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Fig. 1: (a) Our portable handheld gripper enables synchronized collection of visual and tactile data through integrated multimodal sensing,
supporting large-scale data collection in the wild. (b) We introduce a multimodal representation learning framework that fuses visual and
tactile inputs to support fine-grained downstream manipulation tasks.

Abstract—Handheld grippers are increasingly used to collect
human demonstrations due to their ease of deployment and
versatility. However, most existing designs lack tactile sensing,
despite the critical role of tactile feedback in precise manipulation.
We present a portable, lightweight gripper with integrated tactile
sensors that enables synchronized collection of visual and tactile
data in diverse, real-world, and in-the-wild settings. Building
on this hardware, we propose a cross-modal representation
learning framework that integrates visual and tactile signals
while preserving their distinct characteristics. The learned
representations are interpretable and consistently emphasize
contact regions during physical interactions. When used for
downstream manipulation tasks, these representations enable
more efficient and effective policy learning, supporting precise
robotic manipulation based on multimodal feedback. We validate
our approach on fine-grained tasks such as test tube insertion and
pipette-based fluid transfer, demonstrating improved accuracy
and robustness under external disturbances. Our project page is
available at https://binghao-huang.github.io/touch_in_the_wild/

I. INTRODUCTION

Humans naturally rely on both vision and touch when
interacting with the physical world. Whether inserting a key
into a lock or adjusting a pipette during a lab experiment,
tactile feedback plays a critical role in guiding precise motor
actions, especially in situations where visual information may
be unreliable due to occlusion, poor lighting, or dynamic

backgrounds. While vision provides global, semantic context,
touch offers local, high-resolution feedback about contact and
force. The integration of these two modalities is fundamental
to effective manipulation in everyday environments.

Recent advances in handheld grippers have made it easier
to collect human demonstrations “in the wild.” However, most
existing systems focus exclusively on visual sensing, largely
neglecting tactile feedback. This gap limits their usefulness for
capturing the fine-grained, contact-rich strategies humans use
in real-world tasks. Moreover, relying on vision alone makes
these systems vulnerable to environmental variability, whereas
tactile sensing offers a complementary and robust signal that
is invariant to lighting and viewpoint.

Two key challenges have prevented widespread visuo-
tactile data collection in natural settings: (i) Portable tactile
hardware. Most existing tactile sensors are bulky, rigid, or
resource-intensive. For example, soft bubble sensors [26]
are too large for handheld use, while other optical-based
sensors [49] often require external computing resources (e.g., a
dedicated PC for image streaming), making them unsuitable for
mobile or outdoor deployment. (ii) Learning from multimodal
data. Tactile and visual signals differ significantly in scale
and semantics. Tactile inputs are local and physical, while
vision encodes broader spatial context. Learning effective
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representations that integrate both modalities–particularly from
large-scale, unstructured datasets–remains an open challenge.

To address these issues, we present a Portable Visuo-Tactile
System for large-scale data collection and multimodal policy
learning in real-world settings. Our contributions are threefold:
(1) A lightweight, handheld visuo-tactile gripper. We integrate
flexible piezoresistive tactile sensors into a soft, handheld
gripper to enable portable, high-frequency tactile data collection.
The system captures human manipulation strategies across
a wide range of environments, indoors and out. (2) Robust
tactile sensing for in-the-wild deployment. Our choice of
piezoresistive sensors enables consistent performance across
sensor units and environmental conditions. Unlike optical-based
alternatives, our sensors require minimal processing and are
unaffected by lighting, making them suitable for uncontrolled
environments. The collected data transfers well to robotic
platforms, bridging human demonstrations and autonomous
execution. (3) A multimodal representation learning framework.
We propose a masked autoencoding approach that jointly learns
from tactile and visual inputs while preserving modality-specific
information. This enables policies to leverage fine-grained
tactile feedback in a human-like manner, improving both sample
efficiency and manipulation accuracy.

We validate our system on fine-grained robotic manipulation
tasks in the real world, such as test tube insertion and pipette-
based fluid transfer, demonstrating successful policy transfer
and robustness to environmental disturbances. Our results
underscore the promise of portable visuo-tactile platforms in
bridging the gap between human demonstrations and robot
learning in complex, real-world settings.

II. RELATED WROKS

Scalable multi-sensory data and learning. Reinforce-
ment and imitation learning have become central to robotic
manipulation [48, 21, 37, 43, 18, 6, 40], but progress is
often bottlenecked by the lack of large-scale, high-quality
multimodal datasets—especially those involving tactile signals.
While simulation can mitigate data scarcity, simulated tactile
signals tend to diverge significantly from their real-world
counterparts, limiting transferability [1, 37, 42, 35]. This makes
scalable real-world visuo-tactile data collection increasingly
important. However, acquiring multi-sensory data at scale
remains challenging. Beyond RGB streaming, each additional
modality [15, 47, 12, 46, 28]–such as audio [31], force, or
tactile–introduces added hardware complexity, synchronization
overhead, and environmental constraints. As a result, most
prior efforts have limited data collection to structured indoor
environments [22].

However, tactile sensing is most valuable in uncontrolled,
real-world settings, where vision may degrade due to poor
lighting or background clutter [41, 14], while contact forces
remain stable. Prior “in-the-wild” systems have demonstrated
strong visual-only performance on simple tasks [8], but they
overlook the complementary benefits of touch. To address
this gap, we present a portable, handheld visuo-tactile system
that pairs a fisheye RGB camera [8] with a lightweight,

flexible tactile array. The device enables synchronized, large-
scale collection of visual and tactile data across diverse,
unstructured environments. Using this setup, we construct
a visuo-tactile dataset and train a masked reconstruction
encoder that: (i) accurately reconstructs tactile signals, and
(ii) improves downstream visuo-tactile policy learning. Unlike
prior work using flexible sensors for narrow tasks (e.g., pose
or trajectory prediction) without pretraining, our approach
supports scalable, cross-modal representation learning for
general-purpose manipulation.

Visuo-tactile manipulation. Tactile feedback plays a critical
role in human manipulation, particularly when visual input is
occluded or ambiguous [24, 23]. Similarly, tactile sensing
enables robots to interact more reliably with objects and
environments that are complex or require precision. As a result,
there is growing interest in integrating vision and touch to
improve robotic manipulation [22, 39, 11, 27, 40, 5, 19, 51,
32, 5, 9, 16, 45]. Much of this prior work relies on optical
tactile sensors, which image surface deformations to infer
contact geometry and texture [3, 50, 51, 25, 4, 44, 12]. While
these sensors provide rich signals, they are typically rigid and
bulky, limiting their applicability in portable or unstructured
settings.

In contrast, we use thin, flexible tactile sensors[22, 38, 13]
that directly measure force distributions over the contact
surface. Embedded in soft robotic fingers, these sensors
provide consistent, object-agnostic representations that are
easier to generalize and better suited for scalable, real-world
learning. Although such sensors have been explored in lab
settings[22, 30, 2], large-scale, in-the-wild visuo-tactile datasets
with synchronized RGB and tactile data capturing physical
interactions have not previously been available. Our work fills
this gap by collecting–and publicly releasing–a diverse, real-
world visuo-tactile dataset. It spans a wide range of tasks and
environments, laying the foundation for scalable multimodal
learning and robust policy development.

III. VISUO-TACTILE DATA COLLECTION SYSTEM

A. Scalable Flexible Tactile Sensors
As shown in Fig. 2 (a), we embed thin, matrix-based

tactile pads into the soft, fin-shaped fingers of our handheld
gripper. The sensor architecture builds on the triple-layer
design from 3D-ViTac[22], adapted to fit the geometry of
the adaptive fin-shaped gripper [8]. Each tactile pad consists of
a piezoresistive sensing layer sandwiched between two flexible
printed circuits (FPCs). To accommodate the elongated, flexible
fins, we introduce two key modifications: (1) Higher spatial
resolution. Capturing contact patterns along the finger’s length
requires denser spatial sampling. The stainless-steel electrodes
used in 3D-ViTac limit both resolution and signal stability.
By replacing them with FPC electrodes, we achieve uniform
trace pitch, improved robustness, and a per-pad resolution
of 12 × 32 taxels, each measuring a 2 × 2mm2 area. This
allows us to capture fine-grained, dynamic contact signals. (2)
Rapid, scalable fabrication. The use of FPCs enables tool-free
assembly. Each pad can be fabricated in under five minutes
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Fig. 2: (a) Multimodal data collection in the wild using our portable visuo-tactile system, with example tactile signals from both fingers. (b)
Close-up of the handheld gripper, equipped with flexible tactile sensors and a fisheye camera for synchronized visual-tactile capture. (c)
Robotic setup for downstream tasks, featuring an xArm 850 with the same sensor configuration.

and mounted on the gripper in an additional two, supporting
scalable deployment for large-scale tactile data collection.

B. Portable Multi-Modal Sensing System
In-the-wild large-scale data collection. To enable real-

world visuo-tactile data collection at scale, we design a
compact and ergonomic handheld gripper that integrates both
sensing modalities. Each tactile pad connects to a custom
Arduino-based PCB, with two boards neatly housed beneath
the gripper’s palm (Fig. 2 (a)). The full handheld unit–including
batteries–weighs approximately 962 g, making it comfortable
for prolonged use.

At the firmware level, we optimize the serial protocol to
stream each 12× 32 pad at 23Hz, providing frame-accurate
synchrony with the camera information. Tactile frames are
timestamped directly on the microcontroller and transmitted
over USB to a host device (e.g., a laptop or NVIDIA Jetson
Orin Nano). The battery-powered, handbag-sized system is
easily deployed in grocery stores, outdoor markets, and other
unstructured, in-the-world environments (Fig. 2 (a)), enabling
high-throughput and scalable visuo-tactile data collection.

Multi-modal data synchronization. Precise alignment
between vision and touch is essential for learning effective
visuo-tactile representations. Although both the tactile system
and the GoPro camera operate above 20 Hz (e.g., tactile sensors
at 23 Hz, GoPro 9 at 60 Hz), aligning their data streams poses
challenges due to clock drift and limited timestamp precision
on the camera.

We address this with a hardware-free synchronization
strategy: (i) Video stream. Before each demonstration, a QR
code displaying the current host time is shown to the camera,
refreshed at 30 Hz. (ii) Tactile stream. Tactile data is published
via ROS2 at 23 Hz, with each packet carrying a host-clock
timestamp. (iii) Post-processing. During offline processing,
we decode the QR code sequence from the video, recover
exact host timestamps for each frame, and align them with the

tactile data using the shared clock reference. This procedure
yields tightly aligned visual and tactile recordings–without the
need for external synchronization hardware–enabling accurate
multimodal supervision for downstream learning.

IV. VISUO-TACTILE REPRESENTATION AND POLICY
LEARNING

To perform precise manipulation, robots must integrate visual
and tactile signals that differ substantially in both content and
structure. RGB images provide global, semantic context—such
as object identity and workspace layout—while tactile signals
offer local, contact-rich feedback that is often occluded in
vision [29]. These complementary modalities follow different
statistical distributions, making it non-trivial to learn unified
representations that preserve modality-specific information
while enabling effective cross-modal reasoning. We propose a
two-stage learning framework (Fig. 3) that first learns a joint
visuo-tactile representation via masked tactile reconstruction,
and then integrates the learned representation into a diffusion
policy [7] for downstream manipulation tasks.
A. Problem Formulation

Let Dpretrain = {(I, T )} be a large-scale dataset of synchro-
nized RGB-tactile frame pairs, where I ∈ R3×224×224 is an
RGB image captured from a wrist-mounted fisheye camera,
and T ∈ R3×24×32 is a colormapped tactile image composed
of vertically stacked fingertip sensor readings. The goal is to
learn a multimodal encoder Eϕ that fuses these two modalities
into a joint representation zfusion = Eϕ(I, T ) that preserves
modality-specific structure and supports both self-supervised
pertaining and downstream manipulation tasks.

We divide the learning into two stages: (1) Stage 1: Pretrain
Eϕ using a masked autoencoding objective that reconstructs
full tactile images from partially observed tactile input and cor-
responding visual frames. Stage 2: Use the pretrained encoder
within a diffusion policy to learn manipulation behaviors from
demonstrations.
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Fig. 3: Method Overview of our two-stage pipeline. Stage 1: We pretrain a visuo-tactile encoder via cross-modal reconstruction using
a large-scale dataset collected across diverse indoor and outdoor environments. Stage 2: The pretrained encoder is combined with robot
proprioception to condition a diffusion policy for downstream tasks such as object reorientation and insertion.

B. Stage 1: Visuo-Tactile Representation Learning
While prior work often relies on contrastive learning to

align embeddings from different modalities[10, 17], such
objectives tend to suppress the fine-grained, geometry-sensitive
signals captured by tactile sensors. Instead, we adopt a masked
autoencoding objective [20], which reconstructs missing tactile
regions conditioned on partially observed tactile input and
visual context. This formulation encourages the encoder to
retain tactile-specific information while leveraging vision for
inference.

Formally, we optimize the encoder Eϕ to minimize the
expected tactile reconstruction loss:

Eϕ = argmin
ϕ

E(I,T )∼Dpretrain

[∥∥∥T − T̂
∥∥∥2
2

]
, (1)

where T̂ = Dec(Eϕ(I, Tvis)) is the predicted tactile image
from the fused visuo-tactile embedding.

Tactile encoder. Each tactile reading consists of two fingertip
arrays, each of shape 3× 12× 32, stacked vertically to form
a 3× 24× 32 RGB tactile image. This image is divided into
non-overlapping 4× 4 patches, resulting in a 6× 8 patch grid.
During training, we randomly mask 60–80% of the patches in
95% of samples using a learnable token Tmask; the remaining
5% are shown in full. The masked tactile input is defined as:

Tvis = M ⊙ T + (1−M)⊙ Tmask, (2)

where M ∈ {0, 1}6×8 is a binary patch mask. The visible
tactile input Tvis is processed by a 3-layer CNN to produce a
768-dimensional embedding ztac.

Vision encoder. The RGB image I is processed by a ViT-
B/16 encoder initialized from CLIP [33]. We fine-tune all layers

with a learning rate of 3× 10−5, and extract the final [CLS]
token as the 768-dimensional visual embedding zimg.

Cross-modal fusion. To integrate the tactile and visual
features, we apply two rounds of multi-head cross-attention
(MHAttn):

z′tac = MHAttn(Q = ztac, K = zimg, V = zimg)
LayerNorm−−−−−−→ z′′tac,

(3)

z′img = MHAttn(Q = zimg, K = z′′tac, V = z′′tac)
LayerNorm−−−−−−→ z′′img.

(4)

We concatenate the updated embeddings to obtain the fused
representation:

zfusion =
[
z′′tac; z

′′
img

]
∈ R2d. (5)

Tactile reconstruction decoder. The fused feature zfusion
is passed through a two-layer MLP followed by a sigmoid
activation to produce the reconstructed tactile image T̂ ∈
(0, 1)1×24×32, where T̂ = Dec(zfusion). We use a full-image
reconstruction loss:

Lstage1 =
∥∥∥T − T̂

∥∥∥2
2
, (6)

which encourages both local contact inference and global
structural understanding.

Stabilization via EMA. We maintain a target encoder
updated via exponential moving average (EMA) of the online
weights with a decay factor of 0.995. The tactile CNN and cross-
attention layers are optimized with a learning rate of 1× 10−4,
while the CLIP backbone is fine-tuned with 3×10−5. The EMA
encoder is used for checkpointing and attention visualization.



C. Stage 2: Policy Learning via Behavior Cloning
Once pretrained, the visuo-tactile encoder Eϕ is integrated

into a conditional diffusion policy πθ for downstream robotic
manipulation tasks.

Observation space. At each timestep t, the robot observes:
ot = (It, Tt, pt), where pt denotes the robot’s proprioceptive
state (e.g., end-effector pose, gripper width). The encoder
produces the fused visuo-tactile embedding:

zt = Eϕ(It, Tt). (7)

Diffusion policy. We adopt a conditional diffusion policy
πθ [7], which iteratively refines a noisy action sequence over
K denoising steps. At each step, the model conditions on zt
and pt to generate the next action ât. Given a demonstration
dataset Ddemo = {(ot, at)}, we train the policy with a behavior
cloning loss:

Lstage2(θ, ϕ) =
∑
t

∥ât − at∥22 , (8)

where ât = πθ(zt, pt).
Training details. We use Diffusion Policy’s convolutional U-

Net [34] with DDIM inference [36]. The model is conditioned
on the fused visuo-tactile embedding and two consecutive pro-
prioceptive observations. All encoder components—including
the CLIP backbone, tactile CNN, and cross-attention lay-
ers—are fine-tuned during this stage using a learning rate
of 3× 10−5.

V. EXPERIMENTS

In this section, we address several key questions regarding
the role of touch in fine-grained manipulation and the impact
of different pretraining strategies on downstream tasks. Specifi-
cally, we investigate: (1) How does touch improve fine-grained
manipulation? (2) How does a visuo-tactile encoder trained on
extensive data aid policy learning? (3) How do variations in
pretraining - such as the number of demonstrations or training
epochs - affect downstream task performance?

A. Large-Scale Visuo-Tactile Data and Pre-Training
To enable effective visuo-tactile pretraining, we curated a

diverse dataset consisting of over 2.6 million visuo-tactile
pairs collected from 12 indoor and outdoor environments. The
dataset includes more than 2,700 demonstrations and covers
43 manipulation tasks. The data can be divided into three
categories: (1) the four main tasks presented in this paper, (2)
additional unstructured indoor tasks to enhance diversity, and
(3) over 30 in-the-wild tasks that capture complex real-world
scenarios.

We assess the quality of the representation learned by our pre-
trained visuo-tactile encoder using two complementary analyses.
First, we input masked tactile and RGB images into the encoder
to assess its ability to reconstruct the missing tactile images.
This tests whether the encoder has learned meaningful cross-
modal associations and can generalize to both in-distribution
scenarios—environments seen during training—and out-of-
distribution scenarios involving entirely novel backgrounds.

Second, we visualize the encoder’s attention by extracting self-
attention maps from the final layer of the ViT module. This
allows us to examine whether the model consistently attends
to relevant contact regions in the RGB images across different
environments. Figure 4 presents qualitative examples from four
tasks: two from in-distribution environments and two from
out-of-distribution test settings.

B. Experiments Setup
We evaluate our multi-modal sensing and learning system

on four challenging real-world robotic tasks. Below are the
basic descriptions and evaluation metrics for all tasks:

(1) Task Requiring In-Hand State Information
Transparent Tube Collection. The robot must pick up a

test tube from a box, reorient it in-hand using the test tube
rack, and precisely insert it into the test tube rack. Evaluation
Metric: The task is considered successful if the test tube is
fully inserted into the test tube rack without breaking.

Pencil Insertion. The robot needs to insert a pencil into
a sharpener. Since the pencil is initially grasped upright, the
robot must first reorient it before performing a precise insertion.
Evaluation Metric: The task is considered successful if the
pencil is accurately inserted into the sharpener.

(2) Task Requiring Fine-Grained Force Information
Fluid Transfer. The robot uses a pipette to transfer water

between containers. It must grasp the pipette firmly, apply just
enough pressure to extract liquid without dropping it. Then
the robot needs to move to the top of other container and
gently squeeze to release the water into it. This task demands
continuous and sensitive force modulation. Evaluation Metric:
The task is considered successful if the water is transferred
into the second container without spilling.

Whiteboard Erasing. The robot uses a soft eraser to remove
two strokes of text from the whiteboard. It must apply the
right amount of pressure to erase the marker ink without
exceeding force limits that could damage the system. The task
requires consistent and controlled force application throughout.
Evaluation Metric: The task is considered successful if all
visible marker ink is removed from the whiteboard.

In the experiments, we compare our methods with the
following baselines.

(1) Vision Only. This method feeds one RGB image as input
to CLIP, and extracts a 768-dimensional CLIP embedding. This
embedding, along with the robot’s proprioceptive information,
is then fed into the image-based diffusion policy. We follow
the same implementation as outlined in [8].

(2) Vision w/ CNN Tactile Fusion. This method processes
two tactile images—one from the left gripper and one from
the right gripper—through a 3-layer CNN. The features
extracted by the CNN form a 512-dimensional vector, which
is then concatenated with the visual information and used as
conditioning input along with other proprioceptive states for
diffusion policy.

(3) Ours w/o Pretraining. This method uses the visual-
tactile encoder proposed in the paper, with the vision backbone
initialized from CLIP and the other parts of the joint encoder
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Fig. 4: Qualitative Results of Pre-Training. We present four examples showcasing the results of our visuo-tactile pretrained encoder,
highlighting both tactile image reconstruction and ViT self-attention heatmaps. For tactile image reconstruction, the encoder successfully
reconstructs tactile images for both in-distribution and out-of-distribution inputs. Additionally, we observe that the vision encoder consistently
focuses on the gripper contact region, regardless of the background or whether the object is seen or unseen.

initialized from scratch. The output embedding from visual-
tactile encoder is concatenated with other robot proprioceptive
states as conditioning for the diffusion policy.

(4) Ours w/ Pretraining. This method uses the visual-
tactile encoder proposed in the paper with pretrained weights.
Similarly, the output embedding from the visual-tactile encoder
is concatenated with other robot proprioceptive states as
conditioning for the diffusion policy.

For each of the four tasks, we conduct 20 trials with slight
randomization in the initial robot position and environmental
conditions. All policies are trained for 60 epochs, at which
point they have converged. The results are presented in Table
I. Our pretrained policies consistently outperform all baseline
policies across the four evaluated tasks.

C. Qualitative Analysis

Our system enhances a handheld gripper by integrating
tactile sensing and training a large-scale visuo-tactile encoder
to further improve manipulation policies. We observe three key
benefits from incorporating touch and leveraging pretrained
representations. (1) Tactile feedback provides explicit in-hand
pose information. In a single-camera handheld setup, visual
inputs often suffer from severe occlusions. For example, in the
test tube insertion task, the vision-only policy relied heavily
on the color of the wooden cork to infer orientation. A
minor change—such as switching to a lighter cork with less
distinct features—confused the vision model and degraded
performance in reorientation. The tactile policy, however,
remained unaffected by such variations. (2) Tactile feedback
improves detection of critical state transitions. In fine-grained
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Tasks Requiring In-Hand State Information

Modalities Transparent Tube Collection Pencil Insertion
Grasp Reorient Insert Whole Task Reorient Insert Whole Task

Vision Only 1.00 0.25 0.25 0.25 0.50 0.65 0.45
CNN Tactile Fusion 1.00 1.00 0.50 0.50 0.80 0.75 0.70
Ours w/o Pretraining 1.00 1.00 0.70 0.70 0.80 0.80 0.75
Ours w/ Pretraining 1.00 1.00 0.85 0.85 0.95 0.90 0.85

Tasks Requiring Fine-Grained Force Information

Modalities Fluid Transfer Whiteboard Erasing
Acquire Transfer Expel Whole Task First Erase Second Erase Whole Task

Vision Only 0.95 0.85 0.55 0.55 0.65 0.65 0.55
CNN Tactile Fusion 0.90 0.75 0.75 0.70 0.70 0.50 0.45
Ours w/o Pretraining 1.00 0.90 0.80 0.80 0.60 0.75 0.60
Ours w/ Pretraining 1.00 1.00 0.90 0.90 0.70 0.75 0.70

TABLE I: Comparison with Baselines. We evaluate our policy over 20 episodes and the best performance for each task is bolded.

force-controlled tasks like fluid transfer, accurately identifying
when one action phase ends and another begins is essential.
The vision-only policy struggles with this because visual
features—such as the gripper’s width—remain similar before
and after contact, making it difficult to determine if the gripper
is still squeezing or has completed the action. As a result,
the policy often skips the "expel water" phase prematurely,
incorrectly assuming the transfer is finished. In contrast, the
tactile policy receives direct feedback from pressure changes,
enabling it to detect subtle shifts in force and correctly infer
when the water has been fully expelled. This reliable tactile
signal helps the policy transition smoothly between task stages,
improving both accuracy and robustness.

(3) Joint visuo-tactile encoders enable more coordinated
use of vision and touch. Naive fusion approaches that simply
concatenate visual and tactile features often fail to meaningfully
combine the two modalities. As a result, the policy may over-
rely on one input while neglecting the other. This imbalance
was evident in the whiteboard erasing task: the CNN tactile
fusion policy applied excessive force to maximize tactile signal
changes, which triggered safety warnings and caused the task
to fail. In contrast, our jointly trained visuo-tactile encoder
learns to coordinate both modalities, allowing the policy to
modulate force more appropriately based on visual context
and tactile feedback. This balanced integration reduces failure
cases caused by overuse or misuse of either modality.

Pretraining Ablations: Varying Number of Demonstra-
tions and Epochs.

To evaluate the effectiveness of pretraining, we assess the
performance of the Transparent Tube Collection task under
varying number of demonstrations and epochs. The results
are shown in Fig. 6. We found that pretraining provides
significant benefits, particularly in low-data and low-epoch
training settings.

(1) Low-Data Regime (Fewer Than 60 Demonstrations).
When only 30 or 60 demonstrations are available, the policy
initialized without pretraining often hesitates after the grasping
stage to uncertainty about the next step. In contrast, the
policy pretrained for just 30 demonstrations follows smoother
trajectories and typically only encounters failure during the

final insertion phase. We believe that pretraining helps the joint
encoder learn visual-tactile patterns early on, which enables
the downstream policy to focus on learning effective action
trajectories.

(2) Low-Epoch Regime (Fewer Than 60 Epochs). In the low-
epoch regime, we observed that the policy without pretraining
was more sensitive to initial environmental configurations. For
instance, when the test tube was placed at a steep incline
and was difficult to grasp, an imperfect grasp position had
a considerable impact on the execution of the reorientation
task. The policy without pretraining sometimes over- or under-
reoriented, resulting in failure. We believe that in the low-epoch
regime, the pretrained policy benefits from prior knowledge
that emphasizes tactile cues, which makes it less reliant on
noisy environmental factors for decision-making.

VI. CONCLUSION AND LIMITATIONS

We present a handheld gripper enhanced with tactile sensing
and accompanied by a large-scale visuo-tactile dataset. To
demonstrate its utility, we pre-train a joint encoder on this
data and evaluate it across several fine-grained manipulation
tasks. Our study uses a single-arm robot with a parallel grip-
per—an inherently versatile but relatively simple end-effector.
Because tactile feedback can unlock even richer behaviors on
multi-finger hands, future work will extend our approach to
dexterous grippers and explore more intricate manipulation
skills.
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