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Abstract

Pattern recognition is a fundamental task in continuous sensing applications, but
real-world scenarios often experience distribution shifts that necessitate learning
generalizable representations for such tasks. This challenge is exacerbated with
time-series data, which also exhibit inherent nonstationarity—variations in statisti-
cal and spectral properties over time. In this work, we offer a fresh perspective on
learning generalizable representations for time-series classification by considering
the phase information of a signal as an approximate proxy for nonstationarity
and propose a phase-driven generalizable representation learning framework for
time-series classification, PhASER. It consists of three key elements: 1) Hilbert
transform-based augmentation, which diversifies nonstationarity while preserving
task-specific discriminatory semantics, 2) separate magnitude-phase encoding,
viewing time-varying magnitude and phase as independent modalities, and 3)
phase-residual feature broadcasting, integrating 2D phase features with a residual
connection to the 1D signal representation, providing inherent regularization to
improve distribution-invariant learning. Extensive evaluations on five datasets
from sleep-stage classification, human activity recognition, and gesture recognition
against 13 state-of-the-art baseline methods demonstrate that PhASER consistently
outperforms the best baselines by an average of 5% and up to 11% in some cases.
Additionally, the principles of PhASER can be broadly applied to enhance the
generalizability of existing time-series representation learning models.

1 Introduction

Time-series data are crucial in many real-world applications, such as continuous monitoring for
human activity recognition [26], gesture identification [37], and sleep tracking [18]. They often
exhibit non-stationarity, where statistical and spectral properties evolve over time. Another challenge
is domain shift, where the data-generating process changes due to sensor type, sub-population shifts,
or environmental variations, degrading model performance on unseen distributions. Thus, developing
methods for generalizable pattern recognition in nonstationary time-series classification is essential.

Most existing methods [40, 41, 11] address distribution shifts via domain adaptation, assuming
accessible target domain samples, which may not always be feasible. Some works [6, 50] apply
standard domain generalization (DG) algorithms [47, 42, 38] to temporally-varying time-series
data, but performance gaps remain compared to visual data. Recent DG research for time series
explores latent-domain characterization [33, 5], augmentation strategies [16, 27], preservation of non-
stationarity dictionaries [29, 21], and spectral features [11, 52, 19]. Limitations persist: latent-domain
methods rely on assumptions about latent domains; augmentation (shift, jittering, masking) may not
generalize and can distort signals, e.g., physiological signals; spectral perturbations are often heavily
parametric [48] and application-specific; methods preserving non-stationarity typically maintain the
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Figure 1: PhASER’s components: (I) Hilbert transform-based phase augmentation, (II) separate encoding of time-varying phase and magnitude
from STFT using FMag and FPha, (III) phase-residual broadcasting network including depth-wise feature encoder FDep, temporal encoder
FTem, and incorporation of the phase-projection head output gRes for broadcasting (with annotated intermediate feature map dimensions), and
(IV) task-specific classification encoder gCls.

same input-output space, unsuitable for multivariate tasks; frequency-domain approaches overlook
time-varying spectral responses; and many methods require domain labels, which are costly and
intrusive [51, 2]. Achieving generalizable time-series classification without unseen data or domain
labels remains a critical challenge.

We introduce Phase-Augmented Separate Encoding and Residual (PhASER), a framework for learning
generalizable representations for nonstationary time-series classification without domain labels or
explicit sub-domain characterization. We leverage phase information as a proxy for non-stationarity,
since it captures local time shifts and time-localized frequency variations characteristic of nonstation-
ary signals [24, 36]. PhASER’s phase-anchored components include three key modules (Figure 1):
(i) intra-instance phase-shift augmentation via the non-parametric Hilbert Transform (HT) [22] to
diversify source data; (ii) separate encoding of time-varying magnitude and phase for richer time-
frequency integration; and (iii) a broadcasting mechanism with a non-linear residual connection from
the phase embedding to the backbone to learn generalizable [10, 34] task-specific features [12]. Eval-
uations on 5 datasets against 13 baselines demonstrate PhASER’s superiority, including in challenging
one-to-many domain transfer scenarios.

2 Approach

Given a dataset S = {(xi, yi)}Mi=1 of nonstationary time series from multiple unknown source
domains S = {Si}NS

i=1, where each series xi ∈ RV×T can be decomposed as Prx∼Dx(x)(t) =
µt + σt × z with time-varying statistics satisfying ∃t, [µt ̸= µt+L] ∨ [σt ̸= σt+L] for some L ≥ 1,
our objective is to train a model F ◦ g : XS → YS (feature extractor + classifier) that minimizes
the expected loss on any unseen target domain, i.e., minE(x,y)∼DU

[L(g(F (x)), y)]. The time series
samples are nonstationary, the source domains have distinct distributions, and the domain identities
are unknown.

Hilbert Transform based Phase Augmentation. Non-task-specific non-stationarity degrades a
model’s generalization (Figure 3 in the Appendix), and the signal’s phase encodes its non-stationarity
(Figure 4 in the Appendix). Motivated by this, we introduce an intra-sample phase-augmentation tech-
nique that diversifies non-stationarity while preserving the original signal’s discriminatory properties.
Unlike standard augmentations, we shift a signal’s phase while keeping its magnitude intact, providing
an augmented view. For a real-valued time series x = {x0, . . . , xt, . . .} ∈ R with xt = x(t), its
Hilbert Transform (HT) is x̂(t) = HT(x(t)) =

∫∞
−∞ x(τ) 1

π(t−τ)dτ , which in the frequency domain
is x̂(t) = F−1{−i · sgn(ξ)F{x(t)}(ξ)}, where F ,F−1 are the Fourier transform and its inverse,
and sgn(·) is the sign function. HT induces a phase shift of −π/2, generating an out-of-phase signal
x̂. Applying this across all feature dimensions, we merge the augmented set Ŝ with the original S to
form S′ = Ŝ ∪ S; thereafter, no distinction is made between samples from Ŝ or S.

Magnitude-Phase Separate Encoding. After augmenting the source domain with phase-shifts via
HT, we identify optimal ways to encode time series for generalization. Unlike most methods that
separate time and frequency information, we treat magnitude and phase as distinct modalities. We
adopt STFT instead of DFT, as STFT captures time-varying signals by applying DFT within a moving
window. For a discrete time series x[n] sampled from x(t) with length N , STFT is fx[n, k] =∑n

m=n−(W−1) w[n−m]x[m]eiξkm, with ξk = 2πk/Ξ and w[n] a Hanning window w[n] = 0.5(1−
cos 2πn

W−1 ). Window lengths Wi = 2pi ≤ Ξ, pi ∼ U ∈ Z+
0 , i ∈ [1, V ] are randomly sampled
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per feature. Magnitude and phase are computed as Mag(x) =
√
Re(fx[n, k])2 + Im(fx[n, k])2

and Pha(x) = arctan 2(Im(fx[n, k]),Re(fx[n, k])), forming inputs to separate encoders FMag

and FPha. To enhance generalization, we apply sub-feature normalization [4] over B sub-feature
spaces: FMag(x)b := (FMag(x)b − FMag(x)b)/σ(FMag(x)b), and similarly for FPha(x). Finally,
both embeddings are fused along the variate axis via 2D convolutions in FFus, yielding rFus =
FFus(FMag(x), FPha(x)) for downstream modules.

Intuition for treating phase and magnitude separately. Prior studies [11, 19] high-
light the importance of spectral input for generalizable learning. To investigate op-
timal time-frequency representations, we perform a small-scale study on the WISDM
HAR dataset [25], comparing four configurations: magnitude-only, phase-only, concate-
nated magnitude and phase, and separate encoders for magnitude and phase (Table 1).

Table 1: Comparison of various time-
frequency input configurations.

Input Modality Accuracy

Only Magnitude (Mag) 0.81 ± 0.03
Only Phase (Pha) 0.62 ± 0.03
Mag-Pha Concatenate 0.73 ± 0.03
Mag-Pha Separate 0.85 ± 0.01

Results show that magnitude-only features are more discriminative
than phase-only (0.81 vs. 0.62 accuracy), while phase alone still ex-
ceeds chance accuracy(0.17), indicating the presence of task-relevant
but time-varying information. Concatenating magnitude and phase
does not improve performance, whereas separate encoding with late
fusion yields the best accuracy (0.85), suggesting that independently
extracting high-level features from each modality both captures dis-
criminative content and leverages phase as an approximate proxy for
non-stationarity. This motivates our approach of separate magnitude
and phase encoders in PhASER.

Phase-Residual Feature Broadcasting. We propose a phase-based broadcasting approach for
domain-generalizable representation learning. Fused embeddings rFus are first transformed by
a depthwise feature encoder FDep into 1D feature maps rDep along the temporal dimension:
RC(rFus)×D(rFus)×T (rFus) → RC(rFus)×1×T (rFus), where C(·), D(·), T (·) denote channel, feature,
and temporal dimensions. FDep uses convolution layers followed by average pooling to unify features
at each temporal index. A sequence-to-sequence temporal encoder FTem is applied to rDep to capture
temporal dependencies; here, convolution layers are used, but other architectures are compatible (see
Section B). This separation allows FDep to specialize in spectral attributes while FTem models global
temporal structure. We introduce a non-linear projection gRes of FPha(x) as a shortcut to match
FTem’s output dimensions: RC(FPha(x))×D(FPha(x))×T (FPha(x)) → RC(rFus)×D(FPha(x))×T (rFus).
The final representation is obtained by broadcasting: r = FTem(rDep) + gRes(FPha(x)), preserving
discriminatory characteristics under non-stationarity.

Figure 2: Comparison of generalization per-
formance for different residual broadcast-
ing features.

Intuition for phase-residual broadcasting. We conduct a controlled
experiment comparing different residual broadcasting strategies:
no residual, using magnitude (FMag), using phase (FPha), and us-
ing fused magnitude and phase (FFus). We evaluate in-domain
(held-out source samples) and out-of-domain (target domain) per-
formance on the Gesture Recognition (GR) dataset (Figure 2). As
expected, the magnitude residual performs well in-domain but shows
a larger drop in OOD accuracy, suggesting overfitting to non-task-
specific, in-domain non-stationarity. In contrast, using a phase resid-
ual—especially after diversifying phase via the proposed augmentation—helps regularize the model
against non-task-specific non-stationarity, improving generalization.

Finally, semantic distinction is optimized via Cross-Entropy Loss applied to a classification head
gCls: LCE = 1

NB

∑NB

i=1 yi log gCls(ri), where NB is the mini-batch size and yi is the one-hot label.

3 Experiments

We evaluate PhASER against 13 state-of-the-art methods, including a large foundation time-series
model, on five datasets across three applications, using per-segment accuracy. Implementation details
are in Section D.

Datasets. We evaluate on three applications: Human Activity Recognition (HAR), Sleep-Stage Clas-
sification (SSC), and Gesture Recognition (GR). For HAR, we use three benchmarks: WISDM [25]
(36 users, 3 univariate channels), UCIHAR [3] (30 users, 9 channels), and HHAR [44] (9 users,

3



3 channels). All contain 6 activities with sequence length 128. For SSC, we use PhysioBank [8],
single-channel EEG from 20 healthy individuals (sequence length 3000). For GR, we use EMG
data [31] (8 channels, 6 gestures, sequence length 200) prepared as in Lu et al. [32]. HAR and SSC
follow ADATime [40]. Dataset statistics are in Table 7, with class distributions (Figure D.1) and
metric trends for WISDM (Figure D.1) motivating our choice of AUC and accuracy [40, 32].

Experimental Setup. Each dataset is partitioned into four non-overlapping cross-domain scenar-
ios [33, 40]. We reserve 20% of training data for validation and report mean results over three trials
in the main text; full statistics are in Section E.

Comparison Baselines. We compare against: domain generalization methods ERM, DANN [7],
GroupDRO [42], RSC [14], and ANDMask [38] (DomainBed [9]); audio DG method BCResNet [20];
time-series representation learner MAPU [41]; deep classifier InceptionTime [15] [35]; time-series
DG method Diversify [32]; foundation model Chronos [1]; forecasting models NSTrans [29] and
Koopa [30]; and statistical normalization RevIN [21] integrated with ours (Ours+RevIN). Default
setups are used with minimal modifications; details are in Sections D.2 and D.4.
Table 2: Average cross-person classification accuracy per dataset.
Best in bold, second-best underlined.

Method WISDM HHAR UCIHAR Sleep-Stage Gesture

ERM 0.53 0.47 0.70 0.47 0.54
GroupDRO 0.66 0.59 0.87 0.57 0.48
DANN 0.68 0.68 0.83 0.65 0.64
RSC 0.66 0.48 0.78 0.49 0.59
ANDMask 0.71 0.66 0.80 0.54 0.45
InceptionTime 0.81 0.80 0.88 0.76 0.70
BCResNet 0.79 0.70 0.80 0.80 0.64
NSTrans 0.40 0.24 0.42 0.39 0.33
Koopa 0.63 0.69 0.78 0.56 0.58
Ours+RevIN 0.85 0.85 0.94 0.80 0.76
MAPU 0.75 0.76 0.83 0.68 0.68
Diversify 0.82 0.77 0.89 0.73 0.75
Chronos 0.66 0.72 0.61 0.51 0.51
Ours 0.85 0.87 0.95 0.82 0.76

Table 3: Classification accuracy with Source 0–8 for one-person-to-
another generalization on HHAR; best in bold, second-best under-
lined.

Method 0 1 2 3 4 5 6 7 8 Avg.

ERM 0.27 0.40 0.41 0.44 0.42 0.44 0.45 0.44 0.48 0.42
GroupDRO 0.33 0.53 0.38 0.48 0.47 0.51 0.47 0.48 0.49 0.46
DANN 0.32 0.44 0.42 0.45 0.42 0.48 0.49 0.45 0.51 0.44
RSC 0.27 0.45 0.38 0.45 0.40 0.47 0.50 0.44 0.53 0.43
ANDMask 0.34 0.50 0.37 0.43 0.46 0.51 0.46 0.47 0.52 0.45
InceptionTime 0.52 0.62 0.44 0.69 0.60 0.57 0.66 0.64 0.61 0.59
BCResNet 0.28 0.48 0.32 0.47 0.42 0.52 0.44 0.45 0.49 0.43
NSTrans 0.20 0.22 0.17 0.20 0.21 0.22 0.26 0.17 0.20 0.21
Koopa 0.32 0.42 0.37 0.40 0.42 0.45 0.35 0.43 0.48 0.40
Ours+RevIN 0.48 0.66 0.57 0.65 0.61 0.64 0.65 0.64 0.63 0.62
MAPU 0.39 0.57 0.35 0.52 0.49 0.54 0.49 0.50 0.52 0.49
Diversify 0.42 0.62 0.32 0.62 0.56 0.61 0.53 0.52 0.61 0.53
Chronos 0.32 0.23 0.26 0.25 0.27 0.23 0.21 0.24 0.25 0.25
Ours 0.53 0.70 0.63 0.66 0.64 0.67 0.65 0.67 0.62 0.64

Effectiveness of PhASER across Applications. We evaluate PhASER’s generalization ability across
multiple time-series tasks. For Human Activity Recognition (HAR), we consider cross-person
generalization (training on NS > 1 sources, testing on unseen targets) and one-person-to-another
(training on a single person, testing on another). In the cross-person setting (Table 2), existing domain
generalization methods underperform for time-series tasks [6, 32], whereas PhASER consistently
outperforms the best baselines on WISDM, HHAR, and UCIHAR by 3%, 9%, and 6%, respectively.
In the one-person-to-another setting (HHAR, Table 3), it surpasses Diversify by nearly 20% and
InceptionTime by almost 8%. For EEG-based sleep-stage classification, a challenging cross-person
task, PhASER achieves the best performance across five types, exceeding BCResNet by 2% and
Diversify by nearly 11% (Table 2, left). Similarly, in Gesture Recognition, where bio-electronic
signals are highly non-stationary, evaluations on 6 common classes in a cross-person setting (Table 2,
right) show that PhASER again attains the best overall performance.

Phase Separate FPha Accuracy

Augmentation Encoders Residual WISDM GR

1 ✓ ✓ ✓ 0.86±0.02 0.70±0.01

2 ✗ ✓ ✓ 0.81±0.01 0.61±0.01

3 ✓ ✓ ✗(FMag Res.) 0.82±0.01 0.55±0.01

4 ✓ ✓ ✗(FFus Res.) 0.84±0.01 0.60±0.01

5 ✓ ✓ ✗ 0.82±0.01 0.65±0.01

6 ✓ ✗(Mag Only) ✗ 0.73±0.01 0.59±0.03

7 ✓ ✗(Mag Only) ✗(FMag Res.) 0.83±0.01 0.66±0.02

8 ✓ ✗(Mag-Pha Concat.) ✗ 0.73±0.03 0.61±0.02

Table 4: Ablation of PhASER on WISDM and GR. ✓
= inclusion, ✗ = exclusion/modification.

Ablation Study. We evaluate the contribution of
PhASER’s components on WISDM and GR (Table 4).
Removing phase augmentation (row 2) drops per-
formance by 11.6% on WISDM and 5.8% on GR,
while separate magnitude-phase encoding (row 6 vs
5) is crucial, consistent with Table 1. Phase-residual
broadcasting boosts performance by 4% (row 1 vs
5), confirming that phase serves as a proxy for non-
stationarity. Removing both phase residual and sep-
arate encoding (rows 3–7) leads to average drops of
10.6% and 13.7%.

4 Conclusion

We address generalization for nonstationary time-series classification using a phase-driven approach,
without accessing source domain labels or samples from unseen distributions. Our approach applies
phase-based augmentation, treats time-varying magnitude and phase as separate modalities, and
incorporates a phase-derived residual connection. We support our design choices with rigorous
theoretical and empirical evidence.
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Appendix

A Motivation Cases
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Figure 3: (Nonstationarity
impacts generalization) Com-
parison between PhASER and
BCResNet with increasing non-
stationarity in HHAR dataset.

Now we pose the question: What is the impact of non-stationarity of
time series on a model’s generalization ability ? We conduct a sim-
ple empirical study on the HHAR dataset by varying the sequence
length to synthesize increasing non-stationarity, measured by the
ADF statistic (a higher ADF value indicates greater non-stationarity).
More details of the ADF test are provided in Section B of the Ap-
pendix. We adopt a DG model BCResNet from Kim et al. [19]
for time-series classification to explore the relationship between the
degree of non-stationarity and the model’s generalization ability to
unseen distributions.

We intuitively justify our design choice by exploring a question:
Does shifting the phase response of a time series change its non-
stationarity? In Figure 4(a–c), we illustrate a stationary sinusoid
and two non-stationary sinusoids all sharing the same frequency, as evidenced by their magnitude
responses shown in Figure 4(d–f). However, the distinct phase responses of each signal reveal changes
in the underlying dynamics. These phase variations occur as time-local oscillometric fluctuations arise,
motivating the use of phase information as a proxy for capturing the underlying non-stationarity [49].

Figure 4: Phase as a proxy for non-stationarity. (a–c) Time-domain signals: (a) Stationary sinusoid; (b, c) Non-
stationary sinusoids with the same base frequency. (d–f) Magnitude spectra (DFT) of the corresponding signals,
showing similar frequency content. (g–i) Phase spectra, displaying distinct responses that reflect differences in
underlying dynamics. ADF statistics below each column summarize the stationarity of the respective signals and
show how it changes with the proposed Hilbert Transform (HT)-based augmentation.

B Additional Details on PhASER

Augmented Dickey Fuller (ADF) Test. This is a statistical tool to assess the non-stationarity of
a given time-series signal. This test operates under a null hypothesis H0 where the signal has a
unit-root. The existence of unit-root is a guarantee that the signal is non-stationary [43]. To reject H0,
the statistic value of the ADF test should be less than the critical values associated with a significance
level of 0.05 (denoted by p, the probability of observing such a test statistic under the null hypothesis).
Throughout the paper, for multivariate time series, the average ADF statistics across all variates
are reported. Besides, since this is a statistical tool to evaluate non-stationarity for each instance of
time-series data, we provide an average of this number across a dataset to give the reader a view of
the degree of non-stationarity.

Phase Augmentation. In this work, we are particularly interested in learning representations robust
to temporal distribution shifts. Incorporating a phase shift in a signal is a less-studied augmentation
technique. One of the main challenges is that real-world signals are not composed of a single
frequency component and accurately estimating and controlling the shifting of the phase while
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retaining the magnitude spectrum of a signal is difficult. To solve this, we leverage the analytic
transformation of a signal using the Hilbert Transform. The key advantages of this technique
are maintaining global temporal dependencies and magnitude spectrum, no exploration of design
parameters and being extendible to non-stationary and periodic time series.

Lets walk through a simple example for a signal, x(t) = 2cos(w0t) which can be written in the
polar coordinates as x(t) = eiw0t + e−iw0t. Applying the HT conditions, HT(x(t)) = 2sin(w0t).
Essentially, HT shifts the signal by π/2 radians. We conduct this instance-level augmentation for
each variate of the time series input. The aim is to diversify the phase representation. We use the
scipy [46] library to implement this augmentation.

STFT Specifications. Non-stationary signals contain time-varying spectral properties. We use STFT
to capture these magnitude and phase responses in both time and frequency domains. There are
three main arguments to compute STFT - length of each segment (characterized by the window size
and the ratio for overlap), the number of frequency bins, and the sampling rate. We use the scipy
library to implement this operation and use a k < 1 as a multiplier to the length of the window W to
give the segment length as k ×W with no overlap between segments. The complete list of STFT
specifications is given in Table 5. We also demonstrate a sensitivity analysis concerning the number
of frequency bins and the segment length in Figure 5.

Figure 5: Illustration of the sensitivity of performance to the design choices of STFT by varying a) the number of frequency bins with a fixed
segment length of 4 and b) by varying the segment lengths with a 1024 frequency bins.

Table 5: Arguments for STFT computation
Dataset Sampling Rate Sequence Length STFT segment length Number of frequency bins
WISDM 20 Hz 128 4 1024
HHAR 100 Hz 128 4 1024

UCIHAR 50 Hz 128 4 1024
SSC 100 Hz 3000 16 1024
GR 200 Hz 200 4 1024

Note: It is tempting to use an empirical mode transformation and then apply a Hilbert-Huang
transformation to obtain an instantaneous phase and amplitude response in the case of non-stationary
signals. It absolves us from a finite time-frequency resolution for the STFT spectra. However, our
initial results indicate a high dependence on the choice of the number of intrinsic mode functions [13]
for signal decomposition. Hence, for a generalizable approach, we choose STFT as the tool for the
time-frequency spectrum.

Backbones for Temporal Encoder. The choice of temporal encoder, FTem, is not central to our
design. Table 6 demonstrates the performance of PhASER under the identical settings for four cross-
person settings using WISDM datasets using different backbones for FTem. For the convolution-based
self-attention (second row in Table 6) we use three encoders to compute query (Wq), key (Wk), and
value(V ) matrices for rDep following the guidelines from Vaswani et al. [45]. Then we compute self-

attention as, A = softmax

(
QKT

√
dk

)
V , where dk is the temporal dimension of rDep. Subsequently,

we use r̂Dep = rDep +A, as the input to FTem.

C Dataset Details

Past works [6, 40] have shown that the datasets used in our work suffer from a distribution shift across
users and also within the same user temporally. This makes them suitable for evaluating the efficacy
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Table 6: Results for 4 different cross-person settings for WISDM dataset.

Backbones for FTem 1 2 3 4
2D Convolution based 0.86 0.85 0.86 0.84

2D Convolution based with self-attention 0.88 0.83 0.84 0.81
Transformer 0.87 0.84 0.87 0.84

of our framework. In this section, we provide more details on the datasets. Table 7 summarizes
the average ADF statistics of the datasets along with their variates and their number of classes and
domains.

Table 7: Summary of the dataset attributes. Higher value of ADF stat indicates greater non-stationarity within a signal.

Category Dataset Representative ADF-Statistic
(mean across all variates) Variates Domains Classes

Human Activity recognition UCIHAR -2.58 (0.044) 9 31 6
Human Activity recognition HHAR -1.74 (0.062) 3 9 6
Human Activity recognition WISDM -0.78 (0.051) 3 36 6

Gesture Recognition EMG -33.14 (0.011) 8 36 6
Sleep Stage Classification EEG -3.7 (0.047) 1 20 5

WISDM [25]: It originally consists of 51 subjects performing 18 activities but we follow the
ADATime [40] suite to utilize 36 subjects comprising of 6 activity classes given as walking, climbing
upstairs, climbing downstairs, sitting, standing, and lying down. The dataset consists of 3-axis
accelerometer measurements sampled at 20 Hz to predict the activity of each participant for a segment
of 128-time steps. According to Ragab et al. [40], this is the most challenging dataset suffering from
the highest degree of class imbalance.

HHAR [44]: To remain consistent with the existing AdaTime benchmark we leverage the Samsung
Galaxy recordings of this dataset from 9 participants from a 3-axis accelerometer sampled at 100 Hz.
The 6 activity classes, in this case, are - biking, sitting, standing, walking, climbing up the stairs, and
climbing down the stairs.

UCIHAR [3]: This dataset is collected from 30 participants using 9-axis inertial motion unit using a
waist-mounted cellular device sampled at 50 Hz. The six activity classes are the same as WISDM
dataset.

SSC [8]: This is a single channel EEG dataset collected from 20 subjects to classify five sleep stages
- wake, non-rapid eye movement stages - N1, N2, N3, and rapid-eye-movement.

GR [31]: For surface-EMG based gesture recognition we follow Lu et al. [33]’s preprocessing and
use an 8-channel data recorded from 36 participants for six types of gestures sampled at 200 Hz.
Note, that this is the least stationary dataset (see Table 7, yet PhASER performs as well as or better
than the stat-of-the-art techniques as shown in Table 2 in the main paper.

D Implementation Details

All experiments are performed on an Ubuntu OS server equipped with NVIDIA TITAN RTX GPU
cards using PyTorch framework. Every experiment is carried out with 3 different seeds (2711, 2712,
2713). During model training, we use Adam optimizer [23] with a learning rate from 1e-5 to 1e-3
and maximum number of epochs is set to 150 based on the suitability of each setting. We tune these
optimization-related hyperparameters for each setting and save the best model checkpoint based on
early exit based on the minimum value of the loss function achieved on the validation set.

D.1 Dataset Configuration

There is no standard benchmarking for domain generalization for time-series where the domain labels
and target samples are inaccessible. We leverage past works of Ragab et al. [40], Lu et al. [33] for
preprocessing steps. For each dataset, we use a cross-person setting in four scenarios. The details of
the target domains chosen in each scenario are given in Table 8, the rest are used as source domains.
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Figure 6: Class Distributions of the datasets used for evaluation.

Figure 7: Illustration of additional performance metric, Area Under the ROC Curve (AUC), along with Accuracy—for Scenario 1 of the WISDM
dataset, for the top-performing baselines. These metrics demonstrate consistency and justify our choice of accuracy as the primary evaluation
metric.

Note for GR we use the same splits as Lu et al. [33]. Our method is not influenced by domain labels
as we do not require them for our optimization.

Table 8: Target domain splits for 4 scenarios of each dataset.
Target

Domains Scenario 1 Scenario 2 Scenario 3 Scenario 4

WISDM 0-9 10-17 18-27 28-35
HHAR 0,1 2,3 4,5 6-8

UCIHAR 0-7 8-15 16-23 24-29
GR 0-8 9-17 18-26 27-35
SSC 0-5 5-9 10-14 15-20

Figure D.1 illustrates the class distribution for each dataset. Only the WISDM and Sleep Stage
Classification (SSC) datasets exhibit notable imbalances among certain classes. To validate the
consistency of our conclusions, we compare the Area Under the Curve (AUC) with the adopted
accuracy metric in Figure D.1. Generally, past works [33, 6], utilizing these datasets have adopted
accuracy as the primary performance metric, and we follow the same approach.

D.2 Baseline Methods

General Domain Generalization Methods. For all the standard domain generalization baselines we
use conv2D layers for feature transformation of multivariate time series. It is worth mentioning that
DANN is actually a domain adaptation study, which requires access to certain unlabeled target domain
data. For cross-person generalization, the source domain consists of data from multiple people, in
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which we divide the source domain data into two parts with equal size and view one of them as the
target domain to leverage DANN for domain-invariant training. As for one-person-to-another cases,
we randomly sample a small number of unlabeled instances from each target person and merge them
into the target set that is needed for running DANN.

BCResNet. This is a competitive benchmark for several audio-scene recognition challenges and
demonstrates many useful techniques for domain generalization. BCResNet originally required
mel-frequency-cepstral-coefficients but it is not suitable for time-series, hence, we use standard STFT
of the multivariate-time series as input in this case.

Non-Stationary Transformer and Koopa. These are forecasting baselines that particularly ad-
dress non-stationarity in short-term time sequences, Non-stationary transformer (NSTrans) [29] and
Koopa [30]. To adapt it to our setting we use the encoder part of NSTrans followed by a classification
head composed of fully connected layers. We simply average the encoder’s output from all time steps
and feed it to this classifier head.

Ours+RevIN. Further, we demonstrate that statistical techniques like Reversible Instance Normaliza-
tion (RevIN) [21] may be used as a plug-and-play module with our framework. One limitation of
using RevIN is that the input and output dimensions of this module must have the same dimensions
to de-normalize the instance in the feature space. This may limit the usability of the module, however,
we find that applying this module around the fusion encoder specifying the same number of input and
output channels in the 2D convolution layer is suitable. We do not observe any significant benefit of
incorporating this module from the experiments, however, if an application can specifically benefit
from such RevIN, PhASER framework can support it.

Diversify. The goal of this design is to characterize the latent domains and use a proxy-training
schema to assign pseudo-domain labels to the samples to learn generalizable representations. It
is an end-to-end version of the adaptive RNN [5] method which also proposes to identify sub-
domains within a domain for generalization. It is interesting to note that for time-series generalizable
representation viewing the non-stationarity or intra-domain shifts is crucial. Both diversify and
PhASER address this problem from completely different approaches and demonstrate improvement
over other standard methods or even domain adaptation methods that have the advantage of accessing
samples from unseen distributions. While diversify aims to characterize latent distributions and uses
a parametric setting, PhASER forces the model to learn domain-invariant features by anchoring the
design to the phase which is intricately tied to non-stationarity. It also highlights that time-series
domain generalization is a unique problem (compared to the more popular visual domain) and
dedicated frameworks need to be designed in this case.

MAPU. MAPU is the state-of-the-art source-free domain adaptation study for time series, thus, in
fact, it does not apply to the time-series domain generalizable learning problem. However, we still
view it as an effective approach that can address distribution shifts and achieve domain-invariant
learning. In our implementation, in addition to the source domain data, we still provide MAPU with
the unlabeled target domain data for both cross-person generalization and one-person-to-another
cases. The training procedure is identical to the default MAPU design, which is to pre-train the model
on labeled source domain data and then conduct the training on unlabeled target domain data.

Chronos. Large foundation models are a sought-after approach in many domains and Chronos is one
such most recent candidate for time-series. It is trained on 42 datasets and presents impressive zero-
shot and few-shot abilities. Although it is largely targeted as a forecasting tool, the authors indicate
its universal representation ability for a variety of tasks. Four variants of Chronos model checkpoints
are available ranging from 20M to 70M parameters and embedding sizes from 256 to 1024. Based
on pilot testing with scenario 1 on WISDM dataset (accuracies with a 1M parameter downstream
model for the three variants: tiny-0.65, base-0.41, large-0.36), we find that the smallest version of the
model, Chronos-tiny best suits our conservative dataset sizes for downstream fine-tuning. We use a
few layers of 2D convolution layers with max-pooling to reduce the feature size which is dependent
of the length of the sequence and then flatten and input to fully-connected layers as our downstream
model.

Note: A few works [17, 28] use large language models directly to analyze raw time-series despite
the obvious modality gap and can report comparable performance. However, our preliminary testing
with ChatGPT [39] with in-context-learning by prompting similar to Jin et. al [17] using the HHAR
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dataset does not provide satisfactory results and we do not pursue that direction. Instead, we use a
domain-specific large foundation model like Chronos as a fair baseline.

Table 9: Complete set of results from three trials on each baseline for WISDM cross-person generalization setting.
Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mean Std Mean Std Mean Std Mean Std
ERM 0.57 0.02 0.50 0.02 0.51 0.02 0.55 0.02

GroupDRO 0.71 0.06 0.67 0.06 0.60 0.07 0.67 0.04
DANN 0.71 0.02 0.65 0.01 0.65 0.06 0.70 0.03
RSC 0.69 0.05 0.71 0.07 0.64 0.10 0.61 0.11

ANDMask 0.74 0.01 0.73 0.03 0.69 0.06 0.69 0.03
InceptionTime 0.83 0.01 0.82 0.02 0.80 0.04 0.77 0.01

BCResNet 0.83 0.00 0.79 0.04 0.75 0.04 0.78 0.04
NSTrans 0.43 0.02 0.40 0.01 0.37 0.02 0.37 0.03
Koopa 0.63 0.02 0.61 0.04 0.72 0.03 0.57 0.01
MAPU 0.75 0.02 0.69 0.04 0.79 0.06 0.79 0.03

Diversify 0.82 0.01 0.82 0.01 0.84 0.01 0.81 0.01
Chronos 0.71 0.01 0.67 0.01 0.65 0.01 0.62 0.01

Ours + RevIN* 0.86 0.01 0.85 0.01 0.84 0 0.84 0.03
Ours 0.86 0.01 0.85 0.01 0.85 0.01 0.82 0.02

Table 10: Complete set of results from three trials on each baseline for HHAR cross-person generalization setting.
Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mean Std Mean Std Mean Std Mean Std
ERM 0.49 0.05 0.46 0.01 0.45 0.02 0.47 0.03

GroupDRO 0.60 0.01 0.53 0.02 0.59 0.02 0.64 0.03
DANN 0.66 0.01 0.71 0.01 0.67 0.09 0.69 0.03
RSC 0.52 0.05 0.49 0.04 0.44 0.03 0.47 0.03

ANDMask 0.63 0.02 0.64 0.06 0.66 0.11 0.69 0.05
InceptionTime 0.77 0.04 0.80 0.01 0.82 0.03 0.83 0.01

BCResNet 0.66 0.05 0.70 0.06 0.75 0.04 0.68 0.04
NSTrans 0.21 0.02 0.22 0.03 0.27 0.04 0.28 0.02
Koopa 0.72 0.04 0.63 0.03 0.72 0.05 0.69 0.02
MAPU 0.73 0.02 0.72 0.03 0.81 0.01 0.78 0.03

Diversify 0.82 0.01 0.76 0.01 0.82 0.01 0.68 0.01
Chronos 0.73 0.04 0.75 0.03 0.73 0.01 0.66 0.12

Ours + RevIN* 0.82 0.05 0.82 0.02 0.92 0.04 0.85 0.03
Ours 0.83 0.02 0.83 0.02 0.94 0.03 0.88 0.02

D.3 Ablation Details of PhASER

For row 1 in Table 4, the modification to PhASER is straightforward by simply omitted the Hilbert
transformation during data preprocessing. When the separate encoders are not used (rows 6 and 7 in
Table 4), we only use FMag and connect the output of the sub-feature normalization block directly
to the FDep. When the residual is removed entirely (rows 5 and 6 in Table 4), we cannot broadcast
the 1D input to 2D anymore so we take the mean across all the temporal indices of FTem(rDep) and
flatten it to input to fully connected layers. Based on the dataset we choose a few fully connected
layers truncating to the number of classes finally.

D.4 Computational Analyses

To assess the resource utilization of PhASER against other baselines, we offer two metrics - 1)
Number of Multiply and Accumulate operations per sample (MACs) for approximate computational
complexity at run-time and 2) Number of trainable parameters to determine the memory footprint. We
compute these for the HHAR dataset in Table 15 (these metrics are dependent on input dimensions,
hence different choices of dataset, sequence length, and modalities can yield different numbers).
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Table 11: Complete set of results from three trials on each baseline for UCIHAR cross-person generalization setting.
Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mean Std Mean Std Mean Std Mean Std
ERM 0.72 0.09 0.64 0.05 0.70 0.01 0.72 0.03

GroupDRO 0.91 0.02 0.84 0.01 0.89 0.04 0.85 0.07
DANN 0.84 0.02 0.79 0.01 0.81 0.02 0.86 0.03
RSC 0.82 0.13 0.73 0.07 0.74 0.03 0.81 0.06

ANDMask 0.86 0.08 0.80 0.06 0.76 0.13 0.78 0.09
InceptionTime 0.91 0.03 0.82 0.07 0.88 0.02 0.91 0.04

BCResNet 0.81 0.02 0.77 0.02 0.78 0.02 0.83 0.02
NSTrans 0.35 0.02 0.35 0.01 0.51 0.02 0.47 0.01
Koopa 0.81 0.02 0.72 0.05 0.81 0.06 0.77 0.03
MAPU 0.85 0.03 0.80 0.01 0.85 0.02 0.82 0.03

Diversify 0.89 0.03 0.84 0.04 0.93 0.02 0.90 0.02
Chronos 0.56 0.05 0.57 0.01 0.50 0.02 0.82 0.13

Ours + RevIN* 0.96 0.01 0.90 0.01 0.93 0.03 0.97 0.01
Ours 0.96 0.01 0.91 0.01 0.95 0 0.97 0.01

Table 12: Complete set of results from three trials on each baseline for SSC cross-person generalization setting.
Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mean Std Mean Std Mean Std Mean Std
ERM 0.50 0.05 0.46 0.04 0.49 0.02 0.45 0.03

GroupDRO 0.57 0.07 0.56 0.03 0.55 0.05 0.59 0.06
DANN 0.64 0.02 0.63 0.02 0.69 0.03 0.63 0.04
RSC 0.50 0.09 0.48 0.02 0.52 0.07 0.46 0.01

ANDMask 0.55 0.10 0.50 0.09 0.54 0.07 0.57 0.08
InceptionTime 0.74 0.04 0.78 0.03 0.72 0.05 0.80 0.02

BCResNet 0.79 0 0.82 0.01 0.79 0.01 0.81 0
NSTrans 0.43 0.02 0.37 0.04 0.42 0.06 0.35 0.03
Koopa 0.58 0.02 0.62 0.01 0.53 0.04 0.49 0.06
MAPU 0.69 0.01 0.68 0.01 0.65 0.03 0.69 0.02

Diversify 0.73 0.03 0.76 0.02 0.68 0.05 0.77 0.02
Chronos 0.53 0.04 0.47 0.04 0.47 0.01 0.57 0.03

Ours + RevIN* 0.82 0.01 0.79 0.02 0.78 0.01 0.81 0.01
Ours 0.85 0.01 0.80 0.01 0.79 0.01 0.83 0.01

Our computation cost is comparable to the other methods, achieving much better performance. We
also determine the asymptotic time complexity of the PhASER modules in Table 16. For multi-layer
neural network modules, the representative time complexity for one layer is provided (rows 3-7).

E Supplementary of Main Results

We conduct all experiments with three random seeds (2711, 2712, 2713), and present the error range
in this section. Tables 9, 10 and 11 represent the mean and standard deviation corresponding to the
main paper’s Table 2 for the WISDM, HHAR and UCIHAR datasets respectively. Tables 12 and 13
are the complete representations of all the runs corresponding to Table 2 in the main paper for sleep
stage classification and gesture recognition respectively. Table 14 corresponds to the Table 3 in the
main paper for the complete performance statistics for one person to another generalization using
HHAR dataset.

15



Table 13: Complete set of results from three trials on each baseline for GR cross-person generalization setting.
Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mean Std Mean Std Mean Std Mean Std
ERM 0.45 0.02 0.58 0.03 0.57 0.03 0.54 0.04

GroupDRO 0.53 0.08 0.36 0.11 0.59 0.05 0.45 0.13
DANN 0.60 0.01 0.66 0.04 0.65 0.02 0.64 0.03
RSC 0.50 0.10 0.66 0.05 0.64 0.03 0.56 0.03

ANDMask 0.41 0.13 0.54 0.20 0.45 0.15 0.39 0.12
InceptionTime 0.68 0.07 0.70 0.09 0.72 0.03 0.69 0.02

BCResNet 0.62 0.06 0.67 0.09 0.65 0.05 0.61 0.07
NSTrans 0.31 0.01 0.34 0.01 0.34 0.01 0.32 0.02
Koopa 0.47 0.03 0.54 0.02 0.60 0.05 0.70 0.06
MAPU 0.64 0.02 0.69 0.03 0.71 0.01 0.68 0.04

Diversify 0.69 0.01 0.80 0.01 0.76 0.02 0.76 0.01
Chronos 0.49 0.01 0.54 0.03 0.51 0.05 0.48 0.02

Ours + RevIN* 0.68 0.03 0.81 0.04 0.77 0.03 0.76 0.02
Ours 0.70 0.02 0.82 0.02 0.77 0.04 0.75 0.01

Table 14: Complete set of results from three trials on each baseline for HHAR one-person-to-another setting.
Baselines 0 1 2 3 4 5 6 7 8

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
ERM 0.27 0.01 0.40 0.05 0.41 0.05 0.44 0.05 0.42 0.08 0.44 0.01 0.45 0.04 0.44 0.04 0.48 0.02

GroupDRO 0.33 0.02 0.53 0.02 0.38 0.05 0.48 0.04 0.47 0.04 0.51 0.08 0.47 0.03 0.48 0.02 0.49 0.05
DANN 0.32 0.03 0.44 0.05 0.42 0.03 0.45 0.06 0.42 0.03 0.48 0.04 0.49 0.02 0.45 0.05 0.51 0.01
RSC 0.27 0.03 0.45 0.06 0.38 0.05 0.45 0.09 0.40 0.08 0.47 0.02 0.50 0.06 0.44 0.08 0.53 0.01

ANDMask 0.34 0.06 0.50 0.03 0.37 0.04 0.43 0.05 0.46 0.04 0.51 0.07 0.46 0.03 0.47 0.02 0.52 0.03
InceptionTime 0.52 0.05 0.62 0.02 0.44 0.03 0.69 0.04 0.60 0.09 0.57 0.05 0.66 0.03 0.64 0.01 0.61 0.01

BCResNet 0.28 0.03 0.48 0.08 0.32 0.04 0.47 0.03 0.42 0.06 0.52 0.05 0.44 0.02 0.45 0.02 0.49 0.06
NSTrans 0.20 0.01 0.22 0.02 0.17 0.02 0.20 0.01 0.21 0.01 0.22 0.01 0.26 0.07 0.17 0.05 0.20 0.01
Koopa 0.32 0.02 0.42 0.04 0.37 0.01 0.40 0.01 0.42 0.02 0.45 0.05 0.35 0.02 0.43 0.03 0.48 0.02
MAPU 0.39 0.05 0.57 0.05 0.35 0.06 0.52 0.03 0.49 0.04 0.54 0.02 0.49 0.01 0.50 0.06 0.52 0.04

Diversify 0.42 0.04 0.62 0.04 0.32 0.09 0.62 0.01 0.56 0.03 0.61 0.01 0.53 0.04 0.52 0.10 0.61 0.05
Chronos 0.32 0.03 0.23 0.05 0.26 0.04 0.25 0.03 0.27 0.09 0.23 0.08 0.24 0.06 0.21 0.08 0.24 0.05

Ours + RevIN* 0.48 0.02 0.66 0.08 0.57 0.05 0.65 0.03 0.61 0.04 0.64 0.05 0.65 0.06 0.64 0.01 0.63 0.03
Ours 0.53 0.04 0.70 0.03 0.63 0.01 0.66 0.03 0.64 0.06 0.67 0.01 0.65 0.03 0.67 0.04 0.62 0.02

Table 15: Model comparison based on MACs and number of trainable parameters.

Model MACs (×106) Trainable Parameters (×103)

ERM 19.5 98.1
GroupDRO 19.5 98.1
DANN 21.7 102.9
RSC 19.5 98.1
ANDMask 19.5 98.1
BCResNet 55.3 154.7
NSTrans 35.3 75.6
Koopa 32.7 118.7
MAPU 46.9 128.3
Diversify 35.7 922.9
Chronos 345.5 1049.8
Ours 48.6 81.4
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Table 16: Complexity per module and input notation for each module.

Module Complexity

1 Hilbert augmentation (using Fast-Fourier transform) O(V ·N logN)
2 Short-Term Fourier Transform O(V ·N ·W logW )
3 Magnitude Encoder (FMag), Phase Encoder (FPha), Phase Projec-

tion Head (gRes) - 2D Convolution Layers
O(k2 ·N · d · cin · cout)

4 Depthwise Feature Encoder (FDep) - 2D Convolution Layers with
average pooling along feature axis

O(k2 ·N · d · cin · cout) +O(d)

5 Temporal Encoder (FTem) - (worst case backbone) Transformer
Encoder

O(N · d)

6 Classification Encoder (gCls) - fully connected layers O(d · h)
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