
ReKep: Spatio-Temporal Reasoning of Relational
Keypoint Constraints for Robotic Manipulation

Anonymous Author(s)

Abstract: Representing robotic manipulation tasks as constraints that associate1

the robot and the environment is a promising way to encode desired robot be-2

haviors. However, it remains unclear how to formulate the constraints such that3

they are 1) versatile to diverse tasks, 2) free of manual labeling, and 3) optimiz-4

able by off-the-shelf solvers to produce robot actions in real-time. In this work, we5

introduce Relational Keypoint Constraints (ReKep), a visually-grounded repre-6

sentation for constraints in robotic manipulation. Specifically, ReKep is expressed7

as Python functions mapping a set of 3D keypoints in the environment to a numer-8

ical cost. We demonstrate that by representing a manipulation task as a sequence9

of Relational Keypoint Constraints, we can employ a hierarchical optimization10

procedure to solve for robot actions (represented by a sequence of end-effector11

poses in SE(3)) with a perception-action loop at a real-time frequency. Further-12

more, in order to circumvent the need for manual specification of ReKep for each13

new task, we devise an automated procedure that leverages large vision models14

and vision-language models to produce ReKep from free-form language instruc-15

tions and RGB-D observations. We present system implementations on a wheeled16

single-arm platform and a stationary dual-arm platform that can perform a large17

variety of manipulation tasks, featuring multi-stage, in-the-wild, bimanual, and18

reactive behaviors, all without task-specific data or environment models. Videos19

and code can be found at rekep-corl.github.io.20

Actions

Multi-Stage In-The-Wild

Bimanual Reactive

Relational Keypoint
Constraints

Input:

Output: Cost

…

Optimization Solver

Pour tea into the cup.

Large
Vision
Model

Vision-Language Model

Figure 1: Relational Keypoint Constraints (ReKep) specify diverse manipulation behaviors as an opti-
mizable spatio-temporal series of constraint functions operating on semantic keypoints. In the pouring task,
one ReKep first constrains the grasping location at the handle of the teapot (blue). A subsequent ReKep pulls
the teapot spout (red) towards the top of the cup opening (green) while another ReKep constrains the desired
rotation of the teapot by associating the vector formed by the handle (blue) and the spout (red).

1 Introduction21

Robotic manipulation involves intricate interactions with objects in the environment, which can of-22

ten be expressed as constraints in both spatial and temporal domains. Consider the task of pouring23

tea into a cup in Fig. 1: the robot must grasp at the handle, keep the cup upright while transporting24

it, align the spout with the target container, and then tilt the cup at the correct angle to pour. Here,25

the constraints encode not only the intermediate sub-goals (e.g., align the spout) but also the transi-26

tioning behaviors (e.g., keep the cup upright in transportation), which collectively dictate the spatial,27

timing, and other combinatorial requirements of the robot’s actions in relation to the environment.28

https://rekep-corl.github.io/

However, effectively formulating these constraints for a large variety of real-world tasks presents29

significant challenges. While representing constraints using relative poses between robots and ob-30

jects is a direct and widely-used approach [1], rigid-body transformations do not depict geometric31

details, require obtaining object models a priori, and cannot work on deformable objects. On the32

other hand, data-driven approaches enable learning constraints directly in visual space [2, 3]. While33

more flexible, it remains unclear how to effectively collect training data as the number of constraints34

grows combinatorially in terms of objects and tasks. Therefore, we ask the question: how can we35

represent constraints in manipulation that are 1) widely applicable: adaptable to tasks that require36

multi-stage, in-the-wild, bimanual, and reactive behaviors, 2) scalably obtainable: have the potential37

to be fully automated through the advances in foundation models, and 3) real-time optimizable: can38

be efficiently solved by off-the-shelf solvers to produce complex manipulation behaviors?39

In this work, we propose Relational Keypoint Constraints (ReKep). Specifically, ReKep repre-40

sents constraints as Python functions that map a set of keypoints to a numerical cost, where each41

keypoint is a task-specific and semantically meaningful 3D point in the scene. Each function is42

composed of (potentially nonlinear) arithmetic operations on the keypoints and encodes a desired43

“relation” between them, where the keypoints may belong to different entities in the environment,44

such as the robot arms, object parts, and other agents. While each keypoint only consists of its 3D45

Cartesian coordinates in the world frame, multiple keypoints can collectively specify lines, surfaces,46

and/or 3D rotations if rigidity between keypoints is enforced. We study ReKep in the context of the47

sequential manipulation problem, where each task involves multiple stages that have spatio-temporal48

dependencies (e.g., “grasping”, “aligning”, and “pouring” in the aforementioned example).49

While constraints are typically defined manually per task [4], we demonstrate the specific form50

of ReKep possesses a unique advantage in that they can be automated by pre-trained large vi-51

sion models (LVM) [5] and vision-language models (VLM) [6], enabling in-the-wild specification52

of ReKep from RGB-D observations and free-form language instructions. Specifically, we leverage53

LVM to propose fine-grained and semantically meaningful keypoints in the scene and VLM to write54

the constraints as Python functions from visual input overlaid with proposed keypoints. This process55

can be interpreted as grounding fine-grained spatial relations, often those not easily specified with56

natural language, in an output modality supported by VLM (code) using visual referral expressions.57

With the generated constraints, off-the-shelf solvers can be used to produce robot actions by re-58

evaluating the constraints based on tracked keypoints. Inspired by [7], we employ a hierarchical59

optimization procedure to first solve a set of waypoints as sub-goals (represented as SE(3) end-60

effector poses) and then solve the receding-horizon control problem to obtain a dense sequence of61

actions to achieve each sub-goal. With appropriate instantiation of the problem, we demonstrate that62

it can be reliably solved at approximately 10 Hz for the tasks considered in this work.63

Our contributions are summarized as follows: 1) We formulate manipulation tasks as a hierarchical64

optimization problem with Relational Keypoint Constraints; 2) We devise a pipeline to automatically65

specify keypoints and constraints using large vision models and vision-language models; 3) We66

present system implementations on two real-robot platforms that take as input a language instruction67

and RGB-D observations, and produce multi-stage, in-the-wild, bimanual, and reactive behaviors for68

a large variety of manipulation tasks, all without task-specific data or environment models.69

2 Related Works70

Structural Representations for Manipulation. Structural representations determine the orchestra-71

tion of different modules in a manipulation system and yield different implications on the capabili-72

ties, assumptions, efficiency, and effectiveness of the system. Rigid-body poses are most commonly73

used given well-understood rigid-body motions in free space and their efficiency at modeling long-74

range dependencies of objects [1, 8–18]. However, since it often requires both geometry and dynam-75

ics of environment to be modeled beforehand, various works have studied structural representations76

using data-driven methods, such as learning object-centric representation [19–34], particle-based77

dynamics [35–41], and keypoints or descriptors [3, 4, 42–54]. Among them, keypoints have shown78

2

great promises given their interpretability, efficiency, generalization to instance variations [4], and79

ability to model both rigid bodies and deformable objects. However, manual annotation is required80

per task, thus lacking scalability in open-world settings, which we aim to address in this work.81

Constrained Optimization in Manipulation. Constraints are often used to impose desired be-82

haviors on robots. Motion planning algorithms use geometric constraints to compute feasible tra-83

jectories that avoid obstacles and achieve goals [55–60]. Contact constraints can be used to plan84

forceful or contact-rich behaviors [61–74]. For sequential manipulation tasks, task and motion plan-85

ning (TAMP) [1, 8, 13] is a widely used framework, often formulated as constraint satisfaction86

problems [11, 75–80] with continuous geometric problems as subroutines. Logic-Geometric Pro-87

gramming [81–86] alternatively formulates a nonlinear constrained program over the entire state88

trajectory, taking into account both logical and geometric constraints. Constraints can either be89

manually written or learned from data in the form of manifolds [87], feasibility model [86, 88], or90

signed-distance fields [2, 89]. Inspired by [7], we formulate sequential manipulation tasks as an91

integrated continuous mathematical program that is repeatedly solved in a receding-horizon fashion,92

with the key difference being that the constraints are synthesized by foundation models.93

Foundation Models for Robotics. Leveraging foundation models for robotics is an active area94

of research. We refer readers to [90–93] for overview and recent applications. Here, we focus on95

VLMs that are capable of incorporating visual inputs [6, 94–98] for manipulation. However, despite96

showing promises for open-world planning and goal specification [99–113], the caption-guided pre-97

training scheme of VLMs often limits visual details that can be retained about the image [114–117].98

Self-supervised vision models (e.g., DINO [5, 118]), on the other hand, provide fine-grained pixel-99

level features useful for various vision and robotic tasks [31, 119–124], but there lack effective ways100

for interpreting open-world semantics pivotal for cross-task generalization. In this work, we leverage101

their complementary strengths by using DINOv2 [5] for fine-grained keypoint proposal and using102

GPT-4o [6] for its visual reasoning capability in a supported output modality (code). Similar forms103

of visual prompting techniques are also explored in concurrent works [99–101, 112, 125]. In this104

work, we demonstrate ReKep possesses the unique advantages of performing challenging 6-12 DoF105

tasks, integrated high-level reasoning for reactive replanning, high-frequency closed-loop execution,106

and generating black-box constraints via visual prompting. More discussion in Appendix A.10.107

3 Method108

Herein we discuss: (1) What are Relational Keypoint Constraints (Sec. 3.1)? (2) How to formulate109

manipulation as a constrained optimization problem with ReKep (Sec. 3.2)? (3) What is our algo-110

rithmic instantiation that can efficiently solve the optimization in real-time (Sec. 3.3)? (4) How to111

automatically obtain ReKep from RGB-D observations and language instructions (Sec. 3.4)?112

3.1 Relational Keypoint Constraints (ReKep)113

Herein we define a single instance of ReKep. For clarity, we assume that a set of K keypoints have114

been specified (discussed later in Sec. 3.4). Concretely, each keypoint ki ∈ R3 refers to a 3D point115

on the scene surface with Cartesian coordinates, which is dependent on the task semantics and the116

environment (e.g., grasp point on the handle, spout).117

A single instance of ReKep is a function f : RK×3 → R that maps an array of keypoints, denoted118

as k, to an unbounded cost, where f(k) ≤ 0 indicates the constraint is satisfied. The function f is119

implemented as a stateless Python function, containing NumPy [126] operations on keypoints, which120

may be nonlinear and nonconvex. In essence, one instance of ReKep encodes one desired spatial121

relation between keypoints, which may belong to robot arm(s), object parts, and other agents.122

However, a manipulation task typically involves multiple spatial relations and may have multiple123

temporally dependent stages where each stage entails different spatial relations. To this end, we124

decompose a task into N stages and use ReKep to specify two kinds of constraints for each stage125

i ∈ {1, . . . , N}: a set of sub-goal constraints C(i)sub-goal = {f (i)
sub-goal,1(k), . . . , f

(i)
sub-goal,n(k)} and a126

3

Constrained Optimization Solver

RGB-D
Observation

Optimized
Actions

def subgoal_stage1_f1(k):
dist = norm(k[0]–k[1])
return dist

def path_stage2_f1(k):
z_diff = abs(k[1]–k[2])
return z_diff

def subgoal_stage2_f1(k):
k[3][2] += 0.10
return norm(k[2]-k[3])

...

Large
Vision
Model

Vision
Language
Model

Pour tea into the cup.

3
2

1

0

Relational
Keypoint
Constraints

gripper teapot cup

Figure 2: Overview of ReKep. Given RGB-D observation and free-form language instruction, DINOv2 [5]
is used to propose keypoint candidates on fine-grained meaningful regions in the scene. The image overlaid
with keypoints and the instruction are fed into GPT-4o [6] to generate a series of ReKep constraints as python
programs that specify desired relations between keypoints at different stages of the task (C(i)

sub-goal) and any
requirement on the transitioning behaviors (Ci

path). Finally, a constrained optimization solver is used to obtain a
dense sequence of end-effector actions in SE(3), subject to the generated constraints.

set of path constraints C(i)path = {f (i)
path,1(k), . . . , f

(i)
path,m(k)}, where f

(i)
sub-goal encodes one keypoint127

relation to be achieved at the end of stage i, and f
(i)
path encodes one keypoint relation to be satisfied128

for every state within stage i. Consider the pouring task in Fig. 2, which consists of three stages:129

grasp, align, and pour. The stage-1 sub-goal constraint pulls the end-effector towards the teapot130

handle. Then stage-2 sub-goal constraint specifies that the teapot spout needs to be on top of the131

cup opening. Additionally, stage-2 path constraint ensures the teapot stays upright to avoid spillage132

when transported. Finally, the stage-3 sub-goal constraint specifies the desired pouring angle.133

3.2 Manipulation Tasks as Constrained Optimization with ReKep134

Using ReKep as a general tool to represent constraints, we adopt the formulation in [7] and show135

how a manipulation task can be formulated as a constrained optimization problem involving C(i)sub-goal136

and C(i)path. We denote the end-effector pose as e ∈ SE(3).To perform the manipulation task, we aim137

to obtain the overall discrete-time trajectory e1:T by formulating the control problem as follows:138

argmin
e1:T ,g1:N

N∑
i=1

λ(i)
sub-goal(egi) +

gi∑
t=gi−1

λ
(i)
path(et)

 s.t.

e1 = einit, g0 = 1, 0 < gi < gi+1

f(kgi) ≤ 0, ∀f ∈ C(i)sub-goal

f(kt) ≤ 0, ∀f ∈ C(i)path, t = gi−1, . . . , gi

kt+1 = h(kt, et), t = 1, . . . , T − 1
(1)

139 where et denotes end-effector pose at time t, gi ∈ {1, . . . , T} are the timings of the transition from140

stage i to i + 1 which are also auxiliary decision variables, kt is the array of keypoint positions at141

time t, h is a forward model of keypoints, and λ
(i)
sub-goal and λ

(i)
path are auxiliary cost functions (e.g.,142

collision avoidance) for the sub-goal and path problems respectively. Namely, for each stage i, the143

optimization shall find an end-effector pose as next sub-goal, along with its timing, and a sequence of144

poses egi−1:gi that achieves the sub-goal, subject to the given set of ReKep constraints and auxiliary145

costs. This formulation can be considered as direct shooting in trajectory optimization [127].146

3.3 Decomposition and Algorithmic Instantiation147

To solve Eq. 1 in real-time, we employ a decomposition of the full problem and only optimize148

for the immediate next sub-goal and the corresponding path to reach the sub-goal (pseudo-code149

4

in Algorithm 1). All optimization problems are implemented and solved using SciPy [128] with150

decision variables normalized to [0, 1]. They are initially solved with Dual Annealing [129] with151

SLSQP [130] as local optimizer (around 1 second) and subsequently solved with only local opti-152

mizer based on the previous solution at approximately 10 Hz.153

The Sub-Goal Problem: We first solve the sub-goal problem to obtain egi for the current stage i:154

argmin
egi

λ
(i)
sub-goal(egi) s.t. f(kgi) ≤ 0, ∀f ∈ C(i)sub-goal (2)

where λsub-goal subsumes auxiliary control costs: scene collision avoidance, reachability, pose regu-155

larization, solution consistency, and self-collision for bimanual setup (details in A.8). Namely, Eq. 2156

attempts to find a sub-goal that satisfies Cisub-goal while minimizing the auxiliary costs. If a stage is157

concerned with grasping, a grasp metric is also included. In this work, we use AnyGrasp [131]1.158

The Path Problem: After obtaining sub-goal egi , we solve for a trajectory et:gi starting from current159

end-effector pose et to the sub-goal egi :160

argmin
et:gi

,gi

λ
(i)
path(et:gi) s.t. f(kt̂) ≤ 0, ∀f ∈ C(i)path, t̂ = t, . . . , gi (3)

where λpath subsumes the following auxiliary control costs: scene collision avoidance, reachability,161

path length, solution consistency, and self-collision in the case of bimanual setup (details in A.9). If162

the distance to the sub-goal egi is within a small tolerance ϵ, we progress to the next stage i+ 1.163

Backtracking: Although the sub-problems can be solved at a real-time frequency to react to external164

disturbances within a stage, it is imperative that the system can replan across stages if any sub-goal165

constraint from the last stage no longer holds (e.g., cup taken out of the gripper in the pouring task).166

Specifically, in every control loop, we check for violation of C(i)path. If one is found, we iteratively167

backtrack to a previous stage j such that C(j)path is satisfied.168

Forward Models for Keypoints: To solve Eq. 2 and Eq. 3, one must utilize a forward model h169

that estimates ∆k from ∆e in the optimization process. As in prior work [4], we make the rigidity170

assumption between the end-effector and the “grasped keypoints” (a rigid group of keypoints that171

belong to the same object or part; obtained from the segmentation model as described in Sec. 3.4.).172

Namely, given a change in the end-effector pose ∆e, we can calculate the change in keypoint po-173

sitions by applying the same relative rigid transformation k′[grasped] = T∆e · k[grasped], while174

assuming other keypoints stay static. We note that this is a “local” assumption in that it is only as-175

sumed to hold for the short horizon (0.1s) that the problem is solved. Actual keypoint positions are176

tracked using visual input at 20 Hz and used in every new problem. For more challenging scenarios177

(e.g., dynamic or contact-rich tasks), a learned or physics-based model may be used.178

3.4 Keypoint Proposal and ReKep Generation179

To enable the system to perform tasks in-the-wild given a free-form task instruction, we devise a180

pipeline using large vision models and vision-language models for keypoint proposal and ReKep181

generation, which are respectively discussed as follows:182

Keypoint Proposal: Given an RGB image Rh×w×3, we first extract the patch-wise features Fpatch ∈183

Rh′×w′×d from DINOv2 [5]. Then we perform bilinear interpolation to upsample the features to184

the original image size, Finterp ∈ Rh×w×d. To ensure the proposal covers all relevant objects in185

the scene, we extract all masks M = {m1,m2, . . . ,mn} in the scene using Segment Anything186

(SAM) [132]. For each mask j, we cluster the masked features Finterp[mj] using k-means with187

k = 5 with a cosine-similarity metric. The centroids of the clusters are used as keypoint candidates,188

which are projected to a world coordinate R3 using a calibrated RGB-D camera. Candidates that are189

within 8cm of others are filtered out. Overall, we find that this procedure is adept at identifying a190

large percentage of fine-grained and semantically meaningful regions of objects.191

1Since AnyGrasp is a grasp detector instead of a metric and is computationally expensive to run in optimiza-
tion loops, we always return the grasp closest to a specified “grasp keypoint” by exploiting the fact that ReKep
related to grasping always associates a dummy keypoint on the end-effector and one actual keypoint.

5

Po
ur

Te
a

(a) Initial State (c) Final State(b) Solution

St
ow

Bo
ok

Re
cy

cl
e
C
an

Ta
pe

Bo
x

Fo
ld

G
ar
m
en

t
C
ol
la
b.

Fo
ld
in
g

Pa
ck

Sh
oe

s

(a) Initial State (c) Final State(b) Solution

Figure 3: Experiment tasks and visualization of optimization results. Seven tasks are designed to validate
different aspects of our system, including in-the-wild specification with commonsense knowledge, multi-stage
tasks with spatio-temporal dependencies, bimanual coordination with geometric awareness, and reactiveness
when collaborating with humans and under disturbances.

ReKep Generation: After obtaining the keypoint candidates, we overlay them on the original RGB192

image with numerical marks. Coupled with the language instruction of the task, we then use visual193

prompting to query GPT-4o [6] to generate the number of required stages and the corresponding sub-194

goal constraints C(i)sub-goal and path constraints C(i)path for each stage i (prompts are in A.6). Notably,195

the functions do not directly manipulate the numerical values of the keypoint positions. Rather, we196

exploit the strength of VLM to specify spatial relations as arithmetic operations, such as L2 distance197

or dot product between keypoints, that are only instantiated when invoked with actual keypoint po-198

sitions tracked by a specialized 3D tracker. Furthermore, an important advantage of using arithmetic199

operations on a set of keypoint positions is that it can specify 3D rotations in full SO(3) when suffi-200

cient points are provided and rigidity between relevant points is enforced, but this is done only when201

needed depending on task semantic. This enables VLM to reason about 3D rotations with arithmetic202

operations in 3D Cartesian space, effectively circumventing the need for dealing with alternative203

3D rotation representation and the need for performing numerical computation.204

4 Experiments205

We aim to answer the following research questions: (1) How well does our framework automatically206

formulate and synthesize manipulation behaviors (Sec. 4.1)? (2) Can our system generalize to novel207

objects and manipulation strategies (Sec. 4.2)? (3) How do the individual components contribute to208

the failure cases of the system (Sec. 4.3)? We validate ReKep on two real robot platforms: a wheeled209

single-arm platform, and a stationary dual-arm platform (Figure. 3). Additional implementation210

details can be found in Appendix, including keypoint proposal (A.5), VLM querying (A.6), point211

trackers (A.7), sub-goal solver (A.8), and path solver (A.9).212

6

4.1 In-the-Wild and Bimanual Manipulation with ReKep213

ReKep

Task VoxPoser Auto Annot.

Mobile Arm
Pour Tea 0/10 3/10 8/10
Recycle Can 3/10 6/10 8/10
Stow Book 0/10 3/10 6/10
Tape Box 4/10 7/10 8/10

Dual-Arm
Fold Garment 0/10 5/10 6/10
Pack Shoes 0/10 3/10 5/10
Collab. Folding 0/10 4/10 7/10

Total (%) 10.0% 44.3% 68.6%

Table 1: Success rate on the wheeled single-
arm and the stationary bimanual platforms.

ReKep

Task (Dist.) VoxPoser Auto Annot.

Pour Tea 0/10 2/10 4/10
Tape Box 2/10 3/10 5/10
Collab. Folding 0/10 3/10 5/10

Total (%) 6.7% 26.7% 46.7%

Table 2: Success rate under external distur-
bances across both robot platforms.

Tasks. We purposefully select a set of tasks (shown214

in Fig. 3) with the goal of examining the multi-stage215

(m), in-the-wild (w), bimanual (b), and reactive (r) be-216

haviors of the system. The tasks and their features are217

Pour Tea (m, w, r), Stow Book (w), Recycle Can (w),218

Tape Box (w, r), Fold Garment (b), Pack Shoes (b),219

and Collaborative Folding (b, r). We further evaluate220

three of the tasks under external disturbances (denoted221

as “Dist.”) by changing poses of task objects during222

execution.223

Metric and Baselines. Each setting has 10 trials, in224

which object poses are randomized. Task success rate is225

reported in Tab. 1. We compare against VoxPoser [106]226

as a baseline. We evaluate two variants of the system,227

“Auto” which uses foundation models for automating228

generation of ReKep, and “Annotated (Annot.)” which229

uses human-annotated ReKep.230

Results. Overall the system demonstrates promising231

capabilities at formulating correct constraints and ex-232

ecuting them in unstructured environments, despite no233

task-specific data or environment model are provided.234

Notably, ReKep can effectively handle core challenges235

of each task. For example, it can formulate correct tem-236

poral dependency in multi-stage tasks (e.g., spout needs237

to be aligned with the cup before pouring), leverage commonsense knowledge (e.g., coke cans238

should be recycled), and construct coordination behaviors in both bimanual settings (e.g., fold-239

ing left sleeve and right sleeve simultaneously) and human-robot collaboration setting (e.g., folding240

a large blanket by aligning the four corners together with human). Coupled with an optimization241

framework, it can also generate kinematically challenging behaviors in confined spaces in the Stow242

Book task and find a feasible solution that densely fits two shoes within a small volume in the Pack243

Shoes task. Since the keypoints are tracked at a high frequency, the system can also react to external244

disturbances and replan both within stage and across stages. However, despite promising results, we245

also observe that the generated constraints are not always fully correct but expect to see improvement246

given the rapid advancement in these pre-trained models.247

4.2 Generalization in Manipulation Strategies248

Tasks. We systematically evaluate how novel manipulation strategies can be formulated by focusing249

on a single task, garment folding, but with 8 unique categories of garments, each demanding a unique250

way of folding and requiring both geometrical and commonsense reasoning. Evaluation is done on251

the bimanual platform, presenting additional challenges in bimanual coordination.252

Metric. We use GPT-4o with a prompt containing only generic instructions with no in-context253

examples. “Strategy Success” measures whether generated ReKep is feasible, which tests both the254

keypoint proposal module and the VLM, and “Execution Success” measures system success rate255

given feasible strategies for each clothing. Each is measured with 10 trials.256

Results. Interestingly, we observe drastically different strategies across categories, many of which257

are aligned with how humans might fold each garment. For example, it can recognize that two258

sleeves often are folded together, prior to fully folding the clothes. In cases where using two arms259

is unnecessary, akin to how humans fold clothes, only one arm is being used. However, we do260

observe that the VLM may miss certain steps to complete the folding as the operator expected, but261

we recognize that this is inherently an open-ended problem often based on one’s preferences.262

7

G
ar
m
en

t
Re

Ke
p

sweater shirt hoodie vest dress pants shorts scarf

sweater shirt hoodie vest dress pants shorts scarf Total

Strategy Success 6/10 4/10 4/10 6/10 3/10 7/10 7/10 5/10 52.5%
Execution Success 6/10 5/10 6/10 9/10 7/10 8/10 9/10 9/10 73.8%

Figure 4: Novel bimanual strategies of ReKep for folding different categories of garments and their success
rates. Since ReKep in this task always associates two points at a time, two keypoints are connected by an arrow
if they need to be aligned. The coloring of the keypoints denotes the order. In the sweater task, two sleeves are
first folded simultaneously with two arms, and then the two arms grasp the crew neck to align to the bottom.

4.3 System Error Breakdown263

Figure 5: Error breakdown of
the system modules.

The modular design of the framework entails an advantage for an-264

alyzing system errors due to its interpretability. In this section, we265

perform an empirical investigation by manually inspecting the fail-266

ure cases of the experiments reported in Tab. 1, which is then used to267

calculate the likelihood of a module causing an error while account-268

ing for their temporal dependencies in the pipeline. Results are re-269

ported in Fig. 5. Among the different modules, the point tracker270

produces the largest portion of errors, as frequent and intermittent271

occlusion poses significant challenges for accurate tracking. Key-272

point proposal and VLM also produce considerable portions of errors, where common cases include273

the proposal module missing certain keypoints and the VLM referring to incorrect keypoints. The274

optimization module, on the other hand, does not contribute as much to the failures despite given275

limited time budget, since there often exist many possible solutions for each problem. Other mod-276

ules, such as segmentation, 3D reconstruction, and low-level controller, also contribute to some277

failure cases, but they are relatively insignificant compared to other modules.278

5 Conclusion & Limitations279

In this work, we presented Relational Keypoint Constraints (ReKep), a structural task representa-280

tion using constraints that operates on semantic keypoints to specify desired relations between robot281

arms, object (parts), and other agents in the environment. Coupled with point trackers, we demon-282

strate that ReKep constraints can be repeatedly and efficiently solved in a hierarchical optimization283

framework to act as a closed-loop policy that runs at a real-time frequency. We also demonstrate284

the unique advantage of ReKep in that it can be automatically synthesized by large vision models285

and vision-language models. Results are shown on two robot platforms and on a variety of tasks286

featuring multi-stage, in-the-wild, bimanual, and reactive behaviors, all without task-specific data,287

additional training, or environment models.288

Despite the promises, several limitations remained. First, the optimization framework relies on a289

forward model of keypoints based on rigidity assumption, albeit a high-frequency feedback loop that290

relaxes the accuracy requirement of the model. Second, ReKep relies on accurate point tracking to291

correctly optimize actions in closed-loop, which is itself a challenging 3D vision task due to heavy292

intermittent occlusions. Lastly, the current formulation assumes a fixed sequence of stages (i.e.,293

skeletons) for each task. Replanning with different skeletons requires running keypoint proposal294

and VLM at a high-frequency, which poses considerable computational challenges. An extended295

discussion can be found in Appendix A.11.296

8

References297

[1] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical planning in the now. In Workshops at the298

Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.299

[2] D. Driess, J.-S. Ha, M. Toussaint, and R. Tedrake. Learning models as functionals of signed-300

distance fields for manipulation planning. In Conference on robot learning, pages 245–255.301

PMLR, 2022.302

[3] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-303

mann. Neural descriptor fields: Se (3)-equivariant object representations for manipulation.304

In 2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400.305

IEEE, 2022.306

[4] L. Manuelli, W. Gao, P. Florence, and R. Tedrake. kpam: Keypoint affordances for category-307

level robotic manipulation. In The International Symposium of Robotics Research, pages308

132–157. Springer, 2019.309

[5] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,310

D. Haziza, F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without311

supervision. arXiv preprint arXiv:2304.07193, 2023.312

[6] OpenAI. Gpt-4 technical report. arXiv, 2023.313

[7] M. Toussaint, J. Harris, J.-S. Ha, D. Driess, and W. Hönig. Sequence-of-constraints mpc:314

Reactive timing-optimal control of sequential manipulation. In 2022 IEEE/RSJ International315

Conference on Intelligent Robots and Systems (IROS), pages 13753–13760. IEEE, 2022.316

[8] L. P. Kaelbling and T. Lozano-Pérez. Integrated task and motion planning in belief space.317

The International Journal of Robotics Research, 32(9-10):1194–1227, 2013.318

[9] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Combined task and319

motion planning through an extensible planner-independent interface layer. In 2014 IEEE320

international conference on robotics and automation (ICRA), 2014.321

[10] A. Byravan and D. Fox. Se3-nets: Learning rigid body motion using deep neural networks.322

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 173–180.323

IEEE, 2017.324

[11] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki. An incremental constraint-325

based framework for task and motion planning. The International Journal of Robotics Re-326

search, 37(10):1134–1151, 2018.327

[12] T. Migimatsu and J. Bohg. Object-centric task and motion planning in dynamic environments.328

IEEE Robotics and Automation Letters, 5(2):844–851, 2020.329

[13] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.330

Integrated task and motion planning. Annual review of control, robotics, and autonomous331

systems, 4:265–293, 2021.332

[14] A. Curtis, X. Fang, L. P. Kaelbling, T. Lozano-Pérez, and C. R. Garrett. Long-horizon ma-333

nipulation of unknown objects via task and motion planning with estimated affordances. In334

2022 International Conference on Robotics and Automation (ICRA), pages 1940–1946. IEEE,335

2022.336

[15] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Tremblay, J. Carpentier,337

M. Aubry, D. Fox, and J. Sivic. Megapose: 6d pose estimation of novel objects via render &338

compare. In Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.339

9

[16] S. Tyree, J. Tremblay, T. To, J. Cheng, T. Mosier, J. Smith, and S. Birchfield. 6-dof pose esti-340

mation of household objects for robotic manipulation: An accessible dataset and benchmark.341

In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages342

13081–13088. IEEE, 2022.343

[17] C. Pan, B. Okorn, H. Zhang, B. Eisner, and D. Held. Tax-pose: Task-specific cross-pose344

estimation for robot manipulation. In Conference on Robot Learning, pages 1783–1792.345

PMLR, 2023.346

[18] B. Wen, W. Yang, J. Kautz, and S. Birchfield. Foundationpose: Unified 6d pose estimation347

and tracking of novel objects. arXiv preprint arXiv:2312.08344, 2023.348

[19] I. Lenz, R. A. Knepper, and A. Saxena. Deepmpc: Learning deep latent features for model349

predictive control. In Robotics: Science and Systems, volume 10. Rome, Italy, 2015.350

[20] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A compositional object-based351

approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.352

[21] P. Battaglia, R. Pascanu, M. Lai, D. Jimenez Rezende, et al. Interaction networks for learning353

about objects, relations and physics. Advances in neural information processing systems, 29,354

2016.355

[22] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell,356

and P. Battaglia. Graph networks as learnable physics engines for inference and control. In357

International Conference on Machine Learning, pages 4470–4479. PMLR, 2018.358

[23] E. Jang, C. Devin, V. Vanhoucke, and S. Levine. Grasp2vec: Learning object representations359

from self-supervised grasping. arXiv preprint arXiv:1811.06964, 2018.360

[24] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield. Deep ob-361

ject pose estimation for semantic robotic grasping of household objects. arXiv preprint362

arXiv:1809.10790, 2018.363

[25] Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song. Densephysnet: Learning dense physical364

object representations via multi-step dynamic interactions. arXiv preprint arXiv:1906.03853,365

2019.366

[26] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu. The neuro-symbolic concept367

learner: Interpreting scenes, words, and sentences from natural supervision. arXiv preprint368

arXiv:1904.12584, 2019.369

[27] C. P. Burgess, L. Matthey, N. Watters, R. Kabra, I. Higgins, M. Botvinick, and A. Ler-370

chner. Monet: Unsupervised scene decomposition and representation. arXiv preprint371

arXiv:1901.11390, 2019.372

[28] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger. Learning-based model pre-373

dictive control: Toward safe learning in control. Annual Review of Control, Robotics, and374

Autonomous Systems, 3:269–296, 2020.375

[29] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit,376

A. Dosovitskiy, and T. Kipf. Object-centric learning with slot attention. Advances in neural377

information processing systems, 33:11525–11538, 2020.378

[30] N. Heravi, A. Wahid, C. Lynch, P. Florence, T. Armstrong, J. Tompson, P. Sermanet, J. Bohg,379

and D. Dwibedi. Visuomotor control in multi-object scenes using object-aware representa-380

tions. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages381

9515–9522. IEEE, 2023.382

[31] Y. Zhu, Z. Jiang, P. Stone, and Y. Zhu. Learning generalizable manipulation policies with383

object-centric 3d representations. arXiv preprint arXiv:2310.14386, 2023.384

10

[32] W. Yuan, C. Paxton, K. Desingh, and D. Fox. Sornet: Spatial object-centric representations385

for sequential manipulation. In Conference on Robot Learning, pages 148–157. PMLR, 2022.386

[33] S. Cheng, C. Garrett, A. Mandlekar, and D. Xu. Nod-tamp: Multi-step manipulation planning387

with neural object descriptors. arXiv preprint arXiv:2311.01530, 2023.388

[34] J. Hsu, J. Mao, J. Tenenbaum, and J. Wu. What’s left? concept grounding with logic-enhanced389

foundation models. Advances in Neural Information Processing Systems, 36, 2024.390

[35] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba. Learning particle dynamics for391

manipulating rigid bodies, deformable objects, and fluids. arXiv preprint arXiv:1810.01566,392

2018.393

[36] X. Lin, C. Qi, Y. Zhang, Z. Huang, K. Fragkiadaki, Y. Li, C. Gan, and D. Held. Planning with394

spatial-temporal abstraction from point clouds for deformable object manipulation. arXiv395

preprint arXiv:2210.15751, 2022.396

[37] Y. Wang, Y. Li, K. Driggs-Campbell, L. Fei-Fei, and J. Wu. Dynamic-resolution model397

learning for object pile manipulation. arXiv preprint arXiv:2306.16700, 2023.398

[38] H. Shi, H. Xu, S. Clarke, Y. Li, and J. Wu. Robocook: Long-horizon elasto-plastic object399

manipulation with diverse tools. arXiv preprint arXiv:2306.14447, 2023.400

[39] X. Lin, Y. Wang, Z. Huang, and D. Held. Learning visible connectivity dynamics for cloth401

smoothing. In Conference on Robot Learning, pages 256–266. PMLR, 2022.402

[40] J. Abou-Chakra, K. Rana, F. Dayoub, and N. Sünderhauf. Physically embodied gaussian403

splatting: A realtime correctable world model for robotics. arXiv preprint arXiv:2406.10788,404

2024.405

[41] D. Bauer, Z. Xu, and S. Song. Doughnet: A visual predictive model for topological manipu-406

lation of deformable objects. arXiv preprint arXiv:2404.12524, 2024.407

[42] T. Schmidt, R. Newcombe, and D. Fox. Self-supervised visual descriptor learning for dense408

correspondence. IEEE Robotics and Automation Letters, 2(2):420–427, 2016.409

[43] P. R. Florence, L. Manuelli, and R. Tedrake. Dense object nets: Learning dense visual object410

descriptors by and for robotic manipulation. arXiv preprint arXiv:1806.08756, 2018.411

[44] T. D. Kulkarni, A. Gupta, C. Ionescu, S. Borgeaud, M. Reynolds, A. Zisserman, and V. Mnih.412

Unsupervised learning of object keypoints for perception and control. Advances in neural413

information processing systems, 32, 2019.414

[45] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese. Keto: Learning keypoint representations415

for tool manipulation. In 2020 IEEE International Conference on Robotics and Automation416

(ICRA), pages 7278–7285. IEEE, 2020.417

[46] P. Sundaresan, J. Grannen, B. Thananjeyan, A. Balakrishna, M. Laskey, K. Stone, J. E. Gon-418

zalez, and K. Goldberg. Learning rope manipulation policies using dense object descriptors419

trained on synthetic depth data. In 2020 IEEE International Conference on Robotics and420

Automation (ICRA), pages 9411–9418. IEEE, 2020.421

[47] L. Manuelli, Y. Li, P. Florence, and R. Tedrake. Keypoints into the future: Self-supervised422

correspondence in model-based reinforcement learning. arXiv preprint arXiv:2009.05085,423

2020.424

[48] B. Chen, P. Abbeel, and D. Pathak. Unsupervised learning of visual 3d keypoints for control.425

In International Conference on Machine Learning, pages 1539–1549. PMLR, 2021.426

11

[49] A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and427

P. Agrawal. Se (3)-equivariant relational rearrangement with neural descriptor fields. In428

Conference on Robot Learning, pages 835–846. PMLR, 2023.429

[50] M. Vecerik, C. Doersch, Y. Yang, T. Davchev, Y. Aytar, G. Zhou, R. Hadsell, L. Agapito, and430

J. Scholz. Robotap: Tracking arbitrary points for few-shot visual imitation. arXiv preprint431

arXiv:2308.15975, 2023.432

[51] E. Chun, Y. Du, A. Simeonov, T. Lozano-Perez, and L. Kaelbling. Local neural descriptor433

fields: Locally conditioned object representations for manipulation. In 2023 IEEE Interna-434

tional Conference on Robotics and Automation (ICRA), pages 1830–1836. IEEE, 2023.435

[52] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak. Affordances from human videos436

as a versatile representation for robotics. In Proceedings of the IEEE/CVF Conference on437

Computer Vision and Pattern Recognition, pages 13778–13790, 2023.438

[53] C. Wen, X. Lin, J. So, K. Chen, Q. Dou, Y. Gao, and P. Abbeel. Any-point trajectory modeling439

for policy learning. arXiv preprint arXiv:2401.00025, 2023.440

[54] H. Bharadhwaj, R. Mottaghi, A. Gupta, and S. Tulsiani. Track2act: Predicting point tracks441

from internet videos enables diverse zero-shot robot manipulation, 2024.442

[55] Z. Kingston, M. Moll, and L. E. Kavraki. Sampling-based methods for motion planning with443

constraints. Annual review of control, robotics, and autonomous systems, 1:159–185, 2018.444

[56] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp: Gradient optimization tech-445

niques for efficient motion planning. In 2009 IEEE international conference on robotics and446

automation, pages 489–494. IEEE, 2009.447

[57] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg,448

and P. Abbeel. Motion planning with sequential convex optimization and convex collision449

checking. The International Journal of Robotics Research, 33(9):1251–1270, 2014.450

[58] B. Sundaralingam, S. K. S. Hari, A. Fishman, C. Garrett, K. Van Wyk, V. Blukis, A. Millane,451

H. Oleynikova, A. Handa, F. Ramos, et al. Curobo: Parallelized collision-free robot motion452

generation. In 2023 IEEE International Conference on Robotics and Automation (ICRA),453

pages 8112–8119. IEEE, 2023.454

[59] T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake. Shortest paths in graphs of convex455

sets. SIAM Journal on Optimization, 34(1):507–532, 2024.456

[60] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox. Riemannian motion policies.457

arXiv preprint arXiv:1801.02854, 2018.458

[61] M. Posa, S. Kuindersma, and R. Tedrake. Optimization and stabilization of trajectories for459

constrained dynamical systems. In 2016 IEEE International Conference on Robotics and460

Automation (ICRA), pages 1366–1373. IEEE, 2016.461

[62] I. Mordatch, E. Todorov, and Z. Popović. Discovery of complex behaviors through contact-462

invariant optimization. ACM Transactions on Graphics (ToG), 31(4):1–8, 2012.463

[63] I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant optimization for hand manipula-464

tion. In Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer anima-465

tion, pages 137–144, 2012.466

[64] M. Posa, C. Cantu, and R. Tedrake. A direct method for trajectory optimization of rigid467

bodies through contact. The International Journal of Robotics Research, 33(1):69–81, 2014.468

12

[65] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and Y. Tassa. Predictive469

sampling: Real-time behaviour synthesis with mujoco. arXiv preprint arXiv:2212.00541,470

2022.471

[66] Z. Liu, G. Zhou, J. He, T. Marcucci, F.-F. Li, J. Wu, and Y. Li. Model-based control with472

sparse neural dynamics. Advances in Neural Information Processing Systems, 36, 2024.473

[67] K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and planning. The474

international journal of robotics research, 15(6):533–556, 1996.475

[68] Y. Hou, Z. Jia, and M. T. Mason. Fast planning for 3d any-pose-reorienting using pivoting. In476

2018 IEEE International Conference on Robotics and Automation (ICRA), pages 1631–1638.477

IEEE, 2018.478

[69] J.-P. Sleiman, F. Farshidian, and M. Hutter. Versatile multicontact planning and control for479

legged loco-manipulation. Science Robotics, 8(81):eadg5014, 2023.480

[70] W. Yang and M. Posa. Dynamic on-palm manipulation via controlled sliding. arXiv preprint481

arXiv:2405.08731, 2024.482

[71] B. P. Graesdal, S. Y. Chia, T. Marcucci, S. Morozov, A. Amice, P. A. Parrilo, and483

R. Tedrake. Towards tight convex relaxations for contact-rich manipulation. arXiv preprint484

arXiv:2402.10312, 2024.485

[72] K. Yunt and C. Glocker. Trajectory optimization of mechanical hybrid systems using sumt.486

In 9th IEEE International Workshop on Advanced Motion Control, 2006., pages 665–671.487

IEEE, 2006.488

[73] K. Yunt and C. Glocker. A combined continuation and penalty method for the determination489

of optimal hybrid mechanical trajectories. In Iutam Symposium on Dynamics and Control of490

Nonlinear Systems with Uncertainty: Proceedings of the IUTAM Symposium held in Nanjing,491

China, September 18-22, 2006, pages 187–196. Springer, 2007.492

[74] K. Yunt. An augmented lagrangian based shooting method for the optimal trajectory gen-493

eration of switching lagrangian systems. Dynamics of Continuous, Discrete and Impulsive494

Systems Series B: Applications and Algorithms, 18(5):615–645, 2011.495

[75] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson. Constraint propagation on interval496

bounds for dealing with geometric backtracking. In 2012 IEEE/RSJ International Conference497

on Intelligent Robots and Systems, pages 957–964. IEEE, 2012.498

[76] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson. Efficiently combining499

task and motion planning using geometric constraints. The International Journal of Robotics500

Research, 33(14):1726–1747, 2014.501

[77] T. Lozano-Pérez and L. P. Kaelbling. A constraint-based method for solving sequential ma-502

nipulation planning problems. In 2014 IEEE/RSJ International Conference on Intelligent503

Robots and Systems, pages 3684–3691. IEEE, 2014.504

[78] Z. Yang, J. Mao, Y. Du, J. Wu, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling. Com-505

positional diffusion-based continuous constraint solvers. arXiv preprint arXiv:2309.00966,506

2023.507

[79] T. Silver, R. Chitnis, J. Tenenbaum, L. P. Kaelbling, and T. Lozano-Pérez. Learning sym-508

bolic operators for task and motion planning. In 2021 IEEE/RSJ International Conference on509

Intelligent Robots and Systems (IROS), pages 3182–3189. IEEE, 2021.510

[80] B. Vu, T. Migimatsu, and J. Bohg. Coast: Constraints and streams for task and motion511

planning. arXiv preprint arXiv:2405.08572, 2024.512

13

[81] M. Toussaint. Logic-geometric programming: An optimization-based approach to combined513

task and motion planning. In Twenty-Fourth International Joint Conference on Artificial514

Intelligence, 2015.515

[82] M. Toussaint and M. Lopes. Multi-bound tree search for logic-geometric programming in516

cooperative manipulation domains. In 2017 IEEE International Conference on Robotics and517

Automation (ICRA), pages 4044–4051. IEEE, 2017.518

[83] M. A. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics519

and stable modes for tool-use and manipulation planning. Robotics: Science and Systems520

Foundation, 2018.521

[84] J.-S. Ha, D. Driess, and M. Toussaint. A probabilistic framework for constrained manipula-522

tions and task and motion planning under uncertainty. In 2020 IEEE International Conference523

on Robotics and Automation (ICRA), pages 6745–6751. IEEE, 2020.524

[85] T. Xue, A. Razmjoo, and S. Calinon. D-lgp: Dynamic logicgeometric program for reactive525

task and motion planning. arXiv preprint arXiv:2312.02731, 2023.526

[86] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint. Deep visual heuristics: Learning feasibility527

of mixed-integer programs for manipulation planning. In 2020 IEEE international conference528

on robotics and automation (ICRA), pages 9563–9569. IEEE, 2020.529

[87] G. Sutanto, I. R. Fernández, P. Englert, R. K. Ramachandran, and G. Sukhatme. Learning530

equality constraints for motion planning on manifolds. In Conference on Robot Learning,531

pages 2292–2305. PMLR, 2021.532

[88] Z. Yang, C. R. Garrett, T. Lozano-Pérez, L. Kaelbling, and D. Fox. Sequence-based plan533

feasibility prediction for efficient task and motion planning. arXiv preprint arXiv:2211.01576,534

2022.535

[89] G. S. Camps, R. Dyro, M. Pavone, and M. Schwager. Learning deep sdf maps online for536

robot navigation and exploration. arXiv preprint arXiv:2207.10782, 2022.537

[90] Y. Hu, Q. Xie, V. Jain, J. Francis, J. Patrikar, N. Keetha, S. Kim, Y. Xie, T. Zhang, Z. Zhao,538

et al. Toward general-purpose robots via foundation models: A survey and meta-analysis.539

arXiv preprint arXiv:2312.08782, 2023.540

[91] R. Firoozi, J. Tucker, S. Tian, A. Majumdar, J. Sun, W. Liu, Y. Zhu, S. Song, A. Kapoor,541

K. Hausman, et al. Foundation models in robotics: Applications, challenges, and the future.542

arXiv preprint arXiv:2312.07843, 2023.543

[92] K. Kawaharazuka, T. Matsushima, A. Gambardella, J. Guo, C. Paxton, and A. Zeng. Real-544

world robot applications of foundation models: A review. arXiv preprint arXiv:2402.05741,545

2024.546

[93] S. Yang, O. Nachum, Y. Du, J. Wei, P. Abbeel, and D. Schuurmans. Foundation models for547

decision making: Problems, methods, and opportunities. arXiv preprint arXiv:2303.04129,548

2023.549

[94] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,550

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language super-551

vision. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.552

[95] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever.553

Zero-shot text-to-image generation. In International conference on machine learning, pages554

8821–8831. Pmlr, 2021.555

14

[96] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for uni-556

fied vision-language understanding and generation. In International conference on machine557

learning, pages 12888–12900. PMLR, 2022.558

[97] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,559

J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint560

arXiv:2303.08774, 2023.561

[98] J. Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Bootstrapping language-image pre-training with562

frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023.563

[99] H. Huang, F. Lin, Y. Hu, S. Wang, and Y. Gao. Copa: General robotic manipulation through564

spatial constraints of parts with foundation models. arXiv preprint arXiv:2403.08248, 2024.565

[100] F. Liu, K. Fang, P. Abbeel, and S. Levine. Moka: Open-vocabulary robotic manipulation566

through mark-based visual prompting. arXiv preprint arXiv:2403.03174, 2024.567

[101] S. Nasiriany, F. Xia, W. Yu, T. Xiao, J. Liang, I. Dasgupta, A. Xie, D. Driess, A. Wahid,568

Z. Xu, et al. Pivot: Iterative visual prompting elicits actionable knowledge for vlms. arXiv569

preprint arXiv:2402.07872, 2024.570

[102] Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao. Look before you leap: Unveiling the power of571

gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023.572

[103] Y. Du, M. Yang, P. Florence, F. Xia, A. Wahid, B. Ichter, P. Sermanet, T. Yu, P. Abbeel, J. B.573

Tenenbaum, et al. Video language planning. arXiv preprint arXiv:2310.10625, 2023.574

[104] Y. Hong, H. Zhen, P. Chen, S. Zheng, Y. Du, Z. Chen, and C. Gan. 3d-llm: Injecting the 3d575

world into large language models. Advances in Neural Information Processing Systems, 36:576

20482–20494, 2023.577

[105] B. Chen, Z. Xu, S. Kirmani, B. Ichter, D. Sadigh, L. Guibas, and F. Xia. Spatialvlm: En-578

dowing vision-language models with spatial reasoning capabilities. In Proceedings of the579

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14455–14465,580

2024.581

[106] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d582

value maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973,583

2023.584

[107] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,585

A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to586

robotic control. arXiv preprint arXiv:2307.15818, 2023.587

[108] J. Gao, B. Sarkar, F. Xia, T. Xiao, J. Wu, B. Ichter, A. Majumdar, and D. Sadigh.588

Physically grounded vision-language models for robotic manipulation. arXiv preprint589

arXiv:2309.02561, 2023.590

[109] Y. Wang, T.-H. Wang, J. Mao, M. Hagenow, and J. Shah. Grounding language plans in demon-591

strations through counterfactual perturbations. arXiv preprint arXiv:2403.17124, 2024.592

[110] J. Hsu, J. Mao, and J. Wu. Ns3d: Neuro-symbolic grounding of 3d objects and relations.593

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,594

pages 2614–2623, 2023.595

[111] J. Gao, B. Sarkar, F. Xia, T. Xiao, J. Wu, B. Ichter, A. Majumdar, and D. Sadigh. Physi-596

cally grounded vision-language models for robotic manipulation. In 2024 IEEE International597

Conference on Robotics and Automation (ICRA), pages 12462–12469. IEEE, 2024.598

15

[112] W. Yuan, J. Duan, V. Blukis, W. Pumacay, R. Krishna, A. Murali, A. Mousavian, and D. Fox.599

Robopoint: A vision-language model for spatial affordance prediction for robotics. arXiv600

preprint arXiv:2406.10721, 2024.601

[113] J. Duan, W. Yuan, W. Pumacay, Y. R. Wang, K. Ehsani, D. Fox, and R. Krishna. Manipulate-602

anything: Automating real-world robots using vision-language models. arXiv preprint603

arXiv:2406.18915, 2024.604

[114] S. Tong, Z. Liu, Y. Zhai, Y. Ma, Y. LeCun, and S. Xie. Eyes wide shut? exploring the visual605

shortcomings of multimodal llms. In Proceedings of the IEEE/CVF Conference on Computer606

Vision and Pattern Recognition, pages 9568–9578, 2024.607

[115] T. Thrush, R. Jiang, M. Bartolo, A. Singh, A. Williams, D. Kiela, and C. Ross. Winoground:608

Probing vision and language models for visio-linguistic compositionality. In Proceedings of609

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5238–5248,610

2022.611

[116] M. Yuksekgonul, F. Bianchi, P. Kalluri, D. Jurafsky, and J. Zou. When and why vision-612

language models behave like bags-of-words, and what to do about it? In The Eleventh Inter-613

national Conference on Learning Representations, 2023.614

[117] C.-Y. Hsieh, J. Zhang, Z. Ma, A. Kembhavi, and R. Krishna. Sugarcrepe: Fixing hackable615

benchmarks for vision-language compositionality. Advances in neural information processing616

systems, 36, 2024.617

[118] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerg-618

ing properties in self-supervised vision transformers. In Proceedings of the International619

Conference on Computer Vision (ICCV), 2021.620

[119] S. Amir, Y. Gandelsman, S. Bagon, and T. Dekel. Deep vit features as dense visual descrip-621

tors. arXiv preprint arXiv:2112.05814, 2(3):4, 2021.622

[120] L. Melas-Kyriazi, C. Rupprecht, I. Laina, and A. Vedaldi. Deep spectral methods: A sur-623

prisingly strong baseline for unsupervised semantic segmentation and localization. In Pro-624

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages625

8364–8375, 2022.626

[121] Y. Wang, Z. Li, M. Zhang, K. Driggs-Campbell, J. Wu, L. Fei-Fei, and Y. Li. D3fields:627

Dynamic 3d descriptor fields for zero-shot generalizable robotic manipulation. arXiv preprint628

arXiv:2309.16118, 2023.629

[122] X. Lin, J. So, S. Mahalingam, F. Liu, and P. Abbeel. Spawnnet: Learning generalizable630

visuomotor skills from pre-trained networks. arXiv preprint arXiv:2307.03567, 2023.631

[123] N. Di Palo and E. Johns. Keypoint action tokens enable in-context imitation learning in632

robotics. arXiv preprint arXiv:2403.19578, 2024.633

[124] N. Di Palo and E. Johns. Dinobot: Robot manipulation via retrieval and alignment with vision634

foundation models. arXiv preprint arXiv:2402.13181, 2024.635

[125] O. Y. Lee, A. Xie, K. Fang, K. Pertsch, and C. Finn. Affordance-guided reinforcement learn-636

ing via visual prompting. arXiv preprint arXiv:2407.10341, 2024.637

[126] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,638

E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,639

M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,640

T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with641

NumPy. Nature, 585(7825):357–362, Sept. 2020. doi:10.1038/s41586-020-2649-2. URL642

https://doi.org/10.1038/s41586-020-2649-2.643

16

http://dx.doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

[127] R. Tedrake. Underactuated Robotics. 2023. URL https://underactuated.csail.644

mit.edu.645

[128] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,646

E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al. Scipy 1.0: fundamental algorithms647

for scientific computing in python. Nature methods, 17(3):261–272, 2020.648

[129] Y. Xiang, D. Sun, W. Fan, and X. Gong. Generalized simulated annealing algorithm and its649

application to the thomson model. Physics Letters A, 233(3):216–220, 1997.650

[130] D. Kraft. A software package for sequential quadratic programming. Forschungsbericht-651

Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988.652

[131] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu. Anygrasp:653

Robust and efficient grasp perception in spatial and temporal domains. IEEE Transactions on654

Robotics, 2023.655

[132] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,656

A. C. Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.657

[133] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics658

and machine learning. 2016.659

[134] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu. Viola: Imitation learning for vision-based manipulation660

with object proposal priors. 6th Annual Conference on Robot Learning, 2022.661

[135] M. Minderer, A. Gritsenko, A. Stone, M. Neumann, D. Weissenborn, A. Dosovitskiy, A. Ma-662

hendran, A. Arnab, M. Dehghani, Z. Shen, et al. Simple open-vocabulary object detection663

with vision transformers. arXiv preprint arXiv:2205.06230, 2022.664

[136] H. K. Cheng, S. W. Oh, B. Price, J.-Y. Lee, and A. Schwing. Putting the object back into665

video object segmentation. In arXiv, 2023.666

[137] T. Darcet, M. Oquab, J. Mairal, and P. Bojanowski. Vision transformers need registers. arXiv667

preprint arXiv:2309.16588, 2023.668

[138] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.669

IEEE Transactions on pattern analysis and machine intelligence, 24(5):603–619, 2002.670

[139] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,671

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,672

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine673

Learning Research, 12:2825–2830, 2011.674

[140] J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao. Set-of-mark prompting unleashes ex-675

traordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441, 2023.676

[141] A. W. Harley, Z. Fang, and K. Fragkiadaki. Particle video revisited: Tracking through oc-677

clusions using point trajectories. In European Conference on Computer Vision, pages 59–75.678

Springer, 2022.679

[142] Q. Wang, Y.-Y. Chang, R. Cai, Z. Li, B. Hariharan, A. Holynski, and N. Snavely. Tracking680

everything everywhere all at once. In Proceedings of the IEEE/CVF International Conference681

on Computer Vision, pages 19795–19806, 2023.682

[143] Y. Zheng, A. W. Harley, B. Shen, G. Wetzstein, and L. J. Guibas. Pointodyssey: A large-scale683

synthetic dataset for long-term point tracking. In Proceedings of the IEEE/CVF International684

Conference on Computer Vision, pages 19855–19865, 2023.685

17

https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu

[144] N. Karaev, I. Rocco, B. Graham, N. Neverova, A. Vedaldi, and C. Rupprecht. Cotracker: It is686

better to track together. arXiv preprint arXiv:2307.07635, 2023.687

[145] C. Doersch, Y. Yang, M. Vecerik, D. Gokay, A. Gupta, Y. Aytar, J. Carreira, and A. Zisserman.688

Tapir: Tracking any point with per-frame initialization and temporal refinement. In Proceed-689

ings of the IEEE/CVF International Conference on Computer Vision, pages 10061–10072,690

2023.691

[146] C. Doersch, Y. Yang, D. Gokay, P. Luc, S. Koppula, A. Gupta, J. Heyward, R. Goroshin,692

J. Carreira, and A. Zisserman. Bootstap: Bootstrapped training for tracking-any-point. arXiv693

preprint arXiv:2402.00847, 2024.694

[147] Y. Xiao, Q. Wang, S. Zhang, N. Xue, S. Peng, Y. Shen, and X. Zhou. Spatialtracker: Tracking695

any 2d pixels in 3d space. In Proceedings of the IEEE/CVF Conference on Computer Vision696

and Pattern Recognition, pages 20406–20417, 2024.697

[148] J. Luiten, G. Kopanas, B. Leibe, and D. Ramanan. Dynamic 3d gaussians: Tracking by698

persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713, 2023.699

[149] A. Millane, H. Oleynikova, E. Wirbel, R. Steiner, V. Ramasamy, D. Tingdahl, and R. Sieg-700

wart. nvblox: Gpu-accelerated incremental signed distance field mapping. arXiv preprint701

arXiv:2311.00626, 2023.702

[150] X. Li, M. Zhang, Y. Geng, H. Geng, Y. Long, Y. Shen, R. Zhang, J. Liu, and H. Dong. Ma-703

nipllm: Embodied multimodal large language model for object-centric robotic manipulation.704

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,705

pages 18061–18070, 2024.706

[151] W. Xia, D. Wang, X. Pang, Z. Wang, B. Zhao, and D. Hu. Kinematic-aware prompting for707

generalizable articulated object manipulation with llms. arXiv preprint arXiv:2311.02847,708

2023.709

[152] S. Huang, H. Chang, Y. Liu, Y. Zhu, H. Dong, P. Gao, A. Boularias, and H. Li. A3vlm: Ac-710

tionable articulation-aware vision language model. arXiv preprint arXiv:2406.07549, 2024.711

[153] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martı́n-Martı́n, C. Wang, G. Levine,712

M. Lingelbach, J. Sun, et al. Behavior-1k: A benchmark for embodied ai with 1,000 everyday713

activities and realistic simulation. In Conference on Robot Learning, pages 80–93. PMLR,714

2023.715

[154] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and716

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,717

30, 2017.718

[155] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer719

for 3d object manipulation. In Conference on Robot Learning, pages 694–710. PMLR, 2023.720

[156] A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox. Rvt-2: Learning precise manip-721

ulation from few demonstrations. arXiv preprint arXiv:2406.08545, 2024.722

[157] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-723

hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Trans-724

formers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.725

18

A Appendix726

A.1 Pseudo-code for Sequential Manipulation with Relational Keypoint Constraints727

Algorithm 1 Relational Keypoint Constraints for Sequential Manipulation

1: Initialize current stage i← 1, and current time t← 1
2: while i ≤ N do
3: if ∃f ∈ C(i)path s.t. f(kt) > 0 then
4: i← i− 1
5: continue
6: end if
7: if distance(et, egi) < ϵ then
8: i← i+ 1
9: continue

10: end if
11: Solve sub-goal problem for stage i to obtain egi (Eq. 2)
12: Solve path problem for stage i to obtain et:gi (Eq. 3)
13: Execute the next m actions et+1:t+m

14: t← t+m+ 1
15: end while

RGB-D Camera

Franka Arm

Wheeled Base

Figure 6: Wheeled Single-Arm Platform.

RGB-D Camera

Franka Arm

Figure 7: Stationary Dual-Arm Platform.

A.2 Wheeled Single-Arm Platform728

One of our investigated platform is a Franka arm mounted on a wheeled base built with Vention729

frames (shown in Figure 6). Note that the base does not have motors and thus cannot move au-730

tonomously, but its mobility nevertheless allows us to investigate the proposed method outside of731

lab environments.732

Since our pipeline produces a sequence of 6-DoF end-effector poses, we use position control in all733

experiments, which is running at a fixed frequency of 20 Hz. Specifically, once the robot is given a734

target end-effector pose in the world frame, we first clip the pose to the pre-defined workspace. Then735

we linearly interpolate from the current pose to the target pose with a step size of 5mm for position736

and 1 degree for rotation. To move to each interpolated pose, we first calculate inverse kinematics737

to obtain the target joint positions based on current joint positions (IK solver from PyBullet [133]).738

Then we use the joint impedance controller from Deoxys [134] to reach to the target joint positions.739

19

Two RGB-D cameras, Orbbec Femto Bolt, are mounted on each side of the robot facing the740

workspace center. The cameras capture RGB images and point clouds at a fixed frequency of 20741

Hz.742

A.3 Stationary Dual-Arm Platform743

We also investigate the method on a stationary dual-arm platform consisting of two Franka arms744

mounted in front of a tabletop workspace (shown in Figure 7). We share the same controller as the745

wheeled single-arm platform with the exception that the two arms are controlled simultaneously at746

20 Hz. Specifically, our pipeline jointly solves two 6-DoF end-effector pose sequences, which are747

sent to the low-level controller together. The controller subsequently calculates IK for both arms748

and moves the arms using joint impedance control.749

Three RGB-D cameras, Orbbec Femto Bolt, are mounted on this platform. Two cameras are750

mounted on the left and right sides and one camera is mounted in the back. The cameras simi-751

larly capture RGB images and point clouds at a fixed frequency of 20 Hz.752

A.4 Evaluation Details753

Below we discuss the evaluation details for the experiments reported in Section 4.1 and Section 4.2.754

A.4.1 Details for In-the-Wild and Bimanual Manipulation (Section 4.1)755

For each task, 10 initial different configurations of objects are selected, which cover the full756

workspace but are manually verified to ensure they are kinematically feasible for the robot. For757

each trial, a human operator restores the scene to the corresponding configuration and initiates the758

system. Due to the challenge of developing automatic success criteria for the diverse set of objects759

and environments investigated in this work, success rates are measured by the operator with the cri-760

terion reported under each task description below. For experiments involving external disturbances,761

the set of disturbances for all trials is pre-selected, and one disturbance is applied to each trial.762

Specifically, the disturbance is introduced by a human operator using hands to change the object’s763

pose. Collision checking is disabled for all tasks involving deformable objects.764

Pour Tea: The environment consists of a teapot and a cup placed on a counter table in a kitchen765

setting. The task involves three stages: grasping the handle, aligning the teapot to the top of the cup,766

and pouring the tea into the cup. The success criterion requires that the teapot remains upright until767

the pouring stage, and at the end, the spout must be aligned and tilted on top of the cup opening.768

Recycle Can: The environment includes one of three types of cans (Coke, Zero Coke, Zero Sprite),769

a recycle bin with a narrow opening (such that the cans may only go in when they are upright), a770

landfill bin, and a compost bin, all situated inside an office building. The task involves two stages:771

grasping the can and reorienting it on top of the recycle bin before dropping it. The success criterion772

is that the can is successfully thrown into the bin.773

Stow Book: The environment consists of a target book placed on a side table and a real-size book-774

shelf with a 15cm opening among the placed books, all inside an office environment. The task775

involves two stages: grasping the target book on the side and stowing it inside the opening in the776

shelf. The success criterion is that the target book is placed steadily after the robot releases the777

gripper, and the robot must not bump into the shelf or other placed books.778

Tape Box: The environment includes a cardboard box, a packaging tape with a dispenser sitting on779

top of the box that already has one side taped, and a human user collaborating with the robot. The780

tape has already been unrolled to be enough for taping because unrolling typically requires a large781

force that exceeds the limit of the robot arm. The task involves two stages: while a human operator782

is squeezing the box, the robot needs to grasp the tape and align it to the correct side to complete783

the taping. The success criterion is that the tape must end up in the correct position such that it is784

aligned with the seam.785

20

(Bimanual) Fold Garment: The environment consists of a sweater placed flat close to the786

workspace center, with small deformations on the sleeves, neck, and bottom. The task typically787

requires four stages: grasping both sleeves, folding them to the middle, grasping the neck, and fold-788

ing it to the bottom. The success criterion does not enforce consistent stages; as long as the sweater789

is folded such that it occupies at most half of the original surface size, it is regarded as a success.790

(Bimanual) Pack Shoes: The environment includes an empty shoe box placed close to the791

workspace center, with two shoes placed on opposite sides of the box in random poses. The task792

involves two stages: grasping the shoes simultaneously and placing them in the shoe box. The suc-793

cess criterion does not enforce consistent stages; as long as the shoes are placed into the box without794

being stacked together or causing bimanual self-collision, it is considered successful.795

(Bimanual) Collaborative Folding: The environment consists of a large blanket (pre-folded to an796

appropriate size that occupies about 70% of the workspace due to its size exceeding the workspace797

limit) and a human user collaborating with the robot. The task involves two stages: the robot must798

grasp the two corners of the blanket opposite to the human user, and the second stage is aligning799

the two corners with the two corners that the human has grasped. The success criterion is that the800

robot has grasped the correct corners and can align them with the correct human arms (left-left,801

right-right).802

A.4.2 Details on Baseline Methods803

We use VoxPoser [106] as the main baseline method as it makes similar assumptions that no task-804

specific data or pre-defined motion primitives are required. We adapt VoxPoser to our setting with805

certain modifications to ensure fairness in comparisons. Specifically, we use the same VLM, GPT-806

4o [6], that takes the same camera input. We also augment the original prompt from the paper with807

the prompt used in this work to ensure it has sufficient context. We only use the affordance, rotation,808

and gripper action value maps and ignore the avoidance and velocity value maps because they are809

not necessary for our tasks. We also only consider the scenario where the “entity of interest” is810

the robot end-effector instead of objects in the scene. The latter is tailored for pushing task, which811

is not being studied in this work. We use OWL-ViT [135] for open-vocabulary object detection,812

SAM [132] for initial-frame segmentation, and Cutie [136] for mask tracking.813

A.4.3 Details for Generalization in Manipulation Strategies (Section 4.2)814

The dual-arm robot is tasked with folding eight different categories of clothing. We use two metrics815

for evaluation: “Strategy Success” and “Execution Success,” where the former evaluates whether816

keypoints are proposed and constraints are written appropriately, and the latter evaluates the robotic817

system’s execution given successful strategies.818

To evaluate “Strategy Success,” the garment is initialized close to the center of the workspace. A819

back-mounted RGB-D camera captures the RGB image. Then, the keypoint proposal module gen-820

erates keypoint candidates using the captured image, which are then overlaid on top of the original821

image with numerical marks {0, . . . ,K − 1}. The overlaid image, along with the same generic822

prompt, is fed into GPT-4 [6] to generate the ReKep constraints. Since folding garments is itself an823

open-ended problem without ground-truth strategies, we manually judge if the proposed keypoints824

and the generated constraints are correct. Note that since the constraints are to be executed by a825

bimanual robot, and the constraints are almost always connecting (folding) two keypoints such that826

they are aligned, correctness is measured by whether it is (potentially) executable by the robot with-827

out causing self-collision (arms crossing over to opposite sides) and whether the folding strategy can828

fold the garment to at most half of its original surface area.829

To evaluate “Execution Success,” we take the generated strategies in the previous section that are830

marked as successful for each garment and execute the sequence on the dual-arm platform, with a831

total of 10 trials for each garment. Point tracking is disabled as we observe that our point tracker832

predicts unstable tracks when the garment is potentially folded many times. Success is measured by833

whether the garment is folded such that its surface area is at most half of its original surface area.834

21

A.5 Implementation Details of Keypoint Proposal835

Herein we describe how keypoint candidates in a scene are generated. For each platform, we use836

one of the mounted RGB-D cameras to capture an image of size h× w × 3, depending on which837

camera has the best holistic view of the environment, as all the keypoints need to be present in the838

first frame for the proposed method. Given the captured image, we first use DINOv2 with registers839

(ViT-S14) [5, 137] to extract the patch-wise features Fpatch ∈ Rh′×w′×d. Then we perform bilinear840

interpolation to upsample the features to the original image size, Finterp ∈ Rh×w×d. To ensure the841

proposal covers all relevant objects in the scene, we extract all masks M = {m1,m2, . . . ,mn} in842

the scene using Segment Anything (SAM) [132]. Within each mask mi, we apply PCA to project the843

features to three dimensions, FPCA = PCA(Fresized[mi], 3). We find that applying PCA improves844

the clustering as it often removes details and artifacts related to texture that are not useful for our845

tasks. For each mask j, we cluster the masked features Finterp[mj] using k-means with k = 5 with846

the Euclidean distance metric. The median centroids of the clusters are used as keypoint candidates,847

which are projected to a world coordinate R3 using a calibrated RGB-D camera. Note that we848

also store which keypoint candidates originate from the same mask, which is later used as part of849

the rigidity assumption in the optimization loops described in Sec. 3.3. Candidates outside of the850

workspace bounds are filtered out. To avoid many points cluttered in a small region, we additionally851

use Mean Shift [138, 139] (with a bandwidth 8cm) to filter out points that are close to each other.852

Finally, the centroids are taken as final candidates. Alternatively, one may develop a pipeline using853

only segmentation models [132, 140], but we leave comparisons to future work.854

A.6 Querying Vision-Language Model855

After we obtain the keypoint candidates, they are overlaid on the captured RGB image with numer-856

ical marks {0, . . . ,K − 1}. Then the image and the task instruction are fed into a vision-language857

model with the prompt described below. The prompt contains only generic instructions with no858

image-text in-context examples, although a few text-based examples are given to concretely ex-859

plain the proposed method and the expected output from the model. Note that the majority of the860

investigated tasks are not discussed in the provided prompt. As a result, the VLM is tasked with861

generating ReKep constraints by leveraging its internalized world knowledge.862

For the experiments conducted in this work, we use GPT-4o [6] as it is one of the latest available863

models at the time of the experiments. However, due to rapid advancement in this field, the pipeline864

can directly benefit from newer models that have better vision-language reasoning. Correspond-865

ingly, we observe different models exhibit different behaviors when given the same prompt (with866

the observation that newer models typically require less fine-grained instructions). As a result, in-867

stead of developing the best prompt for the suite of tasks in this work, we focus on demonstrating868

a full-stack pipeline consisting a key component that can be automated and continuously improved869

by future development.870

871
Instructions872
Suppose you are controlling a robot to perform manipulation tasks by writing constraint functions in Python.873

The manipulation task is given as an image of the environment, overlayed with keypoints marked with874
their indices, along with a text instruction. The instruction starts with a parenthesis indicating875
whether the robot has a single arm or is bimanual. For each given task, please perform the following876
steps:877

- Determine how many stages are involved in the task. Grasping must be an independent stage. Some examples:878
- "(single-arm) pouring tea from teapot":879

- 3 stages: "grasp teapot", "align teapot with cup opening", and "pour liquid"880
- "(single-arm) put red block on top of blue block":881

- 3 stages: "grasp red block", "align red block on top of blue block", and "release red block"882
- "(bimanual) fold sleeves to the center":883

- 2 stages: "left arm grasps left sleeve and right arm grasps right sleeve" and "both arms fold sleeves to884
the center"885

- "(bimanual) fold a jacket":886
- 3 stages: "left arm grasps left sleeve and right arm grasps right sleeve", "both arms fold sleeves to887

the center", and "grasp the neck with one arm (the other arm stays in place)", and "align the neck888
with the bottom"889

- For each stage, write two kinds of constraints, "sub-goal constraints" and "path constraints". The "sub-goal890
constraints" are constraints that must be satisfied **at the end of the stage**, while the "path891

constraints" are constraints that must be satisfied **within the stage**. Some examples:892
- "(single-arm) pouring liquid from teapot":893

- "grasp teapot" stage:894
- sub-goal constraints: "align the end-effector with the teapot handle"895
- path constraints: None896

22

- "align teapot with cup opening" stage:897
- sub-goal constraints: "the teapot spout needs to be 10cm above the cup opening"898
- path constraints: "robot is grasping the teapot", and "the teapot must stay upright to avoid spilling"899

- "pour liquid" stage:900
- sub-goal constraints: "the teapot spout needs to be 5cm above the cup opening", "the teapot spout must901

be tilted to pour liquid"902
- path constraints: "the teapot spout is directly above the cup opening"903

- "(bimanual) fold sleeves to the center":904
- "left arm grasps left sleeve and right arm grasps right sleeve" stage:905

- sub-goal constraints: "left arm grasps left sleeve", "right arm grasps right sleeve"906
- path constraints: None907

- "both arms fold sleeves to the center" stage:908
- sub-goal constraints: "left sleeve aligns with the center", "right sleeve aligns with the center"909
- path constraints: None910

911
Note:912
- Each constraint takes a dummy end-effector point and a set of keypoints as input and returns a numerical913

cost, where the constraint is satisfied if the cost is smaller than or equal to zero.914
- For each stage, you may write 0 or more sub-goal constraints and 0 or more path constraints.915
- Avoid using "if" statements in your constraints.916
- Avoid using path constraints when manipulating deformable objects (e.g., clothing, towels).917
- You do not need to consider collision avoidance. Focus on what is necessary to complete the task.918
- Inputs to the constraints are as follows:919
- `end_effector`: np.array of shape `(3,)` representing the end-effector position.920
- `keypoints`: np.array of shape `(K, 3)` representing the keypoint positions.921

- Inside of each function, you may use native Python functions and NumPy functions.922
- For grasping stage, you should only write one sub-goal constraint that associates the end-effector with a923

keypoint. No path constraints are needed.924
- For non-grasping stage, you should not refer to the end-effector position.925
- In order to move a keypoint, its associated object must be grasped in one of the previous stages.926
- The robot can only grasp one object at a time.927
- Grasping must be an independent stage from other stages.928
- You may use two keypoints to form a vector, which can be used to specify a rotation (by specifying the angle929

between the vector and a fixed axis).930
- You may use multiple keypoints to specify a surface or volume.931
- You may also use the center of multiple keypoints to specify a position.932
- A single folding action should consist of two stages: one grasp and one place.933

934
Structure your output in a single python code block as follows for single-arm robot:935
```python936

937
# Your explanation of how many stages are involved in the task and what each stage is about.938
# ...939

940
num_stages = ?941

942
### stage 1 sub-goal constraints (if any)943
def stage1_subgoal_constraint1(end_effector, keypoints):944

"""Put your explanation here."""945
...946
return cost947

# Add more sub-goal constraints if needed948
949

### stage 1 path constraints (if any)950
def stage1_path_constraint1(end_effector, keypoints):951

"""Put your explanation here."""952
...953
return cost954

# Add more path constraints if needed955
956

# repeat for more stages957
...958
```959

960
Structure your output in a single python code block as follows for bimanual robot:961
```python962

963
# Your explanation of how many stages are involved in the task and what each stage is about.964
# ...965

966
num_stages = ?967

968
### left-arm stage 1 sub-goal constraints (if any)969
def left_stage1_subgoal_constraint1(end_effector, keypoints):970

"""Put your explanation here."""971
...972
return cost973

974
### right-arm stage 1 sub-goal constraints (if any)975
def right_stage1_subgoal_constraint1(end_effector, keypoints):976

"""Put your explanation here."""977
...978
return cost979

# Add more sub-goal constraints if needed980
981

### left stage 1 path constraints (if any)982
def left_stage1_path_constraint1(end_effector, keypoints):983

"""Put your explanation here."""984
...985
return cost986

### right stage 1 path constraints (if any)987
def right_stage1_path_constraint1(end_effector, keypoints):988

23



"""Put your explanation here."""989
...990
return cost991

# Add more path constraints if needed992
993

# repeat for more stages994
...995
```996

997
Query998
Query Task: "[INSTRUCTION]"999
Query Image: [IMAGE WITH KEYPOINTS]10001001

A.7 Implementation Details of Point Tracker1002

We implement a simple point tracker following [121] based on DINOv2 (ViT-S14) [5] that leverages1003

the fact that multiple RGB-D cameras are present and DINOv2 is efficient to run at a real-time1004

frequency.1005

At initialization, an array of 3D keypoint positions k ∈ R are given. We first take the RGB-D1006

captures from each present camera. For each RGB image, we obtain the pixel-wise DINOv2 features1007

following the same procedure in Section A.5 and record their associated 3D world coordinates using1008

calibrated cameras. For each 3D keypoint positions, we aggregate all the features from points that are1009

within 2cm from all the cameras. The mean of the aggregated features is recorded as the reference1010

feature for each keypoint, which is kept fixed throughout the task.1011

After initialization, at each time step, we similarly obtain the pixel-wise features from DINOv2 from1012

all cameras with their 3D world coordinates. To track the keypoints, we calculate cosine similarity1013

between features across all pixels and the reference features. The top 100 matches are selected for1014

each keypoint with a cutoff similarity of 0.6. We then reject outliers for the selected matches by1015

calculating median deviation (m = 2). Additionally, as the tracked keypoints may oscillate in a1016

small region, we apply a uniform filter with a window size of 10 in the end. The entire procedure1017

runs at a fixed frequency of 20 Hz.1018

Note that the implemented point tracker is a simplification from [121] for real-time tracking. We1019

refer readers to [121] for more comprehensive discussion on using self-supervised vision models,1020

such as DINOv2, for point tracking. Alternatively, more specialized point trackers can be used [141–1021

148].1022

A.8 Implementation Details of Sub-Goal Solver1023

The sub-goal problems are implemented and solved using SciPy [128]. The decision variable is a1024

single end-effector pose (position and Euler angles) in R6 for single-arm robots and two end-effector1025

poses in R12 for bimanual robot. The bounds for the position terms are the pre-defined workspace1026

bounds, and the bounds for the rotation terms are that the half hemisphere where the end-effector1027

faces down (due to the joint limits of the Franka arm, it is often likely to reach joint limit when an1028

end-effector pose faces up). The decision variables are normalized to [−1, 1] based on the bounds.1029

For the first solving iteration, the initial guess is chosen to be the current end-effector pose. We1030

use sampling-based global optimization Dual Annealing [129] in the first iteration to quickly search1031

the full space, which is followed by a gradient-based local optimizer SLSQP [130] that refines the1032

solution. The full procedure takes around 1 second for this iteration. In subsequent iterations, we1033

use the solution from previous stage and only use local optimizer as it can quickly adjust to small1034

changes. The optimization is cut off with a fixed time budget represented as number of objective1035

function calls to keep the system running at a high frequency.1036

We discuss the cost terms in the objective function below.1037

Constraint Violation: We implement constraints as cost terms in the optimization problem, where1038

the returned costs by the ReKep functions are multiplied with large weights.1039

Scene Collision Avoidance: We use nvblox [149] with the PyTorch wrapper [58] to compute the1040

ESDF of the scene in a separate node that runs at 20 Hz. The ESDF calculation aggregates the1041

24

depth maps from all available cameras and excludes robot arms using cuRobo and any grasped rigid1042

objects (tracked via a masked tracker model Cutie [136]). A collision voxel grid is then calculated1043

using the ESDF and used by other modules in the system. In the sub-goal solver module, we first1044

downsample the gripper points and the grasped object points to have a maximum of 30 points using1045

farthest point sampling. Then we calculate the collision cost using the ESDF voxel grid with linear1046

interpolation with a threshold of 15cm.1047

Reachability: Since our decision variables are end-effector poses, which may not be always reach-1048

able by the robot arms, especially in confined spaces, we need to add a cost term that encourages1049

finding solutions with valid joint configurations. Therefore, we solve an IK problem in each iteration1050

of the sub-goal solver using PyBullet [133] and use its residual as a proxy for reachability. We find1051

that this takes around 40% of the time of the full objective function. Alternatively, one may solve1052

the problem in joint space, which would ensure the solution is within the joint limits by enforcing1053

the bounds. We find that this is inefficient with our Python-based implementation as we need to cal-1054

culate forward kinematics for a magnitude of more times in the path solver, because the constraints1055

are evaluated in the task space. To address this while ensuring efficiency, future works can consider1056

using hardware-accelerated implementations to solve the problems in joint space [58].1057

Pose Regularization: We also add a small cost that encourages the sub-goal to be close to the1058

current end-effector pose.1059

Consistency: Since the solver iteratively solves the problem at a high frequency and the noise from1060

the perception pipeline may propagate to the solver, we find it useful to include a consistency cost1061

that encourages the solution to be close to the previous solution.1062

(Dual-Arm only) Self-Collision Avoidance: To avoid two arms collide with each other, we compute1063

the pairwise distance between the two point sets, each including the gripper points and grasped1064

object points.1065

A.9 Implementation Details of Path Solver1066

The path problems are implemented and solved using SciPy [128]. The number of decision variables1067

is calculated based on the distance between the current end-effector pose and the target end-effector1068

pose. Specifically, we define a fixed step size (20cm and 45 degree) and linearly approximate the1069

desired number of “intermediate poses”, which are used as decision variables. As in the sub-goal1070

problem, they are similarly represented using position and Euler angles with the same bounds. For1071

the first solving iteration, the initial guess is chosen to be linear interpolation between the start and1072

the target. We similarly use sampling-based global optimization followed by a gradient-based local1073

optimizer in the first iteration and only use local optimizer in subsequent iterations. After we obtain1074

the solution, represented as a number of intermediate poses, we fit a spline using the current pose,1075

the intermediate poses, and the target pose, which are then densely sampled to be executed by the1076

robot.1077

In the objective function, we first unnormalize the decision variables and use piecewise linear in-1078

terpolation to obtain a dense sequence of discrete poses to represent the path (referred to as “dense1079

samples” below). A spline interpolation would be aligned with how we postprocess and execute the1080

solution, but we find linear interpolation to be computationally more efficient. Below we discuss the1081

individual cost terms in the objective function.1082

Constraint Violation: Similar to that in the sub-goal problem, we check violation of the ReKep1083

constraints for each dense sample along the path and penalize with large weights.1084

Scene Collision Avoidance: The calculation is similar to the sub-goal problem, except that it is1085

calculated for each dense sample. We ignore the collision calculation with a 5cm radius near the1086

start and the target poses, as this tends to stabilize the solution when solved at a high frequency due1087

to various real-world noises. We additionally add a table clearance cost that penalizes the path from1088

penetrating the table (or the bottom of the workspace for the wheeled single-arm robot).1089

25

Path Length: We approximate the path length using the dense samples by taking the sum of their1090

differences. Shorter paths are encouraged.1091

Reachability: We solve an IK problem for each intermediate pose inside the objective function as1092

in the sub-goal problem. See the sub-goal solver section for more details.1093

Consistency: As in the sub-goal problem, we encourage the solution to be close to the previous1094

one. Specifically, we store the dense samples from the previous iteration. To calculate the solution1095

consistency, we use the pairwise distance between the two sequences (treated as two sets) as an1096

efficient proxy. Alternatively, Hausdorff distance can be used.1097

(Dual-Arm only) Self-Collision Avoidance: We similarly compute self-collision avoidance for the1098

dual-arm platform as in the sub-goal problem. We also use pairwise distance between the two1099

sequences to efficiently calculate this cost.1100

A.10 Comparisons with Prior Works on Visual Prompting for Manipulation1101

There has been several concurrent works investigating the application of visual prompting of VLMs1102

to robotic manipulation [99–101, 112, 125]. Below we summarized the differences to highlight the1103

contributions of this work.1104

Task DoF: In this work, we focus on challenging tasks that require 6 DoF (single arm) or 12 DoF1105

(two arms) motions. However, this is not trivial for existing VLMs which operate on 2D images – as1106

quoted from MOKA [100], “current VLMs are not capable of reliably predicting 6-DoF motions”1107

and PIVOT [101], “generalizing to higher dimensional spaces such as rotation poses even additional1108

challenges”. To tackle this, one key insight from ReKep is that VLMs only need to implicitly specify1109

full 3D rotations by reasoning about keypoints in (x, y, z) Cartesian coordinates. After this, actual1110

3D rotations are solved by high-precision and efficient numerical solvers, effectively sidestepping1111

the challenge of explicitly predicting 3D rotations. As a result, the same formulation also naturally1112

generalizes to controlling multiple arms.1113

High-Level Planning: While many works also consider multi-stage tasks via an language-based1114

task planners which are independent from their methods, our formulation takes inspiration from1115

TAMP and organically integrates high-level task planning with low-level actions in a unified contin-1116

uous mathematical program. As a result, the method can naturally consider geometric dependencies1117

across stages and do so at a real-time frequency. When a failure occurs, it would backtrack to a1118

previous stage in which its conditions can still be satisfied. For example, in the “pouring tea” task,1119

the robot can only start tilting the teapot when the teapot spout is aligned with the cup opening.1120

However, if the cup is being moved in the process, it should level the teapot and re-align with the1121

cup. Or if the teapot is being taken from the gripper, it should instead re-grasp the teapot.1122

Low-Level Execution: A common issue with using VLMs is that it is computationally expensive1123

to run, hindering the high-frequency perception-action feedback loops often required for many ma-1124

nipulation tasks. As a result, most of existing works either consider the open-loop settings where1125

visual perception is only used in the beginning or only consider the tasks where slow execution is1126

acceptable. Instead, our formulation natively supports a high-frequency perception-action loops by1127

coupling VLMs with a point tracker, which effectively enables reactive behaviors via closed-loop1128

execution despite leveraging very large foundation models.1129

Visual Prompting Methods: We uniquely consider using visual prompting for code-generation,1130

where code may contain arbitrary arithmetic operations on a set of keypoints via visual referring1131

expressions. Although a single point is limiting to capture complex geometric structure, multiple1132

points and their relations can even specify vectors, surfaces, volumes, and their temporal dependen-1133

cies. While being conceptually simple, this offers a much higher degree of flexibility which can1134

fully specify 6 DoF or even 12 DoF motions.1135

26

A.11 Extended Discusssions on Limitations1136

Herein we present additional limitations of the existing system.1137

Prompting and Robustness: Although we have demonstrated that existing VLMs possess rudi-1138

mentary capabilities at specifying ReKep constraints, we have observed that when dealing with1139

tasks that span many stages with several temporally dependent constraints (A.14), the VLMs lack1140

enough robustness to obtain consistent success.1141

Task-Space Planning: To enable efficient planning, in this work we only consider planning in the1142

task space with the end-effector poses as decision variables. However, we have observed that in1143

certain scenarios, it may be kinematically challenging for robots to achieve the optimized poses as1144

the solver does not explicitly account for the kinematics of the robot. Planning in joint space can1145

likely resolve the issue but we find it to be less computationally efficient for our tasks.1146

Articulated Object Manipulation: In this work, we do not investigate tasks involving articulated1147

objects, as we observed this requires advanced spatial reasoning capabilities that are beyond those1148

of existing VLMs. However, the ReKep formulation may be extended to such tasks by representing1149

different types of joints also by “relations of keypoints”. For example, ReKep constraints can be1150

written to constrain certain keypoints to move only alongside a line (prismatic joints) or a curve1151

(revolute joints). To extend to these scenarios, finetuning may be required as in [150–152].1152

Bimanual Coordination: Although we demonstrate the application of ReKep to bimanual manipu-1153

lation, we also identify several important limitations in this domain. Notably, the challenges can be1154

roughly categorized into those pertaining to semantic reasoning of keypoint relations by the VLM1155

and those pertaining to solving for bimanual motions by the optimization solver. For semantic rea-1156

soning, to achieve bimanual folding, the VLM needs to possess certain spatial knowledge about1157

which steps should/can be performed together by both arms. For example, the bottom of a shirt1158

often needs to be grasped by two hands, each at one corner, in order to fold it upwards to align with1159

the collar. Another example in blanket folding is to recognize that the bottom-left corner should1160

be aligned with the top-left corner and the bottom-right corner should be aligned with the top-right1161

corner, as other matching may lead to self-collision. For optimization solver, as bimanual motion1162

planning dramatically increases the search space of possible motions, which slows down the overall1163

pipeline and more frequently produces less optimal behaviors.1164

A.12 Simulation Experiments1165

We additionally implement ReKep in OmniGibson [153] for the Pour Tea task. It is compared1166

to a monolithic learning-based baseline based on the transformer architecture [154] adopted from1167

RVT [155, 156]. The baseline is trained via imitation learning on 100 expert demonstrations, where1168

demonstrations are from scripted policies using privileged simulation information. Success rates are1169

averaged across 100 trials and reported below. Although the monolithic policy excels in training1170

scenarios given its access to expert demonstrations, we observe that ReKep performs significantly1171

stronger in unseen settings, and more importantly, without the need of expert demonstrations.1172

Seen Poses Unseen Poses Unseen Objects

Monolithic Policy 0.93 0.31 0.14
ReKep (Zero-Shot) 0.75 0.68 0.72

A.13 Comparisons of Visual Feature Extractors for Keypoint Proposal1173

Herein we provide qualitative comparisons of different methods for keypoint proposal. We compare1174

three pre-trained visual feature extractors, each of which represents a popular class of pre-training1175

methods: DINOv2 [5] (self-supervised pre-training), CLIP [94] (vision-language contrastive pre-1176

training), and ViT [157] (supervised pre-training). We also compare to a variant that does not use1177

27

Segment Anything (SAM) [132] for its objectness prior. In Fig. 8, we show the extracted feature1178

maps (projected to RGB space) and their clustered keypoints for three different scenes.1179

We would like to note two important observations from the comparisons: 1) objectness prior given1180

by SAM is critical to constrain the keypoint proposal on objects in the scene instead of on the1181

background, and 2) while most visual foundation models can provide useful guidance, DINOv21182

produces sharper features that can better distinguish fine-grained regions of an object. The first1183

observation can be clearly made by comparing the last column with other candidate methods. The1184

second observation can be made by noting the following places: 1) the unique cyan color on the1185

cup handle in the first scene, 2) the unique colors of the box panels in the second scene, and 3) the1186

blue/green contrast of the top panel and the side panel in the third scene. Similarly, CLIP provides1187

different features between different object parts, but the features are less sharp than those of DINOv21188

(color saturating from one part to the other). ViT, on the other hand, produces least distinguishable1189

features between object parts, especially when texture is similar. In general, our observations are1190

aligned with other works that also apply DINOv2 for its fine-grained object understanding [114,1191

121, 123].1192

SAM + DINOv2 SAM + CLIP SAM + ViT DINO only

Figure 8: Comparisons of different methods for keypoint proposal.

28

A.14 Case Study of Long-Horizon Tasks1193

To stress test the presented system, we additionally perform a case study of a long-horizon bimanual1194

task of preparing breakfast tray. A successful completion requires 10 stages: 1) grasp table cloth,1195

2) place table cloth inside the tray, 3) grasp bread from the plate, 4) place bread on top of the table1196

cloth, 5) grasp mug and teacup simultaneously with two arms, 6) align mug and teapot, 7) pour tea1197

into the mug, 8) place the mug inside the tray, 9) grasp the two tray handles simultaneously with two1198

arms, and 10) lift up the tray and hand it to the human operator.1199

This task presents significant challenges for many components in the system. Specifically, we find1200

that existing pipeline for keypoint proposal and constraint specification are incapable of generating1201

the full set of correct keypoints and the full sequence of the correct ReKep constraints. Additionally,1202

we observe that as a result of multiple present objects, our point tracker is incapable of consistently1203

tracking all required keypoints in the scene. As a result, we resort to manually annotated keypoints1204

and constraints, as well as keypoint detection at only the start of each stage instead of persistent1205

keypoint tracking. With the above modifications, we find that the system can reasonably perform1206

the task. The initial and final configurations are shown below. The solutions for each stage are1207

shown on the next page. The video result is available at rekep-corl.github.io.1208

Initial Final

Figure 9: Initial configuration and successful final configuration of the preparing breakfast tray task.

29

https://rekep-corl.github.io/

Stage 1 Stage 2

Stage 3 Stage 4

Stage 5 Stage 6

Stage 7 Stage 8

Stage 9 Stage 10

Figure 10: Solution visualization of the preparing breakfast tray task.

30

	Introduction
	Related Works
	Method
	Relational Keypoint Constraints (ReKep)
	Manipulation Tasks as Constrained Optimization with ReKep
	Decomposition and Algorithmic Instantiation
	Keypoint Proposal and ReKep Generation

	Experiments
	In-the-Wild and Bimanual Manipulation with ReKep
	Generalization in Manipulation Strategies
	System Error Breakdown

	Conclusion & Limitations
	Appendix
	Pseudo-code for Sequential Manipulation with Relational Keypoint Constraints
	Wheeled Single-Arm Platform
	Stationary Dual-Arm Platform
	Evaluation Details
	Details for In-the-Wild and Bimanual Manipulation (Section 4.1)
	Details on Baseline Methods
	Details for Generalization in Manipulation Strategies (Section 4.2)

	Implementation Details of Keypoint Proposal
	Querying Vision-Language Model
	Implementation Details of Point Tracker
	Implementation Details of Sub-Goal Solver
	Implementation Details of Path Solver
	Comparisons with Prior Works on Visual Prompting for Manipulation
	Extended Discusssions on Limitations
	Simulation Experiments
	Comparisons of Visual Feature Extractors for Keypoint Proposal
	Case Study of Long-Horizon Tasks

