

000 001 002 003 004 005 DNAMOTIFTOKENIZER: TOWARDS BIOLOGICALLY 006 INFORMED TOKENIZATION OF GENOMIC SEQUENCES 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

011 DNA language models have advanced genomics, but their downstream perfor-
012 mance varies widely due to differences in tokenization, pretraining data, and ar-
013 chitecture. We argue that a major bottleneck lies in tokenizing sparse and unevenly
014 distributed DNA sequence motifs, which are critical for accurate and interpretable
015 models. To investigate, we systematically benchmark k-mer and Byte-Pair En-
016 coding (BPE) tokenizers under controlled pretraining budget, evaluating across
017 multiple downstream tasks from five datasets. We find that tokenizer choice in-
018 duces task-specific trade-offs, and that vocabulary size and tokenizer training data
019 strongly influence the biological knowledge captured. Notably, BPE tokeniz-
020 ers achieve strong performance when trained on smaller but biologically signif-
021 icant data. Building on these insights, we introduce DNAMotifTokenizer, which
022 directly incorporates domain knowledge of DNA sequence motifs into the tok-
023 enization process. DNAMotifTokenizer consistently outperforms BPE across di-
024 verse benchmarks, demonstrating that knowledge-infused tokenization is crucial
025 for learning powerful, interpretable, and generalizable genomic representations.
026

1 INTRODUCTION

027 Recent advances in artificial intelligence (AI) and large language models (LLMs) have transformed
028 nearly every field of biological research. By analyzing complex, noisy, and large-scale datasets,
029 these models can uncover hidden patterns, generate predictions, and accelerate the discovery of new
030 biological knowledge and molecular structures (Nature Methods, 2024). In genetics, building on the
031 remarkable success of text-based LLMs, researchers have developed DNA language models (DNA-
032 LMs) to capture the latent “grammar” of genomic sequences. These models are being leveraged
033 to improve DNA sequence design, investigate the genetic basis of evolution, and interpret genetic
034 mutations underlying human traits and diseases.
035

036 Over the past few years, a series of DNA-LMs has emerged (see Figure 1a). Early efforts, such
037 as DNABERT-1 (Ji et al., 2021), introduced k-mer-based tokenizers and transformer architectures
038 to model DNA sequences, laying the foundation for various downstream applications. DNABERT-
039 2 (Zhou et al., 2023) extended this idea by introducing byte-pair encoding (BPE)-based (Sennrich
040 et al., 2015) tokenizer and pretrained on multi-species genomes. A large-scale model, Nucleotide
041 Transformer (Dalla-Torre et al., 2025), has scaled up in both parameter size and training corpus,
042 improving accuracy and generalizability. The HyenaDNA (Nguyen et al., 2023) has explored long-
043 context modeling to better capture distal dependencies in the genome. More recently, Evo-2 (Brixi
044 et al., 2025) has been developed to expand prediction and design across DNA, RNA, and proteins.
045 Collectively, these models underscore both the promise and challenges of scaling DNA-LMs for
046 biological discovery, including regulatory element prediction, non-coding genetic variant interpre-
047 tation, and DNA sequence designs.

048 Despite their superb fine-tuning performance in downstream tasks, current DNA-LMs often exhibit
049 poor zero-shot generalization to new tasks (Patel et al., 2024). The bottleneck lies largely in the
050 DNA tokenization process, which breaks down raw DNA sequences into fundamental units for the
051 model to process (see Figure 1b). Standard tokenization strategies, such as fixed k-mers or subword
052 methods like byte-pair encoding (BPE), often fail to efficiently capture these biologically meaning-
053 ful DNA motifs. It is critical to optimize the DNA tokenization step towards the development of
054 accurate, interpretable, and generalizable models.

Figure 1: Overview Strategy and Pipeline. **(a)** DNA language-modeling pipeline. **(b)** State-of-the-art genomic tokenizers and DNA Motif Tokenizer. **(c)** Domain knowledge for tokenizer construction, our novel DNAMotifTokenizer, pretraining and downstream evaluation workflow.

In this work, we systematically investigate the impact of tokenization on DNA-LMs with different categories of human genomic sequences (see Figure 1c). Under controlled pretraining settings, we benchmark a variety of k-mer and BPE-based tokenizers across five distinct datasets spanning multiple downstream tasks. Our analysis reveals that the choice of tokenizer induces significant task-specific trade-offs, and we find that incorporating domain knowledge, DNA sequence motifs, is essential for learning more robust DNA representations.

To address this, we introduce DNAMotifTokenizer, a novel strategy that directly incorporates domain knowledge of DNA sequence motifs into the DNA tokenization process. In our comprehensive benchmarks, DNAMotifTokenizer consistently outperforms BPE-based tokenizers across diverse tasks, demonstrating that knowledge-infused tokenization is crucial for learning powerful, interpretable, and generalizable genomic representations.

Our main contributions can therefore be summarized as follows: (1) We introduce Search Candidate cis-Regulatory Elements by ENCODE (SCREEN) benchmarking dataset, which contains a standardized, comprehensive, and well-annotated human functional genomic regulatory elements. (2) We provide the first systematic evaluation of DNA tokenization strategies under controlled pretraining, revealing task-specific trade-offs. (3) We propose DNAMotifTokenizer, a motif-aware tokenizer that directly encodes biologically meaningful sequence motifs. DNAMotifTokenizer consistently outperforms or achieves the state-of-the-art performance, highlighting the necessity of introducing domain knowledge for genomic representation learning. The code, data, and pre-trained model are available in **supplementary materials**.

2 BACKGROUND

In natural language processing (NLP), tokenization is a critical step that converts text into a format suitable for computational models. Similarly, genomic sequences can be viewed as a “language” encoding complex information that regulates gene expression in organs, tissues, and cell types across healthy and disease conditions.

The k-mer and BPE-based tokenizers are commonly used in state-of-the-art DNA-LMs (Table 1). HyenaDNA (Nguyen et al., 2023) uses a 1-mer tokenizer and a decoder-only architecture with the Hyena operator to model long-range dependencies. DNABERT-1 (Ji et al., 2021) tokenized the genome with overlapping k-mers and trained separate models for each, substantially outperforming several downstream tasks. Nucleotide Transformer (Dalla-Torre et al., 2025) employs non-overlapping 6-mer tokenization and leverages large-scale pretraining across thousands of human

108

109

Table 1: Comparison of state-of-the-art DNA-LMs

110

111

Model	Model Size	Tokenizer	Pretrain Data
HyenaDNA	<6.6M	1mer	Human reference genome
DNAbert1-3mer	86M	3mer, stride=1	Human reference genome
DNAbert1-6mer	89M	6mer, stride=1	Human reference genome
DNAbert2	117M	BPE, vocab size=4096	135 species genomes
NT-HumanRef	500M	6mer, stride=6	Human reference genome
NT-1000GG	500M/2.5B	6mer, stride=6	3202 human genomes
NT-HumanRef	2.5B	6mer, stride=6	850 species genomes
MxDNA	100M	Customized	Human reference genome

112

113

114

115

116

117

118

individual genomes, and hundreds of species. Zhou et al. (2023) proposed DNABERT-2, which uses a byte-pair encoding (BPE) tokenizer inspired by NLP. MxDNA (Qiao et al., 2024) introduced a learnable tokenizer using a Mixture-of-Experts framework (Shazeer et al., 2017) and deformable convolutions (Dai et al., 2017).

Despite these advances, the field lacks a systematic comparison of how tokenizer choice alone affects model performance. Existing models differ not only in tokenizers but also in architecture, model size, and pretraining data, which confound direct comparisons (Table 1). This limits our ability to reason about what makes a tokenizer effective and to design better ones.

In addition, DNA is composed of highly repetitive, short, sparse, unevenly distributed, but conserved DNA sequence motifs across 600 million years of bilaterian evolution Nitta et al. (2015), largely represented by transcription factor (TF) binding motifs. The complexity of gene regulation often arises from the specific rearrangement and combination of these conserved motifs into context-specific regulatory elements Wong et al. (2020). Standard tokenization methods, which are agnostic to biological function, often arbitrarily split these meaningful motifs into smaller, non-functional tokens (see Figure 1b). As a result, it hampers DNA-LMs’ ability to learn biologically meaningful representations of genomic sequences and complicates downstream model interpretation.

To address these issues, we developed a controlled benchmarking framework to systematically assess the tokenizer’s influence and identify key factors for effective design. Guided by our findings, we propose DNAMotifTokenizer, a novel tokenizer that takes a significant step towards a more biologically informed tokenization of genomic sequences. By embedding the essential “grammar” of gene regulation into its vocabulary, DNAMotifTokenizer enables DNA-LMs to better capture the complex relationships between sequence and function. We also assess the generalizability, stability, complexity, and interpretability of our approach.

3 DATA

3.1 GENOMIC SEQUENCES

Human reference genome: We use the most widely used human reference genome, version hg38 (GRCh38) (Consortium, 2013), which incorporates improved accuracy and coverage over previous releases.

Annotation of motif regions: We download the genome-wide JASPAR CORE TF motif predictions on the human reference genome (hg38) from the UCSC Genome Browser (Lee et al., 2020)(Raney et al., 2014). For BPE training, we extract all predicted motif sequences and merge any overlapping ones to create a non-redundant set. The resulting set of motif sequences covers approximately 59.84% (See Table C.1) of the human genome.

Annotation of cCREs: Candidate cis-regulatory elements (cCREs) are functional regulatory units in the genome, such as promoters and enhancers, that are typically hundreds of base pairs long. These regions often contain multiple TF motifs and are crucial for controlling when and where genes are expressed. For this study, we download human cCRE annotations from The Encyclopedia of DNA Elements(ENCODE), which provide genomic coordinates and regulatory classifications (Moore et al., 2020)(Luo et al., 2020). We extract the corresponding DNA sequences for BPE training, which constitute approximately 20.32% (See Table C.2) of the human reference genome.

162 3.2 BENCHMARK DATASETS
163164 **Genome Understanding Evaluation(GUE):** Genome Understanding Evaluation (GUE) dataset
165 was collected by (Zhou et al., 2023), consisting of 28 distinct datasets across 7 tasks and 4 species,
166 with DNA inputs ranging from 70 to 1000 base pairs (bp). The metric we use is the Matthews
167 Correlation Coefficient (MCC) (see **Appendix**).168 **Nucleotide Transformer Benchmarks:** Nucleotide Transformer (NT) benchmarks were collected
169 by (Dalla-Torre et al., 2025), it includes 18 datasets across 4 tasks only on humans. For this dataset,
170 MCC is employed as the metric.
171172 **Dart-Eval:** This dataset was introduced by (Patel et al., 2024) and contains five tasks. In our experiments,
173 we focus on tasks 1–3. Accuracy (ACC) served as the evaluation metric. Task 1 involves
174 distinguishing cCRE regions from background sequences. Task 2 requires identifying transcription
175 factor (TF) binding motifs within background sequences. Task 3 entails classifying sequences
176 specific to five different cell types against background sequences.
177178 **Genomic Benchmarks:** This dataset was collected by (Grešová et al., 2023), it includes 9 tasks,
179 across 9 species. We only use human related datasets. MCC is used as the metric.
180181 **SCREEN:** We create this benchmark dataset by first downloading the cCREs on hg38 from the
182 SCREEN interface (Moore et al., 2020), a platform for searching and visualizing the ENCODE
183 Registry of candidate cis-Regulatory Elements (cCREs). This Registry contains 2,348,854 human
184 cCREs, classified into eight categories, including promoter-like signatures (PLS), proximal and
185 distal enhancer-like signatures (pELS, dELS), and CTCF- or TF-associated accessible elements (CA,
186 CA-CTCF, CA-H3K4me3, CA-TF, TF). We generated a negative superset by taking the complement
187 of all cCRE regions and dividing it into 300 base pair (bp) segments. For each cCRE category, we
188 then randomly sample from this superset to obtain the same number of sequences as in the corre-
189 sponding negative set. This procedure yielded eight datasets, each containing an equal number of
190 positive and negative sequences.
191192 4 METHOD
193194 4.1 TOKENIZERS
195196 **K-mer tokenizer:** A k-mer is a substring of length k from a DNA or RNA sequence (Moeckel
197 et al., 2024). K-mers can be generated in two ways: overlapping, by sliding a window one base
198 at a time to capture all subsequences, or non-overlapping, by moving the window in steps of k to
199 produce disjoint subsequences. In our experiments, we test overlapping 3-mer and 6-mer imple-
200 mented by DNABERT-1 (Ji et al., 2021), and non-overlapping 6-mer implemented by Nucleotide
201 Transformer (Dalla-Torre et al., 2025), respectively.
202203 **BPE tokenizer:** BPE is a learnable subword tokenization algorithm that iteratively merges the most
204 frequent pairs of characters or subwords in a training corpus to build a vocabulary of common
205 subwords (Sennrich et al., 2015). The resulting merge rules, based on pair frequency, are recorded
206 and applied to tokenize new sequences consistently, allowing the model to capture recurring patterns
207 efficiently. The BPE tokenizer for DNA sequences was introduced by DNABERT-2. We use the BPE
208 tokenizer pretrained by DNABERT-2 and also train our own BPEs on human reference genome,
209 motif enriched genomic regions, and cis-regulatory element (cCRE) regions (see **Section 3**). Three
210 vocabulary sizes were explored: 4096 (matching DNABERT-2), 2048, and 1024. Each BPE was
211 initialized with the DNA alphabet (A, T, C, G, N) and five special tokens ([PAD], [UNK], [CLS],
212 [SEP], [MASK]), with a minimum frequency threshold of 100.
213214 **Others:** MxDNA (Qiao et al., 2024) is excluded from comparison due to a lack of publicly available
215 pre-trained weights.
216217 **DNA Motif Tokenizer:** We develop DNAMotifTokenizer, a novel tokenizer designed to understand
218 the language of the genome by directly embedding biological domain knowledge—specifically, TF
219 motifs, the functional ‘words’ of the genome—into its vocabulary. In addition, we design a greedy
220 algorithm to tokenize the incoming sequences with our customized vocabulary. See **Section 7** for
221 more details.
222

216
217

4.2 MODELS

218
219
220
221
222
223
224
225
226

Architecture: We adopt a BERT-based masked language model architecture (BertMLM) (Devlin et al., 2019) for our experiments. The model uses the Transformer encoder architecture (Vaswani et al., 2017) with 12 layers and 12 attention heads and a hidden size of 768, resulting in intermediate feed-forward layers of size 3072. The maximum input sequence length is 512 tokens, and the model uses learnable positional embeddings up to this length. Dropout Srivastava et al. (2014) is applied to both the attention probabilities and hidden layers with a rate of 0.1, and the GELU (Hendrycks & Gimpel, 2016) activation function is used throughout. The model vocabulary size is changed according to the tokenizer used, and a type vocabulary of size 2 is included to distinguish segment embeddings. All parameters are initialized with a standard deviation of 0.02.

227
228
229
230
231
232
233
234

Pre-training: During pre-training, we strictly control all experiments to ensure comparability by keeping the models’ floating-point operations per second (FLOPs) consistent. All tokenizers are applied to the human reference genome (chromosomes 1–22, X, Y, and M), and the tokenized sequences are sequentially split into segments of 512 tokens to serve as input for the BertMLMs. Segments containing more than 50% N tokens are discarded. Each model is trained with a batch size of 96 for 200,000 steps, using a learning rate of 4e-5, Adam optimizer parameters ($\beta_1 = 0.9$, $\beta_2 = 0.98$, $\delta = 1 \times 10^{-6}$), weight decay of 0.01, a masked language modeling probability of 0.15, and 10,000 warmup steps.

235
236
237
238
239

Evaluation: During model evaluation, we fine-tune the pre-trained models on five benchmark datasets (see Section 3 for details). Most fine-tuning hyperparameters are consistent across models, varying primarily in the maximum input length, which is adjusted per tokenizer. Performances are measured using the Matthews Correlation Coefficient (MCC) for four datasets, and Accuracy (ACC) for the DART-Eval benchmarking dataset.

240
241
242

We compare the vocabulary similarities by calculating the pairwise Jaccard Index. We also generate Venn diagrams illustrating their word overlap (Hulsen, 2021). See **Appendix** for more details.

243

5 BENCHMARKING OF STATE-OF-THE-ART TOKENIZERS

244
245
246
247
248
249
250
251252
253
254
255
256
257
258

Figure 2: Benchmarking of state-of-the-art Tokenizers. (a) Overview benchmarking pipeline for overlap k-mer, non-overlap k-mer, and BPE-based tokenizers trained by DNABERT-2 and trained on human genome (vocabulary size 4,096). (b) Evaluation on five benchmarking datasets. (c) Zero-shot performance of k-mer and BPE-based tokenizer on genomic region classification. (d) BPE-based tokenizer outperforms in longer DNA sequence from GUE dataset.

259
260
261
262
263
264
265
266
267
268
269

A variety of k-mer and BPE-based tokenizers are used in state-of-the-art DNA-LMs. However, these models vary in architecture, model size, and pre-training data (see Table 1), making it difficult to isolate the impact of the tokenizer on model performance. To systematically evaluate various DNA tokenizers, we design experiments on the human reference genome with strictly controlled pre-training and fine-tuning protocols (see **Section 4.2**). These DNA tokenizers include 3-mer (overlap), 6-mer (overlap) from DNABERT-1, 6-mer (non-overlap) from Nucleotide Transformer, the original BPE from DNABERT-2, and a custom BPE tokenizer (vocabulary size = 4096) trained on the human ref-

270 reference genome (see Figure 2a). We fine-tune each pre-trained model on five distinct benchmarking
 271 datasets and compare the average performance of each DNA tokenizer (Figure 2b). Our findings re-
 272 veal a clear performance trade-off: although k-mer-based tokenizers achieve higher performance on
 273 specific tasks, like splicing site prediction, no single tokenizer consistently outperformed the others.
 274 Overall, BPE tokenizers achieve more robust performance, surpassing k-mer tokenizers in four of
 275 the five benchmark datasets. More detailed results for each task across all benchmark datasets are
 276 provided in the **Appendix**.

277 We use the NT-benchmarks to investigate the zero-shot ability, where k-mer tokenizers consistently
 278 outperformed BPE tokenizers. Both overlapping and non-overlapping k-mer tokenizers struggled
 279 to cluster four distinct genomic elements, while BPE tokenizers performed better at separating en-
 280 hancers and promoters from other DNA sequences (Figure 2c). Furthermore, we leverage the most
 281 comprehensive GUE benchmark and group downstream tasks by the length of DNA sequences. We
 282 find that k-mer tokenizers performed marginally better on shorter sequences (100 bp), whereas BPE
 283 tokenizers excel on longer ones (>500 bp) (Figure 2d), which is consistent with previous work (Zhou
 284 et al., 2023). Taken together, we conclude that BPE-based tokenizers achieve more robust perfor-
 285 mance on both zero-shot and fine-tuning tasks and are more generalizable for predictions involving
 286 longer DNA sequences.

287 6 WHAT MAKES A GOOD BPE TOKENIZER?

290 To better optimize BPE tokenizers for genomic sequences, we examine two key dimensions: vo-
 291 cabulary size, which determines token granularity and model performance, and domain knowledge,
 292 which grounds tokens in biologically meaningful units.

293 6.1 SIZE MATTERS: VOCABULARY SCALING

300 Figure 3: BPE with Different Vocabulary Size. **(a)** Training BPEs with vocabularies of 1,024, 2,048,
 301 and 4,096 tokens. **(b)** Vocabulary overlap across the trained BPEs.

303 Using the human reference genome, we first train BPE tokenizers with three vocabulary sizes: 1,024,
 304 2,048, and 4,096 (Figure 3a). We overlap token vocabularies and find that they were nested (Fig-
 305 ure 3b). For example, each larger set (e.g. BPE 2048) contains all tokens from the smaller ones
 306 (e.g., BPE 1024). This hierarchical structure means longer vocabularies are built by merging shorter,
 307 existing tokens, leading to a marginal increase in average token length (Figure B.1a) and a wider dis-
 308 tribution of token frequencies (Figure B.1 b). Next, to quantify the information gained by expanding
 309 the vocabulary, we compute the Shannon entropy for the set of novel tokens introduced at each
 310 increase in vocabulary size. For instance, BPE (2048-1024) refers to the new tokens learned by
 311 the BPE 2048-token vocabulary that were not present in the BPE 1024-token vocabulary, with the
 312 same logic applying to BPE (4096-2048). We observe a significant increase (Wilcoxon test) in mean
 313 entropy (red triangle) across BPE (1024), BPE (2048-1024) and BPE (4096-2048), suggesting that
 314 larger vocabularies capture more complex and diverse tokens within the genomic sequences (Fig-
 315 ure B.1c). Last, we fine-tune models using each of these BPE tokenizers on five benchmark datasets
 316 to evaluate their downstream performance (Table 2). Counterintuitively, the more diverse and longer
 317 tokens captured by a larger vocabulary did not translate to better predictive performance. In fact,
 318 our findings consistently show that a more concise token vocabulary led to superior overall results.

319 In summary, we suggest that increasing the BPE vocabulary size beyond a certain point introduces
 320 information redundancy, which may negatively impact model performance.

321 6.2 INFORMATIVE TOKENS: ADDING DOMAIN KNOWLEDGE

323 We hypothesize that training BPE tokenizers on biologically meaningful subsets of the genome,
 324 rather than the entire genome, could yield more effective models. To test our hypothesis, we train

324
325 Table 2: Performance of BPE models with varying vocabulary sizes across five benchmark datasets

Model	GUE Ave. MCC	SCREEN Ave. MCC	DART-EVAL Ave. ACC	Genomic Benchmarks Ave. MCC	NT-Benchmarks Ave. MCC
BPE(DNABERT2)	0.6468 \pm 0.1242	0.8791 \pm 0.0224	0.8342 \pm 0.0328	0.6886 \pm 0.1721	0.5839 \pm 0.1016
BPE(4096)	0.6638 \pm 0.122	0.8717 \pm 0.0294	0.8425 \pm 0.0408	0.7006 \pm 0.1565	0.5839 \pm 0.0945
BPE(2048)	0.6684 \pm 0.1302	0.8743 \pm 0.033	0.8451 \pm 0.0531	0.7021 \pm 0.1584	0.595 \pm 0.1052
BPE(1024)	0.673 \pm 0.127	0.8781 \pm 0.0269	0.8604 \pm 0.0471	0.7069 \pm 0.1556	0.5988 \pm 0.1121

332
333 Figure 4: Training BPE on Domain Knowledge. **Left:** Train BPE tokenizers on the whole human
334 genome, TF motif regions (60% of the genome), and cCRE regions (20% of the genome) with
335 different vocabulary size. **Right:** Illustration of TF motifs and cCREs distributions on the genome.

342 BPE tokenizers with various vocabulary sizes on three distinct datasets, including the full human
343 reference genome, genomic regions predicted as TF motifs, and biological function-enriched cCREs
344 regions, to assess whether data selection improves tokenization (see [Section 3](#) and Figure 4). We first
345 compare the BPE token vocabularies learned from the human reference genome, motif, and cCRE
346 regions by calculating their pairwise Jaccard Similarity Index (Figure B.2a). Our analysis reveals
347 that the BPE tokenizer trained on motif regions produced the most distinct vocabulary, compared
348 to those trained on the whole genome or cCREs. For example, with a vocabulary size of 1024,
349 the motif-trained BPE learned 415 unique tokens (40.5%) not found in the other two vocabularies
350 (Figure B.2b). Although we find no significant differences in token length distribution (Figure B.2c),
351 the motif BPE generated a higher proportion of low-frequency tokens when applied to the human
352 reference genome (Figure B.2d). We also observe the same pattern for BPE tokenizers with larger
353 vocabulary sizes. Next, we rigorously evaluate and compare the downstream performance of models
354 trained with each tokenizer (Table 3). Our results show that models with BPE tokenizers trained on
355 motif and cCRE regions can achieve comparable performance to those trained on the whole human
356 genome, regardless of vocabulary size.

357 These results, consistent across five benchmark datasets, suggest that BPE tokenizers can be trained
358 more efficiently using curated datasets enriched with domain knowledge, without sacrificing model
359 performance.

361 Table 3: Performance of BPE models with varying vocabulary size and domain knowledge

Vocab Size	Domain Knowledge	GUE Ave. MCC	SCREEN Ave. MCC	DART-EVAL Ave. ACC	Genomic Benchmarks Ave. MCC	NT-Benchmarks Ave. MCC
4096	hg38	0.6638 \pm 0.122	0.8717 \pm 0.0294	0.8425 \pm 0.0408	0.7006 \pm 0.1565	0.5839 \pm 0.0945
	cCREs	0.6552 \pm 0.1268	0.8719 \pm 0.0333	0.8425 \pm 0.0451	0.699 \pm 0.1642	0.5723 \pm 0.0896
	motifs	0.6522 \pm 0.1299	0.8694 \pm 0.0338	0.8309 \pm 0.0331	0.6844 \pm 0.1644	0.5764 \pm 0.0997
2048	hg38	0.6684 \pm 0.1302	0.8743 \pm 0.033	0.8451 \pm 0.0531	0.7021 \pm 0.1584	0.595 \pm 0.1052
	cCREs	0.6645 \pm 0.1283	0.8767 \pm 0.0279	0.8382 \pm 0.0416	0.6993 \pm 0.1685	0.5973 \pm 0.1108
	motifs	0.6695 \pm 0.1273	0.8769 \pm 0.0231	0.8392 \pm 0.0499	0.6868 \pm 0.1617	0.5902 \pm 0.1057
1024	hg38	0.673 \pm 0.127	0.8781 \pm 0.0269	0.8604 \pm 0.0471	0.7069 \pm 0.1556	0.5988 \pm 0.1121
	cCREs	0.6743 \pm 0.1244	0.8793 \pm 0.0242	0.8458 \pm 0.0556	0.7039 \pm 0.1633	0.5954 \pm 0.1097
	motifs	0.6684 \pm 0.1278	0.8777 \pm 0.0244	0.8494 \pm 0.0478	0.7005 \pm 0.163	0.5954 \pm 0.1143

372
373

7 OUR NOVEL DNAMOTIFTOKENIZER

374 Building on aforementioned insights, we would like to ask whether domain knowledge can be di-
375 rectly integrated into the tokenizer’s design to improve performance. To test it, we develop DNAMo-
376 tifTokenizer, a novel tokenizer that directly incorporates TF motifs into the vocabulary and applies
377 a greedy search algorithm to tokenize the corresponding patterns in DNA sequences (Figure 5).

Figure 5: Overview of DNAMotifTokenizer. (a) Pre-processing of motif’s probability weight matrix. (b) The constructed vocabulary, consisting of special tokens, motif tokens, 3-mer tokens, and 1-mer tokens. (c) The greedy tokenization algorithm, which by default randomly selects among matched motifs at each position. (d) Two deterministic variants of the tokenizer: matching by the longest motif first or by the shortest motif first.

7.1 ALGORITHM

Motif processing: Motifs are short, recurring patterns in DNA, RNA, or protein sequences that are frequently associated with specific biological functions. In this work, we focus on TF motifs, which are short DNA sequences that are bound by transcription factor proteins to regulate gene expression. The TF motifs are generally represented in the form of position weight matrices (PWM)(Stormo, 2000), which indicate the probability of each nucleotide occurring at each position within the motif. We download motif PWMs from the JASPAR 2024 motif library (Sandelin et al., 2004)(Rauluseviciute et al., 2024), which is a widely used, open-access repository. We use the vertebrate library, which contains 879 non-redundant motifs. As most TF motifs range in length from 5 to 12 base pairs (bp), we exclude any motifs longer than 12 bp from our analysis. To incorporate TF motifs into our vocabulary, we binarize their PWMs and encode them into fixed sequences (Figure 5a). For each TF PWM, we apply a threshold probability of 0.5. Positions with lower probability are defined as wildcard positions. Subsequently, we discard wildcard positions at both ends of the motif. For the remaining positions, we encode them using the nucleotide with the highest probability.

Our customized token vocabulary: In addition to the motif sequences defined in the previous section, we include their reverse complements in the vocabulary. Furthermore, we add 3-mer, 1-mer(A, T, C, G, N), and five special tokens, namely [PAD], [UNK], [CLS], [SEP], and [MASK], to form our final vocabulary. Our final vocabulary has 901 tokens in total, including 827 motif sequences, 64 3-mer, 5 1-mer(A, T, C, G, N), and 5 special tokens (Figure 5b).

Tokenization algorithm: With our customized vocabulary established, we implement a greedy, non-overlapping tokenization algorithm. The algorithm scans an incoming DNA sequence from left to right, using a sliding window that varies from 4 to 12 bp in length. We recognize that a single base-pair shift can cascade and alter the entire tokenized output. To mitigate this sensitivity without a significant loss in computational efficiency, we incorporate local flexibility by allowing for a 0 to 2 bp offset to the right. At each position, if the subsequence within the window matches one or more motifs in our vocabulary, one is selected at random to serve as the token. If no motif match is found, the sequence is tokenized using fallback 3-mer or 1-mer representations (Figure 5c). The pseudocode is shown as Algorithm 1 in **Appendix**.

432 7.2 EVALUATION PERFORMANCE
433

442 Figure 6: Interpretation of DNAMotifTokenizer. (a) Workflow for the multiclass cell-type ATAC-
443 seq classification task. (b) Distribution of average attribution scores for k-mer and motif tokens on
444 the test set (10%). The motif tokens exhibit the strongest influence on model predictions. (c) Overlap
445 between top 200 highest-attribution tokens from three cell types. (d) Highly attributed motif tokens
446 matched with motif enrichment results from Li et al. (2023).

447 **Interpretability:** We collected single-nucleus ATAC-seq (snATAC-seq) data generated from three
448 diverse brain cell types: intratelencephalic neurons from cortical layer 2/3 (ITL23), VIP-positive
449 GABAergic neurons (VIP), and Microglia (MGC) Li et al. (2023). We identified cell-type-specific
450 ATAC-seq peak regions, which serve as prediction targets (Figure 6a). To control the vocabulary
451 size and achieve fair comparison, we then fine-tuned our DNAMotifTokenizer models on this
452 dataset. Then, we performed token attribution analysis using Integrated Gradients Sundararajan et al.
453 (2017) on the test set (10%). For each token, we computed its attribution score toward the true class
454 label and then averaged the scores; Tokens with attribution scores farther away from zero—either
455 positive or negative—indicate stronger influence on the model’s prediction (Figure 6b). By ranking
456 them, we found that in our DNAMotifTokenizer model, most of the highly influential tokens corre-
457 spond to motif tokens (in red), whereas the k-mer tokens (in blue) generally had attribution scores
458 close to zero. We selected the top 200 most contributive motif tokens for each cell type. The Venn
459 plot indicates that DNAMotifTokenizer not only utilizes 143 motif tokens shared between three cell
460 types, but also uses 25, 26, 34 cell-type-specific motif tokens for prediction in ITL23, VIP, MGC,
461 respectively (Figure 6c). In addition, we compared these most contributive motif tokens with the
462 enriched motifs for each cell type reported in the original paper Li et al. (2023). We showed top-
463 matched motifs from three cell types as a heatmap (Figure 6d). In ITL23 cell type, motifs from
464 the WT1, RORa, Egr, and KLF families are captured and enriched, whereas only WT1, and Egr2
465 are captured in the VIP cell type. In MGC cell type, SOX family motifs are captured and enriched.
466 These results demonstrate the interpretability of motif tokens introduced by DNAMotifTokenizer in
467 various cell types.

468 **Downstream tasks:** We evaluate the downstream performance of models trained with DNAMotif-
469 Tokenizer. We reveal that DNAMotifTokenizer consistently matches or exceeds the performance
470 of BPE models (Table 4). For DART-EVAL tasks, the synthetic sequences may not exhibit a natural
471 motif distribution, which can affect the classification performance of our method.

472 **Generalizability:** We finetuned our models on Yeast and Mouse datasets from the GUE dataset.
473 Compared to published k-mer and BPE tokenizers learnt from multiple species, DNAMotifTok-
474 enizer demonstrates comparable or superior performance in these cross-species predictions. Specif-
475 ically, DNAMotifTokenizer achieves average MCC at 0.4662 in yeast, 0.5509 in mouse (Table F.6).
476 These results confirm the robustness and generalizability of DNAMotifTokenizer even outside hu-
477 man datasets.

478 **Stability:** We use four different seeds to run the tokenization algorithm and train four different
479 models, and finetuned on the benchmark datasets, computed the mean and standard variation across
480 each subdataset within each benchmark datasets. (Table G.1 G.2 G.3 G.4 G.5).

481 7.3 COMPLEXITY ANALYSIS
482

483 **Time Complexity:** The average token length in our vocabulary is approximately 8.3 nucleotides.
484 For a genomic sequence of length n , the tokenizer proceeds sequentially from left to right, result-
485 ing in approximately $O(\frac{n}{8.3})$ tokenization steps. At each position, the tokenizer queries a Trie to
486 identify motif tokens with lengths ranging from 4 up to Maxlen. If no motif is found, the tokenizer

486

487

Table 4: Performance of DNAMotifTokenizer and all BPEs, on five Benchmark datasets

Model	GUE Ave. MCC	SCREEN Ave. MCC	DART-EVAL Ave. ACC	Genomic Benchmark Ave. MCC	NT-Benchmarks Ave. MCC
BPE(DNABERT2)	0.6468 \pm 0.1242	0.8791 \pm 0.0224	0.8342 \pm 0.0328	0.6886 \pm 0.1721	0.5839 \pm 0.1016
BPE(hg38, 4096)	0.6638 \pm 0.122	0.8717 \pm 0.0294	0.8425 \pm 0.0408	0.7006 \pm 0.1565	0.5839 \pm 0.0945
BPE(hg38, 2048)	0.6684 \pm 0.1302	0.8743 \pm 0.033	0.8451 \pm 0.0531	0.7021 \pm 0.1584	0.595 \pm 0.1052
BPE(hg38, 1024)	0.673 \pm 0.127	0.8781 \pm 0.0269	0.8604 \pm 0.0471	0.7069 \pm 0.1556	0.5988 \pm 0.1121
BPE(motifs, 4096)	0.6522 \pm 0.1299	0.8694 \pm 0.0338	0.8309 \pm 0.0331	0.6844 \pm 0.1644	0.5764 \pm 0.0997
BPE(motifs, 2048)	0.6695 \pm 0.1273	0.8769 \pm 0.0231	0.8392 \pm 0.0499	0.6868 \pm 0.1617	0.5902 \pm 0.1057
BPE(motifs, 1024)	0.6684 \pm 0.1278	0.8777 \pm 0.0244	0.8494 \pm 0.0478	0.7005 \pm 0.163	0.5954 \pm 0.1143
BPE(cCREs, 4096)	0.6552 \pm 0.1268	0.8719 \pm 0.0333	0.8425 \pm 0.0451	0.699 \pm 0.1642	0.5723 \pm 0.0896
BPE(cCREs, 2048)	0.6645 \pm 0.1283	0.8767 \pm 0.0279	0.8382 \pm 0.0416	0.6993 \pm 0.1685	0.5973 \pm 0.1108
BPE(cCREs, 1024)	0.6743 \pm 0.1244	0.8793 \pm 0.0242	0.8458 \pm 0.0556	0.7039 \pm 0.1633	0.5954 \pm 0.1097
DNAMotifTokenizer (default)	0.6815 \pm 0.1236	0.885 \pm 0.0217	0.8437 \pm 0.0574	0.6976 \pm 0.1522	0.6018 \pm 0.1167
Ablation					
DNAMotifTokenizer (longest)	0.6687 \pm 0.1311	<u>0.8822</u> \pm 0.0237	0.8388 \pm 0.0567	0.6884 \pm 0.1639	0.5965 \pm 0.1072
DNAMotifTokenizer (shortest)	<u>0.6697</u> \pm 0.1238	0.8809 \pm 0.0303	0.8399 \pm 0.0617	0.6884 \pm 0.1549	<u>0.6003</u> \pm 0.1107

503 defaults to 3-mer or 1-mer tokens. The worst-case Trie lookup cost is $O(\text{Maxlen}^2)$. Considering
 504 potential shifts by 1 or 2 nucleotides at each position, the upper bound of the total time complexity
 505 is $O(\frac{n}{8.3} \cdot \text{Maxlen}^2)$. In our implementation, we set Maxlen = 12.

506 **Space Complexity:** Let V denote the vocabulary size and L the average token length. The Trie
 507 storing all motif tokens requires $O(V \cdot L)$ space, while the lookup table mapping motifs to token
 508 IDs takes at most $O(V)$. During tokenization, the output tokens occupy $O(\frac{n}{8.3})$ space. Therefore,
 509 the total space complexity is $O(\frac{n}{8.3} + V \cdot L)$. In our implementation, $V = 901$, the average token
 510 length is $L \approx 8.3$, and the number of motif tokens stored in the Trie is 827.

512 7.4 ABLATION STUDY

514 To evaluate the motif selection strategy, we conduct an ablation study. We test two deterministic
 515 variants: one that greedily selects the longest possible motif at each position, and another that selects
 516 the shortest (Figure 5d). While these greedy variants were still highly effective, outperforming
 517 all BPE models on three of five benchmarks, neither of these greedy strategies outperforms our
 518 default algorithm (Table 4). This finding is consistent with our earlier results, suggesting that simply
 519 optimizing for token length, and/or the nucleotide diversity in tokens, does not necessarily improve
 520 model performance. This underscores the complexity of genomic "grammar" and highlights the
 521 potential for developing more sophisticated motif selection strategies in future work.

522 8 CONCLUSION

525 In this work, we first introduce the SCREEN benchmark, a comprehensive dataset of well-annotated
 526 human functional genomic regulatory elements. Together with other benchmark datasets, we sys-
 527 tematically evaluated state-of-the-art k-mer and BPE tokenizers under controlled settings, revealing
 528 a clear performance trade-off across different downstream tasks.

529 We investigated BPE optimization, finding that simply increasing vocabulary size can introduce
 530 information redundancy that harms model performance. Instead, we demonstrate that BPE tok-
 531 enizers can be trained more efficiently on smaller, curated DNA sequences enriched with domain
 532 knowledge. Building on these insights, we introduce DNAMotifTokenizer, a novel tokenizer whose
 533 performance is SOTA. While our algorithm is suboptimal due to manual injections in tokenization,
 534 we highlight the necessity of incorporating domain knowledge for genomic representation learning.

535 Our future research will focus on (1) enhancing our approach by improving the flexibility of motif
 536 representations within the vocabulary, (2) developing a learnable tokenization algorithm, and (3)
 537 further exploring the downstream benefits for model interpretability. The ultimate goal is to advance
 538 the development of biologically informed tokenization and interpretation of genomic sequences.

539

540 REFERENCES
541

542 Garyk Bixi, Matthew G Durrant, Jerome Ku, Michael Poli, Greg Brockman, Daniel Chang,
543 Gabriel A Gonzalez, Samuel H King, David B Li, Aditi T Merchant, et al. Genome modeling and
544 design across all domains of life with evo 2. *BioRxiv*, pp. 2025–02, 2025.

545 Genome Reference Consortium. Grch38, 2013. URL <https://www.ncbi.nlm.nih.gov/assembly/88331>.
546

548 Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
549 convolutional networks. In *Proceedings of the IEEE international conference on computer vision*,
550 pp. 764–773, 2017.

551 Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza-Revilla, Nicolas Lopez Carranza, Adam Henryk
552 Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Bernardo P de Almeida, Hassan
553 Sirelkhatim, et al. Nucleotide transformer: building and evaluating robust foundation models for
554 human genomics. *Nature Methods*, 22(2):287–297, 2025.

556 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
557 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
558 *the North American chapter of the association for computational linguistics: human language*
559 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

560 Katarína Grešová, Vlastimil Martinek, David Čechák, Petr Šimeček, and Panagiotis Alexiou. Ge-
561 nomic benchmarks: a collection of datasets for genomic sequence classification. *BMC Genomic*
562 *Data*, 24(1):25, 2023.

564 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
565 *arXiv:1606.08415*, 2016.

566 Tim Hulsen. Biovenn—an r and python package for the comparison and visualization of biological
567 lists using area-proportional venn diagrams. *Data Science*, 4(1):51–61, 2021.

569 Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
570 encoder representations from transformers model for dna-language in genome. *Bioinformatics*,
571 37(15):2112–2120, 2021.

573 Christopher M Lee, Galt P Barber, Jonathan Casper, Hiram Clawson, Mark Diekhans, Jairo Navarro
574 Gonzalez, Angie S Hinrichs, Brian T Lee, Luis R Nassar, Conner C Powell, et al. Ucsc genome
575 browser enters 20th year. *Nucleic acids research*, 48(D1):D756–D761, 2020.

576 Yang Eric Li, Sebastian Preissl, Michael Miller, Nicholas D Johnson, Zihan Wang, Henry Jiao,
577 Chenxu Zhu, Zhaoning Wang, Yang Xie, Olivier Poirion, et al. A comparative atlas of single-cell
578 chromatin accessibility in the human brain. *Science*, 382(6667):eadf7044, 2023.

580 Yunhai Luo, Benjamin C Hitz, Idan Gabdank, Jason A Hilton, Meenakshi S Kagda, Bonita Lam,
581 Zachary Myers, Paul Sud, Jennifer Jou, Khine Lin, et al. New developments on the encyclopedia
582 of dna elements (encode) data portal. *Nucleic acids research*, 48(D1):D882–D889, 2020.

584 Camille Moeckel, Manvita Mareboina, Maxwell A Konnaris, Candace SY Chan, Ioannis Mouratidis,
585 Austin Montgomery, Nikol Chantzis, Georgios A Pavlopoulos, and Ilias Georgakopoulos-Soares.
586 A survey of k-mer methods and applications in bioinformatics. *Computational and Structural*
587 *Biotechnology Journal*, 23:2289–2303, 2024.

588 Jill E Moore, Michael J Purcaro, Henry E Pratt, Charles B Epstein, Noam Shores, Jessika Adrian,
589 Trupti Kawli, Carrie A Davis, Alexander Dobin, et al. Expanded encyclopaedias of dna elements
590 in the human and mouse genomes. *Nature*, 583(7818):699–710, 2020.

592 Nature Methods. Embedding ai in biology. *Nature Methods*, 21:1365–1366, Au-
593 gust 2024. doi: 10.1038/s41592-024-02391-7. URL <https://doi.org/10.1038/s41592-024-02391-7>.

594 Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
 595 Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
 596 genomic sequence modeling at single nucleotide resolution. *Advances in neural information*
 597 *processing systems*, 36:43177–43201, 2023.

598 Kazuhiro R Nitta, Arttu Jolma, Yimeng Yin, Ekaterina Morgunova, Teemu Kivioja, Junaid Akhtar,
 599 Korneel Hens, Jarkko Toivonen, Bart Deplancke, Eileen EM Furlong, et al. Conservation of
 600 transcription factor binding specificities across 600 million years of bilateria evolution. *elife*, 4:
 601 e04837, 2015.

602 Aman Patel, Arpita Singhal, Austin Wang, Anusri Pampari, Maya Kasowski, and Anshul Kundaje.
 603 Dart-eval: A comprehensive dna language model evaluation benchmark on regulatory dna. *Ad-*
 604 *vances in Neural Information Processing Systems*, 37:62024–62061, 2024.

605 Lifeng Qiao, Peng Ye, Yuchen Ren, Weiqiang Bai, Chaoqi Liang, Xinzhu Ma, Nanqing Dong, and
 606 Wanli Ouyang. Model decides how to tokenize: Adaptive dna sequence tokenization with mxdna.
 607 *Advances in Neural Information Processing Systems*, 37:66080–66107, 2024.

608 Brian J Raney, Timothy R Dreszer, Galt P Barber, Hiram Clawson, Pauline A Fujita, Ting Wang,
 609 Ngan Nguyen, Benedict Paten, Ann S Zweig, Donna Karolchik, et al. Track data hubs enable
 610 visualization of user-defined genome-wide annotations on the ucsc genome browser. *Bioinfor-*
 611 *matics*, 30(7):1003–1005, 2014.

612 Ieva Rauluseviciute, Rafael Riudavets-Puig, Romain Blanc-Mathieu, Jaime A Castro-Mondragon,
 613 Katalin Ferenc, Vipin Kumar, Roza Berhanu Lemma, Jérémie Lucas, Jeanne Chèneby, Damir
 614 Baranasic, et al. Jaspar 2024: 20th anniversary of the open-access database of transcription factor
 615 binding profiles. *Nucleic acids research*, 52(D1):D174–D182, 2024.

616 Albin Sandelin, Wynand Alkema, Pär Engström, Wyeth W Wasserman, and Boris Lenhard. Jas-
 617 par: an open-access database for eukaryotic transcription factor binding profiles. *Nucleic acids*
 618 *research*, 32(suppl_1):D91–D94, 2004.

619 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 620 subword units. *arXiv preprint arXiv:1508.07909*, 2015.

621 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
 622 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
 623 *arXiv preprint arXiv:1701.06538*, 2017.

624 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 625 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*
 626 *learning research*, 15(1):1929–1958, 2014.

627 Gary D Stormo. Dna binding sites: representation and discovery. *Bioinformatics*, 16(1):16–23,
 628 2000.

629 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 630 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.

631 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 632 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural infor-*
 633 *mation processing systems*, 30, 2017.

634 Emily S Wong, Dawei Zheng, Siew Z Tan, Neil I Bower, Victoria Garside, Gilles Vanwallegem,
 635 Federico Gaiti, Ethan Scott, Benjamin M Hogan, Kazu Kikuchi, et al. Deep conservation of the
 636 enhancer regulatory code in animals. *Science*, 370(6517):eaax8137, 2020.

637 Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
 638 2: Efficient foundation model and benchmark for multi-species genome. *arXiv preprint*
 639 *arXiv:2306.15006*, 2023.

640

641

642

643

644

645

646

647

648 APPENDIX
649650 A DNAMOTIFTOKENIZER: TOKENIZATION ALGORITHM
651653 **Algorithm 1:** Tokenization algorithm for DNAMotifTokenizer
654655 **Data:** Sequence s with length n , Vocabulary $V = \{\text{motifs}, 3\text{-mer}, 1\text{-mer}\}$
656657 **Result:** $y = [\text{tokens}]$ 658 **Function** `Tokenize(i)`

```

659     score, best_token, candidates  $\leftarrow -1, \text{None}, []$ 
660     for  $j \leftarrow 4$  to  $12$  do
661         seg  $\leftarrow$  substring of  $s$  from index  $i$  to  $i + j$ 
662         if  $seg \in \text{motifs}$  then
663              $\quad$  Append  $seg$  to  $\text{candidates}$ ;
664
665         if  $\text{candidates} \neq \text{None}$  then
666              $\quad$   $\text{best\_token} \leftarrow$  random element from  $\text{candidates}$ ;
667         else
668             if  $i + 3 > n$  then
669                  $\quad$   $\text{best\_token} \leftarrow 1\text{-mer at } s[i];$ 
670             else
671                  $\quad$   $\text{best\_token} \leftarrow 3\text{-mer at } s[i : i + 3];$ 
672
673              $\text{next\_pos} \leftarrow i + \text{length of } \text{best\_token}$ 
674              $\text{best\_score} \leftarrow \text{length of } \text{best\_token}$ 
675             return  $\text{best\_token}, \text{best\_score}, \text{next\_pos};$ 
676
677 
```

678 **Function** `Main()`

```

679      $i, y \leftarrow 0, []$ 
680     while  $i < n$  do
681          $\text{best\_token}, \text{best\_score}, \text{next\_pos} \leftarrow \text{None}, -1, i$ 
682         for  $\text{offset} \leftarrow 0$  to  $2$  do
683              $\text{candidate\_token}, \text{candidate\_score}, \text{candidate\_pos} \leftarrow \text{Tokenize}(i + \text{offset})$ 
684             if  $\text{candidate\_score} > \text{best\_score}$  then
685                  $\quad$   $\text{best\_token} \leftarrow \text{candidate\_token};$ 
686                  $\quad$   $\text{best\_score} \leftarrow \text{candidate\_score};$ 
687                  $\quad$   $\text{next\_pos} \leftarrow \text{candidate\_pos};$ 
688
689              $i \leftarrow \text{next\_pos}$ 
690             Append  $\text{best\_token}$  to  $y$ ;
691
692         return  $y;$ 
693
694
695
696
697
698
699
700
701 
```

702 B WHAT MAKES A GOOD BPE TOKENIZER?

704 B.1 SIZE MATTERS: VOCABULARY SCALING

719 Figure B.1: Comparison across BPEs with Different Vocabulary Size. Wilcoxon test, ***, p -value
 720 < 0.001 , **, p -value < 0.01

722 B.2 INFORMATIVE TOKENS: ADDING DOMAIN KNOWLEDGE

750 Figure B.2: Comparison across BPEs with Different Vocabulary Size and Domain Knowledge.

756 C MOTIF AND cCRE REGIONS
757
758759 Table C.1: Jaspar Motif Annotation on hg38 Genome
760

761 Genome	761 Total Nucleotides at Motif Regions	761 Ratio (%)
762 hg38	762 1,848,048,414	762 59.84

763 Table C.2: cCRE Regions in hg38 Genome
764

765 Genome	765 Total cCRE Regions	765 Total Nucleotides at cCRE Regions	765 Ratio (%)
766 hg38	766 2,348,854	766 627,448,729	766 20.32

767 D BENCHMARKING OF STATE-OF-THE-ART TOKENIZERS
768769 Table D.1: Performance comparison of models across datasets on GUE, grouped by task.
770

771 Dataset	771 3mer (overlap)	771 6mer (overlap)	771 6mer (non-overlap)	771 BPE (orig. DNABERT-2)	771 BPE (vocab size=4096)
772 prom_core_all	772 0.6645	772 0.6497	772 0.5842	772 0.5966	772 0.6270
773 prom_core_notata	773 0.6745	773 0.6783	773 0.6233	773 0.6421	773 0.6435
774 prom_core_tata	774 0.5640	774 0.4748	774 0.4919	774 0.5938	774 0.6417
775 prom_300_all	775 0.8730	775 0.8336	775 0.7871	775 0.8240	775 0.8304
776 prom_300_notata	776 0.9089	776 0.9022	776 0.8631	776 0.8926	776 0.9037
777 prom_300_tata	777 0.4643	777 0.5170	777 0.4372	777 0.5297	777 0.6006
778 reconstructed	778 0.8064	778 0.6434	778 0.6328	778 0.7217	778 0.7143
779 tf_0	779 0.6506	779 0.6537	779 0.6151	779 0.6402	779 0.6560
780 tf_1	780 0.7078	780 0.6908	780 0.6326	780 0.6611	780 0.6952
781 tf_2	781 0.5184	781 0.5357	781 0.4680	781 0.5587	781 0.5603
782 tf_3	782 0.4496	782 0.4304	782 0.3164	782 0.4349	782 0.4234
783 tf_4	783 0.6588	783 0.6993	783 0.5842	783 0.6657	783 0.6692
784 Mean	784 0.6617	784 0.6424	784 0.5863	784 0.6468	784 0.6638
785 Std	785 0.1487	785 0.1386	785 0.1482	785 0.1242	785 0.122

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812

813 Table D.2: Performance comparison of models across datasets on Genomic Benchmarks

Dataset	3mer (overlap)	6mer (overlap)	6mer (non-overlap)	BPE (orig. DNABERT-2)	BPE (vocab size=4096)
human.enhancers.ensembl	0.7514	0.7771	0.6310	0.7182	0.7438
human.nontata_promoters	0.8116	0.8228	0.6975	0.8081	0.7937
demo_coding_vs_intergenic_seqs	0.8225	0.8340	0.7720	0.8113	0.8173
human.enhancers.cohn	0.4890	0.4824	0.4360	0.4565	0.4820
human.ensembl.regulatory	0.8240	0.8294	0.8678	0.8466	0.8413
human.ocr.ensembl	0.5005	0.5734	0.4569	0.4909	0.5254
Mean	0.6998	0.7199	0.6435	0.6886	0.7006
Std	0.1611	0.1528	0.1719	0.1721	0.1565

821
822
823
824
825

826 Table D.3: Performance comparison of models across datasets on Nucleotide transformer benchmarks

Dataset	3mer (overlap)	6mer (overlap)	6mer (non-overlap)	BPE (orig. DNABERT-2)	BPE (vocab size=4096)
H2AFZ	0.4727	0.5077	0.4758	0.4757	0.4916
H3K27ac	0.4460	0.4728	0.4080	0.4688	0.4914
H3K27me3	0.5720	0.5781	0.6077	0.5861	0.5983
H3K36me3	0.5972	0.6066	0.5814	0.6061	0.5955
H3K4me1	0.4598	0.4662	0.4629	0.4793	0.4804
H3K4me2	0.5692	0.5867	0.5665	0.5790	0.5741
H3K4me3	0.6537	0.6672	0.6486	0.6622	0.6736
H3K9ac	0.5201	0.5435	0.4985	0.5316	0.5390
H3K9me3	0.4227	0.4276	0.3741	0.4215	0.4271
H4K20me1	0.6064	0.6114	0.6068	0.6195	0.6074
splice_sites_donors	0.9776	0.9679	0.9503	0.6612	0.6557
splice_sites_acceptors	0.9721	0.9577	0.9163	0.6865	0.6297
splice_sites_all	0.9737	0.9655	0.9046	0.6507	0.5845
enhancers_types	0.5270	0.5596	0.4629	0.4636	0.4697
enhancers	0.5799	0.6123	0.4888	0.4741	0.5090
promoter_no_tata	0.7800	0.8169	0.7483	0.7450	0.7429
promoter_tata	0.8792	0.9093	0.6412	0.6629	0.7097
promoter_all	0.7909	0.7984	0.7228	0.7356	0.7299
Mean	0.6556	0.6697	0.6147	0.5839	0.5839
Std	0.1909	0.1838	0.1745	0.1016	0.0945

846
847
848
849
850

851 Table D.4: Performance comparison of models across datasets on SCREEN

Dataset	3mer (overlap)	6mer (overlap)	6mer (non-overlap)	BPE (orig. DNABERT-2)	BPE (vocab size=4096)
CA-CTCF	0.9099	0.9126	0.8880	0.8705	0.8702
pELS	0.9179	0.9182	0.9008	0.8897	0.8869
CA	0.9179	0.9196	0.8875	0.8777	0.8778
CA-H3K4me3	0.9132	0.9146	0.8850	0.8743	0.8657
CA-TF	0.9116	0.9126	0.8836	0.8357	0.8085
TF	0.9089	0.9086	0.8881	0.8747	0.8629
PLS	0.9342	0.9352	0.9240	0.9098	0.9013
dELS	0.9138	0.2440	0.9003	0.9006	0.9000
Mean	0.9159	0.8332	0.8947	0.8791	0.8717
Std	0.0081	0.2382	0.0135	0.0224	0.0294

862
863

864

865

Table D.5: Performance comparison across tasks on Dart-Eval(task1-3)

Dataset	3mer (overlap)	6mer (overlap)	6mer (non-overlap)	BPE (orig. DNABERT-2)	BPE (vocab size=4096)
task1	0.8668	0.8734	0.7976	0.8618	0.8631
task2	0.9919	0.9924	0.9599	0.8923	0.9327
GM12878	0.7914	0.8684	0.7896	0.8235	0.8227
H1ESC	0.7775	0.8758	0.7968	0.8178	0.8266
HEPG2	0.8165	0.8639	0.8225	0.8334	0.8312
IMR90	0.7612	0.8716	0.7619	0.7942	0.7982
K562	0.8534	0.8490	0.8419	0.8164	0.8232
Mean	0.8370	0.8849	0.8243	0.8342	0.8425
Std	0.0847	0.0465	0.0620	0.0328	0.0447

876

877

E WHAT MAKES A GOOD BPE TOKENIZER?

878

879

880

881

Table E.1: Performance comparison across datasets on GUE, with BPE trained on cCREs, varying in vocabulary size.

Dataset	BPE (cCREs, 4096)	BPE (cCREs, 2048)	BPE (cCREs, 1024)
prom_core_all	0.6173	0.6224	0.6102
prom_core_notata	0.6363	0.6405	0.6458
prom_core_tata	0.6040	0.7018	0.7130
prom_300_all	0.8338	0.8308	0.8459
prom_300_notata	0.9073	0.9069	0.9017
prom_300_tata	0.5921	0.6074	0.5965
reconstructed	0.6903	0.7383	0.7660
tf_0	0.6522	0.6431	0.6773
tf_1	0.6722	0.6662	0.6583
tf_2	0.5361	0.5437	0.5637
tf_3	0.4200	0.4052	0.4384
tf_4	0.7007	0.6673	0.6750
Mean	0.6552	0.6645	0.6743
Std	0.1268	0.1283	0.1244

897

898

899

Table E.2: Performance comparison across datasets on GUE, with BPE trained on motifs, varying in vocabulary size.

Dataset	BPE (motifs, 4096)	BPE (motifs, 2048)	BPE (motifs, 1024)
prom_core_all	0.6200	0.6236	0.6250
prom_core_notata	0.6296	0.6352	0.6338
prom_core_tata	0.5838	0.6811	0.6847
prom_300_all	0.8274	0.8255	0.8294
prom_300_notata	0.8941	0.9005	0.9014
prom_300_tata	0.5796	0.6310	0.5767
reconstructed	0.7362	0.7810	0.7694
tf_0	0.6574	0.6368	0.6385
tf_1	0.6820	0.6915	0.7056
tf_2	0.5508	0.5425	0.5336
tf_3	0.3947	0.4133	0.4309
tf_4	0.6708	0.6716	0.6913
Mean	0.6522	0.6695	0.6684
Std	0.1299	0.1273	0.1278

916

917

918
 919
 920
 921
 922 Table E.3: Performance comparison across datasets on GUE, with BPE trained on hg38, varying in
 923 vocabulary size.

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938	Dataset	BPE (hg38, 4096)	BPE (hg38, 2048)	BPE (hg38, 1024)
	prom_core_all	0.6270	0.6349	0.6254
	prom_core_notata	0.6435	0.6503	0.6571
	prom_core_tata	0.6417	0.6482	0.6842
	prom_300_all	0.8304	0.8388	0.8298
	prom_300_notata	0.9037	0.9039	0.9028
	prom_300_tata	0.6006	0.5483	0.5799
	reconstructed	0.7143	0.7867	0.7763
	tf_0	0.6560	0.6655	0.6714
	tf_1	0.6952	0.6759	0.6999
	tf_2	0.5603	0.5392	0.5370
	tf_3	0.4234	0.4353	0.4309
	tf_4	0.6692	0.6940	0.6818
	Mean	0.6638	0.6684	0.6730
	Std	0.122	0.1302	0.127

939
 940
 941
 942
 943
 944
 945
 946
 947 Table E.4: Performance comparison across datasets on Nucleotide Transformer Benchmarks, with
 948 BPE trained on cCREs, varying in vocabulary size.

949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967	Dataset	BPE (cCREs, 4096)	BPE (cCREs, 2048)	BPE (cCREs, 1024)
	H2AFZ	0.4809	0.4682	0.4751
	H3K27ac	0.4765	0.4759	0.4657
	H3K27me3	0.6047	0.6108	0.6052
	H3K36me3	0.5775	0.5950	0.5950
	H3K4me1	0.4889	0.4801	0.4909
	H3K4me2	0.5642	0.5712	0.5917
	H3K4me3	0.6524	0.6686	0.6812
	H3K9ac	0.5308	0.5317	0.5447
	H3K9me3	0.4192	0.4328	0.4309
	H4K20me1	0.6171	0.6201	0.6282
	splice_sites_donors	0.5983	0.7676	0.7837
	splice_sites_acceptors	0.6461	0.7101	0.7047
	splice_sites_all	0.5647	0.6909	0.6526
	enhancers_types	0.4754	0.4624	0.4595
	enhancers	0.4950	0.4999	0.4871
	promoter_no_tata	0.7424	0.7406	0.7451
	promoter_tata	0.6514	0.6932	0.6438
	promoter_all	0.7161	0.7314	0.7313
	Mean	0.5723	0.5973	0.5954
	Std	0.0896	0.1108	0.1097

969
 970
 971

972

973

974

975 Table E.5: Performance comparison across datasets on Nucleotide Transformer Benchmarks, with
976 BPE trained on motifs, varying in vocabulary size.

977	978	Dataset	BPE (motifs, 4096)	BPE (motifs, 2048)	BPE (motifs, 1024)
979		H2AFZ	0.4762	0.4797	0.4685
980		H3K27ac	0.4628	0.4600	0.4666
981		H3K27me3	0.5967	0.6054	0.5977
982		H3K36me3	0.5829	0.5859	0.5852
983		H3K4me1	0.4803	0.4898	0.4810
984		H3K4me2	0.5578	0.5613	0.5788
985		H3K4me3	0.6752	0.6734	0.6725
986		H3K9ac	0.5273	0.5294	0.5347
987		H3K9me3	0.3995	0.4153	0.4089
988		H4K20me1	0.6238	0.6380	0.6172
989		splice_sites_donors	0.6544	0.7533	0.7596
990		splice_sites_acceptors	0.5967	0.6624	0.7157
991		splice_sites_all	0.6109	0.6435	0.6757
992		enhancers_types	0.4682	0.4712	0.4565
993		enhancers	0.4974	0.5086	0.5079
994		promoter_no_tata	0.7427	0.7434	0.7529
995		promoter_tata	0.6932	0.6670	0.6969
996		promoter_all	0.7291	0.7365	0.7408
997		Mean	0.5764	0.5902	0.5954
998		Std	0.0997	0.1057	0.1143

999

1000

1001

1002 Table E.6: Performance comparison across datasets on Nucleotide Transformer Benchmarks, with
1003 BPE trained on hg38, varying in vocabulary size.

1004	1005	Dataset	BPE (hg38, 4096)	BPE (hg38, 2048)	BPE (hg38, 1024)
1006		H2AFZ	0.4916	0.4711	0.4810
1007		H3K27ac	0.4914	0.4916	0.4802
1008		H3K27me3	0.5983	0.6100	0.6074
1009		H3K36me3	0.5955	0.6013	0.5950
1010		H3K4me1	0.4804	0.4956	0.4899
1011		H3K4me2	0.5741	0.5718	0.5835
1012		H3K4me3	0.6736	0.6844	0.6927
1013		H3K9ac	0.5390	0.5332	0.5497
1014		H3K9me3	0.4271	0.4039	0.4073
1015		H4K20me1	0.6074	0.6275	0.6214
1016		splice_sites_donors	0.6557	0.7315	0.7448
1017		splice_sites_acceptors	0.6297	0.6726	0.7071
1018		splice_sites_all	0.5845	0.6406	0.6963
1019		enhancers_types	0.4697	0.4914	0.4573
1020		enhancers	0.5090	0.4962	0.4909
1021		promoter_no_tata	0.7429	0.7509	0.7605
1022		promoter_tata	0.7097	0.7120	0.6779
1023		promoter_all	0.7299	0.7251	0.7350
1024		Mean	0.5839	0.5950	0.5988
1025		Std	0.0945	0.1052	0.1121

1026

1027

1028 Table E.7: Performance comparison across datasets on Genomic Benchmarks, with BPE trained on
1028 cCREs, varying in vocabulary size.

Dataset	BPE (cCREs, 4096)	BPE (cCREs, 2048)	BPE (cCREs, 1024)
human_enhancers_ensembl	0.7386	0.7371	0.7473
human_nontata_promoters	0.8035	0.8144	0.8038
demo_coding_vs_intergenicomic_seqs	0.8224	0.8206	0.8208
human_enhancers_cohn	0.4716	0.4602	0.4681
human_ensembl_regulatory	0.8442	0.8474	0.8528
human_ocr_ensembl	0.5136	0.5164	0.5307
Mean	0.6990	0.6993	0.7039
Std	0.1642	0.1685	0.1633

1039

1040

1041 Table E.8: Performance comparison across datasets on Genomic Benchmarks, with BPE trained on
1042 motifs, varying in vocabulary size.

Dataset	BPE (motifs, 4096)	BPE (motifs, 2048)	BPE (motifs, 1024)
human_enhancers_ensembl	0.7250	0.7325	0.7428
human_nontata_promoters	0.7795	0.7657	0.7984
demo_coding_vs_intergenicomic_seqs	0.8081	0.8078	0.8230
human_enhancers_cohn	0.4632	0.4568	0.4631
human_ensembl_regulatory	0.8377	0.8445	0.8458
human_ocr_ensembl	0.4927	0.5137	0.5301
Mean	0.6844	0.6868	0.7005
Std	0.1644	0.1617	0.163

1052

1053

1054

1055 Table E.9: Performance comparison across datasets on Genomic Benchmarks, with BPE trained on
1055 hg38, varying in vocabulary size.

Dataset	BPE (hg38, 4096)	BPE (hg38, 2048)	BPE (hg38, 1024)
human_enhancers_ensembl	0.7438	0.7449	0.7440
human_nontata_promoters	0.7937	0.7873	0.7997
demo_coding_vs_intergenicomic_seqs	0.8173	0.8290	0.8246
human_enhancers_cohn	0.4820	0.4740	0.4810
human_ensembl_regulatory	0.8413	0.8435	0.8477
human_ocr_ensembl	0.5254	0.5340	0.5445
Mean	0.7006	0.7021	0.7069
Std	0.1565	0.1584	0.1556

1066

1067

1068 Table E.10: Performance comparison across datasets on Dart-Eval (task1-3), with BPE trained on
1069 cCREs, varying in vocabulary size.

Dataset	BPE (cCREs, 4096)	BPE (cCREs, 2048)	BPE (cCREs, 1024)
task1	0.8629	0.8663	0.8722
task2	0.9430	0.9270	0.9704
GM12878	0.8228	0.8165	0.8146
H1ESC	0.8262	0.8257	0.8223
HEPG2	0.8332	0.8298	0.8289
IMR90	0.7972	0.7988	0.7913
K562	0.8120	0.8034	0.8210
Mean	0.8425	0.8382	0.8458
Std	0.0451	0.0431	0.0602

1080
1081
10821083 Table E.11: Performance comparison across datasets on Dart-Eval (task1-3), with BPE trained on
1084 motifs, varying in vocabulary size.

Dataset	BPE (motifs, 4096)	BPE (motifs, 2048)	BPE (motifs, 1024)
task1	0.8599	0.8652	0.8675
task2	0.8971	0.9494	0.9594
GM12878	0.8192	0.8210	0.8245
H1ESC	0.8177	0.8197	0.8218
HEPG2	0.8223	0.8262	0.8356
IMR90	0.7913	0.7909	0.8118
K562	0.8088	0.8018	0.8248
Mean	0.8310	0.8392	0.8493
Std	0.0331	0.0499	0.0478

1095

1096

1097

1098

1099

1100

1101 Table E.12: Performance comparison across datasets on Dart-Eval (task1-3), with BPE trained on
1102 hg38, varying in vocabulary size.

Dataset	BPE (hg38, 4096)	BPE (hg38, 2048)	BPE (hg38, 1024)
task1	0.8631	0.8656	0.8677
task2	0.9327	0.9658	0.9722
GM12878	0.8227	0.8216	0.8415
H1ESC	0.8266	0.8229	0.8380
HEPG2	0.8312	0.8331	0.8408
IMR90	0.7982	0.7977	0.8276
K562	0.8232	0.8093	0.8351
Mean	0.8425	0.8451	0.8604
Std	0.0408	0.0531	0.0471

1113

1114

1115

1116

1117

1118

1119 Table E.13: Performance comparison across datasets on SCREEN, with BPE trained on cCREs,
1120 varying in vocabulary size.

Dataset	BPE (cCREs, 4096)	BPE (cCREs, 2048)	BPE (cCREs, 1024)
CA-CTCF	0.8723	0.8760	0.8785
pELS	0.8898	0.8924	0.8953
CA	0.8774	0.8817	0.8865
CA-H3K4me3	0.8669	0.8710	0.8734
CA-TF	0.7974	0.8145	0.8245
TF	0.8675	0.8738	0.8793
PLS	0.9032	0.9036	0.8962
dELS	0.9006	0.9003	0.9008
Mean	0.8719	0.8767	0.8793
Std	0.0333	0.0279	0.0242

1132

1133

1134
1135
1136
1137
1138
1139
1140

1141 Table E.14: Performance comparison across datasets on SCREEN, with BPE trained on motifs,
1142 varying in vocabulary size.

Dataset	BPE (motifs, 4096)	BPE (motifs, 2048)	BPE (motifs, 1024)
CA-CTCF	0.8719	0.8726	0.8770
pELS	0.8873	0.8910	0.8930
CA	0.8754	0.8814	0.8840
CA-H3K4me3	0.8620	0.8687	0.8715
CA-TF	0.7940	0.8295	0.8234
TF	0.8646	0.8707	0.8751
PLS	0.9006	0.9016	0.8962
dELS	0.8990	0.8997	0.9013
Mean	0.8694	0.8769	0.8777
Std	0.0338	0.0231j	0.0244

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

1169 Table E.15: Performance comparison across datasets on SCREEN, with BPE trained on hg38, vary-
1170 ing in vocabulary size.

Dataset	BPE (hg38, 4096)	BPE (hg38, 2048)	BPE (hg38, 1024)
CA-CTCF	0.8702	0.8752	0.8775
pELS	0.8869	0.8916	0.8927
CA	0.8778	0.8820	0.8843
CA-H3K4me3	0.8657	0.8678	0.8745
CA-TF	0.8085	0.7998	0.8173
TF	0.8629	0.8722	0.8752
PLS	0.9013	0.9052	0.9022
dELS	0.9000	0.9007	0.9011
Mean	0.8717	0.8743	0.8781
Std	0.0294	0.033	0.0269

1182
1183
1184
1185
1186
1187

1188 F DNAMOTIFTOKENIZER
1189
11901191 Table F.1: Performance comparison across datasets on GUE, with DNAMotifTokenizer, varying in
1192 motif matching.

1193 Dataset	1194 DNAMotifTokenizer (longest)	1195 DNAMotifTokenizer (shortest)	1196 DNAMotifTokenizer
1197 prom_core_all	0.6412	0.6522	0.6488
1198 prom_core_notata	0.6599	0.6413	0.6564
1199 prom_core_tata	0.7230	0.7228	0.7195
1200 prom_300_all	0.8355	0.8389	0.8538
1201 prom_300_notata	0.9014	0.8945	0.9062
1202 prom_300_tata	0.6147	0.5950	0.6441
1203 reconstructed	0.7544	0.7603	0.7693
1204 tf_0	0.6283	0.6379	0.6406
1205 tf_1	0.6813	0.6581	0.6670
1206 tf_2	0.4907	0.4883	0.5179
1207 tf_3	0.4249	0.4756	0.4651
1208 tf_4	0.6686	0.6711	0.6888
1209 Mean	0.6687	0.6697	0.6815
1210 Std	0.1483	0.1348	0.1367

1210 Table F.2: Performance comparison across datasets on SCREEN, with DNAMotifTokenizer, varying
1211 in motif matching.

1212 Dataset	1213 DNAMotifTokenizer (longest)	1214 DNAMotifTokenizer (shortest)	1215 DNAMotifTokenizer
1216 CA-CTCF	0.8781	0.8808	0.8822
1217 pELS	0.8977	0.8972	0.8961
1218 CA	0.8889	0.8890	0.8888
1219 CA-H3K4me3	0.8764	0.8782	0.8795
1220 CA-TF	0.8288	0.8105	0.8380
1221 TF	0.8861	0.8820	0.8826
1222 PLS	0.8982	0.9045	0.9087
1223 dELS	0.9038	0.9048	0.9039
1224 Mean	0.8822	0.8809	0.8850
1225 Std	0.0245	0.0324	0.0253

1242
 1243
 1244 Table F.3: Performance comparison across datasets on Nucleotide Transformer Benchmarks, with
 1245 DNAMotifTokenizer, varying in motif matching.

Dataset	DNAMotifTokenizer (longest)	DNAMotifTokenizer (shortest)	DNAMotifTokenizer
H2AFZ	0.4873	0.4848	0.4835
H3K27ac	0.4822	0.4735	0.4892
H3K27me3	0.6043	0.6019	0.5994
H3K36me3	0.5963	0.5932	0.5915
H3K4me1	0.4834	0.4930	0.4814
H3K4me2	0.5890	0.5843	0.5775
H3K4me3	0.6757	0.6729	0.6701
H3K9ac	0.5264	0.5381	0.5434
H3K9me3	0.4177	0.4205	0.4170
H4K20me1	0.6197	0.6158	0.6324
splice_sites_donors	0.7230	0.7346	0.7855
splice_sites_acceptors	0.7172	0.7263	0.7309
splice_sites_all	0.6661	0.7079	0.7119
enhancers_types	0.4639	0.4672	0.4507
enhancers	0.5054	0.5053	0.4902
promoter_no_tata	0.7465	0.7544	0.7577
promoter_tata	0.6935	0.6788	0.6855
promoter_all	0.7396	0.7523	0.7342
Mean	0.5965	0.6003	0.6018
Std	0.1115	0.1123	0.1154

1266
 1267
 1268
 1269 Table F.4: Performance comparison across datasets on Genomic Benchmarks, with DNAMotifTok-
 1270 enizer, varying in motif matching.

Dataset	DNAMotifTokenizer (longest)	DNAMotifTokenizer (shortest)	DNAMotifTokenizer
human_enhancers_ensembl	0.7364	0.7184	0.7426
human_nontata_promoters	0.7797	0.7606	0.7717
demo_coding_vs_intergenic_seqs	0.8207	0.8256	0.8248
human_enhancers_cohn	0.4366	0.4408	0.4505
human_ensembl_regulatory	0.8651	0.8622	0.8629
human_ocr_ensembl	0.4922	0.5227	0.5332
Mean	0.6884	0.6884	0.6976
Std	0.1748	0.1720	0.1581

1281
 1282
 1283 Table F.5: Performance comparison across datasets on Dart-Eval (task1-3), with DNAMotifTok-
 1284 enizer, varying in motif matching.

Dataset	DNAMotifTokenizer (longest)	DNAMotifTokenizer (shortest)	DNAMotifTokenizer
task1	0.8609	0.8639	0.8647
task2	0.9525	0.9610	0.9571
GM12878	0.8098	0.8105	0.8206
H1ESC	0.8177	0.8155	0.8202
HEPG2	0.8271	0.8286	0.8292
IMR90	0.7862	0.7902	0.7926
K562	0.8172	0.8095	0.8217
Mean	0.8414	0.8414	0.8433
Std	0.0588	0.0613	0.0586

1296

1297

Table F.6: Performance of different models on Species Yeast and Mouse from GUE

1298

1299

Model	Epigenetic Marks Prediction(Yeast)	Transcription Factor Prediction(Mouse)
3mer(stride=1)	0.4399	0.4034
6mer(stride=1)	0.4301	0.4466
6mer(stride=6)	0.3711	0.3056
BPE(DNABERT-2)	0.4670	0.5509
DNAMotifTokenizer (longest)	0.4639	0.5306
DNAMotifTokenizer (shortest)	0.4609	0.5458
DNAMotifTokenizer	0.4662	0.5509

1300

1301

1302

1303

1304

1305

1306

1307

1308

G STABILITY

1309

1310

1311

Table G.1: Performance of DNAMotifTokenizer on GUE, across 4 seeds

Dataset	Seed 1	Seed 2	Seed 3	Seed 4	Mean	Std
prom_core_all	0.6488	0.6362	0.6484	0.6483	0.6454	0.0063
prom_core_notata	0.6564	0.6530	0.6496	0.6613	0.6551	0.0051
prom_core_tata	0.7195	0.7164	0.7164	0.6999	0.7131	0.0091
prom_300_all	0.8538	0.8412	0.8307	0.8351	0.8402	0.0095
prom_300_notata	0.9062	0.8967	0.9003	0.8994	0.9007	0.0040
prom_300_tata	0.6441	0.6049	0.6147	0.5625	0.6066	0.0332
reconstructed	0.7693	0.7620	0.7232	0.7474	0.7505	0.0202
tf_0	0.6406	0.6326	0.6631	0.6277	0.6410	0.0153
tf_1	0.6670	0.6985	0.7011	0.6871	0.6884	0.0152
tf_2	0.5179	0.5715	0.5037	0.5000	0.5233	0.0327
tf_3	0.4651	0.4742	0.4401	0.4431	0.4556	0.0162
tf_4	0.6888	0.7039	0.6725	0.6778	0.6858	0.0138

1324

1325

Table G.2: Performance of DNAMotifTokenizer on Nucleotide Transformer Benchmarks, across 4 seeds

Dataset	Seed 1	Seed 2	Seed 3	Seed 4	Mean	Std
H2AFZ	0.4835	0.5106	0.4831	0.4888	0.4915	0.0122
H3K27ac	0.4892	0.4663	0.4579	0.4850	0.4746	0.0142
H3K27me3	0.5994	0.6002	0.5970	0.6014	0.5995	0.0018
H3K36me3	0.5915	0.5777	0.5852	0.5957	0.5875	0.0074
H3K4me1	0.4814	0.4762	0.4763	0.4944	0.4821	0.0083
H3K4me2	0.5775	0.5938	0.5771	0.5816	0.5825	0.0076
H3K4me3	0.6701	0.6705	0.6612	0.6748	0.6692	0.0058
H3K9ac	0.5434	0.5437	0.5426	0.5452	0.5437	0.0011
H3K9me3	0.4170	0.4218	0.4202	0.4279	0.4217	0.0044
H4K20me1	0.6324	0.6277	0.6179	0.6183	0.6241	0.0069
splice sites donors	0.7855	0.7881	0.7994	0.7304	0.7759	0.0306
splice sites acceptors	0.7309	0.7288	0.7653	0.7350	0.7400	0.0165
splice sites all	0.7119	0.7072	0.7598	0.6592	0.7095	0.0418
enhancers types	0.4507	0.4580	0.4675	0.4642	0.4601	0.0071
enhancers	0.4902	0.4993	0.5120	0.4986	0.5000	0.0086
promoter no tata	0.7577	0.7642	0.7543	0.7598	0.7590	0.0041
promoter tata	0.6855	0.6707	0.6552	0.7086	0.6800	0.0225
promoter all	0.7342	0.7396	0.7333	0.7566	0.7409	0.0108

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Table G.3: Performance of DNAMotifTokenizer on Genomic Benchmarks, across 4 seeds

Dataset	Seed 1	Seed 2	Seed 3	Seed 4	Mean	Std
demo human vs worm	0.9213	0.9223	0.9221	0.9179	0.9209	0.0020
dummy mouse enhancers ensembl	0.4408	0.4533	0.5031	0.4683	0.4664	0.0257
human enhancers ensembl	0.7426	0.7371	0.7355	0.7371	0.7381	0.0032
human nontata promoters	0.7717	0.7781	0.7552	0.7573	0.7656	0.0109
demo coding vs intergenic seqs	0.8248	0.8283	0.8244	0.8320	0.8274	0.0034
drosophila enhancers stark	0.3872	0.3899	0.3386	0.5248	0.4101	0.0787
human enhancers cohn	0.4505	0.4695	0.4579	0.4436	0.4554	0.0109
human ensembl regulatory	0.8629	0.8620	0.8624	0.8578	0.8613	0.0024
human ocr ensembl	0.5332	0.4986	0.5186	0.5069	0.5143	0.0147

Table G.4: Performance of DNAMotifTokenizer on SCREEN datasets, across 4 seeds

Dataset	Seed 1	Seed 2	Seed 3	Seed 4	Mean	Std
CA-CTCF	0.8822	0.8820	0.8782	0.8812	0.8809	0.0018
pELS	0.8961	0.8961	0.8981	0.8975	0.8970	0.0010
CA	0.8888	0.8843	0.8904	0.8900	0.8884	0.0027
CA-H3K4me3	0.8795	0.8777	0.8764	0.8755	0.8773	0.0018
CA-TF	0.8380	0.8086	0.8368	0.8106	0.8235	0.0162
TF	0.8826	0.8847	0.8828	0.8831	0.8833	0.0009
PLS	0.9087	0.9037	0.9033	0.9018	0.9044	0.0031
dELS	0.9039	0.9037	0.9062	0.9045	0.9046	0.0012

Table G.5: Performance of DNAMotifTokenizer on DART-EVAL datasets, across 4 seeds

Dataset	Seed 1	Seed 2	Seed 3	Seed 4	Mean	Std
task1	0.8647	0.8607	0.8625	0.8647	0.8632	0.0018
task2	0.9571	0.9564	0.9560	0.9476	0.9543	0.0044
GM12878	0.8206	0.8202	0.8077	0.8128	0.8153	0.0062
H1ESC	0.8202	0.8224	0.8163	0.8191	0.8195	0.0024
HEPG2	0.8292	0.8292	0.8259	0.8292	0.8284	0.0017
IMR90	0.7926	0.7934	0.7880	0.7802	0.7886	0.0058
K562	0.8217	0.8104	0.8124	0.8182	0.8157	0.0050

H METRICS

H.1 MATTHEWS CORRELATION COEFFICIENT

The Matthews Correlation Coefficient (MCC) is a metric for evaluating binary classification performance, particularly useful for imbalanced datasets. It takes into account true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN):

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}.$$

MCC ranges from -1 to $+1$, where $+1$ indicates perfect prediction, 0 corresponds to random guessing, and -1 indicates total disagreement between predictions and true labels. This makes MCC especially suitable for genomic classification tasks where class imbalance is common.

H.2 JACCARD INDEX

The Jaccard similarity index (also known as Intersection over Union) is a measure of similarity between two sets. Given two sets A and B , it is defined as:

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|},$$

1404 where $|A \cap B|$ is the number of elements common to both sets, and $|A \cup B|$ is the total number of
1405 elements in either set.

1406
1407 The Jaccard index ranges from 0 to 1, where 1 indicates identical sets and 0 indicates completely
1408 disjoint sets. This metric is widely used in genomics for comparing predicted regions with ground
1409 truth annotations, such as cCREs or TF binding sites.

1410
1411 **I MODEL**
1412

1413 The essential code and scripts are in the **supplementary material**.

1414 The pre-trained model with DNAMotifTokenizer and example data are available on HuggingFace:
1415 <https://huggingface.co/Anonymous-843q0u4q08/DNAMotifTokenizer>

1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457