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Abstract

Radiation therapy planning for patients with glioblastoma requires defining the
clinical-target-volume by delineating the tumor and including a margin of healthy
tissue to account for microscopic tumor spread post radiation therapy. The current
standard-of-care practice for defining the clinical-target-volume still employs an
isotropic 1-2 cm expansion of the identified T2-hyperintensity lesion. As a conse-
quence, normal-appearing brain tissue is overtreated, and it also ends up missing
progression regions as it overlooks the heterogeneous infiltrative nature of these
tumors. We propose incorporating anatomical, metabolic, and diffusion-weighted
imaging acquired before surgical resection or between surgery and radiation therapy,
using a lesion-size-aware segmentation objective to improve clinical-target-volume
definition. The results in multiple metrics demonstrate better prediction of tu-
mor progression than standard of care, as indicated by contrast enhancement and
T2-hyperintensity at recurrence. Overall, our approach minimizes treatment of
normal-appearing brain and captures progressed voxels beyond the 2 cm expansion.

1 Introduction

The current standard-of-care (SOC) for highly infiltrative glioblastoma (GBM) begins with maximal
safe surgical resection, followed by external beam radiotherapy (RT) in conjunction with temozolo-
mide chemotherapy [1]. Despite decades of clinical trials incorporating novel systemic and targeted
agents and radiation dosing schemes, the only change to SOC treatment of GBM is the inclusion
of Tumor-Treating-Fields upon completion of RT, which has resulted in minimal improvements in
outcome beyond the typical 12—15 month dismal prognosis [2}[3]. This is in part due to the difficulty
in identifying and treating the full extent of these highly infiltrative tumors with RT, while also sparing
critical brain tissue to preserve normal brain function [4].

Although recent advances in RT delivery can provide millimeter-scale precision and dose modulation,
current RT treatment planning protocols are still based on a uniform 1-2 cm geometric expansion
of the gross-tumor volume defined on conventional post-contrast T1-weighted and T2-weighted
FLAIR MRI, without considering spatial heterogeneity. This has the unintended consequences
of undertreating subclinical disease not yet visible on anatomical MRI, as well as unnecessarily
irradiating normal brain tissue, adversely affecting clinical outcome and increasing toxicity. Moreover,
recent studies have shown that tumor progression can occur beyond the 2cm expansion of the
hyperintensity lesion, from T2-weighted images, for about 10-37% of patients [, 16,7, 18,9, [10]. And
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up to 60% of the irradiated tissue in the high-dose field can be normal-appearing brain [11], which can
cause neurotoxicity. This, in turn, can negatively affect a patient’s cognitive function, quality-of-life,
and overall survival (OS)[12,[13]. The introduction of anti-angiogenic agents also alters the pattern of
tumor recurrence, with non-enhancing tumor progression becoming more prevalent than previously
observed, further complicating target planning.

In this work, we propose a novel multimodal approach for defining RT clinical target volumes
(CTVs) utilizing deep learning-driven predictions of GBM recurrence patterns from either pre-RT or
pre-surgery anatomical, diffusion, and metabolic MR images. We compare the resulting predicted
volumes to the SOC 1-2 cm uniform expansion of anatomical lesion CTVs for their ability to cover
the extent of the lesion at the time of recurrence. Our results demonstrate that this comprehensive
personalized strategy produces a more biologically relevant definition of RT target volumes based on
the true extent of infiltrating tumor that more closely overlaps with the region of progression, while
minimizing the dose to the normal brain, thus encouraging future work in this area.

Our contributions include: 1) the formulation of planning the CTV for GBM RT as a modified
segmentation task that predicts tumor progression, improving upon SOC definition; 2) a novel loss
function and tumor segmentation metric that takes into account lesion size; 3) experimental results
demonstrating the flexibility of the approach using MR imaging obtained at either pre-surgery or
pre-RT time points; 4) an effective pipeline that performs consistently better than SOC that can be
directly implemented in a future clinical trial to determine impact on extending survival outcomes.

2 Related Works

Recent advances in diffusion-weighted and metabolic MRI have enabled voxel-level visualization
and characterization of cellular-level measures of tumor involvement [14} [15], yet are largely unused
in RT planning outside of a few recent single-arm phase II clinical trials [[16, 17, 18 19} 120} 21].

Increases in apparent diffusion coefficient (ADC) and decreases in fractional anisotropy (FA) using
diffusion tensor imaging (DTI) [22} 23] [24] can reflect subclinical tumor invasion, which causes an
increase in edema and a decrease in directionality along white matter tracts [25]]. Metabolite levels
estimated using proton Magnetic Resonance Spectroscopic Imaging ('H-MRSI) and the derived
Choline-to-NAA index (CNI) can probe underlying cellular metabolism associated with infiltrative
tumor [25, 26]], hypoxia [27], tumor progression, and survival [[14} 28] 29]. Although these MRSI
(Lol 17, 18} 214 1304 131} 132]] and other imaging methods such as I8E_FET-PET and ''C-MET-PET
[33 134, 135, 136] have shown great promise in more accurately predicting tumor infiltration for
incorporation into RT planning, these studies have been limited to simulations or retrospective
analyses, lacking prospective evaluation in a clinical trial.

More recent prospective single-arm phase II studies have used imaging to either guide dose escalation
based on '"8F-DOPA-PET [37] or choline/NAA > 2 from MRSI [17]], or boost regions based on
elevated relative cerebral blood volume or hypercellularity volume defined on high b-value diffusion
images [38,[39]. Although these studies demonstrated significant improvements in outcome (92%
12-month OS rate) compared to historical controls [38], they relied on images describing the current
characteristics of the tumor prior to radiation, without modeling where the microscopic infiltrative
tumor would ultimately progress.

Recent works in brain lesion segmentation use Swin-like transformer based [40, 41} 142]] on multimodal
MRI approaches perform strongly on BraTS 2021 challenge [43]. However, they segment the tumor
voxels in the input image and hence do not solve for predicting progressed lesion mask post RT.

3 Methodology

We model CTV generation as a predictive segmentation task where we generate the mask of voxels at
the time of recurrence, given multi-modal MRI scans (metabolic, diffusion-weighted, and anatomical)
acquired immediately before surgery or RT.

Data As input to the model, we include anatomical T2 FLAIR (FLA) and T1 post-contrast (T1C)
images, Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) maps quantified
from diffusion-weighted imaging, and Choline-to-Creatine Index (CCrl) and Choline-to-NAA (CNI)



from MRSI (metabolic imaging). We use this specific combination of 6 images as it performs the
best in our ablation study (Appendix Figure[2). At recurrence, we use semi-automated methods to
generate anatomical regions of interest (ROIs) — the T1 contrast-enhancing lesion (CEL) and T2
FLAIR hyperintensity lesion (T2L) — to construct the ground truth labels. Appendix[B.2]provides the
data preparation and processing details.

Progression Model We stack 6 pre-surgery or pre-RT 3D volumes of intensity as 6 channels of
a 3D image to form the input z, while we consider the union of both the 3D progression masks
as the ground-truth mask y. Since z is a 3D image and y is a 3D image mask, we model this as a
segmentation task even though y is the segmentation mask of x in the future (at recurrence) to arrive
at an approximation (§ = f’(z)) of the true mapping (y = f(z)) to determine the progression CTV.
We use 2 SOTA encoder-decoder medical segmentation models from different families: EquiUNet
[44.,!45] from the UNet family, and SegFormer3D [46] from the Vision Transformer (ViT) family.

Objective Patients with smaller lesions pose the problem of a more imbalanced dataset with larger
negative class samples consisting of non-lesion brain tissue. To counteract this imbalance and enhance
sensitivity, false negatives require a higher weight, which can be modeled using the flexible Tversky
Loss. We propose curating the False Positive weight («) and False Negative weight (5) based on
lesion size to help solve the imbalance problem and determine more optimal decision thresholds for
the model. We coin this variation of Tversky Index as the Progression Coverage Coefficient (PCC) in
Eq. [T] Our PCC formulation allows balancing the tradeoff between sensitivity and specificity per
input sample, whereby patients with large tumors benefit from weighting towards higher specificity
(to prevent overtreating normal brain), while patients with small tumors benefit from enforcing a
higher sensitivity (to ensure complete coverage of the progressed lesion).
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Given the ground-truth Y, and the prediction Y = f/(X), the PCC Loss can be evaluated as:
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We define the objective function of our task as the combination of PCC Loss (Eq. [2) with the Binary
Cross Entropy Loss (L) weighted by scalar A (Eq. 3).

LY, Y;0) = Lpee(Y, V) 4+ ALpee (Y, V) 3)

Evaluation We evaluate model performance using 4 metrics: 1) sensitivity, measured to account
for the coverage of the tumor, with high sensitivity being a necessary requirement; 2) specificity,
measured to evaluate the amount of normal brain spared; 3) Dice coefficient to get a combined sense
of precision and recall, and 4) the newly-derived and individualized PCC (Eq. [I), quantified to take
into account the tumor size when weighting FPs and FNs. The importance of using PCC, as an
evaluation metric as well, is underscored by the fact that the CTV, which was modeled using only
the input anatomical lesions, had the highest value for both mIOU and Dice score (Table[I]- "No
Prog") but should be the poorest model as it neglects to cover any infiltrating tumor cells that later
progress; This is correctly reflected by the model’s extremely low sensitivity. The PCC scores for this
CTV were low, capturing its poor performance. In contrast, both SOC CTVs had low mIOU and Dice
scores but comparatively higher PCC scores. We compare our approach against the two commonly
utilized SOC CTV definitions. 1) The Radiation Therapy Oncology Group (RTOG) recommends
a more aggressive treatment CTV, which combines CEL and T2L with a 2 cm uniform expansion
[47,148]]; 2) The European Organization for Research and Treatment of Cancer (EORTC) recommends
a more conservative CTV, which expands the CEL along with the resection cavity uniformly by 1.5
cm [49] [50]], excluding any vasogenic edema observed on the FLA image [51]].

4 Experiments

We conduct experiments on two different datasets: 1) pre-surgery data — 92 patients newly-
diagnosed with GBM whose MRI scans were acquired 1-3 days before surgery; 2) pre-RT data



Table 1: Model performance comparison across datasets. This compares both our deep learning
approaches, EquiUNet (here UNet) and SegFormer3D (here ViT), against the SOC baselines and
the case where we generate a CTV with no progression (here No Prog). The numbers show the
mean across the test patients along with the standard deviation. PCC more accurately captures lesion
segmentation performance than traditional metrics like Dice and mIOU as the latter find No Prog the
best. Our approaches outperform SOC CTVs on PCC.

Data Model Sensitivity ~ Specificity mIOU Dice PCC
No Prog 0.60 £0.22 1.00+0.00 0.60+0.22 0.73+0.19 0.62+0.22

Pre- EORTC 0.77£0.17 092+0.04 043+£0.12 0.59+0.12 0.74+0.16
Surgery RTOG 090+£0.12 080+£0.06 027+0.10 042+0.11 0.81%0.11
UNet 0.82+£0.14 093+0.03 044 +0.17 0.59+£0.17 0.80%0.13

Vit 092+0.10 082+0.05 0294011 044+0.14 0.82+0.09

NoProg 0.46£0.18 1.00+0.00 0.46+0.18 0.61=+0.17 047 +0.18

Pre- EORTC 0.88+0.11 0.89+0.05 0.28+0.13 0.43+0.16 0.82+0.10
RT RTOG 096 £0.09 0.78+0.10 0.18+0.06 0.30+£0.09 0.83+0.08
UNet 093 +£0.08 088+0.04 027+0.13 041=£0.16 0.85%0.07
ViT 090+£0.15 082£0.10 0204006 0.34+£0.08 0.80+0.12

— 101 patients with GBM post-surgical resection and scanned within 1 week of beginning RT. All
patients were diagnosed with a pathologically confirmed primary GBM according to WHO 2016
criteria and followed up with clinical MRI scans until progression was confirmed. Appendix [B.T]
contains further details about data acquisition. Pre-surgery data was split into 54/27/11 (train/val/test)
sets, while the pre-RT dataset was split 67/16/18. We carried out experiments for both these datasets
with two models, EquiUNet and SegFormer3D, comparing them against the 2 SOC definitions:
RTOG CTV and EORTC CTV. Appendix [C.T|describes hyperparameters used and selection strategy.

5 Results

Table[T| compares the results of our models to the SOC CTVs based on the necessary and sufficient
metrics for both the pre-surgery and pre-RT data versions. As the RTOG CTV is the most aggressive
treatment, it has the highest sensitivity for pre-RT; while EORTC is more conservative in nature
and therefore has the highest specificity when generated on the pre-RT dataset. In the case of
pre-surgery scans, Segformer3D outperforms both the SOC CTVs in terms of sensitivity and PCC;
while EquiUNet has the highest specificity but misses parts of the tumor, as evident by the lower
sensitivity and PCC. In the case of pre-RT scans, EquiUNet performs the best overall in terms of
having comparably high sensitivity to the RTOG CTV, but with similar specificity to the EORTC
CTV, resulting in the highest PCC.

Figure [I] visually demonstrates the improvements that the deep learning approaches bring. For
the example from the pre-surgery data (Fig[Ta), both the SOC CTVs miss part of the contralateral
progressed lesion (yellow) that the deep learning approaches were able to capture, while also sparing
more normal brain. In the pre-RT example (Fig[Ib), the RTOG CTV has the highest sensitivity, but
unnecessarily treats a large portion of unaffected occipital lobe tissue. The more conservative EORTC
CTYV exhibits higher specificity, but misses a part of the progressed lesion in the anterior portion of
the temporal lobe that is covered by the deep learning approaches. EquiUNet has better coverage
while still being specific and sparing the normal-appearing brain.

Results from our comparative study between different objective functions (Appendix Figure [3)
demonstrate that models trained using our combined objective L. pc. achieve higher sensitivity.

6 Discussion

Our results demonstrate the performance gain achieved by our multimodal segmentation-based
approach for CTV generation over the SOC CTV definitions. Comparable coverage of the progressed
region was achieved while sparing more normal brain. Depending on which time point MRI scan is
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Figure 1: T2-FLAIR scans from (a) pre-surgery data and (b) pre-RT data comparing performance of
our proposed deep learning approach against the baselines and the ground-truth. The left-most scan
in each depicts the input scan. Our approaches capture progressed voxels that are missed in the SOC
CTVs, while remaining specific and sparing the normal-appearing brain.

used for treatment planning, a different model is recommended. For the pre-surgery case, we see that
SegFormer3D, in general, performs better than EquiUNet, while EquiUNet performs better using
pre-RT MRI exams. Given that ViTs tend to perform better when more information is available, it is
not surprising that they performed better on pre-surgery data, where there is more tumor available
to learn from before it is resected. Achieving at-par performance with Vision Transformers even
in our low-resource setting is a strong signal for its potential as available data increases over time.
Our experiments demonstrate the effectiveness of incorporating multiple, biologically relevant MRI
sequences using deep learning with a lesion-size-aware objective for better RT planning, potentially
leading to better outcomes for these patients in the future.

7 Conclusion

Our study demonstrates the ability to predict regions of tumor progression and automatically generate
clinical target volumes for RT planning with improved sparing of the normal-appearing brain as
compared to two different SOC recommendations without compromising on the coverage. Our work
also demonstrates that using PCC as an objective improves performance. While as a metric, it more
accurately captures segmentation performance where traditional metrics such as Dice score and
mlOU fail for this spatially imbalanced task. Future studies will prospectively validate these findings
in additional cohorts that include patients who were originally treated according to the most recent
EORTC and RTOG guidelines before incorporating this approach in a clinical trial.

Limitations The primary limitation of our work is the lack of data. Even though we verify our
approach on two datasets, they are both low-resource and are inherently different, so while our
dataset is much larger than most studies, it is still considered small for deep learning tasks. Although
the inclusion of multiple modalities gives us a more informed model, the metabolic MRSI is low-
resolution and is not routinely performed in clinical practice, and this could limit widespread adoption.
However, since the acquisition of this data, higher resolution MRSI has become more widely available
within clinically reasonable scan times, and there has been more interest in developing open-source
packages for post-processing [27, 52} 153} 154].
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A Additional Experiments

Additional experiments were performed to find the best combination of MRI input modalities and the
effectiveness of using the PCC + BCE combination loss function.
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B Data

B.1 Acquisition

A total of 193 patients who were newly diagnosed with a pathologically confirmed primary GBM
according to WHO 2016 criteria were included in this retrospective analysis. All patients received
SOC treatment, including surgical resection followed by external beam RT (total dose of 60 Gy in 2
Gy fractions over a course of 6 weeks), concomitant daily temozolomide (75 mg/m?2), and six cycles
of maintenance adjuvant temozolomide chemotherapy (total 150-200 mg/m?2). All patients gave
informed consent to participate in the research according to guidelines established by the Institutional
Review Board (IRB) of the organization.

Out of these, 92 patients received a baseline MRI scan pre-surgical resection, and the remaining 101
patients received the scan post-surgical resection but within 1 week prior to initiating radiotherapy
and chemotherapy. These included T2-FLAIR imaging, pre- and post-contrast T1-weighted imaging,
DWI, and MRSI. After the course of radiotherapy and chemotherapy, patients were followed serially
with clinical MRI scans every two months (including at least pre- and post-contrast T1-weighted and
T2-FLAIR imaging) until progression.

The MR examinations were performed on a 3 T GE Signa scanner using an eight-channel phased-
array head coil. Standard anatomical imaging included T2-weighted FLAIR and 3D T1-weighted
IR-SPGR imaging pre- and post-injection of a gadolinium-based contrast agent. For pre-RT MRI
scan, diffusion-tensor images were obtained with b = 1000 s/mm?, 6-directional diffusion-weighted
echo-planar imaging sequence, and 4 by images (repetition-time[TR]/echo-time[TE] = 1000/108
ms, voxel size=1.7-2.0 x 1.7-2.0 x 2.0-3.0 mm). Lactate-edited 3D 'H-MRSI was acquired
using point-resolved spectroscopy volume localization and very selective saturation bands to avoid
chemical shift artifacts as well as to suppress residual lipid signals (excited volume = 80 x 80 x 40
mm, TE/TR = 144/1100-1250 ms, over- PRESS-factor = 1.5, nominal voxel size=1 x 1 x 1 cm,
flyback echo-planar readout in SI, total acquisition time = 9.5 min, sweep-width=988 Hz, and 712
dwell-points).

B.2 Processing

Image Construction Anatomical ROIs included the T1 contrast-enhancing lesion (CEL), T2
FLAIR hyperintensity lesion (T2L), non-enhancing lesion (NEL; defined as CEL subtracted from the
T2L) and normal-appearing voxels (NAV; defined as normal brain tissue from a skull-stripped brain
mask obtained using the HD-BET brain extraction tool [55]] after subtraction of cavity, ventricles, and
lesion ROIs). CEL, T2L, and NEL ROIs were semi-automatically delineated on the pre- and post-
contrast T1-weighted images (CEL) and T2-weighted FLAIR images (T2L), using in-house software,
before manual inspection and editing by a trained senior research specialist in radiology (TLL). All
exams in the test set, as well as whenever there was a question on the boundary, were also verified by
a study neuroradiologist JEVM). From the DTI data, maps of ADC and FA were calculated using
FMRIB’s Diffusion Toolkit [56] and normalized to the mode of intensities in normal-appearing brain
tissue. Spectroscopic data were reconstructed and post processed using in-house software to generate
metabolite peak height maps, choline-to-NAA index (CNI), choline-to-creatine index (CCrl), and
creatine-to-NAA index (CrNI) from baseline-subtracted, frequency- and phase-corrected spectra on a
voxel-by-voxel basis [27}152].

Image Alignment All images from the pre-surgery and pre-RT timepoints were rigidly aligned
to their respective post-contrast T1-weighted image using Slicer’s BRAINSFit tool with B-spline
warping [S0]], or FMRIB’s FLIRT [57, 58], before being resampled to 3x3x3 mm resolution to
mitigate any potential errors due to any residual misalignment. In order to allow for accurate matching
of voxels between the input (pre-RT or pre-surgery) and the corresponding progression scans, a deep
learning method specifically trained on serial post-resection glioma data with tissue shift [59] as
part of the BraTS-Reg 2022 challenge was utilized to align anatomical images at progression to the
corresponding input scan, and the resulting transformation matrix was applied to all images and
ROI files from the progression scan. This software, which ranked 1st place in the 2022 MICCAI
BraTS-Reg challenge, utilized a 3-step deep-learning-based approach to match voxels between
pre-treatment and progression scans that consists of: (1) multi-level affine pre-alignment, (2) a
conditional deep Laplacian pyramid image registration network (cLapIRN) with forward-backward
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Table 2: Model hyperparameters. Optimal values that were used to produce the results in Section
for EquiUNet, and SegFormer3D for both the datasets.

Data Model Epochs LR A Optim  Warmup
Pre-Sureery  EduiUNet 150 5x10° 0.6 ranger -
B SegFormer3D 300 1x 10* 09 adamw 20
EquiUNet 150  5x10° 05 ranger -

PreRT  GooFormer3D 300 1x 10* 12 adamw 20

consistency constraints, and (3) a non-linear instance optimization with inverse consistency. The
resulting transformation matrix was then applied to all images and ROI files from the progression
scan. All outputs were visually inspected by a senior research scientist (TLL) with over 20 years’
experience in verifying serial alignments. In the few cases where the quality of alignment was deemed
not sufficient (<5%), non-rigid registration with B-spline warping using Slicer’s BrainsFit [60] and
intermediate scans was first applied, followed by the deep learning model. We found that this process
was able to adequately handle alignment and any tissue shift from the shrinkage of the cavity, visually.

B.3 Release

The imaging dataset used in this study cannot be shared publicly due to patient privacy and eth-
ical restrictions. However, the results generated from this study can be made available from the
corresponding author upon reasonable request.

C Training

C.1 Hyperparameters

Hyperparameter optimization was performed separately for each architecture and data time point
using 3-fold cross-validation with patient-level splitting to prevent leakage. All images were first
normalized using min-max normalization, which resulted in better performance compared to z-score
normalization. Data augmentation included random flipping and rotation per batch, adding Gaussian
noise, as well as channel shuffling and channel dropping. Hyperparameter searching was performed
to identify the optimal values of the number of training epochs, learning rate (LR), BCE multiplier A
from Eq. [3] optimizer (optim), and number of epochs used for warmup before training for training
epochs as listed in Table 2]

C.2 Compute Resources

All models were trained using a single Nvidia TITAN Xp GPU with 12GB VRAM for 12 hours.

C.3 Release
Code and trained model weights will be made available upon reasonable request according to the

guidelines established by the organization and agencies that provided funding for this study, once all
studies using the data have been published.
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