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Abstract

In this paper, we propose a novel approach to overcome the problem of imbalanced datasets
for object detection tasks, when the distribution is not uniform over all classes. The general
idea is to compute a probability vector, encoding the probability for each image to be fed
to the network during the training phase. This probability vector is computed by solving a
quadratic optimization problem and ensures that all classes are seen with similar frequency.
We apply this method to a fetal anatomies detection problem, and conduct a statistical
analysis of the resulting performance to show that it performs significantly better than two
baseline models: one with images sampled uniformly and one implementing oversampling.
Keywords: Object detection, Imbalanced dataset, Quadratic optimization, Fetal anatomy
detection, Ultrasound.

1. Introduction and problem statement

In this paper, we tackle the issue of imbalanced datasets in object detection problems.
Object detection consists in simultaneous identification and localization of objects in an
image. Current state-of-the-art methods for object detection rely on deep learning algo-
rithms, which require to train a model on a given dataset. For example, let us mention
the classical two-stage networks Fast R-CNN and Faster-RCNN (Girshick, 2015; Ren et al.,
2015), as well as the one-stage architectures SSD (Liu et al., 2016; Fu et al., 2017) and
YOLO (Redmon et al., 2016; Redmon and Farhadi, 2016). However, balance between dif-
ferent classes is often hard to achieve, in particular in the field of medical imaging where
data and annotations are costly and difficult to obtain.

Imbalanced dataset for object detection. An imbalanced dataset may affect the per-
formance of a neural network, leading to poorer behavior of a model on under-represented
classes. A common approach, consisting in oversampling all images containing the less
frequent classes, could introduce unexpected and unwanted behavior, as it may also over-
sample examples of the most represented classes if they are jointly present in the images,
and therefore not improve the overall performance of a model. We will elaborate more on
this issue in Section 3.1.

The general issues with imbalance in object detection have been covered in the survey
paper (Oksuz et al., 2019), dividing them into class imbalance, scale imbalance, spatial
imbalance and objective imbalance. The problem of interest in this paper falls into the
category of class imbalance, and more precisely in the so-called foreground-foreground class
imbalance. Although objects appear at different frequencies in nature, and therefore class
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imbalance is most likely to happen, it is stated in the survey (Oksuz et al., 2019) that
‘imbalance amongst the foreground classes has not attracted as much interest as foreground-
background imbalance’, for which the works (Shrivastava et al., 2016; Lin et al., 2017; Pang
et al., 2019; Li et al., 2019; Chen et al., 2019) can be cited.

For foreground-foreground imbalance, let us mention the papers (Ouyang et al., 2016;
Oksuz et al., 2020). In (Ouyang et al., 2016) the authors investigate fine-tuning of a model
on a dataset with long-tail distribution and 200 classes. They show that it is better to have
(pseudo-)uniform number of samples per class, but sampling is done at bounding box level,
before training the detector to classify each region, which is not easily generalizable to one-
stage detectors. In (Oksuz et al., 2020) the authors present an online foreground balancing
(OFB) method, aiming at making the classes balanced in a batch. Although their approach
would apply to the same type of problems than ours, we point out that it is more suitable
for two-stage detectors, as they generate positive bounding boxes after the region proposal
network, whereas ours is agnostic to the network’s architecture. The experiments we will
present are conducted using the YOLO model, a one-stage detector. Besides, OFB makes
the classes balanced at batch level, whereas our approach plays a role at dataset level. Note
that it is a noticeable difference as, especially for small batch sizes, distribution within a
batch may be different from distribution within the full dataset. Oksuz et al. (2019) lists
as an open question whether OFB might induce a bias in the learning process.

Generative methods (Goodfellow et al., 2014) can also be used to produce artificial
images (see (Tripathi et al., 2019; Wang et al., 2019)) for which special attention can be
given to under-represented classes. One other noticeable approach is the one described in
(Dwibedi et al., 2017), where object instances are simply ‘cut’ and then ‘paste’ on random
backgrounds. Of course, this can result in unrealistic images.

We emphasize that the aforementioned papers only deal with natural images, for which
the datasets available are usually larger than the medical datasets. The approach we sug-
gest in this paper involves no generation of artificial images and requires no changes to
the network architecture (and could indifferently be combined with one-stage or two-stage
detectors), only a balanced way to sample images so that the distribution is uniform.

Paper outline. In what follows, we will start in Section 2 by explaining how the problem
of imbalanced classes can be tackled using quadratic optimization, and how it can be solved
in practice. Then, we will show in Section 3 how it was applied to a specific fetal anatomies
detection problem, and the influence we observed on the training results, compared to
several baselines.

2. Balanced sampling as quadratic programming

2.1. Introducing problem (Pα) for sampling data

Problem statement. We now state the problem under its general form. Even if we aim
at applying it to ultrasonic medical images, our approach is general and could be applied
to any object detection problem.

Let N be the number of images in the dataset, and (X1, X2, . . . , XN ) denote the col-
lection of images. We also denote by C the number of classes present in the dataset, and
we consider that for any given image Xi (with i ∈ J1, NK), any label can be present in the
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image. More precisely, we denote by E the matrix encoding the distribution of labels within
the image collection: E := (εi,l)1≤i≤N,1≤l≤C ∈MN,C(R) with εi,l = 1 if label l is present in
image i, 0 otherwise.

Consider now a probability vector p = (p1, . . . , pN ) ∈ RN (i.e., pi ≥ 0 for all i ∈ J1, NK
and p1 + . . .+pN = 1). If we randomly pick images amongst the collection (Xi)1≤i≤N under
the probability distribution p, the expectation to observe the class l is fl :=

∑N
i=1 piεi,l/N .

In order to have a balanced dataset, we therefore aim at finding a discrete probability
vector (when possible) such that all expectations are the same. Therefore, the problem of
sampling the images in a balanced fashion writes as follows: find a vector p ∈ RN , such
that pi ≥ 0 for all i ∈ J1, NK and p1 + . . .+ pN = 1, and fl = fk for all l, k ∈ J1, CK, where
fl :=

∑N
i=1 piεi,l/N . In what follows we will, with a slight abuse in the notations, forget the

normalizing factor 1/N , and still denote by fl the quantity
∑N

i=1 piεi,l, or in other words,
f = ET p.

Note that it may not always be possible to find such a vector p. To circumvent this
issue, we consider instead the following optimization problem:

Minimize 1
2

∑C
l=1

∑C
k=1 (fl − fk)2,

subject to

{
pi ≥ α,

p1 + . . .+ pN = 1.

(Pα)

The term pi ≥ α aims at ensuring that every image has a minimal probability to be picked
in the sampling process, i.e. that no image is left unseen during training. (Note also that
in order to have at least one solution, α ≤ 1/N is required.)

Before going further, we perform some algebra on the cost function in (Pα):

C∑
l=1

C∑
k=1

(fl − fk)2 =
C∑
l=1

C∑
k=1

f2l + f2k − 2flfk,

= 2C
C∑
l=1

f2l − 2
C∑
l=1

C∑
k=1

flfk,

= 2CfT f − 2fTJCf,

(1)

where JC denotes the matrix in MC(R) where every element is equal to 1. Finally, we get
that the cost writes fT (2CIC − 2JC)f/2 and we denote by A′ the matrix 2CIC − 2JC ∈
MC(R) (IC is the identity matrix of size C). Introducing A = EA′ET ∈ MN (R), we get
that problem (Pα) writes

Minimize 1
2p
TAp,

subject to

{
pi ≥ α,

p1 + . . .+ pN = 1,
(Pα)

which is a standard form for a quadratic optimization problem.

2.2. Enforcing uniqueness

The solution to problem (Pα) is (in general) not unique (see Appendix A for more details).
In order to enforce uniqueness of the solution, we add to the initial problem a regulariza-
tion term λ ‖p‖2 /2 where λ ≥ 0 is a penalization parameter. This yields the following
optimization problem, which admits a unique solution (as long as α ≤ 1/N),
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Table 1: Summary of bounding boxes anatomies and sub-anatomies, and the number of
occurences in the training dataset. CSP stands for Cavum Septum Pellucidum

main anatomies sub-anatomies

head (579) falx cerebri (523) cerebellum (114) thalamus (408) CSP (284)
abdomen (327) umbilical vein (239) stomach (279) spine (349) heart (36)
femur (303)

Minimize 1
2p
TAp+ λ‖p‖

2

2 ,

subject to

{
pi ≥ α,

p1 + . . .+ pN = 1.

(Pλ,α)

where α and λ will be two hyper parameters, that can be set by the user for training. We
refer to Appendix A for mathematical results on (Pλ,α), as well as some details on how it
can be efficiently solved in practice.

3. Application to fetal anatomy detection

3.1. Data

We apply the method to fetal anatomy detection. The dataset comprises 2D frames from
ultrasonic acquisitions of the head, abdomen and upper leg of a fetus. The aim is to detect
and localize in the images some predefined anatomies, that correspond to our classes.

Training dataset. Our training dataset consists in 1237 2D images. The target anatomies
can be split into two categories that we will call main fetal anatomies and sub-anatomies.
They are summarized in Table 1. Here, sub-anatomies are defined as structures that are
part of a main anatomy, e.g., a cerebellum is always included in a head (see also Figure 1
for some sample examples).

Given the definition of labels (‘main anatomies’ and ‘sub-anatomies’), any fetal anatomy
dataset is intrinsically imbalanced. Indeed, sub-anatomies are not present in all frames
where their corresponding main anatomy is present (e.g., a stomach may be missing, even
though we visualize the abdomen), whereas the corresponding main anatomy is necessarily
present when a sub-anatomy is present (e.g., if we visualize the stomach, then the ab-
domen must be visible too). This leads to datasets in which heads and abdomens are over
represented compared to inner structures, as shown in Table 1.

Besides, a common strategy consisting in duplicating images containing the less repre-
sented anatomies (for instance in our case, all the images containing a heart or a cerebellum),
would also lead to an over-representation of the corresponding ‘main anatomies’, which may
in turn introduce a new bias in the dataset. This will be supported by the experiments pre-
sented in Subsection 3.3, where we will compare our strategy to oversampling.
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(a) Head (b) Abdomen (c) Femur

Figure 1: Examples of dataset samples and bounding boxes

Validation and test datasets. We also use a small validation dataset (315 images) to
monitor the loss and metrics during training and avoid over-fitting on the train dataset,
and a final test dataset of 517 images on which all the statisitical evaluation is performed.

3.2. Setup

Parameters. In order to evaluate our method, we need to set the hyper-parameters α
and λ, defined in Section 2.2. To do so, we simulated draws after solving the optimization
problem for λ ∈ [0, 1000] and α ∈ [0, 1/N ].

We chose to set α = 0.5 × 1/N as this ensures that each image is seen at worse twice
fewer times than in the original training dataset distribution. We found it to be a good
compromise between high data variety and class balance.

When λ is too small, the anatomies are better balanced but with very few images over-
represented in the training set. We found λ = 500 to offer a good compromise. High enough
for regularization to become effective, but low enough to actually achieve a more balanced
dataset in terms of anatomy distribution, as illustrated on Figure 2.
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(a) Uniform sampling
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(b) “Balanced” sampling

Figure 2: Impact of our sampling method (with α = 0.5 × 1/N and λ = 500) on the
frequencies of the different anatomies in the training dataset, compared to uniform
sampling. Colors indicate anatomies that share the same main anatomies.
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Model. One of the state-of-the-art deep learning models for object detection is the YOLO
model (Redmon et al., 2016; Redmon and Farhadi, 2016). Because of its high speed, and
in view of real-time usage, this is the baseline model that we use. The network’s layers are
initialized using weights pretrained on the VOC 2007 dataset (Everingham et al., 2015). We
start from a learning rate of 1e−5, then increase it by a factor 10 after 50 epochs, and then
decrease it by a factor 5 regularly during training (approx. every 500 epochs). All networks
are trained using Adam (Kingma and Ba, 2014) algorithm, and various data augmentation
operations (scaling, translation, rotation, gaussian noise, flips) are also applied.

3.3. Results

To evaluate the impact of balanced sampling, we use three different training methods:

• Image generator with uniform sampling : the original training set is uniformly
sampled. This will be our first baseline strategy.

• Image generator with oversampling : our two minority classes, namely heart and
cerebellum are duplicated in order to artificially produce more training images, with
a factor 2 for cerebellum, and 5 for heart. The choice of those factors was decided to
get a frequency comparable to the remaining classes. This will be our second baseline.

• Image generator with balanced sampling : a different probability factor is applied
to each image of the training set, in order to obtain a more balanced dataset. This
factor is determined by finding a solution to (Pλ,α) with α = 0.5× 1/N and λ = 500.

3.3.1. Evaluation method.

We evaluate each of the trained models with the mean Average Precision (mAP) metric.
Due to the inherent stochastic nature of neural network’s training (even with a fixed weight
initialization), we trained several models for each method (30 times with uniform sampling,
12 times with oversampling and 11 times with balanced sampling) aiming to obtain a statis-
tically significant comparison of the various training methods. Due to long training times
(around half a day to train one model, on a GTX 1080 Ti, with input image size 416×416),
we make the choice of evaluating only one setup of α and λ in order to be able to conduct
a thorough statistical evaluation and comparison with the baselines.

In order to compute the mAP, we need to set an Intersection Over Union (IoU) threshold
θ that will separate false positives (IoU < θ) from true positives (IoU ≥ θ) bounding boxes
detections. In what follows, we will use the values θ = 0.2 and θ = 0.4.

We used the Kolmogorov-Smirnov test (KS) (for which we give more details in Appendix
B) to compare performance distributions from both methods.

3.3.2. Detailed results and statistical analysis.

In Table 2 and Table 3, we provide average mAP results over all our trained models with
θ ∈ {0.2, 0.4}, as well as their respective standard deviations. For instance, for θ = 0.2,
the KS test between uniform sampling and balanced sampling provides us with a statistic
D = 0.476 and p-value P = 0.035. Our strategy improves the overall performance of the
models, both when compared to uniform or oversampling.
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Table 2: mAP based on IoU threshold θ ∈ {0.2, 0.4} with a focus on under-represented
anatomies such as the heart and cerebellum. The average, std and best mAP values
over all trained models are presented, as well as the p-value for the statistical test
comparing the distribution of performances for uniform sampling and our balanced
sampling strategy.

Uniform sampling Bal. sampling (ours)

average std best average std best p-value

all anatomies
mAP @ θ = 0.2 58.97 3.96 63.4 62.35 1.53 64.3 .035
mAP @ θ = 0.4 54.87 3.98 59.6 57.75 1.48 59.3 .087

Heart
AP @ θ = 0.2 1.03 3.08 7.7 6.95 7.34 21.2 .038
AP @ θ = 0.4 0.5 2.31 7.7 5.7 5.8 15.4 .031

Cerebellum
AP @ θ = 0.2 4.84 12.01 33.8 17.13 9.91 36.3 .0002
AP @ θ = 0.4 3.72 9.4 28.6 14.9 9.4 36.3 .0001

Balanced sampling vs. uniform sampling. As displayed in Table 2, the improvement
appears when looking at specific sub-anatomies, such as the heart or cerebellum, which
are under represented in the original dataset. With uniform sampling, the trained models
perform very poorly on these structures, whereas the AP performance is greatly improved
using balanced sampling.

Balanced sampling vs. oversampling. Duplicating images of the minority classes
has boosted the performance of the networks on those classes, compared to the uniform
strategy. As displayed in Table 3, our strategy and oversampling perform similarly on under-
represented anatomies. However, our method has a better overall performance, showing
that it is efficient in boosting the performance on under-represented classes, while not
deteriorating the performance on the remaining classes.

3.3.3. Discussion

It is also interesting to notice than even if the average mAP over all trained models is
improved with balanced sampling, it is more limited when focusing on the best performing
trained model. In fact, depending on the IoU-threshold that is set for the mAP evaluation,
the best model can be obtained with the strategy consisting in picking images uniformly
(which needs to be mitigated by recalling that we trained the uniform baseline strategy
three times more than the two others).

We interpret the difference as the fact that a balanced training dataset reduces the
stochastic impact of data feeding to the network. The lower std values obtained with
balanced sampling support this interpretation. It tends to make the training more robust
and reproducible and enables to reach the best level of performance in a more systematic
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Table 3: Comparison between oversampling and our balanced sampling strategy.

oversampling Bal. sampling (ours)

average std best average std best p-value

all anatomies
mAP @ θ = 0.2 56.8 3.5 62.3 62.35 1.53 64.3 .002
mAP @ θ = 0.4 51.9 3.5 57.2 57.75 1.48 59.3 .004

Heart
AP @ θ = 0.2 3.4 4.5 15.3 6.95 7.34 21.2 .86
AP @ θ = 0.4 0.0 0.0 0.0 5.7 5.8 15.4 .04

Cerebellum
AP @ θ = 0.2 19.1 12.0 44.1 17.13 9.91 36.3 .89
AP @ θ = 0.4 14.6 10.7 37.2 14.9 9.4 36.3 .85

way, and with less tries. We believe this can be of great interest in practice, given the time
and resources required to train deep neural networks.

4. Conclusion

In this paper, we suggest a new approach to deal with imbalanced datasets for object de-
tection problems. During training, images are sampled following a probability distribution
that helps bring balance between various classes. This probability distribution is computed
beforehand by solving some quadratic optimization problem. Besides, the method is system-
atic, and can be applied to potentially any object detection problem. However, it requires
tuning of the two hyperparameters α and λ.

We also showed how this sampling strategy impacted the performance of models: under-
represented structures become better detected, while it does not deteriorate the performance
of the network on other structures. In fact, the average mAP performance increased by
around 3% compared to uniform sampling (while the standard deviation of the performance
was reduced from ≈ 4 to ≈ 1.5), and by around 5.5% compared to oversampling (while the
standard deviation was reduced from ≈ 3.5 to ≈ 1.5).

A natural perspective would be to apply the technique to other object detection chal-
lenges, for instance on the COCO dataset (for natural images) or other medical imaging
datasets, and further evaluate what it brings to the models’ performance. Another interest-
ing perpective would be to extend our evaluation to two-stage detectors, and combine our
method with existing methods for two-stage detectors, for instance OFB, as they would act
at two different levels of the training pipeline: before constitution of the batch (ours), and
at the level of ROI proposals by the region proposal network (OFB).
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Appendix A. Mathematical properties of (Pα) and (Pλ,α).
Non-uniqueness of a solution for (Pα). Depending on the matrix A, the solutions
to problem (Pα) are not necessarily unique. Let us for instance consider a toy problem
with 2 classes and 3 images, one of which contains an occurrence of the first class, the two
others containing an occurrence of the second class. That is, the matrix E encoding the
distribution of classes in the dataset is:

E =

1 0
0 1
0 1

 (2)

Then, any vector p ∈ R3 of the form p = (0.5, 1/x, 0.5 − 1/x) with α ≥ x ≥ 2/(1 − 2α)
is a solution to the problem (indeed, ET p is in this case an eigenvector of the matrix A′,
associated to the eigenvalue 0).

Structure of the solution to (Pλ,α). For all λ > 0 and 0 ≤ α ≤ 1/N , the following
result holds on the structure of the solution to (Pλ,α):

Proposition 1 For λ > 0 and 0 ≤ α ≤ 1/N , let p(λ,α) denote the (unique) solution to
(Pλ,α). If Xi1 and Xi2 are two images containing the same objects, i.e., the i1-th and i2-th
lines of the matrix E are the same, then the i1-th and i2-th components of vector p(λ,α) are

the same, p
(λ,α)
i1

= p
(λ,α)
i2

.

This result shows that our sampling technique is consistent for images containing exactly
the same objects: if two (or more) images have the same object distribution (i.e., same
corresponding lines in the matrix E), they will be assigned the same sampling probability,
ensuring that none is favored over the other.
Proof For λ > 0 and α ≤ 1/N , we denote by p(λ,α) the solution to (Pλ,α). Let i1 and i2
be two indices such that the i1-th and i2-th lines of E are the same. We also denote by
(L1, L2, . . . , LN ) the lines of the matrix E, and we therefore have Li1 = Li2 .

We show by contradiction that it implies that p
(λ,α)
i1

= p
(λ,α)
i2

. Assuming that p
(λ,α)
i1

6=
p
(λ,α)
i2

, we define the vector q by:

qi =

 p
(λ,α)
i if i 6= i1 and i 6= i2,

p
(λ,α)
i1

+p
(λ,α)
i2

2 if i = i1 or i = i2.
(3)

First, it is obvious that q1 + . . . + qN = p
(λ,α)
1 + . . . + p

(λ,α)
N = 1, and that qi ≥ α for all

i ∈ J1, NK.

11
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Then, we verify that the probabiliy vector q yields the same frequency distibution as
p(λ,α):

ET p(λ,α) =

N∑
i=1

p
(λ,α)
i LTi

= p
(λ,α)
i1

LTi1 + p
(λ,α)
i2

LTi2 +
∑
i 6=i1,i2

p
(λ,α)
i LTi

= 2 ·
p
(λ,α)
i1

+ p
(λ,α)
i2

2
LTi1 +

∑
i 6=i1,i2

qiL
T
i

= qi1L
T
i1 + qi2L

T
i2 +

∑
i 6=i1,i2

qiL
T
i

= ET q.

(4)

We deduce from the equality (4) that

qTAq = (ET q)TA′ET q

= (ET p(λ,α))TA′ET p(λ,α)

= p(λ,α)
T
Ap(λ,α).

(5)

Finally, we compute the euclidian norm of q:

‖q‖22 =
N∑
i=1

q2i

= q2i1 + q2i1 +
∑
i 6=i1,i2

q2i

=

(
p
(λ,α)
i1

+ p
(λ,α)
i2

)2
2

+
∑
i 6=i1,i2

(
p
(λ,α)
i

)2
<
(
p
(λ,α)
i1

)2
+
(
p
(λ,α)
i2

)2
+
∑
i 6=i1,i2

(
p
(λ,α)
i

)2
<
∥∥∥p(λ,α)∥∥∥2

2
.

(6)

Therefore, combining Equation (5) and (6), we get the following inequality on the cost of
the optimization problem:

1

2
qTAq + λ

‖q‖22
2

<
1

2
p(λ,α)

T
Ap(λ,α) + λ

∥∥p(λ,α)∥∥2
2

2
, (7)

which contradicts the optimality of the solution p(λ,α).
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Solving (Pλ,α). The optimization problem (Pλ,α) is a quadratic optimization problem,
with linear constraints. This class of problems admits a wide variety of solving methods,
one of which is interior-point methods. For this paper, we used the Python package CVXOPT

(Andersen et al., 2011) which offers a convenient setting to define any optimization problem
under the form

Minimize 1
2x

TQx+ qTx,

s.t.

{
Gx � h,
Ax = b.

(8)

Let us also mention the interior point optimizer IPOPT (Wächter and Biegler, 2006) (for gen-
eral non-linear programming), which offers an interface with many programming languages,
and can also be coupled with the modeling language AMPL (Fourer et al., 1993).

Appendix B. Kolmogorov-Smirnov test

In this section, we make a general comment on our methodology to statistically evaluate
the performance of two models. Assume that we want to compare the performance of a
“new” model with a baseline model. The “new” model is trained n times, with performance
x = (x1, . . . , xn) following an (unknown) distribution F , and the baseline model is trained
m times, with performance y = (y1, . . . , ym) following a distribution G.

First, the empirical distribution functions need to be defined:

Fn(u) =
1

n

n∑
i=1

1]−∞,u](xi),

Gm(u) =
1

m

m∑
j=1

1]−∞,u](yj).

The Kolmogorov statistic is then defined as

Dn,m = sup
u∈R
|Fn(u)−Gm(u)|

We consider the null-hypothesis H0 that the samples x and y follow the same distribu-
tion, i.e., F = G. Given an observed value d of the Kolmogorov statistic, and in order to
reject (or not) the null-hypothesis H0, we aim at computing the p-value of the statistical
test:

P = P(Dn,m ≥ d | F = G). (9)

If the probability (9) is below a threshold α, we reject H0 at level α. In python, this
statistical test is implemented with the function ks 2samp, within the package scipy.stats.
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