• Identity: f(t) = t, resulting in a uniform PDF for t′ ∈ [0, 1];
• Revcos: f(t) = 2t − 1−cosπt

2 , leading to high PDF density for intermediate t′ and low
density at the extremes t′ = 0 and t′ = 1;

• Polydec: f(t) = 2t− t2, where the PDF increases monotonically with t′.

The PDF resulting from applying a monotonic function f to a random variable t is given by:

ϕt′(t
′) = ϕt(t)

∣∣∣∣
d

dt′
f−1(t′)

∣∣∣∣ ,

where ϕt(t) and ϕt′(t
′) denote the PDFs of t and t′, respectively. In our case, ϕt(t) = 1 for t ∈ [0, 1].

The distortion functions and their corresponding PDFs are illustrated in Figure 3.

One of the strategies the proposed in sampling optimization procedure is the use of variable step
sizes throughout the denoising process. This is achieved by mapping evenly spaced time points
(DeFoG’s vanilla version) through a transformation that follows the same constraints as the training
time distortions discussed earlier. We employ the same set of time distortion functions, again not to
exhaustively explore the space of applicable functions, but to gain insight into how varying step sizes
affect graph generation. The expected step sizes for each distortion can be directly inferred from
Figure 3. For instance, the polydec function leads to progressively smaller time steps, suggesting
more refined graph edits in the denoising process as t′ approaches 1.

Note that even though we apply the same time distortions for both training and sample stages, in
each setting they have different objectives: in training, the time distortions skew the PDFs from
where t′ is sampled, while in sampling they vary the step sizes.

B.2 TARGET GUIDANCE

In this section, we demonstrate that the proposed target guidance design for the rate matrices violates
the Kolmogorov equation with an error that is linear in ω. This result indicates that a small guidance

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

F
u

n
ct

io
n

va
lu

e

Distortions

Polyinc

Cos

Identity

Revcos

Polydec

(a)

0.0 0.2 0.4 0.6 0.8 1.0
f(t)

0

1

2

3

4

5

P
D

F
s

PDFs for Different Distortions

Polyinc

Cos

Identity

Revcos

Polydec

(b)

Figure 3: (a) The five distortion functions explored. (b) The resulting PDFs for the five distortion
functions. For polydec, identity, and polyinc, they were computed in closed-form. For revcos and
cos, they were simulated with 104 repetitions.

factor effectively helps fit the distribution, whereas a larger guidance factor, as shown in Figure 8,
while enhancing topological properties such as planarity, increases the distance between generated
and training data on synthetic datasets according to the metrics of average ratio. Similarly, for
molecular datasets, this also leads to an increase in validity and a decrease in novelty by forcing the
generated data to closely resemble the training data.

Lemma 10 (Rate matrices for target guidance). Let Rω
t (zt, zt+dt|z1) be defined as:

Rω
t (zt, zt+dt|z1) = ω

δ(z1, zt+dt)

Z>0
t pt|1(zt|z1)

. (10)

Then, the univariate rate matrix RTG
t (zt, zt+dt|z1) = R∗

t (zt, zt+dt|z1) +Rω
t (zt, zt+dt|z1) violates

the Kolmogorov equation with an error of − ω
Z>0

t

when zt ̸= z1, and an error of ωZ>0
t −1

Z>0
t

when
zt = z1.

Proof. In the remaining of the proof, we consider the case zt ̸= z1. We consider the same assump-
tions as Campbell et al. (2024):

• pt|1(zt|z1) = 0⇒ R∗
t (zt, zt+dt|z1) = 0;

• pt|1(zt|z1) = 0⇒ ∂tpt|1(zt|z1) = 0 (“dead states cannot ressurect”).

The z1-conditioned Kolmogorov equation is given by:

∂tpt|1(zt|z1) =
∑

zt+dt ̸=zt

Rt(zt+dt, zt|z1)pt+dt|1(zt+dt|z1) −
∑

zt+dt ̸=zt

Rt(zt, zt+dt|z1)pt|1(zt|z1)

(11)

We denote by RHS and LHS the right-hand side and left-hand side, respectively, of Eq. (11). For
the case in which pt|1(zt|z1) > 0, we have:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

RHS =
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(R∗
t (zt+dt, zt|z1) +Rω

t (zt+dt, zt|z1))pt+dt|1(zt+dt|z1)

−
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(R∗
t (zt, zt+dt|z1) +Rω

t (zt, zt+dt|z1))pt|1(zt|z1)

=
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

R∗
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−R∗

t (zt, zt+dt|z1)pt|1(zt|z1)

+
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

Rω
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−Rω

t (zt, zt+dt|z1)pt|1(zt|z1),

For the first sum, we have:
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

R∗
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−R∗

t (zt, zt+dt|z1)pt|1(zt|z1)

= ∂tpt|1(zt|z1).

since the z1-conditioned R∗
t generates pt|1.

For the second sum, we have:
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

Rω
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−Rω

t (zt, zt+dt|z1)pt|1(zt|z1) =

=
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

ω
δ(z1, zt)

Z>0
t pt+dt|1(zt+dt|z1)

pt+dt|1(zt+dt|z1)

−
∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

ω
δ(z1, zt+dt)

Z>0
t pt|1(zt|z1)

pt|1(zt|z1)

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(δ(z1, zt)− δ(z1, zt+dt))

If z1 ̸= zt, we have:

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

Rω
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−Rω

t (zt, zt+dt|z1)pt|1(zt|z1) =

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(δ(z1, zt)− δ(z1, zt+dt))

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(0− δ(z1, zt+dt))

= − ω

Z>0
t

,

Here, we apply the property that zt ̸= z1, which indicates that δ(z1, zt) = 0 and that there ex-
ists one and only one zt+dt ∈ {zt+dt, zt+dt ̸= zt} such that zt+dt = z1, which verifies that
pt+dt|1(zt+dt|z1) > 0 (a condition satisfied by any initial distribution proposed in this work when t
strictly positive) the sum simplifies to − ω

Z>0
t

.

If z1 = zt, we have:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

Rω
t (zt+dt, zt|z1)pt+dt|1(zt+dt|z1)−Rω

t (zt, zt+dt|z1)pt(zt|z1) =

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(δ(z1, zt)− δ(z1, zt+dt))

=
ω

Z>0
t

∑

zt+dt ̸=zt,pt+dt|1(zt+dt|z1)>0

(1− 0)

= ω
Z>0
t − 1

Z>0
t

,

Intuition The aim of target guidance is to reinforce the transition rate to the state predicted by
the probabilistic model, z1. The ω term is an hyperparameter used to control the target guidance
magnitude.

B.3 DETAILED BALANCE, PRIOR INCORPORATION, AND STOCHASTICITY

Campbell et al. (2024) show that although their z1-conditional formulation of R∗
t generates pt|1, it

does not span the full space of valid rate matrices — those that satisfy the conditional Kolmogorov
equation (Eq. (11)). They derive sufficient conditions for identifying other valid rate matrices. No-
tably, they demonstrate that matrices of the form

Rη
t := R∗

t + ηRDB
t ,

with η ∈ R≥0 and RDB
t any matrix that verifies the detailed balance condition:

pt|1(zt|z1)RDB
t (zt, zt+dt|z1) = pt|1(zt+dt|z1)RDB

t (zt+dt, zt|z1), (12)

still satisfy the Kolmogorov equation. The detailed balance condition ensures that the outflow,
pt|1(zt|z1)RDB

t (zt, zt+dt|z1), and inflow, pt|1(zt+dt|z1)RDB
t (zt+dt, zt|z1), of probability mass to any

given state are perfectly balanced. Under these conditions, this additive component’s contribution to
the Kolmogorov equation becomes null (similar to the target guidance, as shown in the proof of of
Lemma 10, in Appendix B.2).

A natural question is how to choose a suitable design for RDB
t from the infinite space of detailed

balance rate matrices. As depicted in Figure 4, this flexibility can be leveraged to incorporate pri-
ors into the denoising model by encouraging specific transitions between states. By adjusting the
sparsity of the matrix entries, additional transitions beyond those prescribed by R∗

t can be intro-
duced. In the general case, transitions between all states are possible; in the column case, a specific
state centralizes all potential transitions; and in the single-entry case, only transitions between two
states are permitted. These examples merely illustrate some possibilities and do not exhaust the
range of potential RDB

t designs. The matrix entries can be structured by considering the following
reorganization of terms of Eq. (12):

RDB
t (zt+dt, zt|z1) =

pt|1(zt|z1)
pt|1(zt+dt|z1)

RDB
t (zt, zt+dt|z1).

Therefore, a straightforward approach is to assign the lower triangular entries of the
rate matrix as RDB

t (zt, zt+dt|z1) = pt|1(zt+dt|z1), and the upper triangular entries as
RDB

t (zt+dt, zt|z1) = pt|1(zt|z1). The diagonal entries are computed last to ensure that Rt(zt, zt) =
−∑

zt+dt ̸=zt
Rt(zt, zt+dt).

We incorporated various types of priors into RDB by preserving specific rows or entries in the matrix.
Specifically, we experimented with retaining the column corresponding to the state with the highest
marginal distribution (Column - Max Marginal), the column corresponding to the predicted x1 states
(Column - x1), and the columns corresponding to the state with the highest probability in pt|1.
Additionally, we tested the approach of retaining only RDB(xt, i) where i is the state with the highest

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

− p1 p2
p0 − p2
p0 p1 −
General case

− 0 0
0 − 0
0 0 −

No stochasticity

− p1 0
p0 − p2
0 p1 −
Column case

− 0.7 0.1
0.2 − 0.1
0.2 0.7 −

− 0.7 0
0.2 − 0.1
0 0.7 −

− 0 0
0 − p2
0 p1 −

Single entry case

− 0 0
0 − 0.1
0 0.7 −

− 0 0
0 − 0
0 0 −

Full matrix All 0Preserve one column/row Preserve two entries sparsityRDB

Space of exploration

Figure 4: Examples of different rate matrices from the space of 3×3 matrices that satisfy the detailed
balance condition. Here pi denotes pt|1(i|z1).

0.50

0.75

1.00

V
.U

.N
.

0.0 5.0 10.0 25.0 50.0 100.0 200.0
η

0.00

2.00

4.00

R
at

io

RDB Design - Planar

general

Column - Max Marginal

Column - x1

Column - pt|1

Entry - Max Marginal

(a) Planar dataset.

0.98

0.98

0.99

V
al

id
it

y

0.0 5.0 10.0 25.0 50.0 100.0 200.0
η

0.75

0.76

0.77

N
ov

el
ty

RDB Design - QM9

general

Column - Max Marginal

Column - x1

Column - pt|1

Entry - Max Marginal

(b) QM9 dataset.

Figure 5: Impact of RDB with different level of sparsity.

marginal distribution (Entry - Max Marginal). For instance, under the absorbing initial distribution,
this state is the one to which all data is absorbed at t = 0. We note that there remains significant
space for exploration by adjusting the weights assigned to different positions within RDB, as the only
condition that must be satisfied is that symmetrical positions adhere to a specific proportionality.
However, in practice, none of the specific designs illustrated in Figure 4 showed a clear advantage
over others in the settings we evaluated. As a result, we chose the general case for our experiments,
as it offers the most flexibility by incorporating the least prior knowledge.

Orthogonal to the design of RDB
t , we must also consider the hyperparameter η, which regulates the

magnitude of stochasticity in the denoising process. Specifically, setting η = 0 (thereby relying
solely on R∗

t) minimizes the expected number of jumps throughout the denoising trajectory under
certain conditions, as shown by Campbell et al. (2024) in Proposition 3.4. However, in continuous
diffusion models, some level of stochasticity has been demonstrated to enhance performance (Karras
et al., 2022; Cao et al., 2023; Xu et al., 2023). Conversely, excessive stochasticity can negatively
impact performance. Campbell et al. (2024) propose that there exists an optimal level of stochasticity
that strikes a balance between exploration and accuracy. In our experiments, we observed varied
behaviors as η increases, resulting in different performance outcomes across datasets, as illustrated
in Figure 9.

B.4 HYPERPARAMETER OPTIMIZATION PIPELINE

A significant advantage of flow matching methods is their inherently greater flexibility in the sam-
pling process compared to diffusion models, as they are more disentangled from the training stage.
Each of the proposed optimization strategies exposed in Sec. 4.2.2 expands the search space for
optimal performance. However, conducting a full grid search across all those methodologies is
impractical for the computational resources available. To address this challenge, our sampling opti-
mization pipeline consists of, for each of the proposed optimization strategies, all hyperparameters
are held constant at their default values except for the parameter controlling the chosen strategy,
over which we perform a sweep. The optimal values obtained for each strategy are combined to
form the final configuration. In Tab. 6, we present the final hyperparameter values obtained for each
dataset. This pipeline is sufficient to achieve state-of-the-art performance, which reinforces the ex-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

5 10 50 100 1000
Steps

0.0

0.3

0.6

0.9

V
.U

.N
.

(P
la

n
ar

) ++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

5 10 50 100 1000
Steps

1

6

40

251

R
at

io
(P

la
n

ar
) ++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

(a) Planar dataset.

5 10 50 100 1000
Steps

0.0

0.3

0.6

0.9

V
.U

.N
.

(T
re

e)

5 10 50 100 1000
Steps

1

6

40

251

R
at

io
(T

re
e)

(b) Tree dataset.

5 10 50 100 1000
Steps

0.0

0.3

0.6

0.9

V
.U

.N
.

(S
B

M
)

5 10 50 100 1000
Steps

4

16

63

R
at

io
(S

B
M

)

(c) SBM dataset.

Figure 6: Sampling efficiency improvement over all synthetic datasets.

pressivity of DeFoG. We expect to achieve even better results if a more comprehensive search of the
hyperparameter space was carried out.

To better mode detailedly illustrate the influence of each sampling optimization, we show in Fig-
ures 6 and 7 in present the impact of varying parameter values across the synthetic datasets Figure 6
and molecular datasets in Figure 7 used in this work.

While Figures 6 and 7 are highly condensed, we provide a more fine-grained version that specifically
illustrates the influence of the hyperparameters η and ω. This version highlights their impact when
generating with the full number of steps (500 and 1000 for molecular and synthetic data, respec-
tively) and with 50 steps. As emphasized in Figures 8 and 9, the influence of these hyperparameters
varies across datasets and exhibits distinct behaviors depending on the number of steps used.

Several key observations can be made here. First, since the stochasticity is designed around the de-
tailed balance condition, which holds more rigorously with increased precision, it generally provides
greater benefits with the full generation steps but leads to a more pronounced performance decrease
when generating with only 50 steps. Additionally, for datasets such as Planar, MOSES, and Gua-
camol, the stochasticity shows an increasing-then-decreasing behavior, indicating the presence of an
optimal value. Furthermore, while target guidance significantly improves validity across different
datasets, it can negatively affect novelty and the average ratio when set too high. This suggests that
excessive target guidance may promote overfitting to high-probability regions of the training set,
distorting the overall distribution. In conclusion, each hyperparameter should be carefully chosen
based on the specific objective.

To demonstrate the benefit of each designed optimization step, we report the step-wise improvements
by sequentially adding each tuned step across the primary datasets—synthetic datasets in Figure 10
and molecular datasets in Figure 11—used in this work.

B.5 UNDERSTANDING THE SAMPLING DYNAMICS OF R∗
t

In this section, we aim to provide deeper intuition into the sampling dynamics imposed by the design
of R∗

t , as proposed by Campbell et al. (2024). The explicit formulation of R∗
t can be found in Eq. (3).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

5 10 50 100 500
Steps

60

80

100

V
al

id
it

y
(Q

M
9)

++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

5 10 50 100 500
Steps

30

45

60

75

N
ov

el
ty

(Q
M

9) ++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

++++ Exact Exp

+++ Stochasticity

++ Target Guidance

+ Sample Distortion

Vanilla DeFoG

DiGress

(a) QM9 dataset.

5 10 50 100 500
Steps

0

30

60

90

V
al

id
it

y
(M

O
S

E
S

)

5 10 50 100 500
Steps

94

96

98

100

N
ov

el
ty

(M
O

S
E

S
)

(b) MOSES dataset.

5 10 50 100 500
Steps

0

30

60

90

V
al

id
it

y
(G

u
ac

am
ol

)

5 10 50 100 500
Steps

94

96

98

100

N
ov

el
ty

(G
u

ac
am

ol
)

(c) Guacamol dataset.

Figure 7: Sampling efficiency improvement over all molecular datasets. The Guacamol and MOSES
datasets are evaluated with 2,000 samples, and validity and novelty are computed using local im-
plementations for efficiency instead of the original benchmarks. For consistency across the three
datasets, we apply a validity metric that ignores charged molecules. The values for Guacamol differ
from Tab. 2, as its benchmark accommodates charged molecules, leading to higher reported validity.

Notably, the denominator in the expression serves as a normalizing factor, meaning the dynamics of
each sampling step are primarily influenced by the values in the numerator. Specifically, we observe
the following relationship:

∂tpt|1(zt|z1) = δ(zt, z1) + p0(zt),

derived by directly differentiating Eq. (1). Based on this, the possible values of R∗
t for different

combinations of zt and zt+dt are outlined in Tab. 4.
Table 4: Values of R∗

t for different zt and zt+dt.

CONDITION R∗(xt, j|z1) INTUITION

zt = z1 , zt+dt = z1 ReLU(p0(z1)− p0(z1)) = 0 NO TRANSITION
zt = z1 , zt+dt ̸= z1 ReLU(p0(zt)− 1− p0(zt+dt)) = 0 NO TRANSITION
zt ̸= z1 , zt+dt = z1 ReLU(p0(zt)− p0(zt+dt) + 1) > 0 TRANSITION TO z1
zt ̸= z1 , zt+dt ̸= z1 ReLU(p0(zt)− p0(zt+dt)) TRANSITION TO zt+dt IF p0(zt) > p0(zt+dt)

From the first two lines of Tab. 4, we observe that once the system reaches the predicted state z1, it
remains there. If not, R∗

t only encourages transitions to other states under two conditions: either the
target state is z1 (third line), or the corresponding entries in the initial distribution for potential next
states have smaller values than the current state (fourth line). As a result, the sampling dynamics are
heavily influenced by the initial distribution, as discussed further in Appendix C.1.

For instance, with the masking distribution, the fourth line facilitates transitions to states other than
the virtual “mask” state, whereas for the uniform distribution, no transitions are allowed. For the
marginal distribution, transitions are directed toward less likely states. Note that while these behav-
iors hold when the rate matrix consists solely of R∗

t , additional transitions can be introduced through
RDB

t (as detailed in Appendix B.3) or by applying target guidance (see Appendix B.2).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 1000 steps

0.8

0.9

V
.U

.N
.
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 1000 steps

5

10

R
at

io
↓

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0.15

0.30

V
.U

.N
.
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

3

6

9

R
at

io
↓

ω (Target Guidance) - Planar

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 1000 steps

0.64

0.72

V
.U

.N
.
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 1000 steps

2

4

R
at

io
↓

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0.00

0.06

0.12

V
.U

.N
.
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

5.0

7.5

R
at

io
↓

ω (Target Guidance) - Tree

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 1000 steps

0.0

0.3

0.6

V
.U

.N
.
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 1000 steps

0

30

60

R
at

io
↓

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0.3

0.6

V
.U

.N
.
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0

30

60

R
at

io
↓

ω (Target Guidance) - SBM

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 500 steps

0.988

0.992

V
al

id
it

y
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 500 steps

0.30

0.32

0.34

N
ov

el
ty
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0.93

0.94

0.95

V
al

id
it

y
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0.36

0.39

0.42

N
ov

el
ty
↑

ω (Target Guidance) - QM9

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 500 steps

0.87

0.90

0.93

V
a
li
d

it
y
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 500 steps

0.952

0.960

N
ov

el
ty
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0.690

0.705

0.720

V
a
li
d

it
y
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0.966

0.972

0.978

N
ov

el
ty
↑

ω (Target Guidance) - MOSES

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 500 steps

0.850

0.875

V
a
li
d

it
y
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 500 steps

0.992

0.996

N
ov

el
ty
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0.40

0.48

V
a
li
d

it
y
↑

0.0 0.01 0.02 0.05 0.1 0.2 0.3 0.4 0.5 1.0

ω - 50 steps

0.984

0.992

N
ov

el
ty
↑

ω (Target Guidance) - Guacamol

Figure 8: Influence of target guidance over all datasets.

B.6 PERFORMANCE IMPROVEMENT FOR UNDERTRAINED MODELS

In this section, we present the performance of a model trained on the QM9 dataset and the Planar
dataset using only 30% of the epochs compared to the final model being reported. We employ the
same hyperparameters with Tab. 8 and Tab. 1 for the sampling setup, as reported in Tab. 6.

Compared to fully trained models, our model achieves 99.0 validity (vs. 99.3) and 96.4 uniqueness
(vs. 96.3) on the QM9 dataset. For the Planar dataset, it attains 95.5 validity (vs. 99.5) and an
average ratio of 1.4 (vs. 1.6). These results demonstrate that, even with significantly fewer training
epochs, the model maintains competitive performance under a well-designed sampling procedure,
although extended training can still further improve performance. Notably, all metrics surpass the
discrete-time diffusion benchmark DiGress (Vignac et al., 2022). As a result, the optimization in the
sampling stage proves particularly beneficial when computational resources are limited, by enhanc-
ing the performance of an undertrained model.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 1000 steps

0.80

0.88

0.96

V
.U

.N
.
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 1000 steps

2

3
R

at
io
↓

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0.00

0.05

0.10

V
.U

.N
.
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0

100

200

R
at

io
↓

η (Stochasticity) - Planar

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 1000 steps

0.64

0.72

0.80

V
.U

.N
.
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 1000 steps

1.2

1.8

2.4

R
at

io
↓

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0.00

0.05

0.10

V
.U

.N
.
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

6

12

R
at

io
↓

η (Stochasticity) - Tree

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 1000 steps

0.66

0.72

0.78

V
.U

.N
.
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 1000 steps

3

4

R
at

io
↓

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0.25

0.50

0.75

V
.U

.N
.
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0

40

80

R
at

io
↓

η (Stochasticity) - SBM

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 500 steps

0.9875

0.9900

0.9925

V
al

id
it

y
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 500 steps

0.300

0.315

N
ov

el
ty
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0.80

0.88

V
al

id
it

y
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0.4

0.5

0.6
N

ov
el

ty
↑

η (Stochasticity) - QM9

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 500 steps

0.870

0.885

0.900

V
al

id
it

y
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 500 steps

0.94

0.96

N
ov

el
ty
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0.25

0.50

0.75

V
al

id
it

y
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0.960

0.975

0.990

N
ov

el
ty
↑

η (Stochasticity) - MOSES

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 500 steps

0.88

0.90

V
al

id
it

y
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 500 steps

0.9900

0.9925

0.9950

N
ov

el
ty
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0.2

0.4

V
al

id
it

y
↑

0.0 5.0 10.0 25.0 50.0 100.0 200.0

η - 50 steps

0.990

0.995

N
ov

el
ty
↑

η (Stochasticity) - Guacamol

Figure 9: Influence of stochasticity level over all datasets.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.00

0.40

0.80
V

.U
.N

.

5 10 50 100 1000
Steps

1.50

3.00

4.50

R
at

io

Sampling Distortion - Planar

identity

cos

revcos

polyinc

polydec
0.00

0.40

0.80

V
.U

.N
.

5 10 50 100 1000
Steps

1.50

3.00

4.50

R
at

io

ω (Target Guidance) - Planar

0.0

0.01

0.02

0.05

0.1

0.2

0.3

0.4

0.5

1.0

0.00

0.40

0.80

V
.U

.N
.

5 10 50 100 1000
Steps

2.00

4.00

R
at

io

η (Stochasticity) - Planar

0.0

5.0

10.0

25.0

50.0

100.0

200.0

(a) Planar dataset.

0.00

0.40

0.80

V
.U

.N
.

5 10 50 100 1000
Steps

1.60

2.40

R
at

io

Sampling Distortion - Tree

identity

cos

revcos

polyinc

polydec
0.00

0.30

0.60

V
.U

.N
.

5 10 50 100 1000
Steps

1.20

1.80

2.40

R
at

io

ω (Target Guidance) - Tree

0.0

0.01

0.02

0.05

0.1

0.2

0.3

0.4

0.5

1.0

0.00

0.40

0.80

V
.U

.N
.

5 10 50 100 1000
Steps

1.50

3.00

R
at

io

η (Stochasticity) - Tree

0.0

5.0

10.0

25.0

50.0

100.0

200.0

(b) Tree dataset.

0.00

0.40

0.80

V
.U

.N
.

5 10 50 100 1000
Steps

1.50

2.00

R
at

io

Sampling Distortion - SBM

identity

cos

revcos

polyinc

polydec
0.00

0.40

0.80

V
.U

.N
.

5 10 50 100 1000
Steps

1.60

2.40

3.20

R
at

io

ω (Target Guidance) - SBM

0.0

0.01

0.02

0.05

0.1

0.2

0.3

0.4

0.5

1.0

0.00

0.40

0.80

V
.U

.N
.

5 10 50 100 1000
Steps

2.00

3.00

R
at

io

η (Stochasticity) - SBM

0.0

5.0

10.0

25.0

50.0

100.0

200.0

(c) SBM dataset.

Figure 10: Stepwise parameter search for sampling optimization across synthetic datasets.

0.30

0.60

0.90

V
al

id
it

y

5 10 50 100 500
Steps

0.80

0.88

0.96

N
ov

el
ty

Sampling Distortion - QM9

identity

cos

revcos

polyinc

polydec
0.50

0.75

1.00

V
al

id
it

y

5 10 50 100 500
Steps

0.80

0.88

N
ov

el
ty

ω (Target Guidance) - QM9

0.0

0.01

0.02

0.05

0.1

0.2

0.3

0.4

0.5

1.0

0.40

0.80

V
al

id
it

y

5 10 50 100 500
Steps

0.80

0.90

1.00

N
ov

el
ty

η (Stochasticity) - QM9

0.0

5.0

10.0

25.0

50.0

100.0

200.0

(a) QM9 dataset.

0.00

0.40

0.80

V
al

id
it

y

5 10 50 100 500
Steps

0.99

0.99

1.00

N
ov

el
ty

Sampling Distortion - MOSES

identity

cos

revcos

polyinc

polydec
0.00

0.40

0.80

V
al

id
it

y

5 10 50 100 500
Steps

0.99

1.00

N
ov

el
ty

ω (Target Guidance) - MOSES

0.0

0.01

0.02

0.05

0.1

0.2

0.3

0.4

0.5

1.0

0.00

0.40

0.80

V
al

id
it

y

5 10 50 100 500
Steps

0.98

0.99

1.00

N
ov

el
ty

η (Stochasticity) - MOSES

0.0

5.0

10.0

25.0

50.0

100.0

200.0

(b) MOSES dataset.

0.00

0.40

0.80

V
al

id
it

y

5 10 50 100 500
Steps

1.00

1.00

1.00

N
ov

el
ty

Sampling Distortion - Guacamol

identity

cos

revcos

polyinc

polydec
0.00

0.40

0.80

V
al

id
it

y

5 10 50 100 500
Steps

0.99

1.00

1.00

N
ov

el
ty

ω (Target Guidance) - Guacamol

0.0

0.01

0.02

0.05

0.1

0.2

0.3

0.4

0.5

1.0

0.00

0.40

0.80

V
al

id
it

y

5 10 50 100 500
Steps

0.99

0.99

1.00

N
ov

el
ty

η (Stochasticity) - Guacamol

0.0

5.0

10.0

25.0

50.0

100.0

200.0

(c) Guacamol dataset.

Figure 11: Stepwise parameter search for sampling optimization across molecular datasets.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 25000 50000 75000 100000
Steps

0.0

0.4

0.8

V
al

id
it

y
(P

la
n

ar
)

1000 2000
Steps

0.96

0.98

V
al

id
it

y
(Q

M
9)

0 20000 40000
Steps

0.0

0.4

0.8

V
al

id
it

y
(S

B
M

)

Marginal

Uniform

Masking

Absorbing

Figure 12: Influence of initial distribution over different datasets at different training steps.

C TRAIN OPTIMIZATION

In this section, we provide a more detailed analysis of the influence of the various training optimiza-
tion strategies introduced in Sec. 4.2.1. In Appendix C.1, we empirically demonstrate the impact
of selecting different initial distributions on performance, while in Appendix C.2, we examine the
interaction between training and sampling optimization.

C.1 INITIAL DISTRIBUTIONS

Under DeFoG’s framework, the noising process for each dimension is modeled as a linear interpo-
lation between the clean data distribution (the one-hot representation of the current state) and an
initial distribution, p0. As such, it is intuitive that different initial distributions result in varying
performances, depending on the denoising dynamics they induce. In particular, they have a direct
impact on the sampling dynamics through R∗

t (see Appendix B.5) and may also pose tasks of varying
difficulty for the graph transformer. In this paper, we explore four distinct initial distributions2:

Uniform: p0 =
[
1
Z , 1

Z , . . . , 1
Z

]
∈ ∆Z−1. Here, the probability mass is uniformly distributed across

all states, as proposed by Campbell et al. (2024).

Masking: p0 = [0, 0, . . . , 0, 1] ∈ ∆Z . In this setting, all the probability mass collapses into a new
“mask” state at t = 0, as introduced by Campbell et al. (2024).

Marginal: p0 = [m1,m2, . . . ,mZ] ∈ ∆Z−1, where mi denotes the marginal probability of the
i-th state in the dataset. This approach is widely used in state-of-the-art graph generation models
(Vignac et al., 2022; Xu et al., 2024; Siraudin et al., 2024).

Absorbing: p0 = [0, . . . , 1, . . . , 0] ∈ ∆Z−1, representing a one-hot encoding of the most common
state (akin to applying an argmax operator to the marginal initial distribution).

In Figure 12, we present the training curves for each initial distribution for three different datasets.

We observe that the marginal distribution consistently achieves at least as good performance as the
other initial distributions. This, along with the theoretical reasons outlined in Sec. 4.2.1, reinforces
its use as the default initial distribution for DeFoG. The only dataset where marginal was surpassed
was the SBM dataset, which we attribute to its inherently different nature (stochastic vs. determin-
istic). In this case, the absorbing distribution emerged as the best-performing choice. Interestingly,
the absorbing distribution also tends to converge faster across datasets.

Lastly, it is worth noting that in discrete diffusion models for graphs, predicting the best limit noise
distribution based solely on dataset characteristics remains, to our knowledge, an open question
(Tseng et al., 2023). We expect this complexity to extend to discrete flow models as well. Although
this is outside the scope of our work, we view this as an exciting direction for future research.

C.2 INTERACTION BETWEEN SAMPLE AND TRAIN DISTORTIONS

From Appendix B.4, we observe that time distortions applied during the sampling stage can sig-
nificantly affect performance. This suggests that graph discrete flow models do not behave evenly
across time and are more sensitive to specific time intervals, where generative performance benefits
from finer updates achieved by using smaller time steps. Building on this observation, we extended
our analysis to the training stage, exploring two main questions:

2Recall that Z represents the cardinality of the state space, and ∆Z−1 the associated probability simplex.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Polyinc Revcos Identity Cos Polydec
Sample Distortion

P
ol

y
d

ec
C

os
Id

en
ti

ty
R

ev
co

s
P

ol
y
in

c
T

ra
in

D
is

to
rt

io
n

0.985 0.985 0.990 0.994 0.994

0.981 0.982 0.986 0.992 0.992

0.983 0.984 0.988 0.992 0.992

0.983 0.983 0.987 0.993 0.993

0.981 0.982 0.986 0.993 0.993

QM9 - Validity

0.982

0.984

0.986

0.988

0.990

0.992

(a) QM9 - Validity

Polyinc Revcos Identity Cos Polydec
Sample Distortion

P
ol

y
d

ec
C

os
Id

en
ti

ty
R

ev
co

s
P

ol
y
in

c
T

ra
in

D
is

to
rt

io
n

0.107 0.107 0.107 0.118 0.110

0.130 0.123 0.130 0.128 0.131

0.093 0.095 0.096 0.103 0.104

0.153 0.149 0.155 0.162 0.171

0.139 0.140 0.149 0.140 0.148

QM9 - FCD

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

(b) QM9 - FCD

Polyinc Revcos Identity Cos Polydec
Sample Distortion

P
ol

y
d

ec
C

os
Id

en
ti

ty
R

ev
co

s
P

ol
y
in

c
T

ra
in

D
is

to
rt

io
n

0.660 0.725 0.685 0.900 0.895

0.480 0.480 0.565 0.775 0.770

0.400 0.455 0.505 0.725 0.695

0.310 0.375 0.450 0.570 0.610

0.310 0.330 0.395 0.575 0.645

Planar - VUN

0.4

0.5

0.6

0.7

0.8

0.9

(c) Planar - Validity

Polyinc Revcos Identity Cos Polydec
Sample Distortion

P
ol

y
d

ec
C

os
Id

en
ti

ty
R

ev
co

s
P

ol
y
in

c
T

ra
in

D
is

to
rt

io
n

2.908 3.424 5.400 3.856 4.024

5.594 5.242 3.918 5.631 6.191

2.290 2.081 2.890 2.823 2.253

4.894 4.496 4.365 4.650 3.710

4.146 4.370 3.661 3.977 4.024

Planar - Average Ratio

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

(d) Planar - Average Ratio

Figure 13: Interaction between training and sampling time distortions.

• Is there an universally optimal training time distortion for graph generation across different
datasets?

• How do training and sampling time distortions interact? Is there alignment between the
two? Specifically, if we understand the effect of a time distortion at one stage (training or
sampling), can we infer its impact at the other?

To investigate these questions, we conducted a grid search. For two datasets, we trained five models,
each with a different time distortion applied during training. Subsequently, we tested each model by
applying the five different distortions at the sampling stage. The results are presented in Figure 13.

The results vary by dataset. For QM9, validity appears primarily influenced by the sampling distor-
tion method, with a preference for distortions that encourage smaller steps at the end of the denoising
process (such as polydec and cos). However, for FCD3, the training distortion plays a more signifi-
cant role.

For the planar dataset, we observe a near-perfect alignment between training and sampling dis-
tortions in terms of validity, with a clear preference for more accurate training models and finer
sampling predictions closer to t = 1. The results for the average ratio metric, however, are less
consistent and show volatility.

These findings help address our core questions: The interaction between training and sampling
distortions, as well as the best training time distortion, is dataset-dependent. Nonetheless, for the
particular case of the planar dataset, we observe a notable alignment between training and sampling
distortions. This alignment suggests that times close to t = 1 are critical for correctly generat-
ing planar graphs. We conjecture that this alignment can be attributed to planarity being a global
property that arises from local constraints, as captured by Kuratowski’s Theorem, which states that

3FCD is calculated only for valid molecules, so this metric may inherently reflect survival bias.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
t

0.5

1.0

1.5

C
E

lo
ss

CE Tracker Across Training Steps

2k

20k

40k

60k

80k

100k

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

1.5

2.0

R
at

io
ov

er
10

0k
T

ra
in

L
os

s Ratio to 100k

2k

20k

40k

60k

80k

100k

Figure 14: In the left figure, we present the cross-entropy (CE) loss used for training at different
time steps across various stages of the training process. The right figure shows the ratio of each CE
loss trajectory relative to the last one, illustrating the overall training trend and emphasizing which
parts of the model are predominantly learned over time.

a graph is non-planar if and only if it contains a subgraph reducible to K5 or K3,3 through edge
contraction (Kuratowski, 1930).

Loss Tracker To determine if the structural properties observed in datasets like the planar dataset
can be detected and exploited without requiring an exhaustive sweep over all possibilities, we pro-
pose developing a metric that quantifies the difficulty of predicting the clean graph for any given
time point t ∈ [0, 1). For this, we perform a sweep over t for a given model, where for each t, we
noise a sufficiently large batch of clean graphs and evaluate the model’s training loss on them. This
yields a curve that shows how the training loss varies as a function of t. We then track how this
curve evolves across epochs. To make the changes more explicit, we compute the ratio of the loss
curve relative to the fully trained model’s values. These curves are shown in Figure 14.

As expected, the curve of training loss as a function of t (left in Figure 14) is monotonically decreas-
ing, indicating that as graphs are decreasingly noised, the task becomes simpler. However, the most
interesting insights arise from the evolution of this curve across epochs (right in Figure 14). We
observe that for smaller values of t, the model reaches its maximum capacity early in the training
process, showing no significant improvements after the initial few epochs. In contrast, for larger
values of t (closer to t = 1), the model exhibits substantial improvements throughout the training
period. This suggests that the model can continue to refine its predictions in the time range where the
task is easier. These findings align with those in Figure 13, reinforcing our expectation that training
the model to be more precise in this range or providing more refined sampling steps will naturally
enhance performance in the planar dataset.

These insights offer a valuable understanding of the specific dynamics at play within the planar
dataset. Nevertheless, the unique structural characteristics of each dataset may influence the interac-
tion between training and sampling time distortions in ways that are not captured here. Future work
could explore these dynamics across a wider range of datasets to assess the generalizability of our
findings.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

D THEORETICAL RESULTS

In this section, we provide the proofs of the different theoretical results of the paper. We first provide
the results that are domain agnostic, i.e., that hold for any data modality that lies in discrete state-
spaces, and then the graph specific ones.

D.1 DOMAIN AGNOSTIC THEORETICAL RESULTS

Here, we first provide the proof of Theorem 2 in Appendix D.1.1, and then the proof of Theorem 3
in Appendix D.1.2.

D.1.1 BOUNDED ESTIMATION ERROR OF UNCONDITIONAL MULTIVARIATE RATE MATRIX

We start by introducing two important concepts, which will reveal important for the proof of the
intended result.

Unconditional Multivariate Rate Matrix As exposed in Sec. 3.1, the marginal distribution and
the rate matrix of a CTMC are related by the Kolmogorov equation:

∂tpt = RT
t pt

=
∑

zt+dt ̸=zt

Rt(zt+dt, zt)pt(zt+dt)

︸ ︷︷ ︸
Probability Inflow

−
∑

zt+dt ̸=zt

Rt(zt, zt+dt)pt(zt)

︸ ︷︷ ︸
Probability Outflow

.

The expansion in the second equality reveals the conservation law inherent in the Kolmogorov equa-
tion, illustrating that the time derivative of the marginal distribution represents the net balance be-
tween the inflow and outflow of probability mass at a given state.

Importantly, in the multivariate case, the (joint) rate matrix can be expressed through the following
decomposition:

Rt(z
1:D
t , z1:Dt+dt) =

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt) R

(d)
t (z1:Dt , z

(d)
t+dt)

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt) E

p1|t(z
(d)
1 |z1:D

t)

[
R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)

]
. (13)

In the first equality, 1 : D \ (d) refers to all dimensions except d and the δ term restricts contributions
to rate matrices that account for at most one dimension transitioning at a time, since the probability
of two or more independently noised dimensions transitioning simultaneously is zero under a con-
tinuous time framework (Campbell et al., 2022; 2024). In the second equality, the unconditional
rate matrix is retrieved by taking the expectation over the z1-conditioned rate matrices. Specifically,
R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1) denotes the univariate rate matrix corresponding to dimension d (see Eq. (3))

Total Variation The total variation (TV) distance is a distance measure between probability dis-
tributions. While it can be defined more generally, this paper focuses on its application to discrete
probability distributions over a finite sample space Z . In particular, for two discrete probability
distributions P and Q, their total variation distance is defined as:

∥P −Q∥TV =
1

2

∑

z∈Z
|P (z)−Q(z)| (14)

We are now prepared to proceed with the proof of Theorem 2.
Theorem 2 (Bounded estimation error of unconditional multivariate rate matrix). Given t ∈ [0, 1],
z1:Dt , z1:Dt+dt ∈ ZD, and z1:D1 ∼ p1(z

1:D
1), let Rt(z

1:D
t , z1:Dt+dt) be the groundtruth rate matrix of

the CTMC, which we approximate with Rθ
t (z

1:D
t , z1:Dt+dt). The corresponding estimation error is

upper-bounded as follows:

|Rt(z
1:D
t , z1:Dt+dt)−Rθ

t (z
1:D
t , z1:Dt+dt)|2 ≤ C0 + C1Ep1(z1:D

1)

[
pt|1(z1:Dt |z1:D1)

∑D
d=1− log p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

]
, (15)

where

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• C0 = 2D supd∈{1,...,D}{C2
z(d)}

∑
z
(d)
1 ∈Z p

(d)
1|t (z

(d)
1 |z1:Dt) log p

(d)
1|t (z

(d)
1 |z1:Dt);

• C1 = 2D supd∈{1,...,D}{C2
z(d)}/p1(z1:D1);

with Cz(d) = δ(z
1:D\(d)
t , z

1:D\(d)
t+dt) sup

z
(d)
1 ∈Z

{R∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)}.

Proof. This proof is an adaptation of the proof of Theorem 3.3 from Xu et al. (2024) to the discrete
flow matching setting.

By definition (Eq. (13)), we have:

Rt(z
1:D
t , z1:Dt+dt) =

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt) R

(d)
t (z1:Dt , z

(d)
t+dt)

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt) E

p
(d)

1|t (z
(d)
1 |z1:D

t)

[
R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)

]

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt)

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt)R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)

Thus:

|Rt(z
1:D
t ,z1:Dt+dt)−Rθ

t (z
1:D
t , z1:Dt+dt)| =

=

∣∣∣∣∣∣∣

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt)

∑

z
(d)
1

[R
∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)

(
p
(d)
1|t (z

(d)
1 |z1:Dt)− p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

)
]

∣∣∣∣∣∣∣

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt)

∣∣∣∣∣∣∣

∑

z
(d)
1

[
R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)

(
p
(d)
1|t (z

(d)
1 |z1:Dt)− p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

)]
∣∣∣∣∣∣∣

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt) sup

z
(d)
1

{R∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)}

∑

z
(d)
1

∣∣∣p(d)1|t (z
(d)
1 |z1:Dt)− p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

∣∣∣

=

D∑

d=1

2Cz(d) ∥p(d)1|t (z
(d)
1 |z1:Dt)− p

θ,(d)
1|t (z

(d)
1 |z1:Dt)∥TV (16)

≤
D∑

d=1

Cz(d)

√
2DKL

(
p
(d)
1|t (z

(d)
1 |z1:Dt) ∥ pθ,(d)1|t (z

(d)
1 |z1:Dt)

)
(17)

=

D∑

d=1

√√√√√2 C2
z(d)

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt) log

p(d)(1|tz
(d)
1 |z1:Dt)

p
θ,(d)
1|t (z

(d)
1 |z1:Dt)

.

In Eq. (16), we use the definition of TV distance as defined in Eq. (14) and Eq. (17) results from
direct application of Pinsker’s inequality. Now, we change the ordering of the sum and of the square
root through the Cauchy-Schwarz inequality:

D∑

d=1

√
xd ≤

D∑

d=1

√
xd . 1 ≤

√√√√
D∑

d=1

√
xd

2

√√√√
D∑

d=1

√
1
2 ≤

√√√√D

D∑

d=1

xd

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

So, we obtain:

|Rt(z
1:D
t , z1:Dt+dt)−Rθ

t (z
1:D
t , z1:Dt+dt)| ≤

√√√√√2 D

D∑

d=1

C2
z(d)

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt) log

p
(d)
1|t (z

(d)
1 |z1:Dt)

p
θ,(d)
1|t (z

(d)
1 |z1:Dt)

≤

√√√√√2 D sup
d∈{1,...,D}

{C2
z(d)}

D∑

d=1

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt)

[
log p

(d)
1|t (z

(d)
1 |z1:Dt)− log p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

]

=

√√√√√√√√
C2


C3 −

D∑

d=1

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt) log p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

︸ ︷︷ ︸


,

where in the last step we rearrange the terms independent of the approximation parametrized by θ as
constants: C2 = 2D supd∈{1,...,D}{C2

z(d)}, C3 =
∑

z
(d)
1 ∈Z p

(d)
1|t (z

(d)
1 |z1:Dt) log p

(d)
1|t (z

(d)
1 |z1:Dt). We

now develop the underbraced term in the last equation4:

D∑

d=1

∑

z
(d)
1

p
(d)
1|t (z

(d)
1 |z1:Dt) log p

θ,(d)
1|t (z

(d)
1 |z1:Dt) =

=

D∑

d=1

∑

z
(d)
1

p(z
(d)
1 , z1:Dt)

pt(z1:Dt)
log p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

=
1

pt(z1:Dt)

D∑

d=1

∑

z
(d)
1

∑

z
1:D\(d)
1

p(z
(d)
1 , z1:Dt , z

1:D\(d)
1) log p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

=
1

pt(z1:Dt)

D∑

d=1

∑

z1:D
1

p(z1:D1 , z1:Dt) log p
θ,(d)
1|t (z

(d)
1 |z1:Dt)

=
1

pt(z1:Dt)

D∑

d=1

∑

z1:D
1

p1(z
1:D
1)pt|1(z

1:D
t |z1:D1) log p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

=
1

pt(z1:Dt)

∑

z1:D
1

p1(z
1:D
1)pt|1(z

1:D
t |z1:D1)

D∑

d=1

log p
θ,(d)
1|t (z

(d)
1 |z1:Dt)

= −C4 Ep1(z1:D
1)



pt|1(z

1:D
t |z1:D1)

D∑

d=1

− log p
θ,(d)
1|t (z

(d)
1 |z1:Dt)

︸ ︷︷ ︸
Cross-entropy



,

where C4 = 1/p(z1:D1).

Replacing back the obtained expression into the original equation, we obtain:
∣∣Rt(z

1:D
t , z1:Dt+dt)−Rθ

t (z
1:D
t , z1:Dt+dt)

∣∣2 ≤ C2C3 + C2C4Ep1(z1:D
1)

[
pt|1(z1:Dt |z1:D1)

∑D
d=1− log p

θ,(d)
1|t (z

(d)
1 |z1:Dt)

]
,

retrieving the intended result.

4In this step, we omit some subscripts from joint probability distributions as they are not defined in the main
paper, but they can be inferred from context.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

D.1.2 BOUNDED DEVIATION OF THE GENERATED DISTRIBUTION

As proceeded in Appendix D.1.1, we start by introducing the necessary concepts that will reveal
useful for the proof of the intended result.

On the Choice of the CTMC Sampling Method Generating new samples using DFM amounts
to simulate a multivariate CTMC according to:

pt+dt|t(z
1:D
t+dt|z1:Dt) = δ(z1:Dt , z1:Dt+dt) +Rt(z

1:D
t , z1:Dt+dt)dt, (18)

where Rt(z
1:D
t , z1:Dt+dt) denotes the unconditional multivariate rate matrix defined in Eq. (13). This

process can be simulated exactly using Gillespie’s Algorithm (Gillespie, 1976; 1977). However,
such an algorithm does not scale for large D (Campbell et al., 2022). Although τ -leaping is a
widely adopted approximate algorithm to address this limitation (Gillespie, 2001), it requires ordinal
discrete state spaces, which is suitable for cases like text or images but not for graphs. Therefore, we
cannot apply it in the context of this paper. Additionally, directly replacing the infinitesimal step dt
in Eq. (13) with a finite time step ∆t à la Euler method is inappropriate, as Rt(z

1:D
t , z1:Dt+dt) prevents

state transitions in more than one dimension per step under the continuous framework. Instead,
Campbell et al. (2024) propose an approximation where the Euler step is applied independently to
each dimension, as seen in Eq. (4).

In this section, we theoretically demonstrate that, despite its approximation, the independent-
dimensional Euler sampling method error remains bounded and can be made arbitrarily small by
reducing the step size ∆t or by reducing the estimation error of the rate matrix.

Markov Kernel of a CTMC For this proof, we also introduce the notion of Markov kernel of
a CTMC. As previously seen, the rate matrix (or generator), Rt, characterizes the infinitesimal
transition rates between states, governing the dynamics of the process. The Markov kernel, Rt, is
a function that provides the transition probabilities between states over a finite time interval. For
example, for a univariate CTMC with a state space Z, the Markov kernelRt(s, t) is a matrix where
each entry Rt, ij(s, s

′) represents the probability that the single variable transitions from state i
to state j during the time interval [s, s′]. These matrices are stochastic, i.e., for fixed s and s′,∑

j∈S Rt, ij(s, s
′) = 1, ∀i. This contrasts with the rate matrix where rows sum to 1. Additionally,

Markov kernels must also respect the initial conditionRt, ij(s, s) = IZ×Z
5. Importantly, a constant

rate matrix, R, between t and t+∆t yields the following Markov kernel:

R(t, t+∆t) = eR∆t (19)

We are now in conditions of proceeding to the proof of Theorem 3. We start by first proving that, in
the univariate case, the time derivatives of the conditional rate matrices are upper bounded.
Lemma 5 (Upper bound time derivative of conditional univariate rate matrix). For t ∈ (0, 1),
zt, zt+dt, z1 ∈ Z, with zt ̸= zt+dt, then we have:

|∂tR∗
t (zt, zt+dt|z1)| ≤

2

pt|1(zt|z1)2
.

Proof. Recall that pt|1(zt|z1) = t δ(zt, z1)+(1− t) p0(zt) (from Eq. (1)). Two different cases must
then be considered.

In the first case, pt|1(zt|z1) = 0. This implies that both extremes of the linear interpolation are
0. In that case, the linear interpolation will be identically 0 for t ∈ (0, 1). Thus, by definition,
R∗

t (zt, zt+dt|z1) = 0 for t ∈ (0, 1), which implies that |∂tR∗
t (zt, zt+dt|z1)| = 0.

Otherwise (pt|1(zt|z1) > 0), we recall that R∗
t (zt, zt+dt|z1) with zt ̸= zt+dt has the following form:

R∗
t (zt, zt+dt|z1) =

ReLU
(
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

)

Z>0
t pt|1(zt|z1)

, (20)

where Z>0
t = |{zt : pt|1(zt|z1) > 0}|.

5IZ×Z denotes the identity matrix of dimension Z × Z.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

By differentiating the explicit form of pt|1(zt|z1), we have that ∂2pt|1(zt|z1) = 0. As a con-
sequence, the numerator of eq. (20) has zero derivative. Additionally, we also note that Z>0

t is
constant. Again, since pt|1(zt|z1) is a linear interpolation between z1 and p0 and, therefore, it is
impossible for pt|1(zt|z1) to suddenly become 0 for t ∈ (0, 1).

Consequently, we have:

∂tR
∗
t (zt, zt+dt|z1) =

ReLU
(
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

)

Z>0
t

∂t

(
1

pt|1(zt|z1)

)

= −ReLU
(
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

)

Z>0
t

∂tpt|1(zt|z1)
pt|1(zt|z1)2

.

We necessarily have |∂tpt|1(zt|z1)| = |δ(zt, z1) − p0(zt)| ≤ 1,
ReLU (∂tp(zt+dt|z1)− ∂tp(zt|z1)) ≤ 2, Z>0

t ≥ 1, and, necessarily, p(zt|z1) > 0. Thus:

|∂tR∗
t (zt, zt+dt|z1)| ≤

ReLU
(
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

)

Z>0
t

|δ(zt, z1)− p0(zt)|
pt|1(zt|z1)2

≤ 2

pt|1(zt|z1)2
.

We now upper bound the time derivative of the unconditonal multivariate rate matrix. We use
Lemma 5 as an intermediate result to accomplish so. Additionally, we consider the following as-
sumption.

Assumption 6. For z1:Dt ∈ ZD, z
(d)
1 ∈ Z and t ∈ [0, 1], for each variable z(d) of a joint variable

z1:D, there exists a constant B(d)
t > 0 such that p1|t(z

(d)
1 |z1:Dt) ≤ B

(d)
t pt|1(z

(d)
t |z(d)1)2.

This assumption states that the denoising process is upper bounded by a quadratic term on the
noising process. This assumption is reasonable because, while the noising term applies individually
to each component of the data, the denoising process operates on the joint variable, allowing for
a more comprehensive and interdependent correction that reflects the combined influence of all
components.

Proposition 7 (Upper bound time derivative of unconditional multivariate rate matrix). For
z1:Dt , z1:Dt+dt ∈ ZD and t ∈ (0, 1), under Assumption 6, we have:

|∂tR1:D
t (z1:Dt , z1:Dt+dt)| ≤ 2BtZD,

with Bt = sup
d∈1,...,D

B
(d)
t .

Proof. From Eq. (13), the unconditional rate matrix is given by:

Rt(z
1:D
t , z1:Dt+dt) =

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt) R

(d)
t (z1:Dt , z

(d)
t+dt)

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt) E

p
(d)

1|t (z
(d)
1 |z1:D

t)

[
R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)

]

=

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt)

∑

z
(d)
1 ∈Z

p
(d)
1|t (z

(d)
1 |z1:Dt)R

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

So, by linearity of the time derivative, we have:

∣∣∂tRt(z
1:D
t , z1:Dt+dt)

∣∣ =

∣∣∣∣∣∣∣

D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt)

∑

z
(d)
1 ∈Z

p
(d)
1|t (z

(d)
1 |z1:Dt) ∂tR

∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)

∣∣∣∣∣∣∣

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt)

∑

z
(d)
1 ∈Z

p
(d)
1|t (z

(d)
1 |z1:Dt)

∣∣∣∂tR∗(d)
t (z

(d)
t , z

(d)
t+dt|z

(d)
1)

∣∣∣

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt)

∑

z
(d)
1 ∈Z

B
(d)
t pt|1(z

(d)
t |z(d)1)2

2

pt|1(z
(d)
t |z(d)1)2

≤
D∑

d=1

δ(z
1:D\(d)
t , z

1:D\(d)
t+dt) 2BtZ

≤ 2BtZD,

where in the first inequality triangular we apply triangular inequality; in the second inequality, we
use Lemma 5 and in Assumption 6 to upper bound |∂tR∗(d)

t (z
(d)
t , z

(d)
t+dt|z

(d)
1)| and p1|t(z

(d)
1 |z1:Dt),

respectively.

Now, we finally start the proof of Theorem 3
Theorem 3 (Bounded deviation of the generated distribution). Let {z1:Dt }t∈[0,1] ∈ ZD× [0, 1] be a
CTMC starting with p(z1:D0) = pϵ and ending with p(z1:D1) = pdata, whose groundtruth rate matrix
is Rt. Additionally, let (y1:Dk)k=0,1,...,K be a Euler sampling approximation of that CTMC, with
maximum step size ∆T = supk ∆tk and an approximate rate matrix Rθ

t . Then, under Assumption 6,
the following total variation bound holds:

∥p(y1:DK)− pdata∥TV ≤ UZD + B(ZD)2∆t+ O(∆t), (21)

where U = sup
t∈[0,1],

z1:D
t , z1:D

t+dt∈ZD

√
C0 + C1Ep1(z1:D

1)

[
pt|1(z1:Dt |z1:D1)

∑D
d=1− log pθ1|t(z

(d)
1 |z1:Dt)

]
and

B = sup
t∈[0,1], z

(d)
1 ∈Z

z1:D
t ∈ZD

B
(d)
t .

Proof. We start the proof by clarifying the notation for the Euler sampling approximation process.
We denote its discretization timesteps by 0 = t0 < t1 < . . . < tK = 1, with ∆tk = tk − tk−1.
It is initiated at the same limit distribution as the groundtruth CTMC, pϵ, and the bound to be
proven will quantify the deviation that the approximated procedure incurs in comparison to the
groundtruth CTMC. To accomplish so, we define Rθ,E

k as the Markov kernel that corresponds to
apply Euler sampling with the approximated rate matrix Rθ

t , moving from tk−1 to tk. Therefore,
Rθ,E = Rθ,E

1 Rθ,E
2 . . . Rθ,E

K and p(y1:DK) = pϵRθ,E .

We first apply the same decomposition to the left-hand side of Theorem 3, as Campbell et al. (2022),
Theorem 1:

∥p(y1:DK)− pdata∥TV = ∥pϵRθ,E − pdata∥TV

≤ ∥pϵRθ,E − pϵP1|0∥TV + ∥pϵ − p(z1:D0)︸ ︷︷ ︸
=pϵ

∥TV (22)

≤ ∥pϵRθ,E − pϵP1|0∥TV

≤
K∑

k=1

sup
ν
∥νRθ,E

k − νPk∥TV, (23)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

where, in Eq. (22), P1|0 denotes the path measure of the exact groundtruth CTMC and the difference
between limit distributions (second term from Eq. (22)) is zero since in flow matching the conver-
gence to the limit distribution via linear interpolation is not asymptotic (as in diffusion models) but
actually attained at t = 0. In Eq. (23), we introduce the stepwise path measure, i.e., Pk = Ptk|tk−1

,
such that PT |0 = P1P2 . . .PK . Therefore, finding the intended upper bound amounts to establish
bounds on the total variation distance for each interval [tk−1, tk].

For any distribution ν:

∥νRθ,E
k − νPk, ∥TV ≤ ∥νRθ,E

k − νRθ
k + νRθ

k − νPk∥TV

≤ ∥νPk − νRθ
k∥TV + ∥νRθ

k − νRθ,E
k ∥TV, (24)

whereRθ
k denotes the resulting Markov kernel of running a CTMC with constant rate matrix Rθ

tk−1

between tk−1 and tk.

For the first term, we use Proposition 5 from Campbell et al. (2022) to relate the total variation dis-
tance imposed by the Markov kernels with the difference between the corresponding rate matrices:

∥νPk − νRθ
k∥TV ≤

∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣∣Rt(z
1:D
t , z1:Dt+dt)−Rθ

tk−1
(z1:Dt , z1:Dt+dt)

∣∣∣



dt

≤
∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣Rt(z
1:D
t , z1:Dt+dt)−Rtk−1

(z1:Dt , z1:Dt+dt)
∣∣


dt

︸ ︷︷ ︸
Discretization Error

+

∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣∣Rtk−1
(z1:Dt , z1:Dt+dt)−Rθ

tk−1
(z1:Dt , z1:Dt+dt)

∣∣∣



dt

︸ ︷︷ ︸
Estimation Error

The first term consists of the discretization error, where we compare the chain with groundtruth
rate matrix changing continuously between tk−1 and tk with its discretized counterpart, i.e., a chain
where the rate matrix is held constant to its value at the beginning of the interval. The second corre-
sponds to the estimation error, where we compare the chain generated by the discretized groundtruth
rate matrix with an equally discretized chain but that uses an estimated rate matrix instead. For the
former, we have:

∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣Rt(z
1:D
t , z1:Dt+dt)−Rtk−1

(z1:Dt , z1:Dt+dt)
∣∣


dt

≤
∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣∂tRtc(z
1:D
t , z1:Dt+dt)(t− tk−1))

∣∣


dt (25)

≤
∫ tk

tk−1

ZD sup
z1:D
t ,z1:D

t+dt∈ZD

{∣∣∂tRtc(z
1:D
t , z1:Dt+dt)

∣∣} |t− tk−1|dt (26)

≤ 2Z2D2

∫ tk

tk−1

Bt |t− tk−1|dt, (27)

= Bk(ZD∆tk)
2, (28)

where, in Eq. (25), we use the Mean Value Theorem, with tc ∈ (tk−1, tk); in Eq. (26), we use the fact
that there are ZD values of z1:Dt+dt that differ at most in only one coordinate from z1:Dt ; in Eq. (27), we

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

use the result from Proposition 7 to upper bound the time derivative of the multivariate unconditional
rate matrix; and finally, in Eq. (28), we define Bk = supt∈(tk−1,tk)

Bt and ∆tk = tk − tk−1.

For the estimation error term, we have:

∫ tk

tk−1

sup
z1:D
t ∈ZD





∑

z1:D
t+dt ̸=z1:D

t

∣∣∣Rtk−1
(z1:Dt , z1:Dt+dt)−Rθ

tk−1
(z1:Dt , z1:Dt+dt)

∣∣∣



 dt

≤
∫ tk

tk−1

UkZD dt, (29)

≤ UkZD∆tk, (30)

where, in Eq. (29), we use again the fact that there are ZD values of z1:Dt+dt that differ at most in
only one coordinate from z1:Dt along with the estimation error upper bound from Theorem 2. In

particular, we consider Uk = sup
t∈[tk−1,tk],

z1:D
t , z1:D

t+dt∈ZD

U
z1:D
t →z1:D

t+dt

k , with:

U
z1:D
t →z1:D

t+dt

k =

√√√√C0 + C1Ep1(z1:D
1)

[
pt|1(z1:Dt |z1:D1)

D∑

d=1

− log p
θ,(d)
1|t (z

(d)
1 |z1:Dt)

]
,

i.e., the square root of the right-hand side of Eq. (15).

It remains to bound the second term from Eq. (24). We start by analyzing the Markov kernel cor-
responding to a Markov chain with constant rate matrix Rθ

tk−1
between tk−1 and tk. In that case,

from Eq. (19) we obtain:

Rθ
k(tk−1, tk) = e

Rθ
tk−1

∆tk

=

∞∑

i=0

(Rθ
tk−1

∆tk)
i

i!

= I +Rθ
tk−1

∆tk +
(Rθ

tk−1
∆tk)

2

2!
+

(Rθ
tk−1

∆tk)
3

3!
+ · · ·

On the other hand, we have from Eq. (4) that sampling with the Euler approximation in multivariate
Markov chain corresponds to:

Rθ,E
k (tk−1, tk) = p̃tk|tk−1

(z1:Dtk
|z1:Dtk−1

)

=

D∏

d=1

p̃
(d)
tk|tk−1

(z
(d)
tk
|z1:Dtk−1

)

=

D∏

d=1

δ(z
(d)
tk−1

, z
(d)
tk

) +Rθ,d
t (z1:Dtk−1

, z
(d)
tk

)∆tk (31)

= δ(z1:Dtk−1
, z1:Dtk

)
︸ ︷︷ ︸

=I

+ ∆tk
∑

d=1

δ
(
z
1:D\(d)
tk−1

, z
1:D\(d)
tk

)
Rθ,d

t (z1:Dtk−1
, z

(d)
tk

)

︸ ︷︷ ︸
=Rθ

tk−1

+ O(∆t2k),

where in Eq. (31) we have that the approximated transition rate matrix is computed according to
Eq. (13) but using p

θ,(d)
1|t (z

(d)
1 |z1:Dt) instead of p(d)1|t (z

(d)
1 |z1:Dt).

Consequently, we have: ∥∥∥νRθ
k − νRθ,E

k

∥∥∥
TV

= O(∆t2k). (32)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Therefore, we get the intended result by gathering the results from Eq. (28), Eq. (30), and Eq. (32).

∥p(y1:DK)− pdata∥TV ≤
K∑

k=1

(
UkZD∆tk + Bk(ZD∆tk)

2 + O(∆t2k)
)

≤ UZD + B(ZD)2∆t+ O(∆t),

where ∆t = supk ∆tk is the maximum step size,
∑K

k=1 ∆tk = 1, U = supk Uk and B = supk Bk.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

D.2 GRAPH SPECIFIC THEORETICAL RESULTS

We now proceed to the graph specific theoretical results.

D.2.1 ADDITIONAL FEATURES EXPRESSIVITY

This section explains the expressivity of the RRWP features used in DeFoG. We summarize the
findings of Ma et al. (2023) in Proposition 7, who establish that, by encoding random walk proba-
bilities, the RRWP positional features can be used to arbitrarily approximate several essential graph
properties when fed into an MLP. Specifically, point 1 shows that RRWP with K − 1 steps encodes
all shortest path distances for nodes up to K − 1 hops. Additionally, points 2 and 3 indicate that
RRWP features effectively capture diverse graph propagation dynamics.

Proposition 7 (Expressivity of an MLP with RRWP encoding (Ma et al., 2023)). For any n ∈ N,
let Gn ⊆ {0, 1}n×n denote all adjacency matrices of n-node graphs. For K ∈ N, and A ∈ Gn,
consider the RRWP:

P = [I,M, . . . ,MK−1] ∈ Rn×n×K

Then, for any ϵ > 0, there exists an MLP : RK−1 → R acting independently across each n
dimension such that MLP(P) approximates any of the following to within ϵ error:

1. MLP(P)ij ≈ SPDK−1(i, j)

2. MLP(P) ≈∑K−1
k=0 θk(D

−1A)k

3. MLP(P) ≈ θ0I + θ1A

in which SPDK−1(i, j) is the K − 1 truncated shortest path distance, and θk ∈ R are arbitrary
coefficients.

Siraudin et al. (2024) experimentally validate the effectiveness of RRWP features for graph diffusion
models and propose extending their proof to additional graph properties that GNNs fail to capture
(Xu et al., 2019; Morris et al., 2019). For example, an MLP with input Mk with k = N − 1 for an
N -node graph can approximate the connected component of each node and the number of vertices in
the largest connected component. Additionally, RRWP features can be used to capture cycle-related
information.

D.2.2 NODE PERMUTATION EQUIVARIANCE AND INVARIANCE PROPERTIES

The different components of a graph generative model have to respect different graph symmetries.
For example, the permutation equivariance of the model architecture ensures the output changes con-
sistently with any reordering of input nodes, while permutation-invariant loss evaluates the model’s
performance consistently across isomorphic graphs, regardless of node order. We provide a proof
for related properties included in Lemma 1 as follows.

Lemma 1 (Node Permutation Equivariance and Invariance Properties of DeFoG). The DeFoG model
is permutation equivariant, its loss function is permutation invariant, and its sampling probability
is permutation invariant.

Proof. Recall that we denote an undirected graph with N nodes by G = (x1:n:N , e1:i<j:N). Here,
each node variable is represented as xn ∈ X = {1, . . . , X}, and each edge variable as e(ij) ∈ E =
{1, . . . , E}. We also treat G as a multivariate data point consisting of D discrete variables including
all nodes and all edges.

We then consider a permutation function σ, which is applied to permute the graph’s node ordering.
Under this permutation, the index n will be mapped to σ(n). We denote the ordered set of nodes
and edges in the original ordering by x(1:n:N) and e(1:i<j:N), respectively, and by x′(1:n:N) and
e′(1:i<j:N) after permutation. Additionally, x(n) denotes the n-th entry of the corresponding ordered
set (and analogously for edges). By definition, the relationship between the original and permuted
entries of the ordered sets is given by: x′(n) = xσ−1(n) and e′(ij) = e(σ

−1(i),σ−1(j)).

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Permutation Equivariant Model We begin by proving that the DeFoG model is permutation-
equivariant, including the network architecture and the additional features employed.

• Permutation Equivariance of RRWP Features: Recall that the RRWP features until K − 1
steps are defined as RRWP(M) = P = [I,M, . . . ,MK−1] ∈ Rn×n×K , where Mk =
(D−1A)k, 0 ≤ k < K.

We first prove that M(A) = D−1A is permutation equivariant:

M(A′)
(ij)

= (D′−1A′)(ij)

= (1/(D′)(ii))(A′)(ij)

= (1/D(σ−1(i),σ−1(i)))(A)(σ
−1(i),σ−1(j))

= (D−1A)(σ
−1(i),σ−1(j))

= (M(A)′)
(ij)

.

To facilitate notation, in the following proofs, we consider the matrix π ∈ {0, 1}N×N

representing the same permutation function σ, with the permuted features represented as
πMπT . We then prove that RRWP is permutation equivariant.

P (πMπT) = [πIπT , πMπT , . . . , (πMπT)K−1]

= [πIπT , πMπT , . . . , (πMK−1πT)], since πTπ = IN

= π[I,M, . . . ,MK−1]πT

= πP (M)πT .

• Permutation Equivariance of Model Layers: The model layers (MLP, FiLM, PNA, and
self-attention) preserve permutation equivariance, as shown in prior work (e.g., Vignac
et al. (2022) in Lemma 3.1).

Hence, since all of its components are permutation-equivariant, so is the DeFoG full architecture.

Permutation Invariant Loss Function DeFoG’s loss consists of summing the cross-entropy loss
between the predicted clean graph and the true clean graph (node and edge-wise). Vignac et al.
(2022), Lemma 3.2, provide a concise proof that this loss is permutation invariant.

Permutation Invariant Sampling Probability Given a noisy graph G0 sampled from the initial
distribution, p0, the rate matrix at any time point t ∈ [0, 1] defines the denoising process.

Recall that the conditional rate matrix for a variable zt at each time step t is defined as:

R∗
t (zt, zt+dt|z1) =

ReLU
[
∂tpt|1(zt+dt|z1)− ∂tpt|1(zt|z1)

]

Z>0
t pt|1(zt|z1)

.

In our multivariate formulation, we compute this rate matrix independently for each vari-
able inside the graph. We denote the concatenated rate matrix entries for all nodes with
R∗

t (x
′(1:N)
t , x

′(1:N)
t+dt |x

′(1:N)
1).

In the following part, we demonstrate the node permutation equivariance of the rate matrix predicted
by the trained equivariant network, denoted by fθ. The proof for edges follows a similar logic.
Suppose that the noisy graph Gt is permuted, and the permuted graph has nodes denoted by x

′(1:N)
t ,

i.e., x′(n)
t = x

σ−1(n)
t . We have:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

R∗
t

(
x
′(1:N)
t , x

′(1:N)
t+dt |x

′(1:N)
1

)(n)

=R∗
t

(
x
′(n)
t , x

′(n)
t+dt|x

′(n)
1

)

=
ReLU

[
∂tpt|1(x

′(n)
t+dt|x

′(n)
1)− ∂tpt|1(x

′(n)
t |x′(n)

1)
]

Z>0
t pt|1(x

′(n)
t |x′(n)

1)

=
ReLU

[
∂tpt|1(x

σ−1(n)
t+dt |x

′(n)
1)− ∂tpt|1(x

σ−1(n)
t |x′(n)

1)
]

Z>0
t pt|1(x

σ−1(n)
t |x′(n)

1)
, (33)

=
ReLU

[
∂tpt|1(x

σ−1(n)
t+dt |x

σ−1(n)
1)− ∂tpt|1(x

σ−1(n)
t |xσ−1(n)

1)
]

Z>0
t pt|1(x

σ−1(n)
t |xσ−1(n)

1)
, (34)

=R∗
t (x

σ−1(n)
t , x

σ−1(n)
t+dt |x

σ−1(n)
1)

=R∗
t (x

(1:N)
t , x

(1:N)
t+dt |x

(1:N)
1)σ

−1(n).

In Eq. (33), we use the definition of permuted ordered set for x′
t and x′

t+dt, and, in Eq. (34), we use
that fθ is equivariant.

Furthermore, the transition probability at each time step t is given by:

p̃t+∆t|t(G
1:D
t+∆t|G1:D

t) =

D∏

d=1

p̃
(d)
t+∆t|t(G

(d)
t+∆t|G1:D

t)

=

D∏

d=1

(
δ(G

(d)
t , G

(d)
t+∆t) + E

pθ(G
(d)
1 |G1:D

t)

[
R

(d)
t (G

(d)
t , G

(d)
t+∆t|G

(d)
1)

]
∆t

)
.

The transition probability p̃t+∆t|t(G1:D
t+∆t|G1:D

t) is expressed as a product over all nodes and edges,
an operation that is inherently a permutation invariant function with respect to node ordering. Fur-
thermore, as demonstrated earlier, the term E

pθ(G
(d)
1 |G1:Dt)

[
R

(d)
t (G

(d)
t , G

(d)
t+∆t|G

(d)
1)

]
is permuta-

tion equivariant since R
(d)
t and pθt|1(G

(d)
1 |G1:D

t) are both permutation equivariant if model fθ is
permutation equivariant. Consequently, since the composition of these components yields a per-
mutation invariant function, we conclude that the transition probability of the considered CTMC is
permutation invariant.

We finally verify the final sampling probability, p̃1(G
1:D
1), is permutation-invariant. To simu-

late G1:D
1 over K time steps [0 = t0, t1, . . . , tK = 1], we can marginalize it first by taking

the expectation over the state at the last time step tK−1. Specifically, we have p1(G
1:D
1) =

EptK−1
(G1:D

tK−1
)

[
p̃1|tK−1

(G1:D
1 |G1:D

tK−1
)
]
. Since the process is Markovian, this expression can be

sequentially extended over the T steps through successive expectations.

p1(G
1:D
1) = EptK−1

(G1:D
tK−1

)

[
p̃1|tK−1

(G1:D
1 |G1:D

tK−1
)
]

= EptK−2
(G1:D

tK−2
)

[
Ep̃tK−1|tK−2

(G1:D
tK−1

|G1:D
tK−2

)

[
p̃1|tK−1

(G1:D
1 |G1:D

tK−1
)
]]

︸ ︷︷ ︸
p̃1|tK−2

(G1:D
1 |G1:D

tK−2
)

. . .

= Ep0(G1:D
0)

[
Ep̃t1|0(G

1:D
t1

|G1:D
0)

[
. . .Ep̃tK−1|tK−2

(G1:D
tK−1

|G1:D
tK−2

)

[
p̃1|tK−1

(G1:D
1 |G1:D

tK−1
)
]]]

Due to the fact that each function in the sequence is itself permutation-invariant and that the initial
distribution p0(G

1:D
0) is permutation invariant (see Sec. 4.2.1), the composition of permutation-

invariant functions preserves this invariance throughout. Thus, the final sampling probability is
invariant over isomorphic graphs.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

E CONDITIONAL GENERATION

In this section, we describe how to seamlessly integrate DeFoG with existing methods for CTMC-
based conditioning mechanisms. In this setting, all the examples are assumed to have a label. The
objective of conditional generation is to steer the generative process based on that label, so that at
sampling time we can guide the model to which class of samples we are interested in obtaining.

We focus on classifier-free guidance methods, as these models streamline training by avoiding task-
specific classifiers. This approach has been widely adopted for continuous state-space models, e.g.,
for image generation, where it has been shown to enhance the generation quality of the generative
model (Ho & Salimans, 2021; Sanchez et al., 2024). Recently, Nisonoff et al. (2024) extended this
method to discrete flow matching in a principled manner. In this paper, we adopt their formulation.

In this framework, 90% of the training is performed with the model having access to the label of
each noisy sample. This allows the model to learn the conditional rate matrix, Rθ

t (zt, zt+dt|y). In the
remaining 10% of the training procedure, the labels of the samples are masked, forcing the model
to learn the unconditional generative rate matrix Rθ

t (zt, zt+dt). The conditional training enables
targeted and accurate graph generation, while the unconditional phase ensures robustness when no
conditions are specified. The combination of both conditional and unconditional training offers a
more accurate pointer to the conditional distribution, typically described by the distance between
the conditional and unconditional prediction. In our framework, this pointer is defined through the
ratio between the conditional and unconditional rate matrices, as follows:

Rθ,γ
t (x, x̃|y) = Rθ

t (x, x̃|y)γRθ
t (x, x̃)

1−γ = Rθ
t (x, x̃|y)

(
Rθ

t (x, x̃|y)
Rθ

t (x, x̃)

)γ−1

,

where γ denotes the guidance weight. In particular, the case with γ = 1 corresponds to standard
conditional generation, while γ = 0 represents standard unconditional generation. As γ increases,

the conditioning effect described by
(

Rθ
t (x,x̃|y)
Rθ

t (x,x̃)

)γ−1

is strengthened, thereby enhancing the quality
of the generated samples. We observed γ = 2.0 to be the best performing value for our digital
pathology experiments (Sec. 6.4), as detailed in Tab. 6.

Overall, conditional generation is pivotal for guiding models to produce graphs that meet specific
requirements, offering tailored solutions for complex real-world tasks. The flexibility of DeFoG,
being well-suited for conditional generation, marks an important step forward in advancing this
direction, promising greater adaptability and precision in future graph-based applications.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

F EXPERIMENTAL DETAILS

This section provides further details on the experimental settings used in the paper.

F.1 DATASET DETAILS

F.1.1 SYNTHETIC DATASETS

Here, we describe the datasets employed in our experiments and outline the specific metrics used
to evaluate model performance on each dataset. Additional visualizations of example graphs from
each dataset, along with generated graphs, are provided in Figures 15 to 17.

Description We use three synthetic datasets with distinct topological structures. The first is the
planar dataset (Martinkus et al., 2022), which consists of connected planar graphs—graphs that can
be drawn on a plane without any edges crossing. The second dataset, tree (Bergmeister et al., 2023),
contains tree graphs, which are connected graphs with no cycles. Lastly, the Stochastic Block Model
(SBM) dataset (Martinkus et al., 2022) features synthetic clustering graphs where nodes within the
same cluster have a higher probability of being connected.

The planar and tree datasets exhibit well-defined deterministic graph structures, while the SBM
dataset, commonly used in the literature, stands out due to its stochasticity, resulting from the random
sampling process that governs its connectivity.

Metrics We follow the evaluation procedures described by Martinkus et al. (2022); Bergmeister
et al. (2023), using both dataset-agnostic and dataset-specific metrics.

First, dataset-agnostic metrics assess the alignment between the generated and training distributions
for specific general graph properties. We map the graphs to their node degrees (Deg.), clustering
coefficients (Clus.), orbit count (Orbit), eigenvalues of the normalized graph Laplacian (Spec.), and
statistics derived from a wavelet graph transform (Wavelet). We then compute the distance to the
corresponding statistics calculated for the test graphs. For each statistic, we measure the distance
between the empirical distributions of the generated and test sets using Maximum Mean Discrepancy
(MMD). These distances are aggregated into the Ratio metric. To compute this, we first calculate
the MMD distances between the training and test sets for the same graph statistics. The final Ratio
metric is obtained by dividing the average MMD distance between the generated and test sets by
the average MMD distance between the training and test sets. A Ratio value of 1 is ideal, as the
distance between the training and test sets represents a lower-bound reference for the generated
data’s performance.

Next, we report dataset-specific metrics using the V.U.N. framework, which assesses the proportion
of graphs that are valid (V), unique (U), and novel (N). Validity is assessed based on dataset-specific
properties: the graph must be planar, a tree, or statistically consistent with an SBM for the planar,
tree, and SBM datasets, respectively. Uniqueness captures the proportion of non-isomorphic graphs
within the generated graphs, while novelty measures how many of these graphs are non-isomorphic
to any graph in the training set.

F.1.2 MOLECULAR DATASETS

Description Molecular generation is a key real-world application of graph generation. It poses
a challenging task to current graph generation models to their rich chemistry-specific information,
involving several nodes and edges classes and leaning how to generate them jointly, and more com-
plex evaluation pipelines. To assess DeFoG’s performance on molecular datasets, we use three
benchmarks that progressively increase in molecular complexity and size.

First, we use the QM9 dataset (Wu et al., 2018), a subset of GDB9 (Ruddigkeit et al., 2012), which
contains molecules with up to 9 heavy atoms.

Next, we evaluate DeFoG on the Moses benchmark (Polykovskiy et al., 2020), derived from the
ZINC Clean Leads collection (Sterling & Irwin, 2015), featuring molecules with 8 to 27 heavy
atoms, filtered by specific criteria.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Finally, we include the Guacamol benchmark (Brown et al., 2019), based on the ChEMBL 24
database (Mendez et al., 2019). This dataset comprises synthesized molecules, tested against bi-
ological targets, with sizes ranging from 2 to 88 heavy atoms.

Next, we evaluate DeFoG on the Moses benchmark (Polykovskiy et al., 2020), derived from the
ZINC Clean Leads collection (Sterling & Irwin, 2015), which contains molecules ranging from 8 to
27 heavy atoms, filtered according to certain criteria. Lastly, we include the Guacamol benchmark
(Brown et al., 2019), derived from the ChEMBL 24 database (Mendez et al., 2019). This benchmark
contains only molecules that have been synthesized and tested against biological targets, with 2 to
88 heavy atoms.

Metrics For the QM9 dataset, we follow the dataset splits and evaluation metrics outlined by
Vignac et al. (2022). For the Moses and Guacamol benchmarks, we adhere to the training setups
and evaluation metrics proposed by Polykovskiy et al. (2020) and Brown et al. (2019), respectively.
Note that Guacamol includes molecules with charges; therefore, the generated graphs are converted
to charged molecules based on the relaxed validity criterion used by Jo et al. (2022) before being
translated to their corresponding SMILES representations. The validity, uniqueness, and novelty
metrics reported by the Guacamol benchmark are actually V, V.U., and V.U.N., and are referred to
directly as V, V.U., and V.U.N. in the table for clarity.

F.1.3 DIGITAL PATHOLOGY DATASETS

Description Graphs, with their natural ability to represent relational data, are widely used to cap-
ture spatial biological dependencies in tissue images. This approach has proven successful in digital
pathology tasks such as microenvironment classification (Wu et al., 2022), cancer classification (Pati
et al., 2022), and decision explainability (Jaume et al., 2021). More recently, graph-based methods
have been applied to generative tasks (Madeira et al., 2023), and an open-source dataset was made
available by Madeira et al. (2024). This dataset consists of cell graphs where the nodes represent
biological cells, categorized into 9 distinct cell types (node classes), and edges model local cell-cell
interactions (a single class). For further details, refer to Madeira et al. (2024).

Metrics Each cell graph in the dataset can be mapped to a TLS (Tertiary Lymphoid Structure)
embedding, denoted as κ = [κ0, . . . , κ5] ∈ R6, which quantifies its TLS content. A graph G is
classified as having low TLS content if κ1(G) < 0.05, and high TLS content if κ2(G) > 0.05.
Based on these criteria, the dataset is split into two subsets: high TLS and low TLS. In prior work,
TLS generation accuracy was evaluated by training generative models on these subsets separately,
and verifying if the generated graphs matched the corresponding TLS content label. We compute
TLS accuracy as the average accuracy across both subsets. For DeFoG, we conditionally train it
on both subsets simultaneously, as described in Appendix E, and compute TLS accuracy based on
whether the generated graphs adhere to the conditioning label. Additionally, we report the V.U.N.
metric (valid, unique, novel), similar to what is done for the synthetic datasets (see Appendix F.1.1).
A graph is considered valid in this case if it is a connected planar graph, as the graphs in these
datasets were constructed using Delaunay triangulation.

F.2 RESOURCES

The training and sampling times for the different datasets explored in this paper are provided in
Tab. 5. All the experiments in this work were run on a single NVIDIA A100-SXM4-80GB GPU.

F.3 HYPERPARAMETER TUNING

The default hyperparameters for training and sampling for each dataset can be found in the pro-
vided code repository. In Tab. 6, we specifically highlight their values for the proposed training
(see Sec. 4.2.1) and sampling (see Sec. 4.2.2) strategies, and conditional guidance parameter (see
Appendix E). As the training process is by far the most computationally costly stage, we aim to
minimize changes to the default model training configuration. Nevertheless, we demonstrate the
effectiveness of these modifications on certain datasets:

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Table 5: Training and sampling time on each dataset.

Dataset Min Nodes Max Nodes Training Time (h) Graphs Sampled Sampling Time (h)

Planar 64 64 29 40 0.07
Tree 64 64 8 40 0.07
SBM 44 187 75 40 0.07
QM9 2 9 6.5 10000 0.2
QM9(H) 3 29 55 10000 0.4
Moses 8 27 46 25000 5
Guacamol 2 88 141 10000 7
TLS 20 81 38 80 0.15

Table 6: Training and sampling parameters for full-step sampling (500 or 1000 steps for synthetic
and molecular datasets respectively).

Train Sampling Conditional

Dataset Initial Distribution Train Distortion Sample Distortion ω (Target Guidance) η (Stochasticity) Exact Exp γ

Planar Marginal Identity Polydec 0.05 50 True —
Tree Marginal Polydec Polydec 0.0 0.0 False —
SBM Absorbing Identity Identity 0.0 0.0 False —
QM9 Marginal Identity Polydec 0.0 0.0 False —
QM9(H) Marginal Identity Polydec 0.05 0.0 False —
Moses Marginal Polydec Polydec 0.5 200 False —
Guacamol Marginal Polydec Polydec 0.1 300 False —
TLS Marginal Identity Polydec 0.05 0.0 False 2.0

1. SBM performs particularly well with absorbing distributions, likely due to its distinct clus-
tering structure, which differs from other graph properties. Additionally, when tested with
a marginal model, SBM can achieve a V.U.N. of 80.5% and an average ratio of 2.5, which
also reaches state-of-the-art performance.

2. Guacamol and MOSES are trained directly with polydec distortion to accelerate conver-
gence, as these datasets are very large and typically require a significantly longer training
period.

3. For the tree dataset, standard training yielded suboptimal results (85.3% for V.U.N. and 1.8
for average ratio). However, a quick re-training using polydec distortion achieved state-of-
the-art performance with 7 hours of training.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

(a) Planar dataset.

(b) Tree dataset.

(c) SBM dataset.

Figure 15: Uncurated set of dataset graphs (top) and generated graphs by DeFoG (bottom) for the
synthetic datasets.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

(a) QM9 dataset.

(b) MOSES dataset.

(c) Guacamol dataset.

Figure 16: Uncurated set of dataset graphs (top) and generated graphs by DeFoG (bottom) for the
molecular datasets.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

(a) Low TLS dataset.

(b) High TLS dataset.

Figure 17: Uncurated set of dataset graphs (top) and generated graphs by DeFoG (bottom) for the
TLS dataset.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

G ADDITIONAL RESULTS

In this section, we present additional experimental results. We begin with the complete tables show-
casing results for synthetic datasets in Appendix G.1. Next, Appendix G.2 focuses on molecular
generation tasks, including results for the QM9 dataset and the full tables for MOSES and Gua-
camol. Finally, in Appendix G.3, we analyze the time complexity of various additional features that
enhance expressivity in graph diffusion models.

G.1 SYNTHETIC GRAPH GENERATION

In Tab. 7, we present the full results for DeFoG for the three different datasets: planar, tree, and
SBM.

Table 7: Graph Generation Performance on Synthetic Graphs. We present the results of DeFoG
across five sampling runs, each generating 40 graphs, reported as mean ± standard deviation. The
remaining values are obtained from Bergmeister et al. (2023). Additionally, we include results for
Cometh (Siraudin et al., 2024) and DisCo (Xu et al., 2024). For the average ratio computation, we
adhere to the method outlined by Bergmeister et al. (2023), excluding statistics where the training
set MMD is zero.

Planar Dataset

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑
Train set 0.0002 0.0310 0.0005 0.0038 0.0012 1.0 100 100 0.0 0.0

GraphRNN (You et al., 2018) 0.0049 0.2779 1.2543 0.0459 0.1034 490.2 0.0 100 100 0.0
GRAN (Liao et al., 2019) 0.0007 0.0426 0.0009 0.0075 0.0019 2.0 97.5 85.0 2.5 0.0
SPECTRE (Martinkus et al., 2022) 0.0005 0.0785 0.0012 0.0112 0.0059 3.0 25.0 100 100 25.0
DiGress (Vignac et al., 2022) 0.0007 0.0780 0.0079 0.0098 0.0031 5.1 77.5 100 100 77.5
EDGE (Chen et al., 2023) 0.0761 0.3229 0.7737 0.0957 0.3627 431.4 0.0 100 100 0.0
BwR (Diamant et al., 2023) 0.0231 0.2596 0.5473 0.0444 0.1314 251.9 0.0 100 100 0.0
BiGG (Dai et al., 2020) 0.0007 0.0570 0.0367 0.0105 0.0052 16.0 62.5 85.0 42.5 5.0
GraphGen (Goyal et al., 2020) 0.0328 0.2106 0.4236 0.0430 0.0989 210.3 7.5 100 100 7.5
HSpectre (one-shot) (Bergmeister et al., 2023) 0.0003 0.0245 0.0006 0.0104 0.0030 1.7 67.5 100 100 67.5
HSpectre (Bergmeister et al., 2023) 0.0005 0.0626 0.0017 0.0075 0.0013 2.1 95.0 100 100 95.0
GruM(Jo et al., 2024) 0.0004 0.0301 0.0002 0.0104 0.0020 1.8 — — — 90.0
CatFlow(Eijkelboom et al., 2024) 0.0003 0.0403 0.0008 — — — — — — 80.0
DisCo (Xu et al., 2024) 0.0002 ±0.0001 0.0403 ±0.0155 0.0009 ±0.0004 — — — 83.6 ±2.1 100.0 ±0.0 100.0 ±0.0 83.6 ±2.1

Cometh - PC (Siraudin et al., 2024) 0.0006 ±0.0005 0.0434 ±0.0093 0.0016 ±0.0006 0.0049±0.0008 — — 99.5 ±0.9 100.0 ±0.0 100.0 ±0.0 99.5 ±0.9

DeFoG 0.0005 ±0.0002 0.0501 ±0.0149 0.0006 ±0.0004 0.0072 ±0.0011 0.0014 ±0.0002 1.6 ±0.4 99.5 ±1.0 100.0 ±0.0 100.0 ±0.0 99.5 ±1.0

Tree Dataset

Train set 0.0001 0.0000 0.0000 0.0075 0.0030 1.0 100 100 0.0 0.0

GRAN (Liao et al., 2019) 0.1884 0.0080 0.0199 0.2751 0.3274 607.0 0.0 100 100 0.0
DiGress (Vignac et al., 2022) 0.0002 0.0000 0.0000 0.0113 0.0043 1.6 90.0 100 100 90.0
EDGE (Chen et al., 2023) 0.2678 0.0000 0.7357 0.2247 0.4230 850.7 0.0 7.5 100 0.0
BwR (Diamant et al., 2023) 0.0016 0.1239 0.0003 0.0480 0.0388 11.4 0.0 100 100 0.0
BiGG (Dai et al., 2020) 0.0014 0.0000 0.0000 0.0119 0.0058 5.2 100 87.5 50.0 75.0
GraphGen (Goyal et al., 2020) 0.0105 0.0000 0.0000 0.0153 0.0122 33.2 95.0 100 100 95.0
HSpectre (one-shot) (Bergmeister et al., 2023) 0.0004 0.0000 0.0000 0.0080 0.0055 2.1 82.5 100 100 82.5
HSpectre (Bergmeister et al., 2023) 0.0001 0.0000 0.0000 0.0117 0.0047 4.0 100 100 100 100
DeFoG 0.0002 ±0.0001 0.0000 ±0.0000 0.0000 ±0.0000 0.0108 ±0.0028 0.0046 ±0.0004 1.6 ±0.4 96.5 ±2.6 100.0 ±0.0 100.0 ±0.0 96.5 ±2.6

Stochastic Block Model (nmax = 187, navg = 104)

Model Deg. ↓ Clus. ↓ Orbit ↓ Spec. ↓ Wavelet ↓ Ratio ↓ Valid ↑ Unique ↑ Novel ↑ V.U.N. ↑
Training set 0.0008 0.0332 0.0255 0.0027 0.0007 1.0 85.9 100 0.0 0.0

GraphRNN (You et al., 2018) 0.0055 0.0584 0.0785 0.0065 0.0431 14.7 5.0 100 100 5.0
GRAN (Liao et al., 2019) 0.0113 0.0553 0.0540 0.0054 0.0212 9.7 25.0 100 100 25.0
SPECTRE (Martinkus et al., 2022) 0.0015 0.0521 0.0412 0.0056 0.0028 2.2 52.5 100 100 52.5
DiGress (Vignac et al., 2022) 0.0018 0.0485 0.0415 0.0045 0.0014 1.7 60.0 100 100 60.0
EDGE (Chen et al., 2023) 0.0279 0.1113 0.0854 0.0251 0.1500 51.4 0.0 100 100 0.0
BwR (Diamant et al., 2023) 0.0478 0.0638 0.1139 0.0169 0.0894 38.6 7.5 100 100 7.5
BiGG (Dai et al., 2020) 0.0012 0.0604 0.0667 0.0059 0.0370 11.9 10.0 100 100 10.0
GraphGen (Goyal et al., 2020) 0.0550 0.0623 0.1189 0.0182 0.1193 48.8 5.0 100 100 5.0
HSpectre (one-shot) (Bergmeister et al., 2023) 0.0141 0.0528 0.0809 0.0071 0.0205 10.5 75.0 100 100 75.0
HSpectre(Bergmeister et al., 2023) 0.0119 0.0517 0.0669 0.0067 0.0219 10.2 45.0 100 100 45.0
GruM(Jo et al., 2024) 0.0015 0.0589 0.0450 0.0077 0.0012 1.1 — — — 85.0
CatFlow(Eijkelboom et al., 2024) 0.0012 0.0498 0.0357 — — — — — — 85.0
DisCo (Xu et al., 2024) 0.0006 ±0.0002 0.0266 ±0.0133 0.0510 ±0.0128 — — — 66.2 ±1.4 100.0 ±0.0 100.0 ±0.0 66.2 ±1.4

Cometh (Siraudin et al., 2024) 0.0020 ±0.0003 0.0498 ±0.0000 0.0383 ±0.0051 0.0024 ±0.0003 — — 75.0 ±3.7 100.0 ±0.0 100.0 ±0.0 75.0 ±3.7

DeFoG 0.0006 ±0.0023 0.0517 ±0.0012 0.0556 ±0.0739 0.0054 ±0.0012 0.0080 ±0.0024 4.9 ±1.3 90.0 ±5.1 90.0 ±5.1 90.0 ±5.1 90.0 ±5.1

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

G.2 MOLECULAR GRAPH GENERATION

For the molecular generation tasks, we begin by examining the results for QM9, considering both
implicit and explicit hydrogens (Vignac et al., 2022). In the implicit case, hydrogen atoms are
inferred to complete the valencies, while in the explicit case, hydrogens must be explicitly modeled,
making it an inherently more challenging task. The results are presented in Tab. 8. Notably, DeFoG
achieves training set validity in both scenarios, representing the theoretical maximum. Furthermore,
DeFoG consistently outperforms other models in terms of FCD. Remarkably, even with only 10%
of the sampling steps, DeFoG surpasses many existing methods.

Table 8: Molecule generation on QM9. We present the results over five sampling runs of 10000
generated graphs each, in the format mean ± standard deviation.

Without Explicit Hydrogenes With Explicit Hydrogenes

Model Valid ↑ Unique ↑ FCD ↓ Valid ↑ Unique ↑ FCD ↓
Training set 99.3 99.2 0.03 97.8 99.9 0.01

SPECTRE (Martinkus et al., 2022) 87.3 35.7 — — — —
GraphNVP (Madhawa et al., 2019) 83.1 99.2 — — — —
GDSS (Jo et al., 2022) 95.7 98.5 2.9 — — —
DiGress (Vignac et al., 2022) 99.0±0.0 96.2±0.1 — 95.4±1.1 97.6±0.4 —
GruM(Jo et al., 2024) 99.2 96.7 0.11 — — —
DisCo (Xu et al., 2024) 99.3±0.6 — — — — —
Cometh (Siraudin et al., 2024) 99.6±0.1 96.8±0.2 0.25 ±0.01 — — —

DeFoG (# sampling steps = 50) 98.9±0.1 96.2±0.2 0.26±0.00 97.1±0.0 94.8±0.0 0.31±0.00

DeFoG (# sampling steps = 500) 99.3±0.0 96.3±0.3 0.12±0.00 98.0±0.0 96.7±0.0 0.05±0.00

Additionally, we provide the complete version of Tab. 2, presenting the results for MOSES and
Guacamol separately in Tab. 9 and Tab. 10, respectively. We include models from classes beyond
diffusion models to better contextualize the performance achieved by DeFoG.

Table 9: Molecule generation on MOSES.

Model Class Val.↑ Unique. ↑ Novelty↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
Training set — 100.0 100.0 0.0 100.0 0.01 0.64 99.1

VAE (Kingma, 2013) Smiles 97.7 99.8 69.5 99.7 0.57 0.58 5.9
JT-VAE (Jin et al., 2018) Fragment 100.0 100.0 99.9 97.8 1.00 0.53 10.0
GraphInvent (Mercado et al., 2021) Autoreg. 96.4 99.8 —- 95.0 1.22 0.54 12.7
DiGress (Vignac et al., 2022) One-shot 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DisCo (Xu et al., 2024) One-shot 88.3 100.0 97.7 95.6 1.44 0.50 15.1
Cometh (Siraudin et al., 2024) One-shot 90.5 99.9 92.6 99.1 1.27 0.54 16.0

DeFoG (# sampling steps = 50) One-shot 83.9 99.9 96.9 96.5 1.87 0.50 23.5
DeFoG (# sampling steps = 500) One-shot 92.8 99.9 92.1 98.9 1.95 0.55 14.4

Table 10: Molecule generation on GuacaMol. We present the results over five sampling runs of
10000 generated graphs each, in the format mean ± standard deviation.

Model Class Val. ↑ V.U. ↑ V.U.N. ↑ KL div↑ FCD↑
Training set — 100.0 100.0 0.0 99.9 92.8

LSTM (Graves & Graves, 2012) Smiles 95.9 95.9 87.4 99.1 91.3
NAGVAE (Kwon et al., 2020) One-shot 92.9 88.7 88.7 38.4 0.9
MCTS (Brown et al., 2019) One-shot 100.0 100.0 95.4 82.2 1.5
DiGress (Vignac et al., 2022) One-shot 85.2 85.2 85.1 92.9 68.0
DisCo (Xu et al., 2024) One-shot 86.6 86.6 86.5 92.6 59.7
Cometh (Siraudin et al., 2024) One-shot 98.9 98.9 97.6 96.7 72.7

DeFoG (# steps = 50) One-shot 91.7 91.7 91.2 92.3 57.9
DeFoG (# steps = 500) One-shot 99.0 99.0 97.9 97.7 73.8

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Table 11: Performance comparison of RRWP-based graph encoding within the DiGress framework.

Method Planar SBM QM9

V.U.N. ↑ Ratio ↓ V.U.N. ↑ Ratio ↓ Valid ↑ Unique ↑ FCD ↓
DiGress 77.5 5.1 60.0 1.7 99.0± 0.0 96.2± 0.1 -
DiGress (RRWP) 90.0 4.0 70.0 1.7 99.1± 0.1 96.6± 0.2 -
DeFoG (RRWP, 50 steps) 95.0± 3.2 3.2± 1.1 86.5± 5.3 2.2± 0.3 98.9± 0.1 96.2± 0.2 0.26± 0.00
DeFoG (RRWP) 99.5± 1.0 1.6± 0.4 90.0± 5.1 4.9± 1.3 99.3± 0.0 96.3± 0.3 0.12± 0.00

G.3 IMPACT OF ADDITIONAL FEATURES

In graph diffusion methods, the task of graph generation is decomposed into a mapping of a graph
to a set of marginal probabilities for each node and edge. This problem is typically addressed using
a Graph Transformer architecture, which is augmented with additional features to capture structural
aspects that the base architecture might struggle to model effectively (Vignac et al., 2022; Xu et al.,
2024; Siraudin et al., 2024) otherwise. In this section, we evaluate the impact of using RRWP
encodings as opposed to the spectral and cycle encodings (up to 6-cycles) proposed in DiGress
(Vignac et al., 2022).

In Tab. 11, we present a performance comparison of these two variants across three datasets: QM9,
Planar, and SBM. The results show that RRWP achieves comparable or superior performance within
the DiGress framework, validating its effectiveness as a graph encoding method. Notably, despite
these improvements, DiGress’s performance remains significantly below that of DeFoG on the Pla-
nar and SBM datasets, while achieving similar validity and uniqueness on the QM9 dataset.

To further demonstrate the impact of using RRWP on sampling efficiency, we compare the perfor-
mances of DeFoG, DiGress, and DiGress augmented with RRWP (replacing the original additional
features) across a varying number of sampling steps. These results are shown in Figure 18.

5 10 50 100 1000
Steps

60

75

90

V
al

id
it

y
(Q

M
9)

DiGress

DiGress(RRWP)

DeFoG

DiGress

DiGress(RRWP)

DeFoG

5 10 50 100 500
Steps

30

45

60

75

N
ov

el
ty

(Q
M

9)

DiGress

DiGress(RRWP)

DeFoG

DiGress

DiGress(RRWP)

DeFoG

(a) QM9 dataset.

5 10 50 100 1000
Steps

0.0

0.3

0.6

0.9

V
.U

.N
.

(P
la

n
ar

)

5 10 50 100 1000
Steps

6

40

251

R
at

io
(P

la
n

ar
)

(b) Planar dataset.

5 10 50 100 1000
Steps

0.00

0.25

0.50

0.75

V
.U

.N
.

(S
B

M
)

5 10 50 100 1000
Steps

3

10

32

R
at

io
(S

B
M

)

(c) SBM dataset.

Figure 18: Impact of RRWP features for sampling efficiency.
We observe that, while RRWP provides improvements on the Planar and SBM datasets with fewer
generation steps, it is still significantly outperformed by the optimized DeFoG framework. This
highlights that although RRWP is an efficient and effective graph encoding method, the primary

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

Table 12: Computation time for different additional features. The RRWP features are computed
with 12 steps.

Dataset Min Nodes Max Nodes RRWP (ms) Cycles (ms) Spectral (ms)

Moses 8 27 0.6 1.2 2.5
Planar 64 64 0.5 1.2 93.0
SBM 44 187 0.6 2.7 146.9

performance gains of DeFoG stem from its continuous-time formulation featuring fully decoupled
training and sampling stages.

We then perform a time complexity analysis of these methods. While both cycle and RRWP encod-
ings primarily involve matrix multiplications, spectral encodings require more complex algorithms
for eigenvalue and eigenvector computation. As shown in Tab. 12, cycle and RRWP encodings
are more computationally efficient, particularly for larger graphs where eigenvalue computation be-
comes increasingly costly. These results also support the use of RRWP encodings over the combined
utilization of cycle and spectral features.

For the graph sizes considered in this work, the additional feature computation time remains rela-
tively small compared to the model’s forward pass and backpropagation. However, as graph sizes
increase - a direction beyond the scope of this paper - this computational gap could become signifi-
cant, making RRWP a suitable encoding for scalable graph generative models.

G.4 COMPUTATION COST FOR EXACT EXPECTATION OF RATE MATRIX

The proposed denoising process iteratively applies the dimension-independent Euler step described
in Eq. (4). This requires computing the expectation Epθ,d

1|t (z
d
1 |z1:D

t)

[
Rd

t (z
d
t , z

d
t+∆t|zd1)

]
. Two proce-

dures are available for this computation: an approximated version, by sequential sampling of con-
ditional distributions, as suggested by Campbell et al. (2024), and an exact version, by evaluating a
weighted sum over possible rate matrices:

Epθ,d
1|t (z

d
1 |z1:D

t)

[
Rd

t (z
d
t , z

d
t+∆t|zd1)

]
=

∑

zd
1

pθ,d1|t (z
d
1 |z1:Dt)Rd

t (z
d
t , z

d
t+∆t|zd1).

This exact computation involves a sweep over all possible states of zd1 . For graphs, this corre-
sponds to iterating over all possible node and edge states at each denoising step. However, since
the denoising neural network computes pθ,d1|t for all zd1 in a single forward pass (outputting marginal
distributions for each node and edge), the exact expectation does not incur additional network calls.

In our experiments, the cardinalities of the node (X) and edge (E) state spaces are relatively small:

• Synthetic datasets: X = 1, E = 2;
• Molecular datasets: X = 4, E = 5;
• Digital Pathology datasets: X = 2, E = 9.

Tab. 13 summarizes the runtimes for representative datasets. These results show that the computa-
tional overhead of the exact expectation in our setting is minimal. Importantly, as anticipated, the
overhead increases with the cardinalities of the state spaces.

Table 13: Runtimes for approximate and exact expectation computations across representative
datasets. Results are reported in the format mean ± standard deviation over 5 runs.

Dataset Approximate (s) Exact (s) Overhead (%)

Planar (Synthetic) 117.92± 0.74 119.83± 0.40 +1.62
QM9 (Molecular) 269.65± 0.90 275.18± 0.86 +2.05
Digital Pathology 629.00± 30.57 667.45± 32.84 +6.11

55

	Introduction
	Related Work
	Discrete Flow Matching
	Continuous-Time Markov Chains and Discrete Flow Matching
	Modeling

	Discrete Flow Matching for Graphs
	Adaptation of DFM to Graphs
	Exploring DeFoG's Design Space
	Training Stage Optimization
	Sampling Stage Optimization

	Theoretical Guarantees
	Experiments
	Synthetic Graph Generation
	Molecular Graph Generation
	Efficiency Improvement
	Conditional Generation

	Conclusion
	Appendix
	 Appendix
	Contextualizing Related Research
	Overview of Compared Methods
	DeFoG and Graph Diffusion Models
	From Continuous to Discrete State-spaces
	From Discrete to Continuous time
	From Continuous-Time Discrete Diffusion to Discrete Flow Matching

	Sample Optimization
	Time Distortion Functions
	Target Guidance
	Detailed Balance, Prior Incorporation, and Stochasticity
	Hyperparameter Optimization Pipeline
	Understanding the Sampling Dynamics of R*t
	Performance Improvement for Undertrained Models

	Train Optimization
	Initial Distributions
	Interaction between Sample and Train Distortions

	Theoretical Results
	Domain Agnostic Theoretical Results
	Bounded Estimation Error of Unconditional Multivariate Rate Matrix
	Bounded Deviation of the Generated Distribution

	Graph Specific Theoretical Results
	Additional Features Expressivity
	Node Permutation Equivariance and Invariance Properties

	Conditional Generation
	Experimental Details
	Dataset Details
	Synthetic Datasets
	Molecular datasets
	Digital Pathology Datasets

	Resources
	Hyperparameter Tuning

	Additional Results
	Synthetic Graph Generation
	Molecular Graph Generation
	Impact of Additional Features
	Computation Cost for Exact Expectation of Rate Matrix

