
Improving autoformalization via
cycle consistency and incremental type-checking

using language-model probabilistic programs

Mauricio Barba da Costa∗1, Fabian Zaiser∗1, Katherine M. Collins1,
Romir Patel1, Timothy J. O’Donnell2,3,4, Alexander K. Lew5,

Joshua B. Tenenbaum1, Vikash K. Mansinghka1, Cameron E. Freer1

1MIT, 2McGill University, 3Mila – Québec AI Institute, 4Canada CIFAR AI Chair, Mila 5Yale University
{barba, fzaiser, katiemc, romir, jbt, vkm, freer}@mit.edu

timothy.odonnell@mcgill.ca, alexander.lew@yale.edu

Abstract

Autoformalization, the task of translating natural-language mathematics into a
formal language such as Lean, has the potential to change the nature of math-
ematical discovery — providing mathematicians more certainty via verification
during their proof-discovery process and even facilitating automated mathemat-
ical reasoning. In recent years, language models have made great strides to-
wards autoformalization, but the task remains challenging both because of the
rigidness of the target formal languages and the inherent uncertainty in informal
texts. We propose a method for autoformalization via language-model probabilis-
tic programming. Using tools for constrained generation from language models
(LMs), we probabilistically steer LMs by incorporating two correctness signals:
(i) incremental type-checking in Lean to rule out generations with no valid com-
pletion, and (ii) cycle consistency whereby a backtranslation of the formalized
statement is constrained to be similar to the original informal statement. We
demonstrate that both of these signals can improve autoformalization quality on the
miniF2F and LeanEuclid Book datasets, while requiring fewer tokens and shorter
runtime.

1 Introduction

The majority of human-written mathematics is expressed “informally” in natural language — using
mathematical symbols and a variety of abstract notation and concepts, but nevertheless without
formal semantics or the possibility of automatically checking the arguments. Formalization can turn
informal mathematical statements and proofs into a concrete symbolic form that is verifiable, but
writing proofs in formal mathematics is often far more tedious, slow, error-prone, and unnatural for
human mathematicians [Bayer et al., 2024].

Autoformalization is the task of translating informal mathematical text into unambiguous statements
in a machine-verifiable formal language used in a theorem prover such as Lean 4. Language models
(LMs) are a natural candidate for this task due to their linguistic and code-generation abilities.
However, such models suffer from several shortcomings: limited training data in Lean compared to
common programming languages like Python, instability due to language and library changes, and
the general problem of confabulation [Yang et al., 2025].

∗Equal contribution.

The 5th Workshop on Mathematical Reasoning and Artificial Intelligence (MATH-AI), 2025.

To address these challenges, we propose leveraging techniques from language-model probabilistic
programming [Lew et al., 2023, Loula et al., 2025] as a principled way of incorporating diverse
correctness signals. In this paper, we illustrate how to use these tools to enforce type-checking and
cycle consistency, and demonstrate that this boosts the quality of autoformalization. We find that
across two datasets, both type-checking and cycle consistency can improve autoformalization quality.

More generally, our framework is flexible enough to incorporate a variety of semantic and syntactic
constraints (enforcing mathematical correctness but also inferring plausibility and human intent),
which can help in scaling autoformalization from single statements to longer texts, as well as for many
other tasks in mathematical reasoning, including lemma synthesis, conjecturing, fixing incorrect
statements, and premise selection.

We contribute: (1) language model probabilistic programming for autoformalization, a framework
for using constrained generation via conditional inference to improve formalization quality. We use
sequential Monte Carlo to sample from the posterior distribution of the LM distribution conditioned on
the above signals of various kinds: binary (valid/invalid) vs. continuous, syntactic vs. semantic, hard
(strict) vs. soft (lenient); (2) incremental type-checking: as one such signal, we run the Lean type-
checker incrementally during LM generation, which allows us to detect and steer away from syntax-
and type-errors as well as uses of deprecated/confabulated names for mathematical concepts earlier
in the generation process; (3) cycle consistency: we adapt the classic idea of backtranslation from
natural language translation to autoformalization using conditional probabilities of LM completions
— specifically, asking an LM to informalize the candidate formalizations and score them according to
how close they are to the original informal statement; (4) empirical evaluation: we demonstrate that
our techniques can improve autoformalization performance, while using fewer tokens and less time.

2 Methods

2.1 Constrained Generation via Sequential Monte Carlo using GenLM

Constrained decoding has been used in the past to coerce language models to conform to a specific
grammar. One of the first such iterations of this was done by Poesia et al. [2022], which constrains
the output of each forward pass to tokens that are syntactically constrained and well-typed. However,
locally constraining the next token does not generate sequences with the same probabilities as the
language model conditioned on the desired constraints. Loula et al. [2025] and Lipkin et al. [2025]
solve this problem by using sequential Monte Carlo methods to approximately sample from the
correct conditional distribution, with Loula et al. [2025] also allowing for sampling from distributions
weighted by continuous signals instead of strictly binary ones.

(a) (b)

Figure 1: (a) GenLM performs sequential Monte Carlo inference to generate particles that are
constrained from an LM given a prompt specifying the task and potentials for steering. (b) Sequential
Monte Carlo guides LM sampling by generating, scoring, and resampling a number of weighted LM
generations (particles). Their weights are adjusted according to the potentials (in this case, the Lean
well-typed potential). Resampling (according to the weights) ensures particle diversity.

We use the GenLM [Loula et al., 2025] language-model probabilistic programming method. (For
details, see Appendix A2.) Using it, we can program potentials, i.e., likelihood functions Token∗ →
[0,∞), by which the prior is multiplied in order to “steer” the language model (Fig. 1a). Potentials
can be binary (0 or 1), like checking syntactic validity, or continuous, like a numerical score assigned
by another LM. We use GenLM to perform sequential Monte Carlo [Doucet et al., 2001] to sample
approximately from the posterior distribution proportional to the prior LM distribution times the
potentials (Fig. 1b).

2

2.2 Incremental Type-Checking

Running Lean’s parser and type checker can detect various errors, such as syntax errors (e.g.,
LMs outputting Lean 3 code instead of Lean 4), semantic errors (e.g., nonexistent library concepts
confabulated by the LM), and type errors (e.g., invalid composition of concepts by the LM). It is
desirable to catch such errors as early as possible; as such, we run the Lean type checker incrementally
at “safe points” during LM generation, such as just after a completed hypothesis or conclusion. At
these points, the Lean theorem statement is incomplete, so Lean’s parser would always yield an
error. To prevent this, we complete the generated theorem with a “dummy” conclusion and proof
(see Fig. 2). This Lean well-typed potential is active only within ```lean4 code blocks in the LM’s
output and rejects generations whose “dummy” completion fails to type-check.

Figure 2: Incremental type-checking: during LM generation, we run the Lean type checker after
every completed hypothesis (in this example, [Group G]) and conclusion. Running the type checker
directly would lead to a syntax error, so we add a dummy conclusion (True) and proof (by sorry),
which is accepted by Lean.

2.3 Cycle Consistency

The cycle consistency heuristic, whereby translations are judged to be more accurate when they
have backtranslations similar to the original, has been used in image processing [Zhu et al., 2017],
natural language [Lample et al., 2018], and autoformalization [Wu et al., 2022, Gao et al., 2025,
Li et al., 2024]. In Fig. 3, we adapt this method to our setting using an LM to autoinformalize
a candidate formalization. As part of our SMC pipeline, we generate multiple particles for each
formalization attempt in parallel. We then score these particles by the log probability of the LM
generating the original statement given the candidate formalization. Insofar as our method samples
multiple particles in parallel and scores the particles at the end, it is similar to Li et al. [2024], but we
score particles using the log probability instead of cosine similarity and we don’t use an automatic
theorem-prover to assess correctness. Our method uses only the base language model and, unlike
other autoformalization methods, does not require any training.

Figure 3: Cycle consistency prefers formalizations whose informalizations are close to the origi-
nal. Step (a) samples from the distribution of an LM (DeepSeek-R1-Distill-Llama-70B) which
is prompted to formalize the input (optionally using controlled generation). Step (b) scores the
formalizations according to the log probability that the LM generates the original input text when it
is prompted to informalize the given formalization. Inaccurate formalizations (like the third, which
uses “≥ 0” instead of “> 0”) rank lower.

2.4 Autoformalization using GenLM

We combine all these ingredients to improve the autoformalization accuracy of the base LM. We
prompt DeepSeek-R1-Distill-Llama-70B to translate a given natural-language mathematics state-
ment to a Lean 4 statement after a 5-shot prompt of formal-informal example pairs. We use GenLM

3

Table 1: The Lean well-typed and cycle-consistency potentials each separately improve auto-
formalization quality, and their combination performs best — while using fewer tokens
and achieving shorter runtime than the baseline. Both the baseline and our method use
DeepSeek-R1-Distill-Llama-70B. The baseline is a single run, with unrestricted CoT. Our method
uses GenLM to run SMC with 5 particles, with CoT suppressed. Our full method appears in the “both
potentials” row, with three ablations shown above.

miniF2F LeanEuclid Book

Method Score (%) Tokens Time (s) Score (%) Tokens Time (s)

Baseline: single run with CoT 16.0 1715 124.4 14.0 1040 92.1

Ours: GenLM running SMC with
no potential 25.6 252 7.5 7.9 552 15.9
Lean well-typed potential 34.1 952 49.7 14.2 547 16.6
cycle-consistency potential 32.7 252 7.5 4.8 552 15.9
both potentials 38.0 952 49.7 16.8 547 16.6

to run sequential Monte Carlo on this prior distribution with the Lean well-typed potential (includ-
ing incremental type-checking) and the cycle-consistency potential. (For details on potentials, see
Appendix A3.)

3 Empirical Evaluation

We benchmark our autoformalization performance on two challenging datasets (see Table 1). The
miniF2F dataset consists of high school and college-level mathematics problems. The LeanEuclid
Book dataset from Murphy et al. [2024] contains Euclidean geometry problems stated in a constrained
domain-specific language (DSL), in which base LMs have not been substantially pretrained. We use
the 43 problems in the Book dataset and subsample 50 problems from the miniF2F dataset.

As a baseline, we run DeepSeek-R1-Distill-Llama-70B once. Our method uses GenLM to run
SMC with 5 particles using the same LM with chain-of-thought (CoT) suppressed, using both the
Lean well-typed and cycle-consistency potentials, which we label “both potentials” in Table 1. We
also consider ablations of our full model (removing each potential). We label these ablations “no
potential”, “Lean well-typed potential”, and “cycle-consistency potential”.

We evaluate the empirical distribution of the correctness of formalizations obtained by the 5 particles.
For LeanEuclid Book, automated equivalence checks are possible, and so to judge correctness we use
the symbolic checker E3, which verifies whether a candidate formalization is logically equivalent
to the ground truth in the constrained geometry DSL, as in Murphy et al. [2024]. For miniF2F, no
symbolic tool for correctness is available, and so we rely on hand annotation to assess the semantic
match (0% or 100%) between the candidate formalization and the informal statement. The score for
a given formalization task is the weighted average of each particle’s correctness score. These scores
are then averaged across all 50 problems for the dataset. (For further details, see Appendix A1.)

Our method improves autoformalization quality on both miniF2F and LeanEuclid Book datasets,
while requiring substantially fewer tokens and less wall-clock time. Both the Lean well-typed
potential and the cycle-consistency potential contribute to this, as shown by our ablation study.

4 Discussion

Our results demonstrate the promise of language-model probabilistic programming for autofor-
malization. Both Lean well-typed and cycle-consistency potentials improve the autoformalization
performance, with the combination of both achieving the best performance — while using fewer
tokens and achieving shorter runtime. This could allow us to lift smaller models towards the quality of
larger baselines, which might enable compute-efficient locally-runnable AI thought partners [Collins
et al., 2024, Frieder et al., 2024] for mathematicians.

4

More generally, sequential Monte Carlo can be used to steer an LM using a wide range of customizable
potentials, encoding priors about the likely intent of mathematicians in the informal text. By
incorporating a richer array of such priors (including retrieval from Mathlib, common patterns in
mathematical statements, plausibility in light of earlier text, etc.), a wide range of human mathematical
behavior can be captured as inference over the same base LMs. Autoformalization systems that
are attentive to these subtleties in informal text could free mathematicians to continue to explore
mathematics informally while keeping their work verifiable.

Our research also has implications for programming language design. In particular, this method
of constraining an LM via incremental type-checking could be generally useful in strongly-typed
functional languages, and cycle consistency could be useful in cross-compilation.

Acknowledgments

We thank Benjamin LeBrun, Benjamin Lipkin, Ced Zhang, and the GenLM Consortium for valuable
conversations that informed this work. KMC acknowledges support from the Cambridge Trust and
King’s College Cambridge.

5

References
Jonas Bayer, Christoph Benzmüller, Kevin Buzzard, Marco David, Leslie Lamport, Yuri Matiyasevich,

Lawrence Paulson, Dierk Schleicher, Benedikt Stock, and Efim Zelmanov. Mathematical proof
between generations. Notices of the American Mathematical Society, 71(1):79–92, 2024. URL
https://doi.org/10.1090/noti2860.

Katherine M. Collins, Ilia Sucholutsky, Umang Bhatt, Kartik Chandra, Lionel Wong, Mina Lee, Cede-
gao E. Zhang, Tan Zhi-Xuan, Mark Ho, Vikash Mansinghka, Adrian Weller, Joshua B. Tenenbaum,
and Thomas L. Griffiths. Building machines that learn and think with people. Nature Human
Behaviour, 8(10):1851–1863, 2024. URL https://doi.org/10.1038/s41562-024-01991-9.

Arnaud Doucet, Nando de Freitas, and Neil J. Gordon. An introduction to sequential Monte Carlo
methods. In Arnaud Doucet, Nando de Freitas, and Neil J. Gordon, editors, Sequential Monte Carlo
Methods in Practice, Statistics for Engineering and Information Science, pages 3–14. Springer,
2001. URL https://doi.org/10.1007/978-1-4757-3437-9_1.

Simon Frieder, Jonas Bayer, Katherine M. Collins, Julius Berner, Jacob Loader, András Juhász,
Fabian Ruehle, Sean Welleck, Gabriel Poesia, Ryan-Rhys Griffiths, Adrian Weller, Anirudh Goyal,
Thomas Lukasiewicz, and Timothy Gowers. Data for mathematical copilots: Better ways of
presenting proofs for machine learning, 2024. URL https://arxiv.org/abs/2412.15184.

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
A natural language annotated Lean 4 dataset, 2025. URL https://arxiv.org/abs/2410.10878.

GenLM Consortium. GenLM-Control Library, 2025. URL https://genlm.org/genlm-control.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised
machine translation using monolingual corpora only. In International Conference on Learning
Representations (ICLR 2018), 2018. URL https://openreview.net/forum?id=rkYTTf-AZ.

Alexander K. Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K. Mansinghka. Sequential Monte
Carlo steering of large language models using probabilistic programs, 2023. URL https://arxiv.
org/abs/2306.03081.

Zenan Li, Yifan Wu, Zhaoyu Li, Xinming Wei, Xian Zhang, Fan Yang, and Xiaoxing Ma. Autofor-
malize mathematical statements by symbolic equivalence and semantic consistency, 2024. URL
https://arxiv.org/abs/2410.20936.

Benjamin Lipkin, Benjamin LeBrun, Jacob Hoover Vigly, João Loula, David R. MacIver, Li Du,
Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Timothy J. O’Donnell, Alexander K. Lew, and
Tim Vieira. Fast controlled generation from language models with adaptive weighted rejection
sampling. In Proceedings of the 2nd Conference on Language Modeling (COLM 2025), Montréal,
Canada, 2025. URL https://openreview.net/forum?id=3BmPSFAdq3.

João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya
Emara, Marjorie Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Alexander K. Lew,
Tim Vieira, and Timothy J. O’Donnell. Syntactic and semantic control of large language models
via sequential Monte Carlo. In Proceedings of the Thirteenth International Conference on Learning
Representations (ICLR 2025), Singapore, April 2025. URL https://openreview.net/forum?
id=xoXn62FzD0.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking, 2025. URL https://arxiv.org/abs/2504.09858.

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu Li, Anima Anandkumar, and Xujie Si. Autofor-
malizing Euclidean geometry. In Proceedings of the 41st International Conference on Machine
Learning (ICML 2024), volume 235 of Proceedings of Machine Learning Research, pages 36847–
36893. PMLR, 2024. URL https://proceedings.mlr.press/v235/murphy24a.html.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek,
and Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models.
In International Conference on Learning Representations (ICLR 2022), 2022. URL https:
//openreview.net/forum?id=KmtVD97J43e.

6

https://doi.org/10.1090/noti2860
https://doi.org/10.1038/s41562-024-01991-9
https://doi.org/10.1007/978-1-4757-3437-9_1
https://arxiv.org/abs/2412.15184
https://arxiv.org/abs/2410.10878
https://genlm.org/genlm-control
https://openreview.net/forum?id=rkYTTf-AZ
https://arxiv.org/abs/2306.03081
https://arxiv.org/abs/2306.03081
https://arxiv.org/abs/2410.20936
https://openreview.net/forum?id=3BmPSFAdq3
https://openreview.net/forum?id=xoXn62FzD0
https://openreview.net/forum?id=xoXn62FzD0
https://arxiv.org/abs/2504.09858
https://proceedings.mlr.press/v235/murphy24a.html
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N. Rabe, Charles Staats, Mateja Jam-
nik, and Christian Szegedy. Autoformalization with large language models. In Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems,
NeurIPS ’22, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/d0c6bc641a56bebee9d985b937307367-Paper-Conference.pdf.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin E. Lauter, Swarat Chaudhuri, and
Dawn Song. Position: Formal mathematical reasoning — a new frontier in AI. In Forty-second
International Conference on Machine Learning (ICML 2025) Position Paper Track, 2025. URL
https://openreview.net/forum?id=HuvAM5x2xG.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: A cross-system benchmark for
formal olympiad-level mathematics. In International Conference on Learning Representations
(ICLR 2022), 2022. URL https://openreview.net/forum?id=9ZPegFuFTFv.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2017. URL https://openaccess.thecvf.com/content_iccv_
2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html.

7

https://proceedings.neurips.cc/paper_files/paper/2022/file/d0c6bc641a56bebee9d985b937307367-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/d0c6bc641a56bebee9d985b937307367-Paper-Conference.pdf
https://openreview.net/forum?id=HuvAM5x2xG
https://openreview.net/forum?id=9ZPegFuFTFv
https://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html

Appendix

A1 Experiment Details 8

A1.1 Suppressing Chain-of-Thought Tokens . 8

A1.2 Prompt . 8

A1.3 Datasets . 9

A1.4 Computational Resources . 9

A1.5 Transpilation for the LeanEuclid System E DSL 9

A1.6 Token Usage . 9

A1.7 Examples . 10

A2 GenLM Background 11

A3 Potentials 11

A3.1 Lean Well-Typed Potential . 12

A3.2 Cycle-Consistency Potential . 12

A1 Experiment Details

A1.1 Suppressing Chain-of-Thought Tokens

Our experiments use DeepSeek-R1-Distill-Llama-70B, a distillation of a reasoning model. Al-
though this is among the more capable LMs of its size for our autoformalization task, the
expensive thinking traces (often thousands of tokens) that it outputs by default often do not
materially improve the formalizations. We use the method described by Ma et al. [2025]
to force the LM to output Lean code without a thinking trace. In particular, we append
<think>Okay, I'm done thinking.</think>\n```lean4\n to our LM prompts, which typi-
cally leads the LM to output merely a completion of the empty lean4 code block.

A1.2 Prompt

Our prompt has the following general format, where the text through “...” consists of several
example natural-language/formal pairs taken from the respective miniF2F or LeanEuclid Book
dataset, followed by the candidate informal text we wish the LM to formalize. In the case of Book,
we also include a basic description from the LeanEuclid paper (because it is a DSL that the LM has
likely not seen before).

|START_USER_CHAT|
Natural language version: Let X be a topological space; let A be a subset of
X. Suppose that for each x ∈ A there is an open set U containing x such that
U ⊂ A. Then A is open in X.

Translate the natural language version to a Lean 4 version:
import Mathlib
theorem subset_of_open_subset_is_open (X : Type*) [TopologicalSpace X] (A :
Set X) (hA : ∀x ∈ A, ∃U : Set X, IsOpen U ∧ x ∈ U ∧ U ⊆ A): IsOpen A := by
sorry

...

8

Natural language version: If x is an element of G such that xn ̸= 1 for all
n, prove that the elements xn are all distinct.

Translate the natural language version to a Lean 4 version:
|END_USER_CHAT|
|START_ASSISTANT_CHAT|
<think>
Okay, I’m done thinking.
</think>
```lean4

A1.3 Datasets

We benchmark our results on two datasets: 50 problems from miniF2F [Zheng et al., 2022] and
43 problems from LeanEuclid Book [Murphy et al., 2024]. The miniF2F dataset has informal and
corresponding formalized mathematics problems from high-school mathematics and olympiads
and undergraduate mathematics. We use the Book benchmark from LeanEuclid, which contains
formalizations of statements from Euclid’s Elements in a Lean DSL for synthetic geometry.

A1.4 Computational Resources

Running our experiments on the miniF2F and LeanEuclid Book datasets (approximately 50 problems
each) took roughly 6 hours with 4 A100 GPUs (80 GB).

A1.5 Transpilation for the LeanEuclid System E DSL

Theorem statements in LeanEuclid’s System E DSL must be of the form ∀... → ∃.... All variables
and hypotheses must be defined in the universal quantifier, which is more constrained than the way
that Lean is usually structured:
theorem example_thm (h1 : ...) ... : ∃ ... := by sorry
Since many language models are trained on this type of Lean statement formatting, we convert the
latter format to the former.

A1.6 Token Usage

We find that the tokens-per-second rate with or without our potentials are similar for the LeanEuclid
Book benchmark. Running the miniF2F benchmarks with the Lean well-typed potential takes
considerably longer than the other benchmarks because constraining the LM sometimes causes it to
enter loops that lead the LM to output nonsensical tokens until it reaches the max token limit of 500.
Strangely, Table 2 shows that the token per second rate of running the miniF2F benchmark with the
Lean well-typed potential also decreases. We hypothesize that this is due to KV cache overhead on
our hardware. Our observations regarding token usage are generally aligned with Ma et al. [2025],
which finds that when controlling for the number of tokens, parallel sampling schemes that suppress
thinking and aggregate multiple outputs can outperform language models with reasoning.

9



Table 2: Incremental type-checking with the Lean well-typed potential adds little overhead on
miniF2F and LeanEuclid Book benchmarks. “Base” shows the number of tokens generated per
second and “parallelism-adjusted” indicates that we divide the values by 5 to account for the tokens
that are generated in parallel by GenLM which do not contribute to making the sequence longer.

miniF2F LeanEuclid Book

Method Base Parallelism-
adjusted Base Parallelism-

adjusted

Baseline: single run with CoT 13.8 — 11.3 —
No potential 33.6 6.7 34.7 6.94
Lean well-typed potential 19.2 3.8 33.0 6.6

A1.7 Examples

A common failure mode of language models when producing Lean code is that they confabulate the
names of lemmas and they call functions with improper types. Both of these errors are picked up
by our incremental type-checking system. Below are examples of some of the base language model
producing ill-typed code that is mitigated with GenLM.

Formalization: ∀ (a : Point) (b : Point) (c : Point) (d : Point) (e : Point)
(f : Point) (AB : Line) (BC : Line) (AC : Line) (DE : Line) (DF : Line)
(EF : Line), ((formTriangle a b c AB BC AC) ∧ (formTriangle d e f DE EF DF)
∧ (|(a-b)| = |(d-e)|) ∧ (|(a-c)| = |(d-f)|) ∧ (∠ a:b:c = ∠ d:e:f)) → ((
(|(b-c)| = |(e-f)|) ∧ (Triangle.congruent △ a:b:c △ d:e:f) ∧ (∠ b:c:a = ∠
e:f:d) ∧ (∠ a:c:b = ∠ d:f:e)))

Error: function expected at c term has type Point

Formalization: ∀ (a : Point) (b : Point) (c : Point) (d : Point) (AB : Line)
(BC : Line) (AC : Line), ((formTriangle a b c AB BC AC) ∧ (Point.between b c
d)) → (∠ a:c:d > ∠ b:a:c ∧ ∠ a:c:d > ∠ a:b:c)

Error: unknown constant ’Point.between’

The cycle-consistency potential improves the performance of our model by upweighting generations
that resemble the informal text more closely. The example below shows a natural language statement
in the miniF2F dataset followed by 4 formalizations that were generated in parallel using our method.
Initially, all formalizations are assigned roughly equal probability. With cycle consistency, however,
the probability of a correct formalization being sampled increases from 50% to 100%.

Given f(x) = cx3 − 9x+ 3 and f(2) = 9, find the value of c. Show that it is 3.

theorem formalized_thm (x : R) (c : R) (h1 : ∀ x, x = 2 → cx3 − 9x+ 3 = 9)
: c = 3 := by

Status: Incorrect
Original probability: 0.25
Probability with cycle consistency: 0.00

10



theorem formalized_thm (f : R → R) (c : R) (h : ∀x, f x = cx3 − 9x+ 3) (hf
: f 2 = 9) : c = 3 := by

Status: Correct
Original probability: 0.25
Probability with cycle consistency: 0.26

theorem formalized_thm : (3 : R) = 3 := by

Status: Incorrect
Original probability: 0.25
Probability with cycle consistency: 0.00

theorem formalized_thm (c : R) (f : R → R := fun x 7→ cx3 − 9x+3) (h : f 2
= 9) : c = 3 := by

Status: Correct
Original probability: 0.25
Probability with cycle consistency: 0.73

A2 GenLM Background

Interface to GenLM The GenLM library [GenLM Consortium, 2025] samples from distributions
over language model completions weighted by certain functions known as potentials. The distribution
given by a language model’s distribution over completions p and a potential Φ is given by

g(x) =
1

Z
p(x)Φ(x).

The overall potential Φ we use here is a product of the following components, which we describe in
more detail in Appendix A3 below.

1. Well-typedness, ΦWT: The potential is 1 when the output is well-typed and is 0 otherwise.

2. Cycle consistency, ΦCC: The potential is given by the likelihood of the informal statement
given by a small language model where the prompt is to informalize the formal statement.

SMC Steering A key advantage of sequential Monte Carlo is its ability to incrementally update
posterior estimates in light of newly observed text. We incrementally type-check Lean code by filling
in intermediate hypotheses with a dummy conclusion and proof.

Adaptive Weighted Rejection Sampling The specific SMC sampling procedure we use via GenLM
is known as Adaptive Weighted Rejection Sampling (AWRS) [Lipkin et al., 2025].

A3 Potentials

GenLM potentials must define both prefix and complete methods, and can be either binary ({0, 1}-
valued) or continuous ([0, 1]-valued).

11



A3.1 Lean Well-Typed Potential

The Lean well-typed potential ΦWT is binary ({0, 1}-valued), and aims to reject a wide variety of
strings that cannot possibly be extended in a way that makes them well-typed in Lean, without
rejecting any that admit at least one well-typed completion.

On a complete LM generation (“complete”), the Lean well-typed potential runs the Lean parser and
type checker. If there are no errors, the potential accepts (returns 1), otherwise rejects (returns 0).

On an incomplete LM generation (“prefix”), the Lean well-typed potential first rejects comments
and line breaks (as LMs sometimes use them to “put off” the salient part of the formalization). Next,
it checks whether the current prefix is at a likely boundary, i.e., whether it is just after a completed
hypothesis (ending with ), ], or }) or conclusion (ending with :=), which can be checked for well-
typedness. It parses the generated Lean code, replacing proofs with sorry (as we only care about
statement formalization) and patches incomplete syntax, by filling in missing syntactic elements with
“dummy” values (True for the conclusion and sorry for the proof). Finally, the Lean parser and type
checker is run, just like for complete.

1 def prefix(context):
2

3 if empty(context):
4 return 1
5

6 generated_text = tokens_to_str(context)
7 if comments or newlines found:
8 return 0
9

10 if not at likely boundary: # not ending with ) ] } := or ;
11 return 1
12

13 text = lean_prefix + generated_text
14 commands = parse_lean(text)
15 remove proofs from theorems
16 patched = patch_syntax(commands)
17

18 return 1 if is_well_typed_lean(patched) else 0
19

20 def complete(context):
21

22 if empty(context):
23 return 1
24

25 text = lean_prefix + tokens_to_str(context)
26

27 return 1 if is_well_typed_lean(text) else 0

Listing 1: Pseudocode for Lean well-typed potential

A3.2 Cycle-Consistency Potential

For complete generations, the potential ΦCC informalizes the output by prompting a different LM
(in our case, Llama-3.2-3B for speed and smaller memory footprint) to translate the formalization
candidate back to natural language. (This “backwards” task is generally easier for LMs than the
forward direction of formalization.) The potential computes the probability that the LM produces
the original informal statement as a response to that prompt. This probability is a continuous ([0, 1]-
valued) signal about the quality of the formalization since a faithful formalization should contain all
the information in the original.

12



1 def prefix(context):
2 # No prefix constraints/scoring in this potential
3 return 1
4

5 def complete(context):
6 if empty(context):
7 return 1
8 formalized_output = tokens_to_str(context)
9 prompt = informalization_prompt(formalized_output) # essentially:

"Informalize: {formalized_output }"
10 lm.set_prompt_from_str(prompt)
11 # Return the probability of producing the original informal

statement
12 return lm.probability(informal_statement)

Listing 2: Pseudocode for cycle-consistency potential

13


	Introduction
	Methods
	Constrained Generation via Sequential Monte Carlo using GenLM
	Incremental Type-Checking
	Cycle Consistency
	Autoformalization using GenLM

	Empirical Evaluation
	Discussion
	Experiment Details
	Suppressing Chain-of-Thought Tokens
	Prompt
	Datasets
	Computational Resources
	Transpilation for the LeanEuclid System E DSL
	Token Usage
	Examples

	GenLM Background
	Potentials
	Lean Well-Typed Potential
	Cycle-Consistency Potential


