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Abstract

Machine learning models often need to be robust
to noisy input data. The effect of real-world noise
(which is often random) on model predictions is
captured by a model’s local robustness, i.e., the
consistency of model predictions in a local region
around an input. Local robustness is therefore an
important characterization of real-world model
behavior and can be useful for debugging models
and establishing user trust. However, the naive
approach to computing local robustness based on
Monte-Carlo sampling is statistically inefficient,
leading to prohibitive computational costs for
large-scale applications. In this work, we develop
the first analytical estimators to efficiently com-
pute local robustness of multi-class discriminative
models using local linear function approximation
and the multivariate Normal CDF. Through the
derivation of these estimators, we show how lo-
cal robustness is connected to concepts such as
randomized smoothing and softmax probability.
We also confirm empirically that these estimators
accurately and efficiently compute the local ro-
bustness of standard deep learning models. In
addition, we demonstrate these estimators’ useful-
ness for various tasks involving local robustness,
such as measuring robustness bias and identifying
examples that are vulnerable to noise perturbation
in a dataset. y developing analytical estimators of
local robustness, but also makes its computation
practical, enabling the use of local robustness in
critical downstream applications.

1. Introduction

A desirable attribute of machine learning models is robust-
ness to perturbations of input data. One common notion of
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robustness is adversarial robustness, the ability of a model to
maintain its prediction when presented with adversarial per-
turbations, i.e., perturbations designed to cause the model
to change its prediction. Although adversarial robustness
can identify whether an adversarial example exists in a local
region around an input, real-world noise (such as measure-
ment noise) is rarely adversarial and often random. The
effect of such noise on model predictions is better captured
by another notion of robustness: local robustness, the frac-
tion of points in a local region around an input for which the
model provides consistent predictions. This is a strict gener-
alization of adversarial robustness — if the fraction of points
for which the model is consistent is less than 1, then an
adversarial perturbation exists. The limitation of adversarial
robustness in only detecting whether an adversarial pertur-
bation exists is perhaps expected, as its original use-case
was motivated by model security, not model understanding,
debugging, or regularization for improved generalization.
Therefore, local robustness provides a more comprehensive
characterization of real-world model behavior as it captures
model behavior under the interference of average case noise.

In this paper, we take the first steps towards measuring local
robustness. We show that the naive approach to estimating
local robustness based on Monte-Carlo sampling (Nanda
et al., 2021) is statistically inefficient and impractical: ob-
taining an accurate estimate of local robustness using this
approach requires a large number of samples from the local
region. This inefficiency, which is exacerbated in the case of
high-dimensional data, leads to prohibitive computational
costs for large-scale applications.

To address this problem, we develop the first analytical
estimators to efficiently compute the local robustness of a
model. More specifically, our work makes the following
contributions:

1. We derive a series of novel analytical estimators to
efficiently compute the local robustness of multi-class
discriminative models by linearizing non-linear mod-
els in the local region around an input, and computing
the model’s local robustness in this region using the
multivariate Normal cumulative distribution function.
Through the derivation, we show how local robustness
is connected to such concepts as randomized smooth-
ing and softmax probability.
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2. We empirically validate these analytical estimators us-
ing standard deep learning models and datasets, demon-
strating that these estimators accurately and efficiently
compute local robustness.

3. We demonstrate the usefulness of our analytical es-
timators for various tasks involving local robustness,
such as measuring class-level robustness bias (Nanda
et al., 2021) (i.e., a model being more locally robust
for some classes than for others) and identifying ex-
amples that are vulnerable to noise perturbation in a
dataset. Such dataset-level analyses of local robust-
ness are made practical only by having these efficient
analytical estimators.

To our knowledge, this work is the first to investigate lo-
cal robustness in a multi-class setting and develop efficient
analytical estimators for local robustness. The analytical
aspect of these estimators not only advances conceptual
understanding of local robustness, but also enables local
robustness to be used in applications that require differentia-
bility (such as model training). In addition, the efficiency
of these estimators makes the computation of local robust-
ness practical, enabling tasks that assist in such important
objectives as debugging models and establishing user trust.

2. Related Work

Linearization of neural networks. Prior works have used
linear models to approximate neural networks in the local
region around an input. For example, LIME (Ribeiro et al.,
2016), a popular post hoc explanation method, does so and
uses the coefficients of the linear model as feature attribu-
tions. In addition, the local function approximation frame-
work (Han et al., 2022) demonstrates that eight popular post
hoc explanation methods all perform local linear approxi-
mation of the underlying model. Local linear function ap-
proximation has also been used to generate probabilistically-
robust counterfactual explanations, specifying the probabil-
ity that a binary classifier generates consistent predictions
when inputs are noisy (Pawelczyk et al., 2023). In contrast
to these prior works which apply local linear function ap-
proximation to post hoc explainability (Ribeiro et al., 2016;
Han et al., 2022; Pawelczyk et al., 2023) or focus on binary
classification (Pawelczyk et al., 2023), this work uses local
linear function approximation to investigate local robustness
and develops analytical estimators of local robustness for
both binary and multi-class classification.

Adpversarial robustness. Prior works have proposed meth-
ods to generate adversarial attacks (Carlini and Wagner,
2017; Goodfellow et al., 2015; Moosavi-Dezfooli et al.,
2016), which detect whether an adversarial perturbation
exists in a local region, and methods to certify model robust-
ness (Cohen et al., 2019; Carlini et al., 2022), which provide

guarantees of dataset-level robustness (i.e., all points in a
dataset are robust to a certain amount of noise). In contrast
to these prior works on adversarial robustness, this work
investigates local robustness (a generalization of adversar-
ial robustness), which calculates the proportion of points
in a local region for which model predictions are consis-
tent and measures point-level robustness. Prior work has
also investigated robustness bias in terms of vulnerability
to adversarial attacks, lowerbounding and upperbounding a
point’s probability of adversarial attack (Nanda et al., 2021)
using sampling approaches. In contrast, this work investi-
gates robustness bias in terms of local robustness, directly
calculating a model’s local robustness using analytical ap-
proaches.

Uncertainty estimation. Prior works have also developed
approaches to measure a model’s prediction uncertainty.
These include calibration (Guo et al., 2017), Bayesian un-
certainty (Kendall and Gal, 2017), and conformal prediction
(Shafer and Vovk, 2008). In contrast to these prior works
in which prediction uncertainty is with respect to a calibra-
tion set (Guo et al., 2017; Shafer and Vovk, 2008) or model
parameters (Kendall and Gal, 2017), this work investigates
local robustness, which can be thought of as prediction un-
certainty with respect to input noise.

3. Our Framework: The Local Robustness
Estimator Family

In this section, we first describe the mathematical prob-
lem of local robustness estimation. Then, we present the
naive estimator based on sampling and derive more efficient
analytical estimators. Lastly, we explore the connections
between local robustness and softmax probability.

3.1. Notation and Preliminaries

Assume we have a neural network f : R? — R¢ with C
output classes, and the model predicts class ¢ € [1, ...C] for
agiveninput x € R% ie.,t = arg maxicz1 fi(x), where
fi denotes the logits for the ith class. Given this model,
the local robustness estimation problem is to compute the
probability of consistent classification (to class ¢) under
noise perturbation of the inputs.

Definition 1. We define the average local robustness of a
classifier f at a point x as the probability of being classified
to class ¢ under Normal noise N(0, o2) added to the inputs,
denoted as

robust

P (X, 1) = Peeunv(0,0%) |arg max fi(w + €) = ¢
(]

Thus, the higher p:°Pust(x, t) is, the more robust the model
is in the local neighborhood around x. In this paper, given

that we always measure local robustness with respect to the
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predicted class t at x, we henceforth suppress the depen-
dence on ¢ in the notation.

Note that pr°>"st generalizes adversarial robustness. Adver-
sarial robustness detects the presence absence of a perturba-
tion in a local neighborhood that leads to misclassification,
while local robustness computes the probability of consis-
tent classification. In other words, adversarial robustness
is concerned with the quantity 1(p:°P"*< 1), i.e., the indi-
cator function that local robustness is less than one (which
indicates the presence of an adversarial perturbation), while
local robustness is concerned with the quantity pr°Pust itself.
In the rest of this section, we derive estimators for p‘"Ob“St

o .

3.1.1. ESTIMATOR O: THE MONTE-CARLO ESTIMATOR

mc
P,

The most naive estimator of average local robustness is a
Monte-Carlo estimator, i.€.,

robust

PR (%) = Peni(0.0) [argma filw + ) = t]
= E

e~N(0,02)

1 M

~ 2 3 argmans fiorep=t] = PR

j=1

[larg max; f; (I‘f‘e):t]

po'¢ replaces the expectation with the sample average us-

ing Monte-Carlo sampling and has been used in prior work
(Nanda et al., 2021). While Monte-Carlo estimators are tech-
nically independent of dimensionality (Vershynin, 2018),
in practice, for typical use cases involving neural networks,
this estimator requires a large number of random samples
to converge to the underlying expectation. For example, for
MNIST and CIFAR10 CNNs, it takes around M = 10, 000
samples per point for p3'° to converge, which is computa-
tionally infeasible. Thus, we set out to address this problem
by developing more efficient estimators.

3.2. Analytical Estimators of Local Robustness
3.2.1. ESTIMATOR 1: THE TAYLOR ESTIMATOR pt&vler

Our goal is to derive analytical estimators which reduce the
complexity of estimating local robustness. To this end, we
first locally linearize non-linear models and then compute
the local robustness of the resulting linear models. However,
even the problem of computing the local robustness of lin-
ear models is more challenging than it appears due to the
complex geometry of linear decision boundaries given C'
classes. In particular, the relative orientation and similarities
of these class-wise decision boundaries needs to be taken
into account to compute local robustness.

Specifically, given a linear model for a three-class classifica-

tion problem with weights w1, we, w3 and biases by, ba, b3,
such that y = argmax;{w,x + b; | i € [1,2,3]}, the
decision boundary between classes 1 and 2 is given by
Y12 = (w1 —ws) "x+ (by —by). This is easy to verify as for
any x such that 310 = 0, we have w{ x + by = wq x + by,
making it the decision boundary. Thus, the relevant quan-
tities are the pairwise difference terms among the weights
and biases which characterize the decision boundaries. We
take this into account and provide the expression for the
linear case below.

Lemma 3.1. The local robustness of a multi-class linear
model f(x) = w'x+b, withw € R and b € R, with
respect to a target class t is given by the following. Define
the decision boundary weights w;, = w; — w; € R?, Vi # t,
where wy, w; are rows of w and biases b, = (w} — w]) ' x+
(by — b;) € R, then

probust(x) — CDFJ\/(O vUT ( b/l b; b/C )
yeen yeen
’ ’ ollwills” ollwill2” ollwell2
! / !
where U = [ w/l P ujZ - w/c } € R(C—Dxd
Jwille™ lwilla” lwell2

and CDF o yy) refers to the (C' — 1)-dimensional Nor-
mal CDF with covariance UU T .

The proof is in Appendix A.1. The matrix U exactly cap-
tures the geometry of the linear decision boundaries and
the covariance matrix UU " encodes the relative similar-
ity between pairs of decision boundaries. If the decision
boundaries are all orthogonal to each other, then the covari-
ance matrix is the identity matrix. However, we find that,
in practice, the covariance matrix is strongly non-diagonal,
indicating that the decision boundaries are not orthogonal
to each other.

For diagonal covariance matrices, the multivariate Normal
CDF (mvn-cdf) can be written as the product of univariate
Normal CDFs, which would be easy to compute. However,
the strong non-diagonal nature of covariance matrices in
practice leads to the resulting mvn-cdf not having a simple
closed form solution, with the only alternative being approxi-
mation of the integral via sampling (Botev, 2017; Sci). How-
ever, this sampling is performed in the (C' — 1)-dimensional
space as opposed to the d-dimensional space that p’® per-
forms. In practice, for classification problems, we often
have C' << d, making sampling in (C' — 1)-dimensions
more efficient. Using the derived robustness estimator for
the linear model, we now derive the Taylor estimator.
Proposition 1. The Taylor estimator for a model f and point
x is given by linearizing f around x using w = Vy f(x) and
b = f(x), with decision boundaries g;(x) = f:(x) — fi(x),
Vi # t, leading to

g1(x) gc(x)

p?ylor(x) = CDFN(O,UUT)(

a[Vx1(x)ll2" " o[ Vxge (X2



Efficient Estimation of Local Robustness of Machine Learning Models

with U € R(€~1xd defined as in the linear case.

The proof is in Appendix A.1. The smaller the local region
around x, the more faithful the local linearization of the
model. Thus, the smaller the o, the more accurate the Taylor
estimator is.

3.2.2. ESTIMATOR 2: THE MMSE ESTIMATOR pg*™®¢

While the Taylor estimator is more efficient than the naive
one, it has a drawback. In particular, its linear approxima-
tion is valid near the data point, but gets worse farther away
from the data point. To fix this issue, we use a linearization
that is faithful to the model on the entire noise distribution,
not just near the data point. Linearization has been studied
in feature attribution research, which concerns itself with
approximating non-linear models with linear ones to pro-
duce model explanations (Han et al., 2022). In particular,
the SmoothGrad (Smilkov et al., 2017) technique has been
described as the MMSE optimal linearization of the model
(Han et al., 2022; Agarwal et al., 2021). Using similar tech-

niques, we propose the MMSE estimator pZ'™*¢ as follows.

Proposition 2. The MMSE estimator for a model f and
point x is given by linearizing f around x using w =
SN Vaf(x+ € and b = Y f(x), with decision
boundaries g;(x) = fi(x) — fi(x), Vi # t, leading to

% E;V:1 gi(x+e)
ol L S Vegi(x +€)ll2
F i go(x+e)
Colld S Vage(x + €2

P (%) = CDFxro,uum)(

with U € R(€~1xd defined as in the linear case, where N
is the number of perturbations.

The proof is in Appendix A.1. It involves creating a ran-
domized smooth model (Cohen et al., 2019) from the base
model and then computing the decision boundaries of this
smooth model. Note that the gradients of this smooth model
are equal to those obtained from SmoothGrad. We show,
for the first time, that performing such randomization helps
compute robustness information for the original base model.

Like p7'¢, p5'™*¢ also requires sampling over the input space
like p7'°. However, due to its reliance on model gradients,
it requires far fewer number of samples to converge (we
observed around N = 5 — 10 to suffice in practice), thus
making it computationally efficient.

3.2.3. ESTIMATORS 3 & 4 : APPROXIMATE TAYLOR
AND MMSE ESTIMATORS

One drawback of the Taylor and MMSE estimators is their
use of the mvn-cdf, which does not have a closed form solu-
tion and can cause the estimators to be slow for problems

with a large number of classes C. Further, the mvn-cdf
makes these estimators non-differentiable, which is inconve-
nient for applications which require differentiating probust,
To alleviate these issues, we wish to approximate the mvn-
cdf with an analytical closed-form expression. As CDFs
are monotonically increasing functions, the approximation

should also be monotonically increasing.

To this end, we find that the univariate Normal CDF is well-
approximated by the sigmoid function, and has been used
to propose the GeLU activation function (Hendrycks and
Gimpel, 2016). Inspired by this, we propose to approximate
the mvn-cdf with the multivariate-sigmoid function, which
we define as follows:
Definition 2. The multivariate sigmoid is defined as
mv-sigmoid(x) = m
We find experimentally that mv-sigmoid approximates the
mvn-cdf well for practical values of the covariance matrix
UU ™. Using this approximation to substitute mv-sigmoid
for the mvn-cdf in the pf¥!°" and p™se estimators, we get
estimators plaYlor-mvs gnd pmmse-mvs regpectively.
3.3. Exploring the Connections Between Local
Robustness and Softmax Probability

3.3.1. ESTIMATOR 5: SOFTMAX AS AN ESTIMATOR OF

probust

o

Lastly, we observe that for linear models with a specific
noise perturbation o, the common softmax function taken
with respect to the output logits can be viewed as an estima-

tor of pt°Pust albeit in a very restricted setting. Specifically,

Lemma 3.2. For linear models f(x) = w ' x+b, such that
the decision boundary weight norms Hw;HQ — Hw;||2 _
|lwll2, Vi, 4, we have

softmax ___taylor-mvs

o = ple where T = o||wl|2

Proof. Let us consider softmax with respect to the ¢/ out-
put class and define g; (x) = f:(x) — f;(x), with f being the
linear model logits. Using this, we first show that softmax
is identical to mv-sigmoid:

pRftmax (x) = softmax, (f1(x)/T), ..., fo(x)/T)
exp(fi(x)/T)

~ Yiexp(fi(x)/T)
1

T3 D) — 1 ())/T)
— my-sigmoid [g1 (x)/T' g2 (x)/T., ..gc:(x)/T]

Next, by denoting w; = w; — w;, each row has equal norm
will2 = |[w}]l2, Vi, 4, € [1,...C] which implies:
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pglylomnvs (X)

91(x) gc(x)
ollwillz” " ollwg2
= mv-sigmoid [g1 (x)/T, ..., gc(x) /T

_ pggftmax (X)

= mv-sigmoid

T = ol|will2

O

This indicates that the temperature parameter 7" of softmax
roughly corresponds to the o of the added Normal noise
with respect to which local robustness is measured. Overall,
this shows that under the restricted setting where the lo-
cal linear model consists of decision boundaries with equal
weight norms, the softmax outputs can be viewed as an
estimator of the pﬁf‘ylorfm"s estimator, which itself is an es-
timator of pr°Pus*, However, due to the multiple levels of
approximation, we can expect the quality of pSTOftm‘“’s ap-
proximation of pZ°"Ust to be poor in general settings (outside
of the very restricted setting), so much so that in general

settings, pi°PUst and p$fma* would be unrelated.

4. Experimental Evaluation

In this section, we describe our empirical evaluation. First,
we evaluate the accuracy and efficiency of the analytical
estimators. Then, we analyze the relationship between local
robustness and softmax probability. Lastly, we demonstrate
the usefulness of the estimators in real-world applications.

Datasets and Models. We evaluate the estimators on four
datasets: MNIST (Deng, 2012), FashionMNIST (Xiao et al.,
2017), CIFAR10 (Krizhevsky et al., 2009), and CIFAR100
(Krizhevsky et al., 2009). For MNIST and FashionMNIST,
we train a linear model and a CNN to perform 10-class
classification. For CIFAR10 and CIFAR100, we train a
ResNet18 (He et al., 2016) model to perform 10-class and
100-class classification, respectively. We train the ResNet18
models using varying levels of gradient norm regulariza-
tion (\) to obtain models with varying levels of robustness.
For the experiments below, we use 1,000 randomly-selected
points from each dataset’s full 10,000-point test set. Addi-
tional details about the datasets and models are described in
Appendix A.2 and A.3.

4.1. Evaluation of the accuracy of analytical estimators

The analytical estimators accurately compute local ro-
bustness. To confirm that the analytical estimators ac-

robust robust
curately compute p, , we calculate pg; for each

(e
model and test set using pic, plavier, pmmse ptaylormvs

pormse-mvs “and p%&’ftmax for different o’s. For p3'¢, pimse,

and pZ'™ee-MVE we use a sample size at which these estima-

tors have converged (n = 10000, 1000, and 1000). Conver-
gence analyses are described in Appendix A.4 (henceforth,
these estimators use these sample sizes). Then, we measure
the absolute and relative difference between p3'¢ and the
other estimators. The smaller these differences, the more
accurately the estimator computes p U, The performance

of estimators for the FashionMNIST CNN model is shown
in Figure 1.

The results indicate that p™%¢-™V® and p;™"*¢ are the best
estimators of pr°Pust, followed closely by ptayler-mvs and
ptavler and trailed by p5oft™a. Consistent with the theory in
Section 3, the MMSE estimators outperform the Taylor ones
because the former obtains better estimates of Vyg;(x), and
p%’“max performs poorly in general settings because of its

multiple levels of approximation.

The results also show that the smaller the noise neighbor-
hood o, the more accurately the estimators compute probust,
For the MMSE and Taylor estimators, this is because their
linear approximation of the model around the input is more
accurate for smaller o’s. As expected, when the model is lin-
ear, ptv1er and pmse accurately compute p°PUst for all o’
(Appendix A.4). For p?“ma", values are constant across
o and this particular model has high p5°ft™* values for
most points. Thus, for small o’s where 11)201[’“St is near one,
psoftmax happens to approximate pr°Pust for this particular

model.

For robust models, the analytical estimators compute
local robustness more accurately over a larger noise
neighborhood. The performance of p™*° for CIFAR10
ResNet18 models of varying levels of robustness is shown
in Figure 2. The results indicate that for more robust models
(larger \), the estimator is more accurate over a larger o.
This is because gradient norm regularization leads to models
that are more locally linear, making the estimator’s linear
approximation of the model around the input more accurate
over a larger o.

The mv-sigmoid function approximates the multivariate
Normal CDF well in practice. To examine mv-sigmoid’s
approximation of mvn-cdf, we compute both functions us-

ing the same inputs (z = a\lvilg(i((lc)l\z""’ al‘vicg(cx()x)‘h},

as described in Proposition 1) for the CIFAR10 ResNet18
model and its test set for different o’s. The plot of mv-
sigmoid(z) against mvn-cdf{(z) for ¢ = 0.1 is shown in
Figure 3. The results indicate that the two functions are
strongly positively correlated, suggesting that my-sigmoid
approximates the mvn-cdf well in practice.

4.2. Evaluation of the efficiency of analytical estimators

The naive estimator is statistically inefficient. To examine
the efficiency of p¢, we calculate p7'© for each model and
test set using different sample sizes (n) over different o’s,
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Figure 1. Experimental validation of analytical estimators (Fash-
ionMNIST CNN). The smaller the o, the more accurately the

estimators compute pioPUst. pImse and pmMSe-MVS are the best
estimators of proPust.
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Figure 2. Experimental validation of analytical estimators (CI-
FAR10 ResNet18). For more robust models, the estimators com-
pute p=°PUst more accurately over a larger noise neighborhood.
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Figure 3. Correlation of mvn-cdf(z) and mv-sigmoid(z) for the CI-
FAR10 ResNetl18 model. The formulation of z is described in
Section 4.1. In practice, mv-sigmoid approximates mvn-cdf well.
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Figure 4. Convergence of the naive estimator pg'© for the CIFAR10
ResNet18 model as the number of noisy samples increases. In
practice, py'© is statistically inefficient.

| CPU: Intel x86_64 | GPU: Tesla V100

Estimator | Serial | Batched | Serial | Batched |

po¢(n = 10000) | 1:41:11 | 1:14:38 | 0:19:56 | 0:00:35

pLavler 0:00:08 | 0:00:07 | 0:00:02 | < 0:00:01

Py (n = 5) 0:00:41 | 0:00:31 0:00:06 | 0:00:02
robust

Table 1. Runtimes of p; estimators (H:M:S). Each estimator
computes proby=t for the CIFAR10 ResNet18 model for 50 points
using the minimum number of samples n necessary for conver-
gence. The analytical estimators (p5®1°" and p™™*°) are more

efficient than the naive estimator (p5'©).

po'¢ at a given n and p7'© at n = 50, 000. Results for the
CIFAR10 ResNet18 model are shown in Figure 4. The
results indicate that p'° requires around 10,000 samples per
point to converge, which is impractical.

The analytical estimators are more efficient than the
naive estimator. Next, we examine the efficiency of the esti-
mators by measuring their runtimes when calculating proPyst
for the CIFAR10 ResNet18 model for 50 points. Runtimes
are displayed in Table 1. They indicate that ptler and

pos¢ perform 35x and 17x faster than p7*°, respectively.

Addltlonal runtimes are in Appendix A.4.

4.3. Comparison of local robustness and softmax
probability

Local robustness and softmax probability are two dis-
tinct measures. To examine the relationship between
probust and psoftmax we calculate pmmse and psoftmax for
CIFAR10 and CIFAR100 models of varying levels of robust-
ness, and measure the correlation of their values and ranks
using Pearson and Spearman correlations. For a non-robust
model, proPust and pseftmax are not strongly correlated (Fig-
ure 5). As model robustness increases, the two quantities
become more correlated (Figures 6 and 7). However, even
for robust models, the relationship between the two quan-
tities is mild (Figure 7). That pi°P"st and p$f™a are not
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Figure 5. Relationship between pi°®"** and p$*™™** for a non-

robust CIFAR10 ResNet18 model (A = 0). For a non-robust

model, Pt and p52f™* are not strongly correlated.
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Figure 6. Relationship between p=°P"s* and p5™™a* for the CI-
FAR10 ResNet18 and CIFAR100 ResNet18 models. As model
robustness increases, pi°P"** and p$f™¥* become more corre-

lated.

strongly correlated is consistent with the theory in Section 3:

in general settings, pﬁ’ﬁftmax is not a good estimator for

robust
Ps :

4.4. Applications of local robustness

prePbust detects local robustness bias. We demonstrate
that pr°Pust can detect bias in local robustness by calculat-
ing probust using p™ms© and examining its distribution for
each class for each model and test set over different o’s.
Results for the CIFAR10 ResNet18 model are shown in
Figure 8. The results indicate that classes have different
pﬁ,Ob“St distributions, i.e., the model is more locally robust
for some classes (e.g., frog) than for others (e.g., airplane).
Thus, p°Pust can be applied to detect local robustness bias,
which is critical when models are deployed in high-stakes,

real-world settings.
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Figure 7. Relationship between pi°®"* and p5°™™2 for a robust

CIFAR10 ResNetl18 model (A = 0.01). Although pr°PUs* and
pSeftmaX phecome more correlated as model robustness increases
(Figure 6), even for robust models, the relationship between pi°Pust
and p52f™2 is mild. These results indicate that, consistent with
the theory in Section 3, p52™™2* is not a good estimator for p=°Pus*

in general settings.
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Figure 8. Local robustness bias among classes (CIFAR10
ResNet18). pioPst reveals that the model is less locally robust
mimse

for some classes than for others. The analytical estimator py
properly captures this model bias.

p‘;’b““ identifies images that are robust to and images
that are vulnerable to random noise. We demonstrate
that pi°Pust can also distinguish between images that are
robust to and images that are vulnerable to random noise
by visualizing images with the highest and lowest p*™5¢ in
each class for each model. For comparison, we do the same
with pseftmax Example CIFAR10 images are displayed in
Figure 9. Images with low pr°Pust tend to have neutral col-
ors, with the object being a similar color as the background
(making the prediction likely to change when the image
is slightly perturbed), while images with high pZ°"Us* tend

to be brightly-colored, with the object strongly contrasting
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Lowest pa\gxftrxlax Highest p;igftma.x

Lowest pise

o Highest p{275'

robust

Figure 9. Images with the lowest and highest p; among CI-
FARI10 classes. Images with high pr°®"s* are brighter with stronger
object-background contrast (making them more robust to random
noise) than those with low prPUst. This difference is less evident

for psj,gftmax .

with the background (making the prediction likely to stay
constant when the image is slightly perturbed). These dif-
ferences are not as evident for images with the highest and
lowest p?ftmax. Thus, in addition to detecting local robust-
ness bias, pr°Pust can also be applied to identify images

that are robust to and images that are vulnerable to random
noise.

For all experiments described above, full results are in Ap-
pendix A 4.

5. Conclusion

In this work, we take the first steps towards estimating lo-
cal model robustness. We show that the naive approach is
inefficient. To address this problem, we develop efficient an-
alytical estimators using local linear function approximation
and the multivariate Normal CDF, and empirically confirm
their accuracy and efficiency. Then, we demonstrate the
usefulness of these estimators in performing various tasks
such as measuring robustness bias and identifying examples
vulnerable to noise.

To our knowledge, this work is the first to investigate lo-
cal robustness in a multi-class setting and develop efficient
analytical estimators for local robustness. The analytical
aspect of these estimators not only advances conceptual un-
derstanding of local robustness, connecting it to randomized
smoothing and softmax probability, but also enables local
robustness to be used in applications that require differentia-
bility. In addition, the efficiency of these estimators makes
the computation of local robustness practical, enabling tasks
that help with model debugging and establishing user trust.

One limitation of this work is that it focuses on local ro-
bustness for classification. The estimators may also provide
inexact estimates that affect downstream decisions (as is
typical of any inexact estimator). Defining local robustness
for regression and developing efficient analytical estimators

for this setting represent future research directions. Other
future research directions include exploring additional ap-
plications of local robustness, such as using local robustness
to perform uncertainty calibration and to train locally robust
models.
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A. Appendix
A.1. Proofs

Lemma A.1. The local robustness of a multi-class linear model f(x) = w'x + b, with w € R4*Y and b € RC, with
respect to a target class t is given by the following. Define the decision boundary weights w! = w; — w; € R% Vi # t,
where wy, w; are rows of w and biases b, = (w} — w])' x + (b, — b;) € R, then

1
b, b b, )
ollwill2” ollwill” ollwgl2

00 = CDFco

/

! /
where U = [ w/1 i ui’ s Uic } e R(C-1)xd
lwillz” will2” [lwell2

and CDF o ,yu ) refers to the (C — 1)-dimensional Normal CDF with covariance Uuu’.

robust ;

Proof. First, we rewrite pX in the following manner, by defining g;(x) = fi(x) — fi;(x) > 0, which is the “decision

boundary function”.

c
P = Pon(0,02) [m?x filx+e€) < fulx+ e)} = Pen(0,02) U gi(x+¢€) >0
i=13it

Now, assuming that f, g are linear such that ¢;(x) = ngx + ¢(0), we have g;(x + €) = g;(x) + nge, and obtain

[ ¢
T
pg)bust = PeNN(07<72) U w; € > —gi(X)
| i=15i7t
O w7 9i(x)
= P, on(0,1,) U L > - (Rescaling and standardization)
Sl P S 7 P i

We now make the following observations:

* For any matrix U € R“*? and a d-dimensional Gaussian random variable z ~ N (0, I;) € R%, we have U Tz ~
N(0,UUT),i.e., an C-dimensional Gaussian random variable.

* CDF of a multivariate Gaussian RV is defined as P, | J, z; < t;] for some input values t;

’

Using these observations, if we construct U = [ot—; —o2—;...mC—] € R(€=1)*4 and obtain
[lwill2? [lwsll= lwe 2
c
gi(x)
Probust = PuNN(O,UUT) U U; < 7
i=15it ollwill:

g1(x)  g2(x) gc(x) )

N(0,UU )(|:0_||w/1||27 0_||w/2||2’ O'HU)/CHQ

where g;(x) = w] x4 ¢;(0) = (w} — w}) " x + (b; — b;)

10
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Proposition 3. The Taylor estimator for a model f and point x is given by linearizing f around x using w = Vy f(x) and
b = f(x), with decision boundaries g;(x) = f:(x) — fi(x), leading to

g1(x) g9i(x) gc(x) )
o[Vxgi(®)|l2” " ol|Vagi(x)ll2” " 0l|Vige (x)l2

pt;ylor(x) = CDF/\/(O,UUT)(
with U € R(€=1Xd defined as in the linear case.

Proof. Using the notations from the previous Lemma 3.1, we can use g(x + €) ~ g(x) + Vxg(x) € using a first order
Taylor series expansion. Thus we use w; = Vxg;(x) and ¥’ = g(x), and plug it into the result of Lemma 3.1. O

Proposition 4. The MMSE estimator for a model f and point x is given by linearizing f around x using w = Z;\Ll Vi f(x+

€)and b = Zjvzl f(x), with decision boundaries g;(x) = f:(x) — f;(x), leading to

Y gi(x+e) SN go(x+e)
ol SN Vagi(x+ o)l o 2 Vaege(x + )|

mmse

P (x) = CDFpr(o,uum)(

with U € R(€=1x4d defined as in the linear case, where N is the number of perturbations.

Proof. We would like to improve upon the Taylor approximation to g(x+¢) by using an MMSE local function approximation.
Essentially, we’d like the find w € R¢ and b € R such that

w*(x),b*(x)) =argmin | r4e) —w'e—b)?
(0" (). (x)) = vgmin B (gle+0) )

A straightforward solution by finding critical points and equating it to zero gives us the following:

w*(x) =K [g(z + e)eT] Jo* = ]Ej [Vxg(x+€)] (Stein’s Lemma)

€

b*(x) =Eg(z +e)

Plugging in these values of w*, b* into Lemma 3.1, we have the result.

A.2. Datasets

The MNIST dataset consists of images of gray-scale handwritten digits. The images span 10 classes: digits O through 9.
Each image is of size 28 pixels x 28 pixels. The training set consists of 60,000 images and the test set consists of 10,000
images.

The FashionMNIST dataset consists of gray-scale images of articles of clothing. The images span 10 classes: t-shirt, trousers,
pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot. Each image is of size 28 pixels x 28 pixels. The training set
consists of 60,000 images and the test set consists of 10,000 images.

The CIFARI10 dataset consists of color images of common objects and animals. The images span 10 classes: airplane, car,
bird, cat, deer, dog, frog, horse, ship, and truck. Each image is of size 3 pixels x 32 pixels x 32 pixels. The training set
consists of 50,000 images and the test set consists of 10,000 images.

The CIFAR100 dataset consists of color images of common objects and animals. The images span 100 classes: apple, bowl,
chair, dolphin, lamp, mouse, plain, rose, squirrel, train, etc. Each image is of size 3 pixels x 32 pixels x 32 pixels. The
training set consists of 50,000 images and the test set consists of 10,000 images.

For experiments, we use 1,000 randomly-selected test set images for each dataset.

11
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A.3. Models

For the MNIST and FashionMNIST (FMNIST) datasets, we train a linear model and a convolutional neural network (CNN)
to perform 10-class classification. The linear model consists of one hidden layer with 10 neurons. The CNN consists of four
hidden layers: one convolutional layer with 5x5 filters and 10 output channels, one convolutional layer 5x5 filters and 20
output channels, and one linear layer with 50 neurons, and one linear layer 10 neurons.

For CIFAR10 and CIFAR100 datasets, we train a ResNetl18 model to perform 10-class and 100-class classification,
respectively. The model architecture is described in (He et al., 2016). We train the ResNet18 models using varying levels of
gradient norm regularization to obtain models with varying levels of robustness. The larger the weight of gradient norm
regularization (), the more robust the model.

All models were trained using stochastic gradient descent. Hyperparameters were selected to achieve decent model
performance. The emphasis is on analyzing the estimators’ estimates of local robustness of each model, not on high model
performance. Thus, we do not focus on tuning model hyperparameters. All models were trained for 200 epochs. The test set
accuracy (on each dataset’s full 10,000-point test set) for each model is shown in Table 2.

Dataset | Model | A | Testset accuracy
MNIST Linear 0 92%
MNIST CNN 0 99%
FashionMNIST Linear 0 84%
FashionMNIST CNN 0 91%
CIFAR10 ResNet18 0 94%
CIFARI10 ResNet18 | 0.0001 93%
CIFAR10 ResNet18 | 0.001 90%
CIFAR10 ResNet18 0.01 85%
CIFAR100 ResNet18 0 76%
CIFAR100 ResNet18 | 0.0001 74%
CIFAR100 ResNet18 | 0.001 69%
CIFAR100 ResNet18 0.01 60%

Table 2. Accuracy of models on test set.
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A.4. Experiments

A.4.1. CONVERGENCE OF p3'¢
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Figure 10. Convergence of pg°.

A.4.2. CONVERGENCE OF pJ™s¢
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Figure 11. Convergence of p; .
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. DISTRIBUTION OF p“’b“St OVER NOISE
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A.4.4. ACCURACY OF p:oP"st ESTIMATORS
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Figure 13. Accuracy of py estimators over o.
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A.4.5. ACCURACY OF p:°PUst ESTIMATORS FOR

ROBUST MODELS
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Figure 14. Accuracy of pg
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estimators over o for robust models.

A.4.6. MV-SIGMOID FUNCTION’S APPROXIMATION OF MVN-CDF FUNCTION
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Figure 15. mv-sigmoid function’s approximation of mvn-cdf function over o.

A.4.7. LOCAL ROBUSTNESS BIAS AMONG CLASSES
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A.4.8. RUNTIMES OF p’“)b“St ESTIMATORS

| CPU: Intel x86.64 | GPU: Tesla V100-PCIE-32GB

Estimator | # samples (n) | Serial Batched | Serial Batched
n =100 0:00:59 | 0:00:42 0:00:12 0:00:01
n = 1000 0:09:50 | 0:07:22 0:02:00 0:00:04
n = 10000 1:41:11 | 1:14:38 0:19:56 0:00:35
taylor | N/A | 0:00:08 | 0:00:07 | 0:00:02 | < 0:00:01
taylor-mvs | N/A | 0:00:08 | 0:00:07 | 0:00:01 | < 0:00:01
n = 0:00:08 | 0:00:10 0:00:02 0:00:02
n=>5 0:00:41 | 0:00:31 0:00:06 0:00:02
mmse n =10 0:01:21 | 0:01:02 0:00:11 0:00:02
Po n =25 0:03:21 | 0:02:44 | 0:00:26 | 0:00:03
n =50 0:06:47 | 0:05:38 0:00:51 0:00:04
n = 100 0:13:57 | 0:11:31 0:01:42 0:00:06
n=1 0:00:08 | 0:00:08 0:00:01 0:00:01
n=>5 0:00:41 | 0:00:32 0:00:05 0:00:01
mmse.mvs | 7= 10 0:01:21 | 0:01:00 0:00:10 0:00:02
Ps n =25 0:03:24 | 0:02:37 0:00:25 0:00:02
n = 50 0:06:47 | 0:05:35 0:00:51 0:00:03
n = 100 0:13:28 | 0:11:32 0:01:42 0:00:06
piPitmax | N/A 0:00:01 | < 0:00:01 | <0:00:01 | < 0:00:01

robust

Table 3. Runtimes of each py estimator. Each estimator computes p,—g for the CIFAR10 ResNet18 model for 50 data points. For
estimators that use sampling, the row with the minimum number of samples necessary for convergence is italicized. The analytical
taylor , taylor.mvs _mmse

estimators (pe™ ", pe TS pithee fand pi ™MV are more efficient than the naive estimator (p5' ). Runtimes are in the format of
hour:minute:second.

robust

A.5. Broader Impact

This work is concerned with improving estimation of local robustness of machine learning models, and as such does not
have any immediate foreseeable negative societal impact. However, inexact estimation can affect downstream decisions, and
as such, estimator quality must always be taken into account to mitigate such cases.
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