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ABSTRACT

DNA language models have advanced genomics, but their downstream perfor-
mance varies widely due to differences in tokenization, pretraining data, and ar-
chitecture. We argue that a major bottleneck lies in tokenizing sparse and unevenly
distributed DNA sequence motifs, which are critical for accurate and interpretable
models. To investigate, we systematically benchmark k-mer and Byte-Pair En-
coding (BPE) tokenizers under controlled pretraining budget, evaluating across
multiple downstream tasks from five datasets. We find that tokenizer choice in-
duces task-specific trade-offs, and that vocabulary size and tokenizer training data
strongly influence the biological knowledge captured. Notably, BPE tokeniz-
ers achieve strong performance when trained on smaller but biologically signif-
icant data. Building on these insights, we introduce DNAMotifTokenizer, which
directly incorporates domain knowledge of DNA sequence motifs into the tok-
enization process. DNAMotifTokenizer consistently outperforms BPE across di-
verse benchmarks, demonstrating that knowledge-infused tokenization is crucial
for learning powerful, interpretable, and generalizable genomic representations.

1 INTRODUCTION

Recent advances in artificial intelligence (AI) and large language models (LLMs) have transformed
nearly every field of biological research. By analyzing complex, noisy, and large-scale datasets,
these models can uncover hidden patterns, generate predictions, and accelerate the discovery of new
biological knowledge and molecular structures (Nature Methods, 2024). In genetics, building on the
remarkable success of text-based LLMs, researchers have developed DNA language models (DNA-
LMs) to capture the latent “grammar” of genomic sequences. These models are being leveraged
to improve DNA sequence design, investigate the genetic basis of evolution, and interpret genetic
mutations underlying human traits and diseases.

Over the past few years, a series of DNA-LMs has emerged (see Figure 1a). Early efforts, such
as DNABERT-1 (Ji et al., 2021), introduced k-mer–based tokenizers and transformer architectures
to model DNA sequences, laying the foundation for various downstream applications. DNABERT-
2 (Zhou et al., 2023) extended this idea by introducing byte-pair encoding (BPE)-based (Sennrich
et al., 2015) tokenizer and pretrained on multi-species genomes. A large-scale model, Nucleotide
Transformer (Dalla-Torre et al., 2025), has scaled up in both parameter size and training corpus,
improving accuracy and generalizability. The HyenaDNA (Nguyen et al., 2023) has explored long-
context modeling to better capture distal dependencies in the genome. More recently, Evo-2 (Brixi
et al., 2025) has been developed to expand prediction and design across DNA, RNA, and proteins.
Collectively, these models underscore both the promise and challenges of scaling DNA-LMs for
biological discovery, including regulatory element prediction, non-coding genetic variant interpre-
tation, and DNA sequence designs.

Despite their superb fine-tuning performance in downstream tasks, current DNA-LMs often exhibit
poor zero-shot generalization to new tasks (Patel et al., 2024). The bottleneck lies largely in the DNA
tokenization process, which breaks down raw DNA sequences into fundamental units for the model
to process (see Figure 1b). Unlike natural language, DNA is composed of highly repetitive, short,
sparse, and unevenly distributed DNA sequence motifs, largely represented by transcription factor
(TF) binding motifs. Standard tokenization strategies, such as fixed k-mers or subword methods like
byte-pair encoding (BPE), often fail to efficiently capture these biologically meaningful patterns. It
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Figure 1: Overview strategy and pipeline.

is critical to optimize the DNA tokenization step towards the development of accurate, interpretable,
and generalizable models.

In this work, we systematically investigate the impact of tokenization on DNA-LMs with different
categories of human genomic sequences (see Figure 1c). Under controlled pretraining settings,
we benchmark a variety of k-mer and BPE-based tokenizers across five distinct datasets spanning
multiple downstream tasks. Our analysis reveals that the choice of tokenizer induces significant
task-specific trade-offs, and we find that incorporating domain knowledge, DNA sequence motifs,
is essential for learning more robust DNA representations.

To address this, we introduce DNAMotifTokenizer, a novel strategy that directly incorporates do-
main knowledge of DNA sequence motifs into the DNA tokenization process. In our comprehensive
benchmarks, DNAMotifTokenizer consistently outperforms BPE-based tokenizers across diverse
tasks, demonstrating that knowledge-infused tokenization is crucial for learning powerful, inter-
pretable, and generalizable genomic representations.

Our main contributions can therefore be summarized as follows: (1) We introduce Search Candidate
cis-Regulatory Elements by ENCODE (SCREEN) benchmarking datasets, which contains a stan-
dardized, comprehensive, and well-annotated human functional genomic regulatory elements. (2)
We provide the first systematic evaluation of DNA tokenization strategies under controlled pretrain-
ing, revealing task-specific trade-offs. (3) We propose DNAMotifTokenizer, a motif-aware tokenizer
that directly encodes biologically meaningful sequence motifs. DNAMotifTokenizer consistently
outperforms or achieves the state-of-the-art performance, highlighting the necessity of introducing
domain knowledge for genomic representation learning. The code, data, and pre-trained model are
available in supplementary materials.

2 BACKGROUND

In natural language processing (NLP), tokenization is a critical step that converts text into a format
suitable for computational models. Similarly, genomic sequences can be viewed as a “language”
encoding complex information that regulates gene expression in organs, tissues, and cell types across
healthy and disease conditions.

The k-mer and BPE-based tokenizers are commonly used in state-of-the-art DNA-LMs(Table 1).
HyenaDNA (Nguyen et al., 2023) uses a 1-mer tokenizer and a decoder-only architecture with the
Hyena operator to model long-range dependencies. DNABERT-1 (Ji et al., 2021) tokenized the
genome with overlapping k-mers and trained separate models for each, substantially outperform-
ing several downstream tasks. Nucleotide Transformer (Dalla-Torre et al., 2025) employs non-
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Table 1: Comparison of state-of-the-art DNA-LMs

Model Model Size Tokenizer Pretrain Data
HyenaDNA ≤6.6M 1mer Human reference genome
DNAbert1-3mer 86M 3mer, stride=1 Human reference genome
DNAbert1-6mer 89M 6mer, stride=1 Human reference genome
DNAbert2 117M BPE, vocab size=4096 135 species genomes
NT-HumanRef 500M 6mer, stride=6 Human reference genome
NT-1000GG 500M/2.5B 6mer, stride=6 3202 human genomes
NT-HumanRef 2.5B 6mer, stride=6 850 species genomes
MxDNA 100M Customized Human reference genome

overlapping 6-mer tokenization and leverages large-scale pretraining across thousands of human
individual genomes, and hundreds of species. Zhou et al. (2023) proposed DNABERT-2, which
uses a byte-pair encoding (BPE) tokenizer inspired by NLP. MxDNA (Qiao et al., 2024) introduced
a learnable tokenizer using a Mixture-of-Experts framework (Shazeer et al., 2017) and deformable
convolutions (Dai et al., 2017).

Despite these advances, the field lacks a systematic comparison of how tokenizer choice alone affects
model performance. Existing models differ not only in tokenizers but also in architecture, model
size, and pretraining data, which confound direct comparisons (Table 1). This limits our ability to
reason about what makes a tokenizer effective and to design better ones.

In addition, DNA sequence motifs are short, recurring patterns of nucleotides that serve as the fun-
damental vocabulary of the genome’s regulatory language. These motifs function as binding sites
for proteins, most notably transcription factors (TFs), which are key players in controlling when
and where genes are expressed. Standard tokenization methods, which are agnostic to biological
function, often arbitrarily split these meaningful motifs into smaller, non-functional tokens. As a
result, it hampers DNA-LMs’ ability to learn biologically meaningful representations of genomic
sequences and complicates downstream model interpretation.

To address these issues, we developed a controlled benchmarking framework to systematically as-
sess the tokenizer’s influence and identify key factors for effective design. Guided by our findings,
we propose DNAMotifTokenizer, a novel tokenizer that takes a significant step towards a more bi-
ologically informed tokenization of genomic sequences. By embedding the essential ”grammar” of
gene regulation into its vocabulary, DNAMotifTokenizer enables DNA-LMs to better capture the
complex relationships between sequence and function.

3 DATA

3.1 GENOMIC SEQUENCES

Human reference genome: The human reference genome is assembled by scientists to provide a
standardized map of human DNA, allowing sequencing data from different individuals or studies
to be aligned, compared, and interpreted consistently. In our study, we use the most widely used
version, hg38 (GRCh38) (Consortium, 2013), which incorporates improved accuracy and coverage
over previous releases.

Annotation of motif regions: In our study, we download the genome-wide JASPAR CORE TF
motif predictions on the human reference genome (hg38) from the UCSC Genome Browser (Lee
et al., 2020)(Raney et al., 2014). To prepare the data for BPE training, we extract all predicted motif
sequences and merge any overlapping ones to create a non-redundant set. The resulting set of motif
sequences covers approximately 59.84% (See Table C.1) of the human genome.

Annotation of cCREs: Candidate cis-regulatory elements (cCREs) are functional regulatory units
in the genome, such as promoters and enhancers, that are typically hundreds of base pairs long.
These regions often contain multiple TF motifs and are crucial for controlling when and where
genes are expressed. For this study, we download human cCRE annotations from The Encyclo-
pedia of DNA Elements(ENCODE), which provide genomic coordinates and regulatory classifica-
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tions (Moore et al., 2020)(Luo et al., 2020). We extract the corresponding DNA sequences for BPE
training, which constitute approximately 20.32% (See Table C.2) of the human reference genome.

3.2 BENCHMARK DATASETS

Genome Understanding Evaluation(GUE): Genome Understanding Evaluation (GUE) dataset
was collected by (Zhou et al., 2023), consisting of 28 distinct datasets across 7 tasks and 4 species,
with DNA inputs ranging from 70 to 1000 base pairs (bp). Since in our entire pipeline, no species
other than humans is included, to make the strictest comparison, the datasets related to other species
are excluded. The metric we use is the Matthews Correlation Coefficient (MCC) (see Appendix).

Nucleotide Transformer Benchmarks: Nucleotide Transformer (NT) benchmarks were collected
by (Dalla-Torre et al., 2025), it includes 18 datasets across 4 tasks only on humans. For this dataset,
MCC is employed as the metric.

Dart-Eval: This dataset was introduced by (Patel et al., 2024) and contains five tasks. In our exper-
iments, we focus on tasks 1–3. Accuracy (ACC) served as the evaluation metric. Task 1 involves
distinguishing cCRE regions from background sequences. Task 2 requires identifying transcrip-
tion factor (TF) binding motifs within background sequences. Task 3 entails classifying sequences
specific to five different cell types against background sequences.

Genomic Benchmarks: This dataset was collected by (Grešová et al., 2023), it includes nine tasks,
across four species. We only use human related datasets. MCC is used as the metric.

SCREEN: We create this benchmark dataset by first downloading the cCREs on hg38 from the
SCREEN interface (Moore et al., 2020), a platform for searching and visualizing the ENCODE
Registry of candidate cis-Regulatory Elements (cCREs). This Registry contains 2,348,854 human
cCREs, classified into eight categories, including promoter-like signatures (PLS), proximal and dis-
tal enhancer-like signatures (pELS, dELS), and CTCF- or TF–associated accessible elements (CA,
CA-CTCF, CA-H3K4me3, CA-TF, TF). We generated a negative superset by taking the complement
of all cCRE regions and dividing it into 300 base pair (bp) segments. For each cCRE category, we
then randomly sample from this superset to obtain the same number of sequences as in the corre-
sponding negative set. This procedure yielded eight datasets, each containing an equal number of
positive and negative sequences.

4 METHOD

4.1 TOKENIZERS

K-mer tokenizer: A k-mer is a substring of length k from a DNA or RNA sequence (Moeckel
et al., 2024). K-mers can be generated in two ways: overlapping, by sliding a window one base
at a time to capture all subsequences, or non-overlapping, by moving the window in steps of k to
produce disjoint subsequences. In our experiments, we test overlapping 3-mer and 6-mer imple-
mented by DNABERT-1 (Ji et al., 2021), and non-overlapping 6-mer implemented by Nucleotide
Transformer (Dalla-Torre et al., 2025), respectively.

BPE tokenizer: BPE is a learnable subword tokenization algorithm that iteratively merges the most
frequent pairs of characters or subwords in a training corpus to build a vocabulary of common
subwords (Sennrich et al., 2015). The resulting merge rules, based on pair frequency, are recorded
and applied to tokenize new sequences consistently, allowing the model to capture recurring patterns
efficiently. The BPE tokenizer for DNA sequences was introduced by DNABERT-2. We use the BPE
tokenizer pretrained by DNABERT-2 and also train our own BPEs on human reference genome,
motif enriched genomic regions, and cis-regulatory element (cCRE) regions (see Section 3). Three
vocabulary sizes were explored: 4096 (matching DNABERT-2), 2048, and 1024. Each BPE was
initialized with the DNA alphabet (A, T, C, G, N) and five special tokens ([PAD], [UNK], [CLS],
[SEP], [MASK]), with a minimum frequency threshold of 100.

Others: MxDNA (Qiao et al., 2024) is excluded from comparison due to a lack of publicly available
pre-trained weights.
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DNAMotifTokenizer: We develop DNAMotifTokenizer, a novel tokenizer designed to understand
the language of the genome by directly embedding biological domain knowledge—specifically, TF
motifs, the functional ’words’ of the genome—into its vocabulary. In addition, we design a greedy
algorithm to tokenize the incoming sequences with our customized vocabulary. See Section 7 for
more details.

4.2 MODELS

Architecture: We adopt a BERT-based masked language model architecture (BertMLM) (Devlin
et al., 2019) for our experiments. The model uses the Transformer encoder architecture (Vaswani
et al., 2017) with 12 layers and 12 attention heads and a hidden size of 768, resulting in intermediate
feed-forward layers of size 3072. The maximum input sequence length is 512 tokens, and the model
uses learnable positional embeddings up to this length. Dropout Srivastava et al. (2014) is applied
to both the attention probabilities and hidden layers with a rate of 0.1, and the GELU (Hendrycks
& Gimpel, 2016) activation function is used throughout. The model vocabulary size is changed
according to the tokenizer used, and a type vocabulary of size 2 is included to distinguish segment
embeddings. All parameters are initialized with a standard deviation of 0.02.

Pre-training: During pre-training, we strictly control all experiments to ensure comparability
by keeping the models’ floating-point operations per second (FLOPs) consistent. All tokeniz-
ers are applied to the human reference genome (chromosomes 1–22, X, Y, and M), and the to-
kenized sequences are sequentially split into segments of 512 tokens to serve as input for the
BertMLMs. Segments containing more than 50% N tokens are discarded. Each model is trained
with a batch size of 96 for 200,000 steps, using a learning rate of 4e-5, Adam optimizer parame-
ters (β1 = 0.9, β2 = 0.98, δ = 1 × 10−6), weight decay of 0.01, a masked language modeling
probability of 0.15, and 10,000 warmup steps.

Evaluation: During model evaluation, we fine-tune the pre-trained models on five benchmark
datasets (see Section 3 for details). Most fine-tuning hyperparameters are consistent across mod-
els, varying primarily in the maximum input length, which is adjusted per tokenizer. Performances
are measured using the Matthews Correlation Coefficient (MCC) for four datasets, and Accuracy
(ACC) for the DART-Eval benchmarking dataset.

We compare the vocabulary similarities by calculating the pairwise Jaccard Index. We also generate
Venn diagrams illustrating their word overlap (Hulsen, 2021). See Appendix for more details.

5 BENCHMARKING OF STATE-OF-THE-ART TOKENIZERS
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Figure 2: Benchmarking of state-of-the-art Tokenizers.

A variety of k-mer and BPE-based tokenizers are used in state-of-the-art DNA-LMs. However, these
models vary in architecture, model size, and pre-training data (see Table 1), making it difficult to iso-
late the impact of the tokenizer on model performance. To systematically evaluate various DNA tok-
enizers, we design experiments on the human reference genome with strictly controlled pre-training
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and fine-tuning protocols (see Section 4.2). These DNA tokenizers include 3-mer (overlap), 6-mer
(overlap) from DNABERT-1, 6-mer (non-overlap) from Nucleotide Transformer, the original BPE
from DNABERT-2, and a custom BPE tokenizer (vocabulary size = 4096) trained on the human ref-
erence genome (see Figure 2a). We fine-tune each pre-trained model on five distinct benchmarking
datasets and compare the average performance of each DNA tokenizer (Figure 2b). Our findings re-
veal a clear performance trade-off: although k-mer-based tokenizers achieve higher performance on
specific tasks, like splicing site prediction, no single tokenizer consistently outperformed the others.
Overall, BPE tokenizers achieve more robust performance, surpassing k-mer tokenizers in four of
the five benchmark datasets. More detailed results for each task across all benchmark datasets are
provided in the Appendix.

We use the NT-benchmarks to investigate the zero-shot ability, where k-mer tokenizers consistently
outperformed BPE tokenizers. Both overlapping and non-overlapping k-mer tokenizers struggled
to cluster four distinct genomic elements, while BPE tokenizers performed better at separating en-
hancers and promoters from other DNA sequences (Figure 2c). Furthermore, we leverage the most
comprehensive GUE benchmark and group downstream tasks by the length of DNA sequences. We
find that k-mer tokenizers performed marginally better on shorter sequences (100 bp), whereas BPE
tokenizers excel on longer ones (>500 bp) (Figure 2d), which is consistent with previous work (Zhou
et al., 2023). Taken together, we conclude that BPE-based tokenizers achieve more robust perfor-
mance on both zero-shot and fine-tuning tasks and are more generalizable for predictions involving
longer DNA sequences.

6 WHAT MAKES A GOOD BPE TOKENIZER?

To better optimize BPE tokenizers for genomic sequences, we examine two key dimensions: vo-
cabulary size, which determines token granularity and model performance, and domain knowledge,
which grounds tokens in biologically meaningful units.

6.1 SIZE MATTERS: VOCABULARY SCALING

(a) (b)Human reference genome

BPE training

Vocab size
1024 2048 4096

Vocabulary overlap
BPE(4096)
BPE(2048)
BPE(1024)

Figure 3: Training BPE with Different Vocabulary Size.

Using the human reference genome, we first train BPE tokenizers with three vocabulary sizes: 1024,
2048, and 4096 (Figure 3a). We overlap token vocabularies and find that they were nested (Fig-
ure 3b). For example, each larger set (e.g. BPE 2048) contains all tokens from the smaller ones
(e.g., BPE 1024). This hierarchical structure means longer vocabularies are built by merging shorter,
existing tokens, leading to a marginal increase in average token length (Figure B.1a) and a wider dis-
tribution of token frequencies (Figure B.1 b). Next, to quantify the information gained by expanding
the vocabulary, we compute the Shannon entropy for the set of novel tokens introduced at each
increase in vocabulary size. For instance, BPE (2048-1024) refers to the new tokens learned by
the BPE 2048-token vocabulary that were not present in the BPE 1024-token vocabulary, with the
same logic applying to BPE (4096-2048). We observe a significant increase (Wilcoxon test) in mean
entropy (red triangle) across BPE (1024), BPE (2048-1024) and BPE (4096-2048), suggesting that
larger vocabularies capture more complex and diverse tokens within the genomic sequences (Fig-
ure B.1c). Last, we fine-tune models using each of these BPE tokenizers on five benchmark datasets
to evaluate their downstream performance (Table 2). Counterintuitively, the more diverse and longer
tokens captured by a larger vocabulary did not translate to better predictive performance. In fact,
our findings consistently show that a more concise token vocabulary led to superior overall results.

In summary, we suggest that increasing the BPE vocabulary size beyond a certain point introduces
information redundancy, which may negatively impact model performance.

6
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Table 2: Performance of BPE models with varying vocabulary sizes across five benchmark datasets

Model GUE SCREEN DART-EVAL Genomic Benchmarks NT-Benchmarks
Ave. MCC Ave. MCC Ave. ACC Ave. MCC Ave. MCC

BPE(DNABERT2) 0.6468 0.8791 0.8342 0.6886 0.5839
BPE(4096) 0.6638 0.8717 0.8425 0.7006 0.5839
BPE(2048) 0.6684 0.8743 0.8451 0.7021 0.595
BPE(1024) 0.673 0.8781 0.8604 0.7069 0.5988

6.2 INFORMATIVE TOKENS: ADDING DOMAIN KNOWLEDGE

~ 60%

~ 20%

Human reference genome

TF motifs

cCREs

BPE training 
Vocab size
1024 2048 4096

...CCCTCCCTTCCCTCTCCCAGCCTGTGACTTGTAA...

...CCCTCCCTTCCCTCTCCCAGCCTGTGACTTGTAA...

ACTTG
...CCCTCCCTTCCCTCTCCCAGCCTGTGACTTGTAA...

CCTTC
AGCCTCTCCC

JASPAR motif predictions

ENCODE cCREs

Figure 4: Training BPE to Learn Domain Knowledge.

We hypothesize that training BPE tokenizers on biologically meaningful subsets of the genome,
rather than the entire genome, could yield more effective models. To test our hypothesis, we train
BPE tokenizers with various vocabulary sizes on three distinct datasets, including the full human
reference genome, genomic regions predicted as TF motifs, and biological function-enriched cCREs
regions, to assess whether data selection improves tokenization (see Section 3 and Figure 4). We first
compare the BPE token vocabularies learned from the human reference genome, motif, and cCRE
regions by calculating their pairwise Jaccard Similarity Index (Figure B.2a). Our analysis reveals
that the BPE tokenizer trained on motif regions produced the most distinct vocabulary, compared
to those trained on the whole genome or cCREs. For example, with a vocabulary size of 1024,
the motif-trained BPE learned 415 unique tokens (40.5%) not found in the other two vocabularies
(Figure B.2b). Although we find no significant differences in token length distribution (Figure B.2c),
the motif BPE generated a higher proportion of low-frequency tokens when applied to the human
reference genome (Figure B.2d). We also observe the same pattern for BPE tokenizers with larger
vocabulary sizes. Next, we rigorously evaluate and compare the downstream performance of models
trained with each tokenizer (Tabel 3). Our results show that models with BPE tokenizers trained on
motif and cCRE regions can achieve comparable performance to those trained on the whole human
genome, regardless of vocabulary size.

These results, consistent across five benchmark datasets, suggest that BPE tokenizers can be trained
more efficiently using curated datasets enriched with domain knowledge, without sacrificing model
performance.

Table 3: Performance of BPE models with varying vocabulary size and domain knowledge

Vocab Domain GUE SCREEN DART-EVAL Genomic Benchmarks NT-Benchmarks
Size Knowledge Ave. MCC Ave. MCC Ave. ACC Ave. MCC Ave. MCC

4096
hg38 0.6638 0.8717 0.8425 0.7006 0.5839

cCREs 0.6552 0.8719 0.8425 0.699 0.5723
motifs 0.6522 0.8694 0.8309 0.6844 0.5764

2048
hg38 0.6684 0.8743 0.8451 0.7021 0.595

cCREs 0.6645 0.8767 0.8382 0.6993 0.5973
motifs 0.6695 0.8769 0.8392 0.6868 0.5902

1024
hg38 0.673 0.8781 0.8604 0.7069 0.5988

cCREs 0.6743 0.8793 0.8458 0.7039 0.5954
motifs 0.6684 0.8777 0.8494 0.7005 0.5954

7 OUR NOVEL DNAMOTIFTOKENIZER

Building on aforementioned insights, we would like to ask whether domain knowledge can be di-
rectly integrated into the tokenizer’s design to improve performance. To test it, we develop DNAMo-
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tifTokenizer, a novel tokenizer that directly incorporates TF motifs into the vocabulary and applies
a greedy search algorithm to tokenize the corresponding patterns in DNA sequences (Figure 5).

7.1 ALGORITHM

(a)

(b)

(c)

(d)

0.60  1.00  0.00  1.00  0.89  0.00  0.31  0.28
0.11  0.00  0.82  0.00  0.07  0.00  0.00  0.41
0.24  0.00  0.18  0.00  0.04  0.00  0.34  0.31
0.05  0.00  0.00  0.00  0.00  1.00  0.35  0.00

Position weight matrix of SOX18

1       1       0       1       1       0       w       w
0       0       1       0       0       0       w       w
0       0       0       0       0       0       w       w
0       0       0       0       0       1       w       w

Binarization + 
Wildwards 
trimming

A
C
G
T

A
C
G
T

A
C
G
T
N

TF motifs & their 
reverse complements

ACTTG

AAA, ACA, AGA, ATA 
AAC, ACC, AGC, ATC
AAG, ACG, AGG, ATG
AAT, ACG, AGT, ATT, ...

CCTTC

1-mer 3-mer

[PAD], [UNK], [CLS], [SEP], [MASK]

Token vocabulary

AGCCTAACAAT
A T TGTT ...

Special tokens

A C
G T
  N

...CCTCCCTTCCCT...CAGCCTGTGACTTGTAA...

...ACC, TCC, CTTC, CCT, ..., C, AGCCT, GTG, ACTT, GTA, A...

...CCT, CCCTTC, CCT, ..., C, AGCCT, GTG, ACTTG, TAA...

...CCT, CCCTTC, CCT, ..., C, AGCCT, GTG, ACTT, GTA, A...

Variant 1: match longest motif first

Variant 2: match shortest motif first

Tokenized DNA sequence

Tokenization process
Given a DNA sequence:

...

Window size 
from 4 to 12 bp

Offset: 0, 1, 2 bp

if match TF motifs:
        as motif token
else:
        as 3-mer or 1-mer 

Greedy tokenization from 
start to end position

Ablation study

Figure 5: Overview of DNAMotifTokenizer.

Motif processing: Motifs are short, recurring patterns in DNA, RNA, or protein sequences that
are frequently associated with specific biological functions. In this work, we focus on DNA se-
quence motifs, which are most commonly referred to TF motifs. These are short DNA sequences
that are bound by transcription factor proteins to regulate gene expression. The TF motifs are gen-
erally represented in the form of position weight matrices (PWM)(Stormo, 2000), which indicate
the probability of each nucleotide occurring at each position within the motif. We download motif
PWMs from the JASPAR 2024 motif library (Sandelin et al., 2004)(Rauluseviciute et al., 2024),
which is a widely used, open-access repository. We use the vertebrate library, which contains 879
non-redundant motifs. As most TF motifs range in length from 5 to 12 base pairs (bp), we exclude
any motifs longer than 12 bp from our analysis.

To incorporate TF motifs into our vocabulary, we binarize their PWMs and encode them into fixed
sequences (Figure 5a). For each TF PWM, we apply a threshold probability of 0.5. Positions
without any nucleotide probability higher than 0.5 are defined as wildcard positions. Subsequently,
we discard wildcard positions at both ends of the motif. For the remaining positions, we encode
them using the nucleotide with the highest probability.

Our customized token vocabulary: In addition to the motif sequences defined in the previous
section, we include their reverse complements in the vocabulary. Furthermore, we add 3-mer, 1-
mer(A, T, C, G, N), and five special tokens, namely [PAD], [UNK], [CLS], [SEP], and [MASK],
to form our final vocabulary. Our final vocabulary has 901 tokens in total, including 827 motif
sequences, 64 3-mer, 5 1-mer(A, T, C, G, N), and 5 special tokens (Figure 5b).

Tokenization algorithm: With our customized vocabulary established, we implement a greedy,
non-overlapping tokenization algorithm. The algorithm scans an incoming DNA sequence from left
to right, using a sliding window that varies from 4 to 12 bp in length. We recognize that a single
base-pair shift can cascade and alter the entire tokenized output. To mitigate this sensitivity without
a significant loss in computational efficiency, we incorporate local flexibility by allowing for a 0 to
2 bp offset to the right. At each position, if the subsequence within the window matches one or

8
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Table 4: Performance of DNAMotifTokenizer and all BPEs, on five Benchmark datasets

Model GUE SCREEN DART-EVAL Genomic Benchmark NT-Benchmarks
Ave. MCC Ave. MCC Ave. ACC Ave. MCC Ave. MCC

BPE(DNABERT-2) 0.6468 0.8791 0.8342 0.6886 0.5839
BPE(hg38, 4096) 0.6638 0.8717 0.8425 0.7006 0.5839
BPE(hg38, 2048) 0.6684 0.8743 0.8451 0.7021 0.595
BPE(hg38, 1024) 0.673 0.8781 0.8604 0.7069 0.5988
BPE(motifs, 4096) 0.6522 0.8694 0.8309 0.6844 0.5764
BPE(motifs, 2048) 0.6695 0.8769 0.8392 0.6868 0.5902
BPE(motifs, 1024) 0.6684 0.8777 0.8494 0.7005 0.5954
BPE(cCREs, 4096) 0.6552 0.8719 0.8425 0.699 0.5723
BPE(cCREs, 2048) 0.6645 0.8767 0.8382 0.6993 0.5973
BPE(cCREs, 1024) 0.6743 0.8793 0.8458 0.7039 0.5954
DNAMotifTokenizer

(default) 0.6815 0.885 0.8437 0.6976 0.6018

Ablation
DNAMotifTokenizer

(longest) 0.6687 0.8822 0.8388 0.6884 0.5965

DNAMotifTokenizer
(shortest) 0.6697 0.8809 0.8399 0.6884 0.6003

more motifs in our vocabulary, one is selected at random to serve as the token. If no motif match
is found, the sequence is tokenized using fallback 3-mer or 1-mer representations (Figure 5c). The
pseudocode is shown as Algorithm 1 in Appendix.

7.2 EVALUATION PERFORMANCE

We evaluate the downstream performance of models trained with DNAMotifTokenizer. We reveal
that DNAMotifTokenizer consistently matches or exceeds the performance of BPE models (Table 4).

7.3 ABLATION STUDY

To evaluate our motif selection strategy, we conduct an ablation study on the DNAMotifTokenizer.
We test two deterministic variants: one that greedily selects the longest possible motif at each posi-
tion, and another that selects the shortest (Figure 5d). While these greedy variants were still highly
effective, outperforming all BPE models on three of five benchmarks, neither of these greedy strate-
gies outperforms our default algorithm (Table 4). This finding is consistent with our earlier results,
suggesting that simply optimizing for token length, and/or the nucleotide diversity in tokens, does
not necessarily improve model performance. This underscores the complexity of genomic ”gram-
mar” and highlights the potential for developing more sophisticated motif selection strategies in
future work.

8 CONCLUSION

In this work, we first introduce the SCREEN benchmark, a comprehensive dataset of well-annotated
human functional genomic regulatory elements. Together with other benchmark datasets, we sys-
tematically evaluated state-of-the-art k-mer and BPE tokenizers under controlled settings, revealing
a clear performance trade-off across different downstream tasks.

We further investigated BPE optimization, finding that simply increasing vocabulary size can in-
troduce information redundancy that harms model performance. Instead, we demonstrate that BPE
tokenizers can be trained more efficiently on smaller, curated DNA sequences enriched with domain
knowledge. Building on these insights, we introduce DNAMotifTokenizer, a novel tokenizer whose
performance is state-of-the-art, highlighting the necessity of incorporating domain knowledge for
genomic representation learning.

Our future research will focus on (1) enhancing our approach by improving the flexibility of motif
representations within the vocabulary, (2) further optimizing the tokenization algorithm, and (3)
exploring the downstream benefits for model interpretability. The ultimate goal is to advance the
development of biologically informed tokenization and interpretation of genomic sequences.
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APPENDIX

A DNAMOTIFTOKENIZER: TOKENIZATION ALGORITHM

Algorithm 1: Tokenization algorithm for DNAMotifTokenizer
Data: Sequence s with length n, Vocabulary V = {motifs, 3-mer, 1-mer}
Result: y = [tokens]
Function Tokenize(i)

score, best token, candidates← −1,None, [ ]
for j ← 4 to 12 do

seg ← substring of s from index i to i+ j
if seg ∈ motifs then

Append seg to candidates;

if candidates ̸= None then
best token← random element from candidates;

else
if i+ 3 > n then

best token← 1-mer at s[i];
else

best token← 3-mer at s[i : i+ 3];

next pos← i+ length of best token
best score← length of best token
return best token, best score, next pos;

Function Main()
i, y ← 0, [ ]
while i < n do

best token, best score, next pos← None, -1, i
for offset← 0 to 2 do

candidate token, candidate score, candidate pos← Tokenize(i+ offset)
if candidate score > best score then

best token← candidate token;
best score← candidate score;
next pos← candidate pos;

i← next pos
Append best token to y;

return y;

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B WHAT MAKES A GOOD BPE TOKENIZER?

B.1 SIZE MATTERS: VOCABULARY SCALING

Figure B.1: Comparison across BPEs with Different Vocabulary Size. Wilcoxon test, ***, p-value
< 0.001, **, p-value < 0.01

B.2 INFORMATIVE TOKENS: ADDING DOMAIN KNOWLEDGE
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Figure B.2: Comparison across BPEs with Different Vocabulary Size and Domain Knowledge.
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C MOTIF AND CCRE REGIONS

Table C.1: Jaspar Motif Annotation on hg38 Genome
Genome Total Nucleotides at Motif Regions Ratio (%)
hg38 1,848,048,414 59.84

Table C.2: cCRE Regions in hg38 Genome
Genome Total cCRE Regions Total Nucleotides at cCRE Regions Ratio (%)
hg38 2,348,854 627,448,729 20.32

D BENCHMARKING OF STATE-OF-THE-ART TOKENIZERS

Table D.1: Performance comparison of models across datasets on GUE, grouped by task.

Dataset 3mer
(overlap)

6mer
(overlap)

6mer
(non-overlap)

BPE
(orig. DNABERT-2)

BPE
(vocab size=4096)

prom core all 0.6645 0.6497 0.5842 0.5966 0.6270
prom core notata 0.6745 0.6783 0.6233 0.6421 0.6435
prom core tata 0.5640 0.4748 0.4919 0.5938 0.6417
prom 300 all 0.8730 0.8336 0.7871 0.8240 0.8304
prom 300 notata 0.9089 0.9022 0.8631 0.8926 0.9037
prom 300 tata 0.4643 0.5170 0.4372 0.5297 0.6006
reconstructed 0.8064 0.6434 0.6328 0.7217 0.7143
tf 0 0.6506 0.6537 0.6151 0.6402 0.6560
tf 1 0.7078 0.6908 0.6326 0.6611 0.6952
tf 2 0.5184 0.5357 0.4680 0.5587 0.5603
tf 3 0.4496 0.4304 0.3164 0.4349 0.4234
tf 4 0.6588 0.6993 0.5842 0.6657 0.6692
Mean 0.6617 0.6424 0.5863 0.6468 0.6638
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Table D.2: Performance comparison of models across datasets on Genomic Benchmarks
Dataset 3mer

(overlap)
6mer

(overlap)
6mer

(non-overlap)
BPE

(orig. DNABERT-2)
BPE

(vocab size=4096)
human enhancers ensembl 0.7514 0.7771 0.6310 0.7182 0.7438
human nontata promoters 0.8116 0.8228 0.6975 0.8081 0.7937
demo coding vs intergenomic seqs 0.8225 0.8340 0.7720 0.8113 0.8173
human enhancers cohn 0.4890 0.4824 0.4360 0.4565 0.4820
human ensembl regulatory 0.8240 0.8294 0.8678 0.8466 0.8413
human ocr ensembl 0.5005 0.5734 0.4569 0.4909 0.5254
Mean 0.6998 0.7199 0.6435 0.6886 0.7006

Table D.3: Performance comparison of models across datasets on Nucleotide transformer bench-
marks

Dataset 3mer
(overlap)

6mer
(overlap)

6mer
(non-overlap)

BPE
(orig. DNABERT-2)

BPE
(vocab size=4096)

H2AFZ 0.4727 0.5077 0.4758 0.4757 0.4916
H3K27ac 0.4460 0.4728 0.4080 0.4688 0.4914
H3K27me3 0.5720 0.5781 0.6077 0.5861 0.5983
H3K36me3 0.5972 0.6066 0.5814 0.6061 0.5955
H3K4me1 0.4598 0.4662 0.4629 0.4793 0.4804
H3K4me2 0.5692 0.5867 0.5665 0.5790 0.5741
H3K4me3 0.6537 0.6672 0.6486 0.6622 0.6736
H3K9ac 0.5201 0.5435 0.4985 0.5316 0.5390
H3K9me3 0.4227 0.4276 0.3741 0.4215 0.4271
H4K20me1 0.6064 0.6114 0.6068 0.6195 0.6074
splice sites donors 0.9776 0.9679 0.9503 0.6612 0.6557
splice sites acceptors 0.9721 0.9577 0.9163 0.6865 0.6297
splice sites all 0.9737 0.9655 0.9046 0.6507 0.5845
enhancers types 0.5270 0.5596 0.4629 0.4636 0.4697
enhancers 0.5799 0.6123 0.4888 0.4741 0.5090
promoter no tata 0.7800 0.8169 0.7483 0.7450 0.7429
promoter tata 0.8792 0.9093 0.6412 0.6629 0.7097
promoter all 0.7909 0.7984 0.7228 0.7356 0.7299
Mean 0.6556 0.6697 0.6147 0.5839 0.5839

Table D.4: Performance comparison of models across datasets on SCREEN

Dataset 3mer
(overlap)

6mer
(overlap)

6mer
(non-overlap)

BPE
(orig. DNABERT-2)

BPE
(vocab size=4096)

CA-CTCF 0.9099 0.9126 0.8880 0.8705 0.8702
pELS 0.9179 0.9182 0.9008 0.8897 0.8869
CA 0.9179 0.9196 0.8875 0.8777 0.8778
CA-H3K4me3 0.9132 0.9146 0.8850 0.8743 0.8657
CA-TF 0.9116 0.9126 0.8836 0.8357 0.8085
TF 0.9089 0.9086 0.8881 0.8747 0.8629
PLS 0.9342 0.9352 0.9240 0.9098 0.9013
dELS 0.9138 0.2440 0.9003 0.9006 0.9000
Mean 0.9159 0.8332 0.8947 0.8791 0.8717

Table D.5: Performance comparison across tasks on Dart-Eval(task1-3)

Dataset 3mer
(overlap)

6mer
(overlap)

6mer
(non-overlap)

BPE
(orig. DNABERT-2)

BPE
(vocab size=4096)

task1 0.8668 0.8734 0.7976 0.8618 0.8631
task2 0.9919 0.9924 0.9599 0.8923 0.9327
GM12878 0.7914 0.8684 0.7896 0.8235 0.8227
H1ESC 0.7775 0.8758 0.7968 0.8178 0.8266
HEPG2 0.8165 0.8639 0.8225 0.8334 0.8312
IMR90 0.7612 0.8716 0.7619 0.7942 0.7982
K562 0.8534 0.8490 0.8419 0.8164 0.8232
Mean 0.8370 0.8849 0.8243 0.8342 0.8425
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E WHAT MAKES A GOOD BPE TOKENIZER?

Table E.1: Performance comparison across datasets on GUE, with BPE trained on cCREs, varying
in vocabulary size.

Dataset BPE
(cCREs, 4096)

BPE
(cCREs, 2048)

BPE
(cCREs, 1024)

prom core all 0.6173 0.6224 0.6102
prom core notata 0.6363 0.6405 0.6458
prom core tata 0.6040 0.7018 0.7130
prom 300 all 0.8338 0.8308 0.8459
prom 300 notata 0.9073 0.9069 0.9017
prom 300 tata 0.5921 0.6074 0.5965
reconstructed 0.6903 0.7383 0.7660
tf 0 0.6522 0.6431 0.6773
tf 1 0.6722 0.6662 0.6583
tf 2 0.5361 0.5437 0.5637
tf 3 0.4200 0.4052 0.4384
tf 4 0.7007 0.6673 0.6750
Mean 0.6552 0.6645 0.6743

Table E.2: Performance comparison across datasets on GUE, with BPE trained on motifs, varying
in vocabulary size.

Dataset BPE
(motifs, 4096)

BPE
(motifs, 2048)

BPE
(motifs, 1024)

prom core all 0.6200 0.6236 0.6250
prom core notata 0.6296 0.6352 0.6338
prom core tata 0.5838 0.6811 0.6847
prom 300 all 0.8274 0.8255 0.8294
prom 300 notata 0.8941 0.9005 0.9014
prom 300 tata 0.5796 0.6310 0.5767
reconstructed 0.7362 0.7810 0.7694
tf 0 0.6574 0.6368 0.6385
tf 1 0.6820 0.6915 0.7056
tf 2 0.5508 0.5425 0.5336
tf 3 0.3947 0.4133 0.4309
tf 4 0.6708 0.6716 0.6913
Mean 0.6522 0.6695 0.6684
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Table E.3: Performance comparison across datasets on GUE, with BPE trained on hg38, varying in
vocabulary size.

Dataset BPE
(hg38, 4096)

BPE
(hg38, 2048)

BPE
(hg38, 1024)

prom core all 0.6270 0.6349 0.6254
prom core notata 0.6435 0.6503 0.6571
prom core tata 0.6417 0.6482 0.6842
prom 300 all 0.8304 0.8388 0.8298
prom 300 notata 0.9037 0.9039 0.9028
prom 300 tata 0.6006 0.5483 0.5799
reconstructed 0.7143 0.7867 0.7763
tf 0 0.6560 0.6655 0.6714
tf 1 0.6952 0.6759 0.6999
tf 2 0.5603 0.5392 0.5370
tf 3 0.4234 0.4353 0.4309
tf 4 0.6692 0.6940 0.6818
Mean 0.6638 0.6684 0.6730

Table E.4: Performance comparison across datasets on Nucleotide Transformer Benchmarks, with
BPE trained on cCREs, varying in vocabulary size.

Dataset BPE
(cCREs, 4096)

BPE
(cCREs, 2048)

BPE
(cCREs, 1024)

H2AFZ 0.4809 0.4682 0.4751
H3K27ac 0.4765 0.4759 0.4657
H3K27me3 0.6047 0.6108 0.6052
H3K36me3 0.5775 0.5950 0.5950
H3K4me1 0.4889 0.4801 0.4909
H3K4me2 0.5642 0.5712 0.5917
H3K4me3 0.6524 0.6686 0.6812
H3K9ac 0.5308 0.5317 0.5447
H3K9me3 0.4192 0.4328 0.4309
H4K20me1 0.6171 0.6201 0.6282
splice sites donors 0.5983 0.7676 0.7837
splice sites acceptors 0.6461 0.7101 0.7047
splice sites all 0.5647 0.6909 0.6526
enhancers types 0.4754 0.4624 0.4595
enhancers 0.4950 0.4999 0.4871
promoter no tata 0.7424 0.7406 0.7451
promoter tata 0.6514 0.6932 0.6438
promoter all 0.7161 0.7314 0.7313
Mean 0.5723 0.5973 0.5954
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Table E.5: Performance comparison across datasets on Nucleotide Transformer Benchmarks, with
BPE trained on motifs, varying in vocabulary size.

Dataset BPE
(motifs, 4096)

BPE
(motifs, 2048)

BPE
(motifs, 1024)

H2AFZ 0.4762 0.4797 0.4685
H3K27ac 0.4628 0.4600 0.4666
H3K27me3 0.5967 0.6054 0.5977
H3K36me3 0.5829 0.5859 0.5852
H3K4me1 0.4803 0.4898 0.4810
H3K4me2 0.5578 0.5613 0.5788
H3K4me3 0.6752 0.6734 0.6725
H3K9ac 0.5273 0.5294 0.5347
H3K9me3 0.3995 0.4153 0.4089
H4K20me1 0.6238 0.6380 0.6172
splice sites donors 0.6544 0.7533 0.7596
splice sites acceptors 0.5967 0.6624 0.7157
splice sites all 0.6109 0.6435 0.6757
enhancers types 0.4682 0.4712 0.4565
enhancers 0.4974 0.5086 0.5079
promoter no tata 0.7427 0.7434 0.7529
promoter tata 0.6932 0.6670 0.6969
promoter all 0.7291 0.7365 0.7408
Mean 0.5764 0.5902 0.5954

Table E.6: Performance comparison across datasets on Nucleotide Transformer Benchmarks, with
BPE trained on hg38, varying in vocabulary size.

Dataset BPE
(hg38, 4096)

BPE
(hg38, 2048)

BPE
(hg38, 1024)

H2AFZ 0.4916 0.4711 0.4810
H3K27ac 0.4914 0.4916 0.4802
H3K27me3 0.5983 0.6100 0.6074
H3K36me3 0.5955 0.6013 0.5950
H3K4me1 0.4804 0.4956 0.4899
H3K4me2 0.5741 0.5718 0.5835
H3K4me3 0.6736 0.6844 0.6927
H3K9ac 0.5390 0.5332 0.5497
H3K9me3 0.4271 0.4039 0.4073
H4K20me1 0.6074 0.6275 0.6214
splice sites donors 0.6557 0.7315 0.7448
splice sites acceptors 0.6297 0.6726 0.7071
splice sites all 0.5845 0.6406 0.6963
enhancers types 0.4697 0.4914 0.4573
enhancers 0.5090 0.4962 0.4909
promoter no tata 0.7429 0.7509 0.7605
promoter tata 0.7097 0.7120 0.6779
promoter all 0.7299 0.7251 0.7350
Mean 0.5839 0.5950 0.5988
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Table E.7: Performance comparison across datasets on Genomic Benchmarks, with BPE trained on
cCREs, varying in vocabulary size.

Dataset BPE
(cCREs, 4096)

BPE
(cCREs, 2048)

BPE
(cCREs, 1024)

human enhancers ensembl 0.7386 0.7371 0.7473
human nontata promoters 0.8035 0.8144 0.8038
demo coding vs intergenomic seqs 0.8224 0.8206 0.8208
human enhancers cohn 0.4716 0.4602 0.4681
human ensembl regulatory 0.8442 0.8474 0.8528
human ocr ensembl 0.5136 0.5164 0.5307
Mean 0.6990 0.6993 0.7039

Table E.8: Performance comparison across datasets on Genomic Benchmarks, with BPE trained on
motifs, varying in vocabulary size.

Dataset BPE
(motifs, 4096)

BPE
(motifs, 2048)

BPE
(motifs, 1024)

human enhancers ensembl 0.7250 0.7325 0.7428
human nontata promoters 0.7795 0.7657 0.7984
demo coding vs intergenomic seqs 0.8081 0.8078 0.8230
human enhancers cohn 0.4632 0.4568 0.4631
human ensembl regulatory 0.8377 0.8445 0.8458
human ocr ensembl 0.4927 0.5137 0.5301
Mean 0.6844 0.6868 0.7005

Table E.9: Performance comparison across datasets on Genomic Benchmarks, with BPE trained on
hg38, varying in vocabulary size.

Dataset BPE
(hg38, 4096)

BPE
(hg38, 2048)

BPE
(hg38, 1024)

human enhancers ensembl 0.7438 0.7449 0.7440
human nontata promoters 0.7937 0.7873 0.7997
demo coding vs intergenomic seqs 0.8173 0.8290 0.8246
human enhancers cohn 0.4820 0.4740 0.4810
human ensembl regulatory 0.8413 0.8435 0.8477
human ocr ensembl 0.5254 0.5340 0.5445
Mean 0.7006 0.7021 0.7069

Table E.10: Performance comparison across datasets on Dart-Eval (task1-3), with BPE trained on
cCREs, varying in vocabulary size.

Dataset BPE
(cCREs, 4096)

BPE
(cCREs, 2048)

BPE
(cCREs, 1024)

task1 0.8629 0.8663 0.8722
task2 0.9430 0.9270 0.9704
GM12878 0.8228 0.8165 0.8146
H1ESC 0.8262 0.8257 0.8223
HEPG2 0.8332 0.8298 0.8289
IMR90 0.7972 0.7988 0.7913
K562 0.8120 0.8034 0.8210
Mean 0.8342 0.8273 0.8353
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Table E.11: Performance comparison across datasets on Dart-Eval (task1-3), with BPE trained on
motifs, varying in vocabulary size.

Dataset BPE
(motifs, 4096)

BPE
(motifs, 2048)

BPE
(motifs, 1024)

task1 0.8599 0.8652 0.8675
task2 0.8971 0.9494 0.9594
GM12878 0.8192 0.8210 0.8245
H1ESC 0.8177 0.8197 0.8218
HEPG2 0.8223 0.8262 0.8356
IMR90 0.7913 0.7909 0.8118
K562 0.8088 0.8018 0.8248
Mean 0.8261 0.8306 0.8417

Table E.12: Performance comparison across datasets on Dart-Eval (task1-3), with BPE trained on
hg38, varying in vocabulary size.

Dataset BPE
(hg38, 4096)

BPE
(hg38, 2048)

BPE
(hg38, 1024)

task1 0.8631 0.8656 0.8677
task2 0.9327 0.9658 0.9722
GM12878 0.8227 0.8216 0.8415
H1ESC 0.8266 0.8229 0.8380
HEPG2 0.8312 0.8331 0.8408
IMR90 0.7982 0.7977 0.8276
K562 0.8232 0.8093 0.8351
Mean 0.8413 0.8413 0.8578

Table E.13: Performance comparison across datasets on SCREEN, with BPE trained on cCREs,
varying in vocabulary size.

Dataset BPE
(cCREs, 4096)

BPE
(cCREs, 2048)

BPE
(cCREs, 1024)

CA-CTCF 0.8723 0.8760 0.8785
pELS 0.8898 0.8924 0.8953
CA 0.8774 0.8817 0.8865
CA-H3K4me3 0.8669 0.8710 0.8734
CA-TF 0.7974 0.8145 0.8245
TF 0.8675 0.8738 0.8793
PLS 0.9032 0.9036 0.8962
dELS 0.9006 0.9003 0.9008
Mean 0.8719 0.8767 0.8793

Table E.14: Performance comparison across datasets on SCREEN, with BPE trained on motifs,
varying in vocabulary size.

Dataset BPE
(motifs, 4096)

BPE
(motifs, 2048)

BPE
(motifs, 1024)

CA-CTCF 0.8719 0.8726 0.8770
pELS 0.8873 0.8910 0.8930
CA 0.8754 0.8814 0.8840
CA-H3K4me3 0.8620 0.8687 0.8715
CA-TF 0.7940 0.8295 0.8234
TF 0.8646 0.8707 0.8751
PLS 0.9006 0.9016 0.8962
dELS 0.8990 0.8997 0.9013
Mean 0.8694 0.8769 0.8777
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Table E.15: Performance comparison across datasets on SCREEN, with BPE trained on hg38, vary-
ing in vocabulary size.

Dataset BPE
(hg38, 4096)

BPE
(hg38, 2048)

BPE
(hg38, 1024)

CA-CTCF 0.8702 0.8752 0.8775
pELS 0.8869 0.8916 0.8927
CA 0.8778 0.8820 0.8843
CA-H3K4me3 0.8657 0.8678 0.8745
CA-TF 0.8085 0.7998 0.8173
TF 0.8629 0.8722 0.8752
PLS 0.9013 0.9052 0.9022
dELS 0.9000 0.9007 0.9011
Mean 0.8717 0.8743 0.8781

F DNAMOTIFTOKENIZER

Table F.1: Performance comparison across datasets on GUE, with DNAMotifTokenizer, varying in
motif matching.

Dataset DNAMotifTokenizer
(longest)

DNAMotifTokenizer
(shortest) DNAMotifTokenizer

prom core all 0.6412 0.6522 0.6488
prom core notata 0.6599 0.6413 0.6564
prom core tata 0.7230 0.7228 0.7195
prom 300 all 0.8355 0.8389 0.8538
prom 300 notata 0.9014 0.8945 0.9062
prom 300 tata 0.6147 0.5950 0.6441
reconstructed 0.7544 0.7603 0.7693
tf 0 0.6283 0.6379 0.6406
tf 1 0.6813 0.6581 0.6670
tf 2 0.4907 0.4883 0.5179
tf 3 0.4249 0.4756 0.4651
tf 4 0.6686 0.6711 0.6888
Mean 0.6687 0.6697 0.6815

Table F.2: Performance comparison across datasets on SCREEN, with DNAMotifTokenizer, varying
in motif matching.

Dataset DNAMotifTokenizer
(longest)

DNAMotifTokenizer
(shortest) DNAMotifTokenizer

CA-CTCF 0.8781 0.8808 0.8822
pELS 0.8977 0.8972 0.8961
CA 0.8889 0.8890 0.8888
CA-H3K4me3 0.8764 0.8782 0.8795
CA-TF 0.8288 0.8105 0.8380
TF 0.8861 0.8820 0.8826
PLS 0.8982 0.9045 0.9087
dELS 0.9038 0.9048 0.9039
Mean 0.8822 0.8809 0.8850
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Table F.3: Performance comparison across datasets on Nucleotide Transformer Benchmarks, with
DNAMotifTokenizer, varying in motif matching.

Dataset DNAMotifTokenizer
(longest)

DNAMotifTokenizer
(shortest) DNAMotifTokenizer

H2AFZ 0.4873 0.4848 0.4835
H3K27ac 0.4822 0.4735 0.4892
H3K27me3 0.6043 0.6019 0.5994
H3K36me3 0.5963 0.5932 0.5915
H3K4me1 0.4834 0.4930 0.4814
H3K4me2 0.5890 0.5843 0.5775
H3K4me3 0.6757 0.6729 0.6701
H3K9ac 0.5264 0.5381 0.5434
H3K9me3 0.4177 0.4205 0.4170
H4K20me1 0.6197 0.6158 0.6324
splice sites donors 0.7230 0.7346 0.7855
splice sites acceptors 0.7172 0.7263 0.7309
splice sites all 0.6661 0.7079 0.7119
enhancers types 0.4639 0.4672 0.4507
enhancers 0.5054 0.5053 0.4902
promoter no tata 0.7465 0.7544 0.7577
promoter tata 0.6935 0.6788 0.6855
promoter all 0.7396 0.7523 0.7342
Mean 0.5965 0.6003 0.6018

Table F.4: Performance comparison across datasets on Genomic Benchmarks, with DNAMotifTok-
enizer, varying in motif matching.

Dataset DNAMotifTokenizer
(longest)

DNAMotifTokenizer
(shortest) DNAMotifTokenizer

human enhancers ensembl 0.7364 0.7184 0.7426
human nontata promoters 0.7797 0.7606 0.7717
demo coding vs intergenomic seqs 0.8207 0.8256 0.8248
human enhancers cohn 0.4366 0.4408 0.4505
human ensembl regulatory 0.8651 0.8622 0.8629
human ocr ensembl 0.4922 0.5227 0.5332
Mean 0.6884 0.6884 0.6976

Table F.5: Performance comparison across datasets on Dart-Eval (task1-3), with DNAMotifTok-
enizer, varying in motif matching.

Dataset DNAMotifTokenizer
(longest)

DNAMotifTokenizer
(shortest) DNAMotifTokenizer

task1 0.8609 0.8639 0.8647
task2 0.9525 0.9610 0.9571
GM12878 0.8098 0.8105 0.8206
H1ESC 0.8177 0.8155 0.8202
HEPG2 0.8271 0.8286 0.8292
IMR90 0.7862 0.7902 0.7926
K562 0.8172 0.8095 0.8217
Mean 0.839 0.840 0.844
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G METRICS

G.1 MATTHEWS CORRELATION COEFFICIENT

The Matthews Correlation Coefficient (MCC) is a metric for evaluating binary classification perfor-
mance, particularly useful for imbalanced datasets. It takes into account true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN):

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

MCC ranges from−1 to +1, where +1 indicates perfect prediction, 0 corresponds to random guess-
ing, and −1 indicates total disagreement between predictions and true labels. This makes MCC
especially suitable for genomic classification tasks where class imbalance is common.

G.2 JACCARD INDEX

The Jaccard similarity index (also known as Intersection over Union) is a measure of similarity
between two sets. Given two sets A and B, it is defined as:

J(A,B) =
|A ∩B|
|A ∪B|

,

where |A ∩ B| is the number of elements common to both sets, and |A ∪ B| is the total number of
elements in either set.

The Jaccard index ranges from 0 to 1, where 1 indicates identical sets and 0 indicates completely
disjoint sets. This metric is widely used in genomics for comparing predicted regions with ground
truth annotations, such as cCREs or TF binding sites.

H MODEL

The essential code and scripts are in the supplementary material.

The pre-trained model with DNAMotifTokenizer and example data are available on HuggingFace:
https://huggingface.co/Anonymous-843q0u4q08/DNAMotifTokenizer
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