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Abstract

Radiation therapy planning for patients with glioblastoma requires defining the1

clinical-target-volume by delineating the tumor and including a margin of healthy2

tissue to account for microscopic tumor spread post radiation therapy. The current3

standard-of-care practice for defining the clinical-target-volume still employs an4

isotropic 1–2 cm expansion of the identified T2-hyperintensity lesion. As a conse-5

quence, normal-appearing brain tissue is overtreated, and it also ends up missing6

progression regions as it overlooks the heterogeneous infiltrative nature of these7

tumors. We propose incorporating anatomical, metabolic, and diffusion-weighted8

imaging acquired before surgical resection or between surgery and radiation therapy,9

using a lesion-size-aware segmentation objective to improve clinical-target-volume10

definition. The results in multiple metrics demonstrate better prediction of tu-11

mor progression than standard of care, as indicated by contrast enhancement and12

T2-hyperintensity at recurrence. Overall, our approach minimizes treatment of13

normal-appearing brain and captures progressed voxels beyond the 2 cm expansion.14

1 Introduction15

The current standard-of-care (SOC) for highly infiltrative glioblastoma (GBM) begins with maximal16

safe surgical resection, followed by external beam radiotherapy (RT) in conjunction with temozolo-17

mide chemotherapy [1]. Despite decades of clinical trials incorporating novel systemic and targeted18

agents and radiation dosing schemes, the only change to SOC treatment of GBM is the inclusion19

of Tumor-Treating-Fields upon completion of RT, which has resulted in minimal improvements in20

outcome beyond the typical 12–15 month dismal prognosis [2, 3]. This is in part due to the difficulty21

in identifying and treating the full extent of these highly infiltrative tumors with RT, while also sparing22

critical brain tissue to preserve normal brain function [4].23

Although recent advances in RT delivery can provide millimeter-scale precision and dose modulation,24

current RT treatment planning protocols are still based on a uniform 1–2 cm geometric expansion25

of the gross-tumor volume defined on conventional post-contrast T1-weighted and T2-weighted26

FLAIR MRI, without considering spatial heterogeneity. This has the unintended consequences27

of undertreating subclinical disease not yet visible on anatomical MRI, as well as unnecessarily28

irradiating normal brain tissue, adversely affecting clinical outcome and increasing toxicity. While29

most tumor progression occurs locally within the 2 cm expansion of the hyperintensity lesion from30

T2-weighted images, tumor progression can occur beyond the 2 cm expansion target volume for31

about 10-37% of patients [5, 6, 7, 8, 9], with more recent studies reporting upwards of 25% [10]. Up32

to 60% of the irradiated tissue in the high-dose field can be normal-appearing brain [11], which can33

cause neurotoxicity. This, in turn, can negatively affect a patient’s cognitive function, quality-of-life,34

and overall survival (OS)[12, 13]. The introduction of anti-angiogenic agents also alters the pattern of35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



tumor recurrence, with non-enhancing tumor progression becoming more prevalent than previously36

observed, further complicating target planning.37

In this work, we propose a novel multimodal approach for defining RT clinical target volumes (CTVs)38

utilizing deep learning-driven predictions of GBM recurrence patterns from either pre-RT or pre-39

surgery anatomical, diffusion, and metabolic MR images. We compare the resulting predicted volumes40

to the SOC 1–2 cm uniform expansion of anatomical lesion CTVs for their ability to cover the extent41

of the lesion at the time of recurrence. Our results demonstrate that this comprehensive personalized42

strategy, either with pre-surgery or pre-RT scans, produces a more biologically relevant definition of43

RT target volumes based on the true extent of infiltrating tumor, which more closely overlaps with44

the region of progression, while minimizing the dose to the normal brain, thus encouraging future45

work in this area.46

Our contributions include: 1) the formulation of planning the CTV for GBM RT as a modified47

segmentation task that predicts tumor progression, improving upon SOC definition; 2) a novel loss48

function and tumor segmentation metric that takes into account lesion size; 3) experimental results49

demonstrating the flexibility of the approach using MR imaging obtained at either pre-surgery or50

pre-RT time points; 4) an effective pipeline that performs consistently better than SOC that can be51

directly implemented in a future clinical trial to determine impact on extending survival outcomes.52

2 Related Works53

Recent advances in diffusion-weighted and metabolic MRI have enabled voxel-level visualization54

and characterization of cellular-level measures of tumor involvement [14, 15], yet are largely unused55

in RT planning outside of a few recent single-arm phase II clinical trials [16, 17, 18, 19, 20, 21].56

Increases in apparent diffusion coefficient (ADC) and decreases in fractional anisotropy (FA) using57

diffusion tensor imaging (DTI) [22, 23, 24] can reflect subclinical tumor invasion, which causes an58

increase in edema and a decrease in directionality along white matter tracts [25]. Metabolite levels59

estimated using proton Magnetic Resonance Spectroscopic Imaging (1H-MRSI) and the derived60

Choline-to-NAA index (CNI) can probe underlying cellular metabolism associated with infiltrative61

tumor [25, 26], hypoxia [27], tumor progression, and survival [14, 28, 29]. Although these MRSI62

[16, 17, 18, 21, 30, 31, 32] and other imaging methods such as 18F-FET-PET and 11C-MET-PET63

[33, 34, 35, 36] have shown great promise in more accurately predicting tumor infiltration for64

incorporation into RT planning, these studies have been limited to simulations or retrospective65

analyses, lacking prospective evaluation in a clinical trial.66

More recent prospective single-arm phase II studies have used imaging to either guide dose escalation67

based on 18F-DOPA-PET [37] or choline/NAA > 2 from MRSI [17], or boost regions based on68

elevated relative cerebral blood volume or hypercellularity volume defined on high b-value diffusion69

images [38, 39]. Although these studies demonstrated significant improvements in outcome (92%70

12-month OS rate) compared to historical controls [38], they relied on images describing the current71

characteristics of the tumor prior to radiation, without modeling where the microscopic infiltrative72

tumor would ultimately progress.73

Recent works in using deep learning for brain lesion segmentation use Swin-like transformer based74

approaches [40, 41, 42] on multimodal MRI input. These approaches provide strong performance on75

BraTS 2021 challenge [43]. However, they generate segmentation of the tumor voxels in the input76

image and hence do not solve for predicting progressed lesion mask post RT.77

3 Methodology78

We model CTV generation as a predictive segmentation task where we generate the mask of voxels at79

the time of recurrence, given multi-modal MRI scans (metabolic, diffusion-weighted, and anatomical)80

acquired immediately before surgery or RT.81

Data As input to the model, we include anatomical T2 FLAIR (FLA) and T1 post-contrast (T1C)82

images, Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) maps quantified83

from diffusion-weighted imaging, and Choline-to-Creatine Index (CCrI) and Choline-to-NAA (CNI)84

from MRSI (metabolic imaging). We use this specific combination of 6 images as it performs the85
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best in our ablation study (Appendix Figure 2). At recurrence, we use semi-automated methods to86

generate anatomical regions of interest (ROIs) – the T1 contrast-enhancing lesion (CEL) and T287

FLAIR hyperintensity lesion (T2L) – to construct the ground truth labels. Appendix B.2 provides the88

data preparation and processing details.89

Progression Model We stack 6 pre-surgery or pre-RT 3D volumes of intensity as 6 channels of90

a 3D image to form the input x, while we consider the union of both the 3D progression masks91

as the ground-truth mask y. Since x is a 3D image and y is a 3D image mask, we model this as a92

segmentation task even though y is the segmentation mask of x in the future (at recurrence) to arrive93

at an approximation (ŷ = f ′(x)) of the true mapping (y = f(x)) to determine the progression CTV.94

We use 2 SOTA encoder-decoder medical segmentation models from different families: EquiUNet95

[44, 45] from the UNet family, and SegFormer3D [46] from the Transformer (ViT) family.96

Objective Patients with smaller lesions pose the problem of a more imbalanced dataset with larger97

negative class samples consisting of non-lesion brain tissue. To counteract this imbalance and enhance98

sensitivity, false negatives require a higher weight, which can be obtained through implementing99

the flexible Tversky Loss. We propose curating the False Positive weight (α) and False Negative100

weight (β) based on lesion size to help solve the imbalance problem and determine more optimal101

decision thresholds for the model, potentially improving its performance. We coin this variation of102

Tversky Index as the Progression Coverage Coefficient (PCC) in Eq. 1. Our PCC formulation allows103

balancing the tradeoff between sensitivity and specificity per input sample, whereby patients with104

large tumors benefit from weighting towards higher specificity (to prevent overtreating normal brain),105

while patients with small tumors benefit from enforcing a higher sensitivity (to ensure complete106

coverage of the progressed lesion).107

PCC =
TP

TP + αFP + βFN
where β =

1

f + 1
, α = 1− β, f =

# lesion voxels
# brain voxels

(1)

Given the ground-truth Y , and the prediction Ŷ = f ′(X), the PCC Loss can be evaluated as:108

Lpcc(Y, Ŷ ) = 1−

(
∥Ŷ · Y ∥1

∥Ŷ · Y ∥1 + α∥Ŷ · (1− Y )∥1 + β∥(1− Ŷ ) · Y ∥1

)
(2)

We define the objective function of our task as the combination of PCC Loss (Eq. 2) with the Binary109

Cross Entropy Loss (Lbce) weighted by scalar λ (Eq. 3).110

L(Y, Ŷ ;λ) = Lpcc(Y, Ŷ ) + λLbce(Y, Ŷ ) (3)

Evaluation We evaluate model performance using 4 metrics: 1) sensitivity, measured to account111

for the coverage of the tumor, with high sensitivity being a necessary requirement; 2) specificity,112

measured to evaluate the amount of normal brain spared; 3) Dice coefficient to get a combined sense113

of precision and recall, and 4) the newly-derived and individualized PCC (Eq. 1), quantified to take114

into account the tumor size when weighting FPs and FNs. The importance of using PCC, as an115

evaluation metric as well, is underscored by the fact that the CTV, which was modeled using only116

the input anatomical lesions, had the highest value for both mIOU and Dice score (Table 1 – "No117

Prog") but should be the poorest model as it neglects to cover any infiltrating tumor cells that later118

progress; This is correctly reflected by the model’s extremely low sensitivity. The PCC scores for this119

CTV were low, capturing its poor performance. In contrast, both SOC CTVs had low mIOU and Dice120

scores but comparatively higher PCC scores. We compare our approach against the two commonly121

utilized SOC CTV definitions. 1) The Radiation Therapy Oncology Group (RTOG) recommends122

a more aggressive treatment CTV, which combines CEL and T2L with a 2 cm uniform expansion123

[47, 48]; 2) The European Organization for Research and Treatment of Cancer (EORTC) recommends124

a more conservative CTV, which expands the CEL along with the resection cavity uniformly by 1.5125

cm [49] [50], excluding any vasogenic edema observed on the FLA image [51].126

4 Experiments127

We conduct experiments on two different datasets: 1) pre-surgery data — 92 patients newly-128

diagnosed with GBM whose MRI scans were acquired 1-3 days before surgery; 2) pre-RT data129
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Table 1: Model performance comparison across datasets. This compares both our deep learning
approaches, EquiUNet (here UNet) and SegFormer3D (here ViT), against the SOC baselines and
the case where we generate a CTV with no progression (here No Prog). The numbers show the
mean across the test patients along with the standard deviation. PCC more accurately captures lesion
segmentation performance than traditional metrics like Dice and mIOU as the latter find No Prog the
best. Our approaches outperform SOC CTVs on PCC.

Data Model Sensitivity Specificity mIOU Dice PCC

No Prog 0.60 ± 0.22 1.00 ± 0.00 0.60 ± 0.22 0.73 ± 0.19 0.62 ± 0.22

Pre- EORTC 0.77 ± 0.17 0.92 ± 0.04 0.43 ± 0.12 0.59 ± 0.12 0.74 ± 0.16
Surgery RTOG 0.90 ± 0.12 0.80 ± 0.06 0.27 ± 0.10 0.42 ± 0.11 0.81 ± 0.11

UNet 0.82 ± 0.14 0.93 ± 0.03 0.44 ± 0.17 0.59 ± 0.17 0.80 ± 0.13
Vit 0.92 ± 0.10 0.82 ± 0.05 0.29 ± 0.11 0.44 ± 0.14 0.82 ± 0.09
No Prog 0.46 ± 0.18 1.00 ± 0.00 0.46 ± 0.18 0.61 ± 0.17 0.47 ± 0.18

Pre- EORTC 0.88 ± 0.11 0.89 ± 0.05 0.28 ± 0.13 0.43 ± 0.16 0.82 ± 0.10
RT RTOG 0.96 ± 0.09 0.78 ± 0.10 0.18 ± 0.06 0.30 ± 0.09 0.83 ± 0.08

UNet 0.93 ± 0.08 0.88 ± 0.04 0.27 ± 0.13 0.41 ± 0.16 0.85 ± 0.07
ViT 0.90 ± 0.15 0.82 ± 0.10 0.20 ± 0.06 0.34 ± 0.08 0.80 ± 0.12

— 101 patients with GBM post-surgical resection and scanned within 1 week of beginning RT. All130

patients were diagnosed with a pathologically confirmed primary GBM according to WHO 2016131

criteria and followed up with clinical MRI scans until progression was confirmed. Appendix B.1132

contains further details about data acquisition. Pre-surgery data was split into 54/27/11 (train/val/test)133

sets, while the pre-RT dataset was split 67/16/18. We carried out experiments for both these datasets134

with two models, EquiUNet and SegFormer3D, comparing them against the 2 SOC definitions:135

RTOG CTV and EORTC CTV. Appendix C.1 describes model training hyperparameters.136

5 Results137

Table 1 compares the results of our models to the SOC CTVs based on the necessary and sufficient138

metrics for both the pre-surgery and pre-RT data versions. As the RTOG CTV is the most aggressive139

treatment, it has the highest sensitivity for pre-RT; while EORTC is more conservative in nature140

and therefore has the highest specificity when generated on the pre-RT dataset. In the case of141

pre-surgery scans, Segformer3D outperforms both the SOC CTVs in terms of sensitivity and PCC;142

while EquiUNet has the highest specificity but misses parts of the tumor, as evident by the lower143

sensitivity and PCC. In the case of pre-RT scans, EquiUNet performs the best overall in terms of144

having comparably high sensitivity to the RTOG CTV, but with similar specificity to the EORTC145

CTV, resulting in the highest PCC.146

Figure 1 visually demonstrates the improvements that the deep learning approaches bring. For147

the example from the pre-surgery data (Fig.1a), both the SOC CTVs miss part of the contralateral148

progressed lesion (yellow) that the deep learning approaches were able to capture, while also sparing149

more normal brain. In the pre-RT example (Fig.1b), the RTOG CTV has the highest sensitivity, but150

unnecessarily treats a large portion of unaffected occipital lobe tissue. The more conservative EORTC151

CTV exhibits higher specificity, but misses a part of the progressed lesion in the anterior portion of152

the temporal lobe that is covered by the deep learning approaches. EquiUNet has better coverage153

while still being specific and sparing the normal-appearing brain.154

Results from our comparative study between different objective functions (Appendix Figure 3)155

demonstrate that models trained using our combined objective Lpcc_bce achieve higher sensitivity.156

6 Discussion157

Our results demonstrate the performance gain achieved by our multimodal segmentation-based158

approach for CTV generation over the SOC CTV definitions. Comparable coverage of the progressed159

region was achieved while sparing more normal brain. Depending on which time point MRI scan is160
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(a) Pre-surgery.

(b) Pre-RT.

Figure 1: T2-FLAIR scans from (a) pre-surgery data and (b) pre-RT data comparing performance of
our proposed deep learning approach against the baselines and the ground-truth. The left-most scan
in each depicts the input scan. Our approaches capture progressed voxels that are missed in the SOC
CTVs, while remaining specific and sparing the normal-appearing brain.

used for treatment planning, a different model is recommended. For the pre-surgery case, we see that161

SegFormer3D, in general, performs better than EquiUNet, while EquiUNet performs better using162

pre-RT MRI exams. Given that ViTs tend to perform better when more information is available, it is163

not surprising that they performed better on pre-surgery data, where there is more tumor available164

to learn from before it is resected. Achieving at-par performance with Vision Transformers even165

in our low-resource setting is a strong signal for its potential as available data increases over time.166

Our experiments demonstrate the effectiveness of incorporating multiple, biologically relevant MRI167

sequences using deep learning with a lesion-size-aware objective for better RT planning, potentially168

leading to better outcomes for these patients in the future.169

7 Conclusion170

Our study demonstrates the ability to predict regions of tumor progression and automatically generate171

clinical target volumes for RT planning with improved sparing of the normal-appearing brain as172

compared to two different SOC recommendations without compromising on the coverage. Our work173

also demonstrates that using PCC as an objective improves performance. While as a metric, it more174

accurately captures segmentation performance where traditional metrics such as Dice score and175

mIOU fail for this spatially imbalanced task. Future studies will prospectively validate these findings176

in additional cohorts that include patients who were originally treated according to the most recent177

EORTC and RTOG guidelines before incorporating this approach in a clinical trial.178

Limitations The primary limitation of our work is the lack of data. Even though we verify our179

approach on two datasets, they are both low-resource and are inherently different, so while our180

dataset is much larger than most studies, it is still considered small for deep learning tasks. Although181

the inclusion of multiple modalities gives us a more informed model, the metabolic MRSI is low-182

resolution and is not routinely performed in clinical practice, and this could limit widespread adoption.183

However, since the acquisition of this data, higher resolution MRSI has become more widely available184

within clinically reasonable scan times, and there has been more interest in developing open-source185

packages for post-processing [27, 52, 53, 54].186
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Figure 2: Model performance comparison among different MRI input modalities. (Left) Sensi-
tivity, Specificity, Dice, and PCC metric comparison for pre-RT data. All models were trained using
the PCC + BCE loss function. Wilcoxon signed rank tests were used with significant levels defined as
*, **, *** for p-values < 0.05, 0.01, and 0.001, respectively. (Right) The PCC score on the validation
set. The model trained using all MRI modalities achieved a significantly higher PCC by improving
the sensitivity of the model.

Figure 3: Comparison of models with different loss functions. (Left) Sensitivity, Specificity, Dice,
and PCC of EquiUNet models trained with different loss functions for pre-RT data. Significant
levels from a Wilcoxon rank sum test were defined as *, **, *** for p-values < 0.05, 0.01, and
0.001, respectively. All models were trained and optimized separately using anatomic + diffusion +
metabolic as inputs. (Right) The PCC score on the validation set. Models trained using the PCC +
BCE combination loss function converged faster and significantly outperformed other variations in
terms of sensitivity.
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B Data436

B.1 Acquisition437

A total of 193 patients who were newly diagnosed with a pathologically confirmed primary GBM438

according to WHO 2016 criteria were included in this retrospective analysis. All patients received439

SOC treatment, including surgical resection followed by external beam RT (total dose of 60 Gy in 2440

Gy fractions over a course of 6 weeks), concomitant daily temozolomide (75 mg/m2), and six cycles441

of maintenance adjuvant temozolomide chemotherapy (total 150–200 mg/m2). All patients gave442

informed consent to participate in the research according to guidelines established by the Institutional443

Review Board (IRB) of the organization.444

Out of these, 92 patients received a baseline MRI scan pre-surgical resection, and the remaining 101445

patients received the scan post-surgical resection but within 1 week prior to initiating radiotherapy446

and chemotherapy. These included T2-FLAIR imaging, pre- and post-contrast T1-weighted imaging,447

DWI, and MRSI. After the course of radiotherapy and chemotherapy, patients were followed serially448

with clinical MRI scans every two months (including at least pre- and post-contrast T1-weighted and449

T2-FLAIR imaging) until progression.450

The MR examinations were performed on a 3 T GE Signa scanner using an eight-channel phased-451

array head coil. Standard anatomical imaging included T2-weighted FLAIR and 3D T1-weighted452

IR-SPGR imaging pre- and post-injection of a gadolinium-based contrast agent. For pre-RT MRI453

scan, diffusion-tensor images were obtained with b = 1000 s/mm2, 6-directional diffusion-weighted454

echo-planar imaging sequence, and 4 b0 images (repetition-time[TR]/echo-time[TE] = 1000/108455

ms, voxel size=1.7–2.0 × 1.7–2.0 × 2.0–3.0 mm). Lactate-edited 3D 1H-MRSI was acquired456

using point-resolved spectroscopy volume localization and very selective saturation bands to avoid457

chemical shift artifacts as well as to suppress residual lipid signals (excited volume = 80 × 80 × 40458

mm, TE/TR = 144/1100-1250 ms, over- PRESS-factor = 1.5, nominal voxel size = 1 × 1 × 1 cm,459

flyback echo-planar readout in SI, total acquisition time = 9.5 min, sweep-width=988 Hz, and 712460

dwell-points).461

B.2 Processing462

Image Construction Anatomical ROIs included the T1 contrast-enhancing lesion (CEL), T2463

FLAIR hyperintensity lesion (T2L), non-enhancing lesion (NEL; defined as CEL subtracted from the464

T2L) and normal-appearing voxels (NAV; defined as normal brain tissue from a skull-stripped brain465

mask obtained using the HD-BET brain extraction tool [55] after subtraction of cavity, ventricles,466

and lesion ROIs). CEL, T2L, and NEL ROIs were semi-automatically delineated on the pre- and467

post-contrast T1-weighted images (CEL) and T2-weighted FLAIR images (T2L), using in-house468

software, before manual inspection and editing by a trained senior research specialist in radiology.469

All exams in the test set, as well as whenever there was a question on the boundary, were also470

verified by a study neuroradiologist. From the DTI data, maps of ADC and FA were calculated using471

FMRIB’s Diffusion Toolkit [56] and normalized to the mode of intensities in normal-appearing brain472

tissue. Spectroscopic data were reconstructed and post processed using in-house software to generate473

metabolite peak height maps, choline-to-NAA index (CNI), choline-to-creatine index (CCrI), and474

creatine-to-NAA index (CrNI) from baseline-subtracted, frequency- and phase-corrected spectra on a475

voxel-by-voxel basis [27, 52].476

Image Alignment All images from the pre-surgery and pre-RT timepoints were rigidly aligned477

to their respective post-contrast T1-weighted image using Slicer’s BRAINSFit tool with B-spline478

warping [50], or FMRIB’s FLIRT [57, 58], before being resampled to 3×3×3 mm resolution to479

mitigate any potential errors due to any residual misalignment. In order to allow for accurate matching480

of voxels between the input (pre-RT or pre-surgery) and the corresponding progression scans, a deep481

learning method specifically trained on serial post-resection glioma data with tissue shift [59] as482

part of the BraTS-Reg 2022 challenge was utilized to align anatomical images at progression to the483

corresponding input scan, and the resulting transformation matrix was applied to all images and484

ROI files from the progression scan. This software, which ranked 1st place in the 2022 MICCAI485

BraTS-Reg challenge, utilized a 3-step deep-learning-based approach to match voxels between486

pre-treatment and progression scans that consists of: (1) multi-level affine pre-alignment, (2) a487

conditional deep Laplacian pyramid image registration network (cLapIRN) with forward-backward488
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Table 2: Model hyperparameters. Optimal values that were used to produce the results in Section 5
for EquiUNet, and SegFormer3D for both the datasets.

Data Model Epochs LR λ Optim Warmup

Pre-Surgery EquiUNet 150 5 × 10-5 0.6 ranger -
SegFormer3D 300 1 × 10-4 0.9 adamw 20

Pre-RT EquiUNet 150 5 × 10-5 0.5 ranger -
SegFormer3D 300 1 × 10-4 1.2 adamw 20

consistency constraints, and (3) a non-linear instance optimization with inverse consistency. The489

resulting transformation matrix was then applied to all images and ROI files from the progression scan.490

All outputs were visually inspected by a senior research scientist with over 20 years’ experience in491

verifying serial alignments. In the few cases where the quality of alignment was deemed not sufficient492

(<5%), non-rigid registration with B-spline warping using Slicer’s BrainsFit [60] and intermediate493

scans was first applied, followed by the deep learning model. We found that this process was able to494

adequately handle alignment and any tissue shift from the shrinkage of the cavity, visually.495

B.3 Release496

The imaging dataset used in this study cannot be shared publicly due to patient privacy and eth-497

ical restrictions. However, the results generated from this study can be made available from the498

corresponding author upon reasonable request.499

C Training500

C.1 Hyperparameters501

Hyperparameter optimization was performed separately for each model. All images were first502

normalized using min-max normalization, which resulted in better performance compared to z-score503

normalization. Data augmentation included random flipping and rotation per batch, adding Gaussian504

noise, as well as channel shuffling and channel dropping. Hyperparameter searching was performed505

to identify the optimal values of the number of training epochs, learning rate (LR), BCE multiplier λ506

from 3, optimizer (optim), and number of epochs used for warmup before training for training epochs507

as listed in Table 2.508

C.2 Compute Resources509

All models were trained using a single Nvidia TITAN Xp GPU with 12GB VRAM for 12 hours.510

C.3 Release511

Code and trained model weights will be made available upon reasonable request according to the512

guidelines established by the organization and agencies that provided funding for this study, once all513

studies using the data have been published.514
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NeurIPS Paper Checklist515

1. Claims516

Question: Do the main claims made in the abstract and introduction accurately reflect the517

paper’s contributions and scope?518

Answer: [Yes]519

Justification: The claims made in the abstract and introduction are backed by the results520

(Section 5) of the experiments in Section 4.521

Guidelines:522

• The answer NA means that the abstract and introduction do not include the claims523

made in the paper.524

• The abstract and/or introduction should clearly state the claims made, including the525

contributions made in the paper and important assumptions and limitations. A No or526

NA answer to this question will not be perceived well by the reviewers.527

• The claims made should match theoretical and experimental results, and reflect how528

much the results can be expected to generalize to other settings.529

• It is fine to include aspirational goals as motivation as long as it is clear that these goals530

are not attained by the paper.531

2. Limitations532

Question: Does the paper discuss the limitations of the work performed by the authors?533

Answer: [Yes]534

Justification: The limitations are discussed in the Limitations paragraph of Section 7.535

Guidelines:536

• The answer NA means that the paper has no limitation while the answer No means that537

the paper has limitations, but those are not discussed in the paper.538

• The authors are encouraged to create a separate "Limitations" section in their paper.539

• The paper should point out any strong assumptions and how robust the results are to540

violations of these assumptions (e.g., independence assumptions, noiseless settings,541

model well-specification, asymptotic approximations only holding locally). The authors542

should reflect on how these assumptions might be violated in practice and what the543

implications would be.544

• The authors should reflect on the scope of the claims made, e.g., if the approach was545

only tested on a few datasets or with a few runs. In general, empirical results often546

depend on implicit assumptions, which should be articulated.547

• The authors should reflect on the factors that influence the performance of the approach.548

For example, a facial recognition algorithm may perform poorly when image resolution549

is low or images are taken in low lighting. Or a speech-to-text system might not be550

used reliably to provide closed captions for online lectures because it fails to handle551

technical jargon.552

• The authors should discuss the computational efficiency of the proposed algorithms553

and how they scale with dataset size.554

• If applicable, the authors should discuss possible limitations of their approach to555

address problems of privacy and fairness.556

• While the authors might fear that complete honesty about limitations might be used by557

reviewers as grounds for rejection, a worse outcome might be that reviewers discover558

limitations that aren’t acknowledged in the paper. The authors should use their best559

judgment and recognize that individual actions in favor of transparency play an impor-560

tant role in developing norms that preserve the integrity of the community. Reviewers561

will be specifically instructed to not penalize honesty concerning limitations.562

3. Theory assumptions and proofs563

Question: For each theoretical result, does the paper provide the full set of assumptions and564

a complete (and correct) proof?565

Answer: [NA]566
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Justification: The paper does not include theoretical results.567

Guidelines:568

• The answer NA means that the paper does not include theoretical results.569

• All the theorems, formulas, and proofs in the paper should be numbered and cross-570

referenced.571

• All assumptions should be clearly stated or referenced in the statement of any theorems.572

• The proofs can either appear in the main paper or the supplemental material, but if573

they appear in the supplemental material, the authors are encouraged to provide a short574

proof sketch to provide intuition.575

• Inversely, any informal proof provided in the core of the paper should be complemented576

by formal proofs provided in appendix or supplemental material.577

• Theorems and Lemmas that the proof relies upon should be properly referenced.578

4. Experimental result reproducibility579

Question: Does the paper fully disclose all the information needed to reproduce the main ex-580

perimental results of the paper to the extent that it affects the main claims and/or conclusions581

of the paper (regardless of whether the code and data are provided or not)?582

Answer: [Yes]583

Justification: Experiments are provided in Section 4 and detailed information regarding data584

acquisition and training hyperparameters is in Appendix B and C respectively.585

Guidelines:586

• The answer NA means that the paper does not include experiments.587

• If the paper includes experiments, a No answer to this question will not be perceived588

well by the reviewers: Making the paper reproducible is important, regardless of589

whether the code and data are provided or not.590

• If the contribution is a dataset and/or model, the authors should describe the steps taken591

to make their results reproducible or verifiable.592

• Depending on the contribution, reproducibility can be accomplished in various ways.593

For example, if the contribution is a novel architecture, describing the architecture fully594

might suffice, or if the contribution is a specific model and empirical evaluation, it may595

be necessary to either make it possible for others to replicate the model with the same596

dataset, or provide access to the model. In general. releasing code and data is often597

one good way to accomplish this, but reproducibility can also be provided via detailed598

instructions for how to replicate the results, access to a hosted model (e.g., in the case599

of a large language model), releasing of a model checkpoint, or other means that are600

appropriate to the research performed.601

• While NeurIPS does not require releasing code, the conference does require all submis-602

sions to provide some reasonable avenue for reproducibility, which may depend on the603

nature of the contribution. For example604

(a) If the contribution is primarily a new algorithm, the paper should make it clear how605

to reproduce that algorithm.606

(b) If the contribution is primarily a new model architecture, the paper should describe607

the architecture clearly and fully.608

(c) If the contribution is a new model (e.g., a large language model), then there should609

either be a way to access this model for reproducing the results or a way to reproduce610

the model (e.g., with an open-source dataset or instructions for how to construct611

the dataset).612

(d) We recognize that reproducibility may be tricky in some cases, in which case613

authors are welcome to describe the particular way they provide for reproducibility.614

In the case of closed-source models, it may be that access to the model is limited in615

some way (e.g., to registered users), but it should be possible for other researchers616

to have some path to reproducing or verifying the results.617

5. Open access to data and code618

Question: Does the paper provide open access to the data and code, with sufficient instruc-619

tions to faithfully reproduce the main experimental results, as described in supplemental620

material?621
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Answer: [No]622

Justification: The imaging dataset used in this study cannot be shared publicly due to patient623

privacy and ethical restrictions. However, the results generated from this study can be624

made available from the corresponding author upon reasonable request. Code will be made625

available upon reasonable request according to the guidelines established by the organization626

and agencies that provided funding for this study once all studies using the data have been627

published. The detailed instructions to faithfully reproduce the experiments are provided in628

Section 4 and Appendix B.3 and C.3.629

Guidelines:630

• The answer NA means that paper does not include experiments requiring code.631

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/632

public/guides/CodeSubmissionPolicy) for more details.633

• While we encourage the release of code and data, we understand that this might not be634

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not635

including code, unless this is central to the contribution (e.g., for a new open-source636

benchmark).637

• The instructions should contain the exact command and environment needed to run to638

reproduce the results. See the NeurIPS code and data submission guidelines (https:639

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.640

• The authors should provide instructions on data access and preparation, including how641

to access the raw data, preprocessed data, intermediate data, and generated data, etc.642

• The authors should provide scripts to reproduce all experimental results for the new643

proposed method and baselines. If only a subset of experiments are reproducible, they644

should state which ones are omitted from the script and why.645

• At submission time, to preserve anonymity, the authors should release anonymized646

versions (if applicable).647

• Providing as much information as possible in supplemental material (appended to the648

paper) is recommended, but including URLs to data and code is permitted.649

6. Experimental setting/details650

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-651

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the652

results?653

Answer: [Yes]654

Justification: The training and test details are included in Section 4 and Appendix C.1.655

Guidelines:656

• The answer NA means that the paper does not include experiments.657

• The experimental setting should be presented in the core of the paper to a level of detail658

that is necessary to appreciate the results and make sense of them.659

• The full details can be provided either with the code, in appendix, or as supplemental660

material.661

7. Experiment statistical significance662

Question: Does the paper report error bars suitably and correctly defined or other appropriate663

information about the statistical significance of the experiments?664

Answer: [Yes]665

Justification: All the results in Section 5 show the mean of metrics measured over the test666

set along with the standard deviation. Table 1 reflects this information.667

Guidelines:668

• The answer NA means that the paper does not include experiments.669

• The authors should answer "Yes" if the results are accompanied by error bars, confi-670

dence intervals, or statistical significance tests, at least for the experiments that support671

the main claims of the paper.672
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• The factors of variability that the error bars are capturing should be clearly stated (for673

example, train/test split, initialization, random drawing of some parameter, or overall674

run with given experimental conditions).675

• The method for calculating the error bars should be explained (closed form formula,676

call to a library function, bootstrap, etc.)677

• The assumptions made should be given (e.g., Normally distributed errors).678

• It should be clear whether the error bar is the standard deviation or the standard error679

of the mean.680

• It is OK to report 1-sigma error bars, but one should state it. The authors should681

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis682

of Normality of errors is not verified.683

• For asymmetric distributions, the authors should be careful not to show in tables or684

figures symmetric error bars that would yield results that are out of range (e.g. negative685

error rates).686

• If error bars are reported in tables or plots, The authors should explain in the text how687

they were calculated and reference the corresponding figures or tables in the text.688

8. Experiments compute resources689

Question: For each experiment, does the paper provide sufficient information on the com-690

puter resources (type of compute workers, memory, time of execution) needed to reproduce691

the experiments?692

Answer: [Yes]693

Justification: The compute resources are discussed in Appendix C.2.694

Guidelines:695

• The answer NA means that the paper does not include experiments.696

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,697

or cloud provider, including relevant memory and storage.698

• The paper should provide the amount of compute required for each of the individual699

experimental runs as well as estimate the total compute.700

• The paper should disclose whether the full research project required more compute701

than the experiments reported in the paper (e.g., preliminary or failed experiments that702

didn’t make it into the paper).703

9. Code of ethics704

Question: Does the research conducted in the paper conform, in every respect, with the705

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?706

Answer: [Yes]707

Justification: The research conducted in the paper conforms with the NeurIPS Code of708

Ethics. Data collection is under an IRB, and the model promotes further research in societal709

good for improving RT planning outcomes. Data is not being released publicly to preserve710

privacy.711

Guidelines:712

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.713

• If the authors answer No, they should explain the special circumstances that require a714

deviation from the Code of Ethics.715

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-716

eration due to laws or regulations in their jurisdiction).717

10. Broader impacts718

Question: Does the paper discuss both potential positive societal impacts and negative719

societal impacts of the work performed?720

Answer: [Yes]721

Justification: The societal impact of the work has been discussed in Section 6.722

Guidelines:723
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• The answer NA means that there is no societal impact of the work performed.724

• If the authors answer NA or No, they should explain why their work has no societal725

impact or why the paper does not address societal impact.726

• Examples of negative societal impacts include potential malicious or unintended uses727

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations728

(e.g., deployment of technologies that could make decisions that unfairly impact specific729

groups), privacy considerations, and security considerations.730

• The conference expects that many papers will be foundational research and not tied731

to particular applications, let alone deployments. However, if there is a direct path to732

any negative applications, the authors should point it out. For example, it is legitimate733

to point out that an improvement in the quality of generative models could be used to734

generate deepfakes for disinformation. On the other hand, it is not needed to point out735

that a generic algorithm for optimizing neural networks could enable people to train736

models that generate Deepfakes faster.737

• The authors should consider possible harms that could arise when the technology is738

being used as intended and functioning correctly, harms that could arise when the739

technology is being used as intended but gives incorrect results, and harms following740

from (intentional or unintentional) misuse of the technology.741

• If there are negative societal impacts, the authors could also discuss possible mitigation742

strategies (e.g., gated release of models, providing defenses in addition to attacks,743

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from744

feedback over time, improving the efficiency and accessibility of ML).745

11. Safeguards746

Question: Does the paper describe safeguards that have been put in place for responsible747

release of data or models that have a high risk for misuse (e.g., pretrained language models,748

image generators, or scraped datasets)?749

Answer: [Yes]750

Justification: The data and the trained model weights are not being released publicly due to751

patient privacy and ethical restrictions as discussed in Appendix B and C.752

Guidelines:753

• The answer NA means that the paper poses no such risks.754

• Released models that have a high risk for misuse or dual-use should be released with755

necessary safeguards to allow for controlled use of the model, for example by requiring756

that users adhere to usage guidelines or restrictions to access the model or implementing757

safety filters.758

• Datasets that have been scraped from the Internet could pose safety risks. The authors759

should describe how they avoided releasing unsafe images.760

• We recognize that providing effective safeguards is challenging, and many papers do761

not require this, but we encourage authors to take this into account and make a best762

faith effort.763

12. Licenses for existing assets764

Question: Are the creators or original owners of assets (e.g., code, data, models), used in765

the paper, properly credited and are the license and terms of use explicitly mentioned and766

properly respected?767

Answer: [NA]768

Justification: The paper does not use existing assets. The dataset used is an in-house dataset769

covered under an IRB.770

Guidelines:771

• The answer NA means that the paper does not use existing assets.772

• The authors should cite the original paper that produced the code package or dataset.773

• The authors should state which version of the asset is used and, if possible, include a774

URL.775

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.776
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• For scraped data from a particular source (e.g., website), the copyright and terms of777

service of that source should be provided.778

• If assets are released, the license, copyright information, and terms of use in the779

package should be provided. For popular datasets, paperswithcode.com/datasets780

has curated licenses for some datasets. Their licensing guide can help determine the781

license of a dataset.782

• For existing datasets that are re-packaged, both the original license and the license of783

the derived asset (if it has changed) should be provided.784

• If this information is not available online, the authors are encouraged to reach out to785

the asset’s creators.786

13. New assets787

Question: Are new assets introduced in the paper well documented and is the documentation788

provided alongside the assets?789

Answer: [NA]790

Justification: The work uses new assets under an IRB but does not intend to release those791

assets due to patient privacy and ethical concerns.792

Guidelines:793

• The answer NA means that the paper does not release new assets.794

• Researchers should communicate the details of the dataset/code/model as part of their795

submissions via structured templates. This includes details about training, license,796

limitations, etc.797

• The paper should discuss whether and how consent was obtained from people whose798

asset is used.799

• At submission time, remember to anonymize your assets (if applicable). You can either800

create an anonymized URL or include an anonymized zip file.801

14. Crowdsourcing and research with human subjects802

Question: For crowdsourcing experiments and research with human subjects, does the paper803

include the full text of instructions given to participants and screenshots, if applicable, as804

well as details about compensation (if any)?805

Answer: [NA]806

Justification: The paper only involves the use of retrospective patient scans that are covered807

under an IRB.808

Guidelines:809

• The answer NA means that the paper does not involve crowdsourcing nor research with810

human subjects.811

• Including this information in the supplemental material is fine, but if the main contribu-812

tion of the paper involves human subjects, then as much detail as possible should be813

included in the main paper.814

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,815

or other labor should be paid at least the minimum wage in the country of the data816

collector.817

15. Institutional review board (IRB) approvals or equivalent for research with human818

subjects819

Question: Does the paper describe potential risks incurred by study participants, whether820

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)821

approvals (or an equivalent approval/review based on the requirements of your country or822

institution) were obtained?823

Answer: [Yes]824

Justification: Appendix B reflects that the dataset was obtained under an IRB.825

Guidelines:826

• The answer NA means that the paper does not involve crowdsourcing nor research with827

human subjects.828
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• Depending on the country in which research is conducted, IRB approval (or equivalent)829

may be required for any human subjects research. If you obtained IRB approval, you830

should clearly state this in the paper.831

• We recognize that the procedures for this may vary significantly between institutions832

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the833

guidelines for their institution.834

• For initial submissions, do not include any information that would break anonymity (if835

applicable), such as the institution conducting the review.836

16. Declaration of LLM usage837

Question: Does the paper describe the usage of LLMs if it is an important, original, or838

non-standard component of the core methods in this research? Note that if the LLM is used839

only for writing, editing, or formatting purposes and does not impact the core methodology,840

scientific rigorousness, or originality of the research, declaration is not required.841

Answer: [NA]842

Justification: The core method development in this research does not involve LLMs as any843

important, original, or non-standard components.844

Guidelines:845

• The answer NA means that the core method development in this research does not846

involve LLMs as any important, original, or non-standard components.847

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)848

for what should or should not be described.849

20

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Methodology
	Experiments
	Results
	Discussion
	Conclusion
	Additional Experiments
	Data
	Acquisition
	Processing
	Release

	Training
	Hyperparameters
	Compute Resources
	Release


