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Abstract

Emphatic algorithms have shown great promise in stabilizing and improving re-
inforcement learning by selectively emphasizing the update rule. Although the
emphasis fundamentally depends on an interest function which defines the intrinsic
importance of each state, most approaches simply adopt a uniform interest over
all states (except where a hand-designed interest is possible based on domain
knowledge). In this paper, we investigate adaptive methods that allow the interest
function to dynamically vary over states and iterations. In particular, we leverage
meta-gradients to automatically discover online an interest function that would
accelerate the agent’s learning process. Empirical evaluations on a wide range of
environments show that adapting the interest is key to provide significant gains.
Qualitative analysis indicates that the learned interest function emphasizes states
of particular importance, such as bottlenecks, which can be especially useful in a
transfer learning setting.

1 Introduction

A fundamental challenge in reinforcement learning (RL) is to approximate key quantities such as
value functions and optimal policies. Under the assumption that the world in which an RL agent
interacts is large and the computational capacity is limited, a natural trade-off emerges in which
certain quantities are more accurately predicted than others over the course of learning. Standard
RL algorithms, such as temporal differences (TD) [41], perform updates at every state, thereby
spending more resources on such frequent states at the expense of other potentially more useful
ones. A possible solution could be to selectively emphasize certain updates, for example through a
state-dependent interest function. However, when combined with standard bootstrapping as in TD(λ),
such update rules are known to be unstable [26].

Emphatic algorithms propose a solution in which state-dependent selective updating can be applied
while maintaining stability under linear function approximation [45]. At their core, emphatic
algorithms determine the emphasis to be applied at each update by accounting for how much the
current state is being bootstrapped from as well as an intrinsic measure of its importance relative to
other states. This intrinsic measure is encoded through an arbitrary state-dependent interest function
which the practitioner can set to any desired positive value. However, with this added flexibility
comes a problematic question: how should one select the interest function?

Previous works propose hand-crafted solutions for the interest function that showcase the usefulness of
selective updating [28, 3, 30]. However, when applying emphatic algorithms to complex environments
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where external domain knowledge may be too hard to encode, other than rare and specific exceptions
[60], most practitioners use a uniform interest over states [45, 54, 21, 61, 22, 18]. That is, they simply
set the interest to 1 for all states. Building on the intuition that it can be beneficial to learn more
from certain states than others, we argue that different emphases may be useful at various stages of
the learning process. Indeed, as the RL learning process is inherently non-stationary, the relative
importance of a particular state in the agent’s updates should likely vary over training iterates as well.

In this work, we study how to adaptively learn the interest function in complex environments where
hand-crafting an effective interest function is impractical. A good approach should allow for fast
and flexible adaptation based on the agent’s interactions with its environment. Considering the
previous success of meta-gradient framework in discovering hyperparameters [56, 59], objective
functions [55], intrinsic rewards [64], and temporal abstractions [52], we here propose to learn and
adapt the interest function based on meta-gradients in an online fashion. The interest function in our
method is parameterized by meta-parameters, which are updated by gradient descent along with the
parameters of the policy and value function.

We empirically investigate the merits of adapting the interest function on a wide variety of envi-
ronments and settings, ranging from prediction with linear function approximation to control on
vision-based tasks. Our contributions are the following. (1) In the off-policy setting, we see substan-
tial gains in performance and sample efficiency when adapting the interest function. (2) We extend the
traditional application of emphatic algorithms from the off-policy setting to on-policy control, where
we find it is crucial to adapt the interest function in order to observe consistent gains. (3) Qualitatively,
our learned interest function appears to naturally discover states of importance, such as bottlenecks
[40]. Such discovery is demonstrated to be very useful in transfer learning experiments. Our results
highlight the general applicability of emphatic algorithms beyond the off-policy single-task setting
considered in most previous studies of emphatic RL.

2 Background

We assume a Markov Decision ProcessM, defined as a tuple ⟨S,A, r, P ⟩with a finite state space S , a
finite action spaceA, a transition probability distribution P : S×A×S → [0, 1], and a scalar reward
function r(s, a) depending on action a ∈ A in state s ∈ S. The policy π : A× S → [0, 1] specifies
the agent’s behaviour and its expected discounted return starting from any state is represented as
the value function: V π(s) = Eπ

[∑∞
i=t γ

i−tRi+1

∣∣St = s
]
, where γ ∈ [0, 1) is the discount factor

and Rt+1 is the sampled reward after performing action At in state St. Under linear function
approximation, the value function is defined with parameters θ ∈ Rn and features ϕ(s) ∈ Rn, that
is V̂ π(s; θ) = θ⊤ϕ(s)2. An efficient family of algorithms for learning such functions builds on the
Temporal Difference (TD) algorithm [41] where the value parameters, θ, are updated as follows:

θt+1 = θt + α(Rt+1 + γθ⊤t ϕt+1 − θ⊤t ϕt)ϕt (1)

with α denoting the step size. In the control setting, the policy gradient theorem [46] for the episodic
case provides the gradient of the expected discounted return from an initial state distribution d(s0)
with respect to a stochastic policy π(· | s; ν) now parameterized by ν:

∂Jπ(ν)

∂ν
=

∑
s

dγπ(s)
∑
a

∂π (a|s; ν)
∂ν

Qπ(s, a) (2)

where dγπ(s) =
∑
s0

d(s0)
∑∞

t=0 γ
tPπ(St = s|S0 = s0) is the discounted state occupancy measure

of the target policy π and Qπ(s, a) = Eπ

[∑∞
i=t γ

i−tRi+1

∣∣St = s,At = a
]

is the state-action value
function. For a more detailed presentation of the notation please refer to App. C.

2.1 Emphatic Algorithms

Emphatic algorithms [45, 29] provide a way to emphasize and de-emphasize the updates made at
each iteration while preserving convergence. Their development was motivated by the challenges
that arise under off-policy learning when using function approximation and bootstrapping [51, 43].
In the off-policy setting, a behavior policy b(a|s) generates the data to learn value functions or

2To simplify notation, we drop s in ϕ (i.e. ϕt instead of ϕ(St) where St is the sampled state at time t).
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policies evaluated under the target policy π(a|s). Emphatic algorithms generalize TD in various
ways, however of particular interest to our work is the added flexibility of arbitrarily defining the
intrinsic importance of each state through the interest function. In the following we present emphatic
algorithms in the general off-policy setting, as learning on-policy is a special case.

Policy Evaluation: In its simplest one-step bootstrapping form, the Emphatic Temporal Difference
(ETD) update rule for the value parameters θ takes the following form

θt+1 = θt + αρtFt(Rt+1 + γθ⊤t ϕt+1 − θ⊤t ϕt)ϕt (3)

where ρt =
π(At|St)
b(At|St)

is the importance sampling ratio at time t and Ft, the followon trace, is defined
as,

Ft = i(St) + γρt−1i(St−1) + γ2ρt−1ρt−2i(St−2) + ... = i(St) + γρt−1Ft−1

Ft = i(St) + γi(St−1) + γ2i(St−2) + ... = i(St) + γFt−1

where i(·) : S −→ R+ is the arbitrary user-defined interest function. The specific form of this trace
depends in part on the interest function, but also on how much a state is bootstrapped from by previous
states, discounted over time. This specific form is what confers stability and convergence to ETD
[58], without introducing the full product of importance ratios used for prior correction [32].

Control: In the actor-critic setting, [11] proposed to maximize the excursions objective Jb(ν) =∑
s db(s)V

π(s) where db(s) is the stationary distribution of the policy b. We explain in App. C the
reason why the stationary distribution appears instead of the discounted state occupancy measure of
(2). They proposed a way to approximate the policy gradient, where such approximation is only valid
in the tabular case. [21] later derived the correct gradient for the more general objective that now
includes the state dependent interest function,

Jb(ν) =
∑
s

db(s)i(s)V
π(s) (4)

where the correct stochastic gradient update for the policy parameters ν takes the following form,

νt+1 = νt + αFtρt∇ log π(At|St; νt)Q
π(St, At) (5)

Interestingly, the same trace Ft from the off-policy policy evaluation setting appears in the off-policy
control setting. Note that ρt would be equal to 1 in the on-policy setting where target policy and
behavior policy are the same.

3 Adaptive Interest

The interest function was designed as a way to emphasize some states more than others and as such
can be an efficient way to encode useful inductive bias. Although it may be possible to find an interest
function that is effective for a specific and simple case (e.g. when additional knowledge about the
task is readily available), it is not convenient to hand-design interest functions that effectively work
for complex domains. For this reason, most previous works on emphatic algorithms consider a simple
uniform interest over states [45, 22].

Furthermore, we hypothesize that the usefulness of a particular interest function can vary through the
learning process itself. This is obvious in the case of a changing environment, for example in continual
learning, but is also relevant in the single task setting where the agent’s policy or bootstrapping targets
vary in a non-stationary manner. In the next section, we further motivate the advantage of an adaptive
interest function through the example of a simple chain MDP.

3.1 Motivating Example

In Fig. 1, we consider the case of off-policy control in a simple chain MDP made of four non-terminal
states. Here our agent uses one-step SARSA [34] to learn the action-value function (Q-value). The
agent starts in state S0 and can reach either the terminal state on the right with reward of 1 or the
more distant terminal state on the left with reward of 100. In our example, suppose the behavior
policy is biased towards going right in the three rightmost states. The resulting target policy learned
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via SARSA without any emphatic weighting is misguided toward a suboptimal solution (Fig. 1).
App. B describes additional details of this experiment.

When designing a fixed interest function for SARSA with emphatic weighting, it would be advanta-
geous to emphasize the states on the left and de-emphasize the states on the right, as a way to try and
avoid the sub-optimal solution. However, Fig. 1 shows that although a well-designed fixed interest
function can improve upon the this baseline, the resulting emphatic SARSA is still unable to converge
to a good policy within 500 updates.

Finally we consider using an adaptive interest function. Here we leverage the same pattern as
in the previous fixed interest function, but we only activate the interest in some states at cer-
tain times. Particularly, at the start of training, only the left-most state is emphasized, and all
other states have interest set to near-zero. As credit is propagated from the terminal left state
towards the rest of the chain, the interest of the second left-most state is increased. This contin-
ues until credit assignment reaches the starting state and the optimal action is selected. Emphatic
SARSA with such a dynamic interest function is able to quickly converge to a good policy (Fig. 1).

Figure 1: Four State Chain MDP with off-policy
control where the behavior policy is biased towards
going right. We plot the probability that the learned
target policy (implemented as a Boltzmann policy)
goes left in the initial state S0, which is the optimal
action to take. A baseline SARSA agent not using
emphatic weighting will struggle to overcome this
bias, whereas an emphatic agent with fixed inter-
est ([10, 1, .1, .001] for each state from left to right)
will require many samples to obtain the optimal
policy. Using an adaptive interest inside emphatic
updates guides credit assignment towards the start-
ing state efficiently, converging towards the optimal
policy early on. Results are averaged over 500 runs.

Fig. 1 empirically shows that, in our example MDP,
a standard SARSA agent (without emphatic weight-
ing) is outperformed by emphatic SARSA with a
fixed interest (supporting the general utility of em-
phatic algorithms), which is in turn outperformed
by emphatic SARSA with an adaptive interest (sup-
porting the additional utility of adaptive interest).
This example highlights that even in tabular settings
without function approximation, the additional flex-
ibility of an adaptive interest function can be quite
beneficial. It is important to note that the fixed in-
terest agent eventually finds the right solution in our
example, but it has much worse sample complexity
compared to our adaptive interest agent.

3.2 Meta-Gradient Interest (MINT)

As discussed in the previous section, we seek an
adaptive interest function that would improve the
learning process during training. However, automat-
ically discovering such a function is not straightfor-
ward, in part as it can take any arbitrary value, and
because we have to evaluate the effect of a particular
change in the interest function with regards to the
agent’s parameters. We explore adapting the interest
function with a wide variety of heuristics such as
the prediction error and find that such approaches do not generally provide improvements. Alter-
natively, meta-gradients [56, 65] are a natural candidate as they can automatically discover such
interest functions at each stage of learning through the interaction of an inner loop and an outer
loop of optimization. We therefore propose to learn and adapt the interest function parameterized by
meta-parameters η in an online manner, within a single lifetime and within a single environment.

During the inner loop, the meta-parameters η, together with the agent’s policy and value parameters
{ν, θ}, appear in the base objective, JB(θ, ν, η). Only the parameters are updated through this
objective while the meta-parameters η remain fixed and influence the gradients. To illustrate the
influence of the meta-parameters on the resulting parameters, we can write them as functions of η, i.e.
{ν′(η), θ′(η)}.
During the outer loop, the updated parameters are evaluated with respect to a meta-objective,
JM (ν′(η), θ′(η)), from which we derive the gradients with respect to η. This is referred to as
the meta-gradient, which evaluates how the values of the meta-parameters affected the performance
of the updated parameters. By repeating this process, meta-gradients will adapt the meta-parameters
in order to more efficiently improve the parameters themselves.
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We now describe the specific choices behind applying meta-gradients to emphatic algorithms when
updating the policy. For simplicity, the derivation for the value function is relegated to App. H.3.

In the inner loop, the agent maximizes the following inner objective,

JB(ν, η) =
∑
s

db(s)i(s; η)V
π(s) (6)

where the interest function i is parameterized by the meta-parameters η and the policy π is parameter-
ized by ν. This inner objective is based on the excursions objective [21], that is, the future reward
achieved by following the target policy π starting from the distribution of states generated by the
behavior b. Another possibility would have been to consider the counterfactual objective [60] or the
alternative life objective [31], however these choices imply additional complexities which we leave
for future work. We provide a more detailed discussion on the choice of the objective function in the
App. H.1. The inner loop can be written by using (5), obtaining:

ν′ ← ν + αbρtFt,η∇νπ(At|St; ν)Q
π(St, At) (7)

where Ft,η = i(St; η) + γρt−1Ft−1,η emphasizes the current state according to the current meta
interest and the followon trace at the previous timestep.

When considering the meta-objective, practitioners usually employ the same form as inner objective.
In our case this would be written as

JM (ν′(η)) =
∑
s

db(s)V
π(s) (8)

where π is defined by the updated parameters ν′(η). Recently, [15] argue that such an approach
may lead to a poor meta-optimisation landscape, as both objectives share the same curvature. In
App. D, we verify different meta-objectives, such as the variance of the reward-to-go [48], and
report no increase in performance when compared to (8) in our setting. It is likely that obtaining
their improvements also relies tackling myopia in meta-gradients. From (8) we obtain the following
meta-gradient

η′ ← η + αm∇ηJ
M = η + αm∇ν′JM∇ην

′ (9)

where ∇ην
′ encodes how the meta-parameters affected the new parameters. A stochastic sample of

this quantity at time t can be expanded as (see also App. H.2),( t∑
i=0

γt−i∇ηiη(Si)ρi:t

)
∇ν log π(At|St; ν)Q

π(St, At)

where ρi:t is a product of importance sampling ratios. Pseudocode for our approach, which we call
MINT (Meta-gradient Interest), is presented in Algorithm 1 of App. A.

Performing the update rule in (9) would require a new set of samples. In practice, the same samples
are re-used for both loops [65, 63, 52] through a sliding window of experience. In our work we opt to
use the importance sampling ratio method of [65]. Finally in the present derivation we only consider
1-step meta-gradient [53] as it greatly simplifies the exposition ( see App. H.4 for derivations). We
also show in App. H.4 why the sampling correction term [2] does not appear in the off-policy setting.

4 Experiments

We now validate our method on a wide range of scenarios to assess the following questions: 1) Can
we automatically learn an interest function on complex environment in order to improve performance?
2) How robust is the meta interest with respect to the agent’s hyperparameters? 3) Is it possible to
leverage the information encoded by the learned interest function for downstream tasks?

We first conduct experiments in the off-policy policy evaluation setting under linear function approx-
imation. Next, we extend the usual field of study of emphatic algorithms and verify their general
utility. In particular, we study how they can improve the performance of on-policy algorithms under
the control setting, where considerable gains are witnessed only under an adaptive interest. Finally,
we further extend our investigation to the transfer learning setting by leveraging the interest function
learned in a previous task in order to greatly speed up the learning process in a second task. All
hyperparameters are available in the App. E.
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Figure 2: Off-Policy Evaluation under linear function approximation where we build on the empirical setup
of [17]. The top row presents results for the 4Rooms-8Tasks (4R8T) domain, while the bottom row presents for
the HighVariance-4Rooms-8Tasks (H4R8T) domain, where states in blue present high variance. We compare
emphatic algorithms to high performing off-policy baselines such as TDRC and Vtrace. For both environments
we notice that by adapting the interest function, either through meta gradients as in MINT or through the absolute
value of TD error, the final prediction error is significantly improved, especially in the second environment
where MINT reduces by half the error when compared to non-emphatic methods.

4.1 Linear Function Approximation

Setup. Our first experiments are done in the off-policy policy evaluation setting with linear function
approximation using tile coding [43]. We adopt the setup from [17], who considered two variations
of the classical Four Rooms domain, shown in Fig. 2. We name these variations 4Rooms-8Tasks
(4R8T) and HighVariance-4Rooms-8Tasks (H4R8T) to highlight their characteristics (See App. D for
their details).

Quantitative Results. Fig. 2 shows the results for the 4R8T (top) and H4R8T (bottom row). The y-
axis indicates the mean squared value error (MSVE) averaged across all policies. In Fig. 2c and 2f, we
vary the learning rate on the x-axis and for each value report each algorithm’s best final performance
chosen across all values of the bootstrapping coefficient λ (and other possible hyperparameters).
Fig. 2b and 2e show the best learning curves for each algorithm.

In these two domains, we compare learning the interest through meta gradients, MINT, to a baseline
that adapts the interest with respect to the absolute value of the TD error (ETDLB - TD Error Interest,
where ETDLB refers to the generalized version of emphatic TD [20]). We compare these adaptive
methods to the standard emphatic baseline ETDLB. Finally, we also compare to the recent TD with
Regularized Corrections (TDRC) algorithm [16], which follows the line of work on Gradient TD [44],
as well as the V-trace [12], which is representative of the performance of methods that use truncated
importance sampling ratios [27]. We notice that across both tasks as shown in Fig. 2e, leveraging
an adaptive interest leads to a better final value error and especially on H4R8T, our method almost
halves the error when compared to non-emphatic methods.

In App. D we present additional figures that take into account a different metric: the area under the
curve (instead of the final performance) and notice a similar pattern. When looking at the learning
curves on the left, we notice that ETDLB pays a price in terms of slower convergence in order to
achieve a better final performance. However, when using an adaptive interest, the difference with
non-emphatic methods is greatly reduced, especially in the 4R8T domain.

Examining closely Fig. 2c and 2f, we notice that leveraging an adaptive interest moves the bottom of
the U-shaped curve to the right. By selectively emphasizing some states, emphatic algorithm using
an adaptive interest are able to learn on a higher learning rate. However, the shape of the U curve
tends to cut drastically after a certain threshold, at which point the updates become unstable.

When we compare adapting the interest through meta gradients to the one defined as the absolute
value of the TD error, we notice that their performance is almost equal. It can perhaps seem surprising
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that this would be case, as the meta gradients method can in theory learn any function. For our
particular choice of objectives, we show in App. H.3 the form of the meta gradients under linear
function approximation. For simplicity, if we further assume that features are tabular and we are
under the on-policy setting, we get that the stochastic sample at time t of the gradient is,

∇ηJ
M
t = et(δt)

2 (10)

where et indicates the one-hot vector represent the current state at time t. (10) shows that the
meta gradient updates in the direction of the squared TD error. Although the convergence of the
meta-parameters will not be to the sampled squared TD error, at each iteration the meta-parameters
are affected in a similar way when compared to the absolute value of the TD error heuristic. In
practice, the features are not exactly tabular and therefore the updates made on one state may affect
another, which would also explain why MINT is slower to converge.

(a) 4Rooms-8Tasks (4R8T)

(b) HighVariance-4Rooms-8Tasks (H4R8T)

Figure 3: Visualization of the interest
function across iterations. These show re-
sults at the start (left column), mid-training
(middle column) and at the the end (right
column). Depending on the environment, dif-
ferent patterns are being encoded in the in-
terest function. In the H4R8T environment,
the high variant state is being emphasized
as it requires more resources in order to be
estimated accurately.

Qualitative Results. In Fig. 3, we inspect the learned
interest functions obtained by MINT on four of the eight
tasks (one per room). The top row shows the learning pro-
cess for 4R8T, while the bottom row shows the process for
H4R8T. In both domains, the first state to be highlighted is
the one next to the goal in the hallway. Indeed this state is
highly influential since all states bootstrap from it, directly
or indirectly.

As training progresses, the interest in the 4R8T diffuses to
neighbouring states (this bears a close resemblance to the
example presented in Fig. 1 ). In the H4R8T, a different
pattern emerges where the state with high variance is being
highlighted early on in training. As this state is visited by
many trajectories that the target policy would take, it influ-
ences the values of many other states that need to bootstrap
from it. However, since it exhibits higher variance than
neighbouring states, it requires more computation to be
correctly estimated.

At the end of training, we observe that some states are
particularly less important, like state near the opposite
corners of the hallways. As the target policy does not visit them often and not many states bootstrap
from them, it is less important for them to be accurate. Moreover, it is interesting to note that the
diffusion of interest observed in the 4R8T domain is not perfectly uniform. Since tile coding [43]
is used as the function approximator, a specific pattern of the interest function may be needed at
different states to lower the overall prediction error.

4.2 Experiments at Scale

Emphatic algorithms were initially derived for the off-policy setting. However, the flexibility given by
the interest function is generally applicable, even in the on-policy case. To showcase this flexibility,
in this section we investigate the performance of emphatic algorithms in the on-policy setting using
non-linear function approximation.

4.2.1 MinAtar

Setup. We verify the generality of the proposed method by considering the MinAtar domain [57],
which is a miniaturized version of some of the games from the classic Atari 2600 testbed [7].
The environment provides 10 × 10 × n state representations, where n varies for each game. The
environments are implemented using sticky actions and randomization [25]. For all games we use 10
random seeds and report the mean and standard deviation after 10M timesteps.

Results. Fig. 4 shows that MINT provides good gains when compared to the two baselines. A
standard PPO agent [39] and a meta-gradient approach [55] that meta-learns the target function which
appears in RL update rules. We explain in detail this baseline in the App. F and theoretically show
that learning the interest function is not simply special case of their approach. Results in Fig 4 clearly
demonstrate that our method outperforms both baselines. Our findings also agree with the experiment
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Figure 4: Performance on MinAtar. Adapting the interest provides consistent gains in sample efficiency
as well as final performance. Meta-learning the target function is a more general approach than ours, but also
requires more samples to provide improvements over the standard baseline.

in [55] (Fig 3a in their paper) that meta-learning the target function requires many more samples
before it can match the baseline’s performance. [55] also compares to an approach that meta-learns
the complete loss function (which could recover our update rule) and find that the agent is not able to
learn in the online, single-lifetime setting (which is our setting).

These results highlight the difficulties of more general meta-learning formulations and their impact
on sample efficiency. This suggests that meta-learning the interest-function may be a good trade-off
between generality and the amount of inductive bias. We additionally present results in Fig. 10 where
we vary the learning rate and present at the U shaped curves of performance, which seem to behave
similarly to the linear function approximation case.

4.2.2 Continuous Control

Setup. We perform experiments on the MuJoCo domain [50, 8], where states and actions are
continuous. We report the mean and standard error averaged across 10 random seeds. We include
several emphatic baselines where we explore using a fixed interest and various heuristics for adapting
the interest function. Additionally, we investigate the usefulness of adapting the learning rate itself
using hypergradient descent [5]. We provide a description of all the baselines in App. E.

Results. As Fig. 5 shows, utilizing adaptive interest function is the key to get consistent improvement
over PPO (across almost all environments). Interestingly, the adaptive heuristic based on the TD error
that worked well in the prediction setting does not generalize to this one. One way to understand this
is to consider that a low TD error may not be indicative of a high performing policy in control.

We also compare our method to hypergradient descent (HD) [6] which dynamically updates the
learning rate during training. We notice that HD does not seem to provide gains, except in Humanoid-
v3 where it reaches the performance of MINT at the cost of a slower learning process. This is in
contrast to our method which generally does not suffer from increased sample complexity to achieve
better performance. We highlight that an important difference between HD and MINT is that the
interest function is a state-dependent quantity, which can provide additional flexibility. In the App. E
we compare to additional baselines, such as meta-learning the reward function [65] and various
adaptive heuristics for the interest function.
4.3 Transfer Learning across RL Tasks

Setup. As the interest function is automatically learned, we observe that it likely encodes knowledge
and information that can be useful later. In particular, this knowledge may serve to speed up
learning in new environment over learning from scratch. We investigate this hypothesis in the
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FourRoomsTransfer environment [10], shown in Fig. 6a where we show mean and standard deviation
across 30 seeds. The agent starts in the top left corner and has to get to the goal location in green.
The state highlighted in orange is a distractor state that provides a random reward, R ∼ N (0, 1).

For the transfer setting, we change the location of each of these entities (see App. G). In this setting,
the agent learns in the first environment and only transfers the interest function to the second one,
which remains fixed thereafter. We also compare to an agent that uses meta gradients to learn an
intrinsic reward function before transferring it to the second task, similarly to [63].

Results. Fig. 6 shows that the learned interest function provides a significant speed-up when
compared to the actor-critic baseline that learns from scratch without an interest function.
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Figure 6: Transfer experiment where the interest or the reward
function is transferred to help an agent learn a policy from scratch
in a variant of the task. In b) and c) we visualize the values of each
function, where brighter color means higher value. Interestingly,
the interest function highlights states near the hallways of the
starting state room (top-left), also referred to as bottleneck states.

Here, transferring the intrinsic reward
does not seem to help. Note we do not
claim that using meta-gradients to learn
an intrinsic function is always a better
choice than to learn an intrinsic reward
function, as it likely depends on the ex-
act transfer learning setup3.

To understand how the interest function
helps in transfer, we present in Fig. 6b
and Fig. 6c the learned interest function
and the learned reward function. We no-
tice that the interest function highlights
states that are near the goal, but also the
hallways of the starting room (top left),
which are usually referred to as bottle-
neck states [40]. Such states are of particular importance as they influence the trajectory an agent
takes as well as many of the predictions it makes during such trajectory. As we notice, the interest
function highlights the hallway leading to the goal, but also the one leading to the distractor. On the
opposite, the reward function naturally highlights the path to the goal and de-emphasizes the one
leading to the distractor state. This illustrates one useful property of the interest function: it highlights
the location of rewards, whether they are positive or negative. This kind of invariance is key for a

3Note, we do not consider using recurrent neural networks or a lifetime value function here, which were
found critical for meta-learned intrinsic rewards to work well in transfer [63]. Also, the interest/reward functions
are trained on a single environment at first, before being transferred to a new one, without further training.
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Figure 5: Results on continuous control. We compare MINT to various baselines including an emphatic
variant of PPO using a fixed interest, as well as an interest based on the absolute value of the TD error. We also
verify whether updating the learning rate via hypergradient descent can match the performance of MINT. Across
environments, we notice that adapting the interest via meta-gradients is key to obtain consistent gains.
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better transfer performance in our setting, and could be used more generally in continual learning
[33]. This experiment also points to an interesting future direction where a universal interest function
could be defined similarly to universal value functions [35].

5 Related Work

Emphatic Methods. Initially derived by [45, 28] as a stable and simple one-time-step solution to the
problem of off-policy prediction. Its convergence is shown in [58] when employing the full trace
and later [62] show convergence for the Truncated ETD algorithm. The ideas in prediction were
extended to control by [21, 19, 61]. Emphatic algorithms have been shown to be a strong baseline in
many benchmarks under linear function approximation [17, 18], even in the on-policy case [54, 3].
Recently, emphatic algorithms have been extended to the deep RL by building on a variant of the
IMPALA agent [12] with auxiliary heads and have shown superior performance on Atari [22, 23].

Selective Updating. Emphatic methods can be seen more generally as performing selective updating,
whereby through a scalar we emphasize or de-emphasize the updates to each state. This has previously
been investigated in the context of model free learning [36] and model based planning [1]. Recently,
[9] provide a unifying view of various algorithms as a form of selective credit assignment. In
hierarchical reinforcement learning, selective updating in an integral part of the options framework
either through initiation sets [47] or interest functions [24].

Meta Gradients. Meta learning [37, 49, 14] is a class of methods that have better capability in
adapting to new tasks by learning a better prior from previously seen related tasks in the past [38, 4].
While these methods mainly focus on multi-task learning [13], meta-gradients [64, 65] based methods
instead focus on learning the meta parameters online within a single task, based on online cross
validation [42].

6 Conclusion
We propose to learn and adapt the interest function based on meta-gradients in an online fashion in
complex environments where hand-coded solutions are not feasible. Comprehensive experiments
on various settings suggest that automatically adapting the interest function from a stream of data
leads to improved performance. Although certain heuristics for adapting the interest function are
occasionally beneficial, our experiments point that consistency and general usefulness are achieved
through meta-gradients.
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Appendix: Adaptive Interest for Emphatic
Reinforcement Learning

A Algorithm

Algorithm 1 MINT
1: Initialize policy and value parameters {ν, θ}
2: Initialize meta-parameters for the interest function {η}
3: while not done do
4: Generate trajectory either using the target policy (on-policy case) or the behavior policy (off-policy case).
5: Update policy and value function using Equations 7-11
6: Update interest function using Equation 9.
7: end while

B Motivating Example Implementation Details

In the example of Figure 1, the behavior policy chooses to go right with probability 0.9, which
misguides the agent towards a sub-optimal policy as it will visit the right terminal state considerably
more often. Notice that the left terminal state gives a higher reward. We consider using SARSA [34]
to learn the agent’s action value function. To obtain a probability distribution over actions, we use a
Boltzmann policy in conjunction of the action value function with unitary temperature. As we see
in Figure 1 where we plot the probability of going left in the starting state S0, the baseline SARSA
agent not using emphatic is stuck with a sub-optimal policy after 500 steps. We additionally consider
using emphatic weightings with a fixed interest function. The specific values of this function are
[10, 1, 0.1, 0.001] for each of the four states in the chain MDP, going left to right. Notice that the
values are increasing as we go left, as an attempt to counter the behavior policy’s bias towards going
right. This agent performs much better than the baseline, however it may require many more samples
to finally converge to the optimal solution. The agent using an adaptive interest function is on the
other hand much more sample efficient. This agent also uses the values [10, 1, 0.1, 0.001] for the
interest function, however it only activates some values at certain stages of learning. In particular, at
first, only the left most value is active, and the remainder is set to near-zero. Once credit assignment
has reached the left most state, the first and second values are active, while the third and fourth remain
masked. As more credit assignment is propagated, more values of the interest become active. With
this simple strategy we notice in Figure 1 that the agent using an adaptive interest is prefers to go left
in the starting state at almost anytime during learning.

C Background and Notation

In the main text we present the TD and ETD algorithms for policy evaluation under linear function
approximation, as a way to recognize the existing literature on emphatic algorithms [28]. We here
present the derivation for policy evaluation under general function approximation. Following standard
notation [43], capital letters for states, actions or rewards represent the random variable at time
t (i.e. St is the random variable at time t) and lowercase letters represent their instantiation (i.e.
St = s is the random variable St taking value s at time t). The TD algorithm under general function
approximation updates the value function parameters θ in the following way,

θt+1 = θt + α
(
Rt+1 + γV̂ π(St+1; θt)− V̂ π(St; θt)

)
∇θt V̂

π(St; θt)

where V̂ π is the function approximation to the true value function V π when following policy π. The
true value function is defined as the expected discounted return from a given state when following
policy π,

V π(s) = Eπ

[ ∞∑
i=t

γi−tRi+1|St = s
]
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We can also define the action value function as the expected discounted return from a given state and
given action when following policy π,

Qπ(s, a) = Eπ

[ ∞∑
i=t

γi−tRi+1|St = s,At = a
]
= E[Rt+1 + γV π(St+1)|St = s,At = a]

In the control setting, we use function approximation to parameterize the policy π(a|s; ν) using
parameters ν. In the episodic on-policy setting, we update the policy using gradient ascent on the
following objective,

Jπ(ν) =
∑
s

d0(s)V
π(s)

where d0 is an arbitrary starting state distribution. Using the policy gradient theorem [46], we get the
following,

∂Jπ(ν)

∂ν
=

∑
s

dγπ(s)
∑
a

∂π (a|s; ν)
∂ν

Qπ(s, a)

where dγπ(s) =
∑
s0

d(s0)
∑∞

t=0 γ
tPπ(St = s|S0 = s0) is the discounted state occupancy measure of

the policy π. The quantity Pπ(St = s|S0 = s0) is defined as

Pπ(St = s|S0 = s0) =

t−1∏
i=1

∑
Si

∑
Ai

P (Si+1|Si, Ai)π(Ai|Si; ν)
∑
A0

P (S1|S0, A0)π(A0|S0; ν)

using the environment transition distribution P and the policy π.

Policy evaluation done under general function approximation using ETD algorithm to update the
value function parameters takes the following form,

θt+1 = θt + αFtρt
(
Rt+1 + γV̂ π(St+1; θt)− V̂ π(St; θt)

)
∇θt V̂

π(St; θt)

where Ft, the followon trace, is defined as,

Ft = i(St) + γρt−1i(St−1) + γ2ρt−1ρt−2i(St−2) + ... = i(St) + γρt−1Ft−1

The emphatic algorithm for off-policy control is defined through the excursions objective generalized
through the state-dependent interest function,

Jb(ν) =
∑
s

db(s)i(s)V
π(s)

where db is the stationary distribution of the behavior policy b. The excursions objective is based on
the continuing setting and as a result the starting state distribution d0 is replaced with the behavior
stationary distribution db. Intuitively, this objective encodes the expected return from executing the
target policy starting from the distribution of states. It is possible to reconcile the continuing setting,
which is more theoretical in nature, to the episodic setting, which is more practical, by considering
generalizations of the discount factor and bootstrapping parameter [80].

D Linear Function Approximation

We borrow the experimental setup from [17] which considers the off-policy prediction setting. The
agent uses linear function approximation to learn a value function for a target near-optimal policy
while the data is generated by an near-uniform policy. We also adopt the environmental setup from
them which they considered two variations of the classical Four Rooms domain (depicted in Figure
2). We name these variations 4Rooms-8Tasks and HighVariance-4Rooms-8Tasks to highlight their
characteristics.

In both domains, the agent starts randomly in any state and follows an infinitely long trajectory where
the value functions are updated online. Each of the four rooms consists of two independent tasks:
reaching each of the two hallways. As such, a total of eight value functions for eight target policies
are being evaluated simultaneously, where each of the policies follows the shortest path to the hallway
location.
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In 4Rooms-8Tasks, the behavior policy is simply a uniform distribution over actions. In the
HighVariance-4Rooms-8Tasks domain, the behavior policy is uniform, except for the states high-
lighted in blue, as shown in Figure 2d, where it takes one particular action with probability 0.97: in
two left rooms this action is to go left, whereas in the two right rooms it is to go right.

The setup from [17] benchmarks a wide variety of algorithms, from which we choose some of the
most performing ones. We also pick these algorithms such that they are representative of different
families of algorithms. In Figure 2 we presented the results in terms of final performance. We present
in 7 the results in terms of area under curve (AUC). We notice once again that adapting the interest
function can provide improvements, especially on HighVariance-4Rooms-8Tasks environment. The
performance of MINT compared to the ETDLB baseline using the absolute value of the TD error
is slightly lower in terms of AUC. Meta-optimization can bring a set of challenges that need to be
addressed in order to improve on the performance we report. In particular we did not use any special
tricks such as gradient clipping.
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Figure 7: Off-Policy Evaluation under linear function approximation where we build on the
empirical setup of [17]. The top row presents results for the 4Rooms-8Tasks domain, while the
bottom row presents for the HighVariance-4Rooms-8Tasks domain, where states in blue present high
variance. We compare emphatic algorithms to high performing off-policy baselines such as TDRC
and Vtrace. For both environments we notice that by adapting the interest function, either through
meta gradients as in MINT or through the TD error, the area under the curve is significantly improved.

For each algorithm, we plot the best performing curves by looking across learning rate values 2−x

where x ∈ {0, 1, 2, .., 18} and bootstrapping coefficient {0.0, 0.1, 0.2, 0.3, 0.5, 0.9, 1.0}. For the
emphatic algorithms we searched the β parameter in {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. We used a meta
learning rate of 0.25 for both environments and across all other values of hyperparameters. The
interest function is implemented using tabular representation to allow for better stability of the
meta-optimization. We do not use any activation function for the interest function as it naturally
remains greater than zero.

We also try a couple of different meta objectives, as a way to decouple the curvature of the meta
optimisation from the optimisation of the base objective. We present in Fig. 8 results for the reward
to go (RTG) [78] and variance temporal difference learning (VTD) [81]. We do not observe an
improvement in performance. This highlights that the meta optimisation landscape is complex in
nature and researchers would benefits by probing further how to improve the curvature, as suggested
by [15].

E Continuous Control

We consider the standard environment from [8] and compare our approach to various baselines
building on top of PPO [39]. In Figure 5 we consider an emphatic version of PPO where the interest
is fixed (Fixed Interest) and where the interest is defined through the absolute value of the TD error
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Figure 8: Off-Policy Evaluation under linear function approximation where we build on the empirical
setup of [17]. We compare MINT using the excursions objective as the meta-objective to MINT
using the reward to go (RTG) and variance temporal difference learning (VTD) as part of the meta-
optimisation.

(TD Error Interest). Additionally, we compare with a method using hypergradient descent [5]
(Hypergradient Descent) to learn the learning rate.
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Figure 9: Additional Baselines on MuJoCo. We compare MINT to various baselines including an
emphatic variant of PPO using the sigmoid of the value function. Additionally we use meta-gradients
to learn the loss coefficient as in [82]. Finally, we also try learning an intrinsic reward funtcion
through meta gradients, as a way to verify whether the same compute resources used for learning the
interest function can be better spent.

In Figure 9 we provide another set of baselines. We verify adapting the interest function by setting it
to the sigmoid of the value function (Normalized Value Interest), with the intuition that rewarding
states may be more valuable. However, this does not help. We also used meta gradients to learn the
loss coefficient (Meta Gradient Loss Coefficient) as in [82]. This method was shown to provide
significant improvements, at the condition of using auxiliary losses, which we do not employ. Finally,
we verify whether using the resources for learning an interest function can be better served by learning
other quantities. In particular, we try learning an intrinsic reward function (Meta Gradient Reward),
which helps more than other baselines but still does not match the performance of our method.

Across all environments we use the default hyperparameters from [68] for the base learner. For the
meta learning rate we verify values in {1× 10−4, 3× 10−4}, and we use the former for all games,
except Walker2d-v3 where the latter provided slightly better performance. The neural network for
the interest function is the same network used for the policy and value function: a two layer MLP
with hidden sizes {64, 64}. The interest function uses an exponential activation.

F MinAtar

For the experiments on MinAtar we use convolutional neural networks for feature extraction within
the interest function, the policy and value function. Across all environments and across all learning
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rates we use the same default meta learning rate of 1×10−4. The interest function uses an exponential
activation.
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(a) a) Asterix-v0
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(b) b) Breakout-v0
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Figure 10: Sensitivity analysis on MinAtar. Across almost all learning rates, adapting the interest is key to
improve upon the baseline. For most of the games, MINT’s inverse-U shaped curve tends reaches its peak for
higher learning rates than the baseline.

G MiniGrid Transfer

For the experiments on MiniGrid-FourRoomsTransfer-v0 [10], we also use convolutional neural
networks for feature extraction within the interest function, the policy and value function. In the
MiniGrid-FourRoomsTransfer-v0 environment, the agent must reach the goal location within 60
steps. There is also a distractor state that outputs a random reward distributed as a Gaussian with
mean zero. We use a learning rate of 3× 10−4. The interest function uses an exponential activation.
For the transfer learning setting, we consider the following setup,

Figure 11: Transfer learning setting. We first train the agent on the environment on the left, before
vary the location of each entity in the environment. In this new environment we transfer the previously
learned interest function or reward function.

H Meta-Gradients

H.1 Choice of objective

The meta-objective is based on the excursions objective, that is,

Jb(ν) =
∑
s

db(s)i(s)V
π(s)

Another possibility would have been to consider the alternative life objective,

Jπ(ν) =
∑
s

dπ(s)i(s)V
π(s)

The latter better encodes the performance of the target policy after deployment, as the states are
weighted according to the target policy π instead of the behavior policy b. However, optimising this
objective will require estimating the density ratio between the stationary distribution of the behavior
and target policies, that is dπ(s)

db(s)
. Although methods exist [70], they usually require more complex

optimisation methods and have not yet shown great performance on complex domains. Another
possibility for the policy evaluation case is to consider at each timestep t the full ratio of importance
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sampling ratios between the behavior and target policies [31, 32]. However, this approach is prone to
excessively large variance.

Another possibility is to consider mixing the excursions and alternative life objective through a scalar
γ̂ ∈ [0, 1] to obtain the counterfactual objective [60], which is written as,

Jγ̂(ν) =
∑
s

dγ̂(s)i(s)V
π(s)

where dγ̂(s) is defined as,
dγ̂ = (1− γ̂)(I− γ̂P⊤

π )db

When γ̂ = 1, we recover the alternative life objective, whereas when γ̂ = 0 we recover the excursions
objective. Optimising this objective requires keeping track of two traces. In practice, it was shown to
provide improvements on control tasks. As the best performing agent had a value of γ̂ was closer to
the excursions objective, we decide to proceed with the standard excursions objective to avoid the
additional traces.

H.2 Policy parameters

Consider the base learner objective

JB =
∑
s

db(s)i(s; η)V
π(s)

with the associated base learner updates,

ν′ ← ν + αbFtρt∇ν log π(At|St; ν)Q
π(St, At)

For the meta-objective we consider the following excursions objective,

JM =
∑
s

db(s)V
π(s)

The meta updates can then be written as,

η′ ← η + αm∇ηJ
M

where using the chain rule gives us,

∇ηJ
M = ∇ν′JM∇ην

′

Expanding the second term, we get that the stochastic sample of the gradient is,

∇ην
′ = ∇η

(
ν + αbFtρt∇ν log π(At|St; ν)Q

π(St, At)
)

= ∇η

(
αbFtρt∇ν log π(At|St; ν)Q

π(St, At)
)

= ∇η

(
αb

t∑
i=0

γt−ii(Si; η)ρi:t∇ν log π(At|St; ν)Q
π(St, At)

)
= αb

t∑
i=0

γt−i∇ηi(Si; η)ρi:t∇ν log π(At|St; ν)Q
π(St, At)

where we used the log derivative trick [46] and the definition of the followon trace.

H.3 Value parameters

Consider the base learner objective,

JB =
∑
s

db(s)i(s; η)
1

2
(vπ(s)− V π(s; θ))2

where vπ(s) is the true value function (which is inaccessible), with the following base learner updates,

θ′ ← θ + αbFtρt(Rt+1 + γV π(St+1; θ)− V π(St; θ))∇θV
π(St; θ) (11)
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where we consider the semi-gradient update rule [43]. Notice that different values of the bootstrapping
coefficient will lead to different update rules [45]. Consider the following meta-objective,

JM =
∑
s

db(s)
1

2
(vπ(s)− V π(s; θ′(η)))2

with the following meta-update,

η′ ← η + αm∇ηJ
M

where

∇ηJ
M = ∇θ′JM∇ηθ

′

In practice the term ∇θ′JM will as well be a semi-gradient due to bootstrapping. In this equation,
∇ηJ

M is of size 1×m, where m is the size of the meta-parameters η. Consequently, ∇θ′JM is of
size 1× n, where n is the size of the parameters θ and ∇ηθ

′ is of size n×m.

Consider the case where the parameters and meta parameters use linear function approximation, that
is i(s; η) = η⊤ψ(s) and V π(s; θ) = θ⊤ϕ(s), where ϕ are the features for the value function and ψ
are the features for the interest function. Furthermore, consider the on-policy case. We can then write
that the stochastic sample at time t is,

∇θ′JM
t = ϕtδt

where δt is the TD(1) error and ϕt indicates the features at time t. We also have that

∇ηθ
′
t = DϕtΨtδt

where Dϕt
is the diagonal matrix with ϕt on its diagonal and where Ψt is the matrix where each row

is made of the interest function’s features ψt.

If we further consider that all features are tabular representations, we have that,

∇θ′JM
t = etδt

where et is the one-hot vector that indicates the state at time t. We also have that ∇ηθ
′ is a matrix

where all elements are zero, except at position s, s (the state at time t) where it is equal to δt.
Multiplying the∇θ′JM and ∇ηθ

′ together gives us,

∇ηJ
M
t = et(δt)

2

That is, the meta gradient updates in the direction of the L2 norm of the TD error.

H.4 Multi-step derivation

In the main text we present the derivation for the meta-gradient obtained from one step updates in the
inner loop. This was done to help the clarity of the presentation, but in practice it is possible to do
multiple updates to the parameters before updating the meta-parameters. This sequence of K updates
can be written as,

νK = ν0 +

K−1∑
k=0

U(η, νk,Dk)

where U is the update rule of (7) using the data Dk collected at iteration k (i.e. a set of trajectories).
If the data is collected on-policy, taking the gradient of meta-objective with respect to the meta
parameters would result in,

∇ηJ
M (η) =

K∑
k=0

E{Di}k−1
i=0

Eπ

[∑
t

( k−1∑
j=0

∇ηνj∇νj
log p(Dj |νj)+

∇ηνk∇νk
log π(At|St; νk)

)
Qπ(St, At)

]
Let’s explain this equation. The sum over k comes from considering the evaluation of the meta-
objective after each of the inner updates. This is known to optimize the area under the curve of the
meta-objective after each update, rather than final performance [79]. The outer expectation is over
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the datasets collected at each of the previous iterations, as this data affects the current parameters.
The sum over t is with respect to the current trajectory obtained from the current parameters. The
second term multiplying the action value function,∇ηνk∇νk

log π(At|St; νk) is the part of the meta
gradient that considers the effect of the meta parameters on the current trajectory’s performance.

The first term multiplying the action value function,
∑k−1

j=0 ∇ηνj∇νj
log p(Dj |νj), is the sampling

correction term and was first derived by [2]. As the current parameters were obtained by updates
using sampled datasets, the parameters are random variables as well. The sampling correction term
then allows for the meta gradients to propagate through inner update iterations. It is usually not
included in most of the meta gradient literature, which renders the meta updates biased. However,
including them may lead to increased variance [53], and as such there is a trade-off to consider.

In the off-policy control case using the excursions objective, the sampling correction term does
not appear as the data is collected through a behavior policy, which is not influenced by the meta-
parameters. However, under the alternative life objective we would have extra terms similar to the
sampling correction as optimising this objective would require using the full product of importance
sampling ratios between target and behavior policies, or the ratio between stationary distributions of
the target and behavior policies. Please see section App. H.1 for more details on the alternative life
objective.

In the policy evaluation setting, whether we are on or off-policy, the sampling correction term would
also not appear, as the parameters of the policy generating the data are not updated. In the policy
evaluation setting only the value function estimating the expected return is parametrised.
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