
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BALANCING GRADIENT FREQUENCIES FACILITATES
INDUCTIVE INFERENCE IN ALGORITHMIC REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Inductive inference, or extrapolation of general rules from finite instances, is un-
derstood to be the foundation of human intelligence. Unfortunately, Deep Neural
Networks (DNNs) struggle with inductive inference and thus fail to learn even the
simplest algorithms in Algorithmic Reasoning (AR). Existing research efforts on
AR with DNNs are limited to those on the architectural design for DNNs. In this
study, we investigate the influence of optimization techniques on AR performance.
Through toy experiments designed to understand an optimizer’s susceptibility to
shortcuts in AR, we reveal that Adam, the naı̈ve choice of optimization, is easily
fooled by spurious correlations. To overcome this shortcoming of Adam, we pro-
pose a novel optimizer that avoids spurious correlations by balancing gradients of
low- and high-frequencies (BGF). We present extensive experiments and analy-
ses to demonstrate the broad and multifaceted advantages of BGF across various
architectures and AR tasks. In particular, BGF expands the AR capability of all
explored DNN models and even shows the potential to enable learning of tasks that
they previously failed at. The observed success of BGF in climbing the Chomsky
hierarchy underscores the importance of optimization for developing advanced
artificial intelligence with DNNs.

1 INTRODUCTION

The goal of Algorithmic Reasoning (AR) (Veličković & Blundell, 2021), expressed through sequence
prediction tasks, is to learn the general output-generating logic from the finite data with a maximum
sentence length of l ≤ N , which can be generalized to arbitrary length l ∈ [1,∞). Therefore, the
ability to perform inductive inference, which involves deriving a general rule from finite instances,
is the key to the successful execution of AR (Delétang et al., 2022). While inductive inference is
understood to be the foundation of human-level intelligence (Pazzani & Kibler, 1992; Klauer & Phye,
2008), Deep Neural Networks (DNNs), the most powerful of current-day machine learning (ML)
models, are incapable of conducting inductive inference. For instance, Large Language Models
(LLMs) with remarkable human-like emergent properties (Brown et al., 2020; Chen et al., 2021;
Chowdhery et al., 2023; Touvron et al., 2023) are known to struggle with learning simple algorithms
like addition or parity through inductive inference (Nogueira et al., 2021; Ontanon et al., 2021; Wu
et al., 2023; Saparov et al., 2024; Anil et al., 2022).

DNNs’ struggle with inductive inference is attributed to the lack of statistical guarantee for their
out-of-distribution (OOD) generalization property. The current generalization property of ML models,
including DNNs, is grounded on the statistical learning theory (Vapnik et al., 1998), which assumes
that training and test data are independent and identically distributed and does not consider OOD
scenarios where test data do not belong in the training distribution (Solomonoff, 1964; Fisher, 1935).
Searching for the desired OOD generalization solution among many hypotheses fitting the training
data requires meta-information outside given training data (Mitchell, 1980). In the DNN training
process, this meta-information is translated into inductive bias, governed by the DNN architecture,
optimization methods, and initial parameters (Goyal & Bengio, 2022). Previously, extensive research
has been conducted on how various DNN architectures can perform different types of logical reasoning
tasks (Skachkova et al., 2018; Chomsky, 1956; Merrill, 2019). Research on Transformers reported
that while they can learn some Dyck languages (Bhattamishra et al., 2020), in most AR tasks, they
tend to learn statistically brittle shortcuts and fail to learn the underlying algorithms (Liu et al., 2022;
Lee et al., 2023; Abbe et al., 2023; Nogueira et al., 2021). In Deletang et al. (Delétang et al., 2022)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

and Merrill et al. (Merrill et al., 2022), comprehensive experiments are conducted to investigate the
ability of recurrent models to learn AR tasks of varying difficulties (Chomsky, 1956).

Contrary to the exhaustive studies on architectures, the influence of optimization methods on OOD
generalization in the context of AR has been largely overlooked. Through carefully designed toy
experiments, we analyze whether Adam (Kingma & Ba, 2014), the de facto optimizer in AR research,
models the general output-generating logic. In our toy experiments, we create synthetic spurious
correlations between train inputs and ground truth outputs. These spurious correlations function
as easily tractable proxies to conceptually abstract shortcuts and enable explicit analysis of AR
tasks from an optimization standpoint. Our exploratory study reveals that Adam exhibits inherent
vulnerability to shortcuts and necessitates advancements on the optimization front to achieve true
OOD generalization.

In this regard, we propose a novel optimizer, named BGF (Balancing of Gradient Frequencies), which
circumvents shortcuts and enhances OOD generalization by balancing gradients of high- and low-
frequencies. We first observe the occurrence of “train-test splitting,” where OOD generalization
on test data is achieved far after the model fits training data, when training DNNs on AR tasks
with Adam. Train-test splitting can be interpreted as a mild form of grokking (Power et al., 2022).
A frequency-domain analysis of gradients obtained over the course of AR training indicates that
high-frequency components, which are dominant at early training steps where the training accuracy
increases, are visibly suppressed once the training accuracy saturates. Following the suppression
of high-frequency components, the test accuracy starts to improve, implying that low-frequency
components provide a necessary diversion from shortcuts to guide the training process to learn the
general underlying logic. Thus, we posit that balancing high- and low-frequency gradients can
improve OOD generalization. Our initial results of replacing Adam with BGF in our toy experiments
consolidate that BGF is indeed more capable of evading shortcuts, consolidating its capability to
encourage learning of general rules.

Extensive experimental results evidence that BGF improves AR performance and accelerates AR
learning on eight DNN models employed by Deletang et al. (Delétang et al., 2022). 1) BGF improves
the best test accuracy of evaluated models on all 15 AR tasks and shows potential to enable learning
of high-complexity tasks that they previously failed at (i.e., Recurrent Neural Network (RNN) on
the Missing Duplicate task). Length generalization in AR was perceived to be bounded by the
inductive bias of a DNN architecture. BGF’s model-agnostic evasion of shortcuts relieves this strong
contingency of AR performance on the choice of a DNN architecture. 2) BGF alleviates train-test
splitting and reduces the number of training steps required to obtain over 90% accuracy on test data.

In addition, we present the results of diverse analyses that uncover the advantages of BGF. The com-
parison of BGF with optimizers proposed to improve generalization in conventional ML illuminates
that BGF is a superior method of optimization for AR. The verification of BGF’s generalization
capability on longer sequences shows that BGF has facilitated learning of the underlying logic.
Analyzing the variance of the training speeds computed over different initializations corroborates
BGF’s capability to stabilize the AR training process. The sharpness analysis of the loss landscapes
obtained with BGF shows that it smoothens the loss surface of trained DNNs, offering insights
into how BGF induces DNNs with improved generalization capacity on AR. Our contributions are
summarized as follows:

• We propose BGF, a novel optimizer that is capable of improving length generalization in AR
through the mitigation of shortcut learning. Notably, BGF shows an instance of climbing
the Chomsky hierarchy by enabling the complete execution of a previously impossible task.

• To accentuate the necessity of an optimization technique tailored toward AR, we disclose
the vulnerability of Adam to shortcuts in AR tasks through toy experiments. In contrast, the
verification of BGF on these toy experiments shows its strong promise at battling shortcuts.

• The existence of the train-test splitting phenomenon in AR is reported for the first time.
Analyzing the change in gradient patterns over AR training steps reveals that when the
test accuracy starts to improve, the high-frequency components in gradients are visibly
suppressed; this analysis inspires the design of BGF that balances low- and high-frequencies.

• Our extensive experimental results demonstrate that BGF brings upon over-arching improve-
ments in performance and training speed. We provide insightful analyses into what makes
BGF advantageous for length generalization in AR.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARY

2.1 ALGORITHMIC REASONING AND CHOMSKY HIERARCHY

While DNNs excel at function approximation and feature extraction (Mao & Jain, 1995), they exhibit
unpredictable behavior beyond the confines of the training data (Vapnik, 1999; Liang et al., 2018).
Conversely, classical algorithms, grounded in predetermined rules, offer scalability to diverse datasets,
performance guarantees, and interpretability. The complementary nature of these methodologies
inspired numerous studies on equipping DNNs with the characteristics of classical algorithms through
algorithmic modeling (Trask et al., 2018; Yan et al., 2020). However, these endeavors are limited
by their reliance on defining task-specific parameterized functions under human supervision (Gaunt
et al., 2017; Valkov et al., 2018). The emerging “learning from data” approach, which involves
acquiring proficiency in arbitrary logical tasks without task supervision, holds promise for addressing
this limitation (Delétang et al., 2022; Liu et al., 2022; Veličković et al., 2022; Minder et al., 2023).

AR refers to the process of learning underlying algorithms through finite pairs of input and output
sequence data (train length l < N). The inference is then conducted on unobserved inputs to deter-
mine whether the model has learned an underlying rule capable of generalization (inference length
l >> N). There exist two main approaches to representing AR tasks, sequence prediction (Delétang
et al., 2022) and graph learning (Veličković et al., 2022). In this paper, we employ the sequence pre-
diction approach because it theoretically subsumes all computational problems and can be represented
with formal languages (Sipser, 1997; Rich, 2007).

The Chomsky hierarchy organizes formal languages into four levels according to their complexity.
Regular languages (R) and corresponding finite automata require the simplest memory complexity.
Context-free (CF) languages and push-down automata necessitate stack-type memory. Context-
sensitive (CS) languages and linear bounded automata require linear tape memory. Lastly, recursively
enumerable (RE) languages and Turing machine demand infinite tape memory. The levels of formal
language (in which AR tasks are expressed) that various DNN models can learn revealed the Chomsky
hierarchy boundary for each architecture, as summarized in Table A2 (Delétang et al., 2022).

2.2 SPURIOUS CORRELATION AND OUT-OF-DISTIBUTION GENERALIZATION

In AR, DNNs models, despite achieving 100% accuracy on training data, fail to generalize to test
cases. This lack of generalization capability, particularly in Transformer models, is commonly
associated with their tendency to learn easier shortcuts that apply only to the training data rather
than general rules. While preventing models from learning shortcuts or spurious correlations and
enhancing OOD generalization performance are central goals in machine learning, limited research
has been conducted for AR tasks from these perspectives.

Methods to mitigate spurious correlations can be broadly categorized into data manipulation, rep-
resentation learning, and learning strategy (Liu et al., 2021b; Ye et al., 2024). Approaches in data
manipulation include corrupting semantic information in the data (Puli et al., 2022), increasing
diversity through mix-up (Yao et al., 2022), using counterfactual generators (Zeng et al., 2020),
and pseudo-label generation (Nam et al., 2022). Even though data manipulation is demonstrated
to be effective in vision and natural language tasks, its application to AR is implausible since the
distribution of training inputs in AR tasks is numerically defined and spans all possible input spaces.

Representation learning, whose aim is to learn domain-agnostic robust representations, has been
widely adopted to enable OOD generalization (Zhang et al., 2022; Harary et al., 2022). Unsupervised
representation learning approach is unsuitable for AR tasks as it only relies on input patterns. For
instance, parity check and binary addition share identical input domains, requiring output information
for learning. For supervised representation learning, methods with environment labels (Pfister et al.,
2019; Albuquerque et al., 2019; Zhu et al., 2023) also do not align with the philosophy of AR.
Methods that do not rely on environment labels commonly decorrelate input into label-relevant and
irrelevant information (Zhang et al., 2021; Lachapelle et al., 2023; Creager et al., 2021; Liu et al.,
2021a). These approaches are also impractical for AR, as every pixel of the input data is associated
with labels, and a single pixel change can alter the class.

The limitations of data manipulation and representation learning leave us with optimization-based
mitigation of spurious correlations. Fortunately, loss landscape sharpness-based optimization strate-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

gies have shown promise in simple logical tasks (Klindt, 2022). The correlation between the loss
landscape sharpness and generalization has been studied theoretically (Hochreiter & Schmidhuber,
1994) and practically (Dinh et al., 2017). Optimization methods enforcing loss landscape flatness
include LPF-SGD (Bisla et al., 2022) and SAM (Foret et al., 2021). An alternative approach emulates
this effect through weight ensembling (Izmailov et al., 2018; Cha et al., 2021). SWAD (Cha et al.,
2021) employs a dense, overfit-aware weight sampling strategy for ensemble selection.

3 METHODOLOGY

Existing research efforts in AR are mostly directed toward studying the influence of different DNN
architectures and their inductive bias on OOD generalization performance. However, the design of the
optimizer, another important dimension that constitutes inductive bias, remains underexplored in AR.
In this study, we aim to investigate and improve OOD generalization in AR tasks from the perspective
of optimization. Through the two toy experiments in Section 3.1, we disclose the susceptibility of
Adam, the default optimizer used in AR, to shortcuts, embodied in the form of spurious correlations.
In Section 3.2, we observe the occurrence of train-test splitting in AR and reveal that low-frequency
components in gradients contribute to the increase in test, instead of training, accuracy. Inspired
by this analysis, we propose BGF, a novel optimizer that circumvents shortcuts and encourages the
learning of generic rules in train data, by balancing of high- and low-frequency gradients.

3.1 MOTIVATION

Definition of Shortcuts: In AR, the Adam optimizer typically achieves near-perfect training accuracy,
exhausting available information from the data, but yields noticeably lower test accuracy. Thus, AR
distinguishes itself from typical ML problems where in distribution (ID) accuracy often predicts
or correlates with OOD generalization (Miller et al., 2021; Hendrycks et al., 2021) and requires
performing inductive inference. The main challenge in inductive inference (including AR) is that data
alone cannot determine a single hypothesis among those that fit the data. For example, predicting
the next number in the sequence 1, 3, 5, 7 has infinite possible continuations. In this work, among
hypotheses fitting the training data, those that enable OOD generalization (e.g., 9 for the continuation)
are defined as “general logic”, whereas non-generalizing hypotheses are termed “shortcuts”. Shortcuts
can be interpreted as learning non-generalizing correlations between inputs and outputs that are valid
in the training distribution but do not hold in the target distribution; such misleading correlations are
regarded to be spurious correlations.

In this section, we expose that the vulnerability of Adam to the shortcuts in AR tasks creates a
major roadblock for DNNs trying to learn the underlying data-generating logic of AR. Unfortunately,
it is infeasible for us humans to pinpoint and explicate which shortcuts are implicitly learned
by models. Therefore, we design toy experiments as a test bed to study the susceptibility of
current optimization approaches to shortcuts. In these toy experiments, we utilize synthetic spurious
correlations between train inputs and outputs as representations of conceptually abstract shortcuts.
Comparing the robustness of different optimizers to spurious correlations allows close monitoring of
whether an optimizer can avoid shortcuts embodied in the form of tangible confounding factors.

We study two different types of spurious correlations, whose examples for the “Modular Arithmetic”
task are depicted in Figure 1. (The Modular Arithmetic (MA) task is defined to be: given a sequence
of inputs and operations sampled from {0, 1, 2, 3, 4} and {+, -, ×}, compute modulo 5 of the result
of applying the operation on the sequence.) The first spurious correlation is induced by concatenating
the ground truth output to the original input sequence as seen in Figure 1(b). At test time, the ground
truth output is replaced with a randomized value to observe whether the optimizer learned the logic
embedded in the original input without memorizing the concatenated ground truth. The second type
of synthetic confounding factor we utilize is the input length. The example in Figure 1(c) depicts how
the “Modular Arithmetic” task is modified to implement input length confounding. In this task, the
potential input length ranges from 1 to 40, and the number of ground truth outputs is 5. Consequently,
our confounding rule partitions data into five groups according to the input length: the inputs of
length 1 ∼ 8 are labeled as 0, those of length 9 ∼ 16 as 1, and so forth. To force spurious correlation
based on the input length, we only select instances that satisfy the above rule and discard the rest.
The model trained on manipulated train data is tested on normal test data sans spurious correlation. In
both toy experiments, the degree of spurious correlation is controlled with probability P . For instance,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0

1

2

3

4

+

−

×

0

1

2

3

4

+

−

×

(a) Original Data

Input: 1 × 4 + 3 − 4

(b) Label Concatenation

GT:

3

(c) Input Length Confounding

Manipulated Input:

In
p

u
t

L
a

b
e

l

GT:

3
𝑙 = 7

Selected

Label =

0 𝑖𝑓 1 ≤ 𝑙 ≤ 8
1 𝑖𝑓 9 ≤ 𝑙 ≤ 16
2 𝑖𝑓 17 ≤ 𝑙 ≤ 24
3 𝑖𝑓 25 ≤ 𝑙 ≤ 32
4 𝑖𝑓 33 ≤ 𝑙 ≤ 40

Confounding Rule

1 × 4 + 3 − 4 𝟑

0

1

2

3

4

+

−

×

GT:

3

𝑙 = 7

0

1

2

3

4

+

−

×

GT:

0

Discarded

Figure 1: (a) depicts an example of the original “Modular Arithmetic” task. In (b), the ground truth
output is attached to the input sequence, creating the opportunity for the DNN to memorize this
ground truth instead of learning the arithmetic rule. In (c), we present a confounding logic to create
a spurious correlation between the input length and the ground truth output. In the given example,
when the length of the example input is 7, we only select examples with the ground truth output of 0.

Degree of Spurious Correlation

(a) Performance Comparison on Bucket Sort

(b) Training Speed Comparison on Parity Check

0.8 0.9 0.95 0.99 0.995 0.8 0.9 0.95 0.99 0.995Ti
m

e
St

ep
s

to
 9

5%

0.8 0.9 0.95 0.99 0.995 0.8 0.9 0.95 0.99 0.995

(b-1) RNN (b-2) Stack-RNN (b-3) Tape-RNN (b-4) LSTM

Degree of Spurious Correlation

0.8 0.9 0.95 0.99 0.995

A
cc

ur
ac

y

(a-1) RNN

0.8 0.9 0.95 0.99 0.995

(a-2) Stack-RNN

0.8 0.9 0.95 0.99 0.995

(a-3) Tape-RNN

0.8 0.9 0.95 0.99 0.995

(a-4) LSTM
Adam w/o Spur. Cor. BGF

Adam

Adam w/o Spur. Cor. BGF
Adam

0.850

0.825

0.775

0.725

0.675

0.800

0.750

0.700

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.50

0.60

0.70

0.80

0.90

1.00

0

1000

2000

3000

4000

5000 5000

4000

3000

2000

1000

0

4000

3000

2000

1000

0

20000

25000

15000

10000

5000

0

Figure 2: Qualitative visualization of how spurious correlation with label concatenation affects the
performance and the training speed of Adam (Red) and BGF (Green). Adam shows a decrease in
performance and an increase in training speed as stronger degrees of spurious correlations are induced.
BGF exhibits visible improvements over Adam on both fronts.

when P = 0.8, 80% of train data are manipulated to exhibit spurious correlation. The length of the
train and test input sequences are set to be 1 ∼ 40 and 100, respectively. All the results of our toy
experiments are averages of results obtained over three different seeds. The first toy experiment is
conducted on eleven tasks, in which the input length is greater than or equal to the output length. This
condition is necessary to concatenate the ground truth without changing the length of the original
input sequence. In Figure 2, we visualize the effect of this synthetic spurious correlation on the
performance and training speed of Adam, quantified through its best test accuracy and the number of
time steps it took to reach 95% accuracy, respectively. In both figures, the dotted gray line denotes the
original performance and training speed of Adam obtained from clean training data free of synthetic
spurious correlations (P = 0). Adam experiences a consistent drop in performance or substantial
increase in training steps with the introduction of spurious correlations of various degrees.

The second experiment is conducted on seven tasks with an output length of one because it is
ambiguous to create length-based spurious correlations on tasks with an output length greater than one.
Due to the page limit, the extended results of both toy experiments are included in Appendix A3. In
congruence with the qualitative results from the first toy experiment, Adam shows a consistent decline
in performance when spurious correlations are introduced. These results collectively demonstrate
that Adam is susceptible to learning spurious correlations in AR tasks, highlighting the need for a
new optimizer better suited for training DNN models on such tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Learning Curve

A
cc

ur
ac

y

Training Steps

(b-1) “Linear” [30, 2]

Frequency (Hz)

In
te

ns
ity

(b-2) “Linear” [153, 4]

Frequency (Hz)

In
te

ns
ity

(b-3) “Linear” [89, 0]

In
te

ns
ity

Frequency (Hz)

(b-4) “Linear” [159, 1]

In
te

ns
ity

Frequency (Hz)

(b-5) “Linear” [196, 3]

In
te

ns
ity

Frequency (Hz)

Training Phase Generalization Phase Low-Frequency Regime High-Frequency Regime Very High-Frequency Regime (Noise)

Train Acc
Test Acc

Figure 3: (a) shows how training and test accuracies evolve during training. (b-1 ∼ 5) visualize FFT
results of normalized gradient signals from five randomly sampled layers. The title for each plot
notes the layer from which the gradient was obtained. Following (a), red and blue signals correspond
to FFT results of training and generalization phase gradients, respectively. Cyan, orange, and green
boxes mark low-, high-, and very-high frequency regions. The intensity of the generalization phase
gradient is visibly dominant in the low-frequency regime.

(a) “Linear” [124, 4]

In
te

ns
ity

P=0.0 P=0.9 P=0.995

Frequency (Hz)

Low-frequency
Regime

(b) “Linear” [228, 4]

In
te

ns
ity

Frequency (Hz)

Low-frequency
Regime

Figure 4: (a) and (b) visualize FFT results of normalized gradients from the label concatenation
toy experiment on Bucket Sort. The title for each plot notes the layer from which the gradient was
obtained. Gradients from the first 20,000 training steps are collected to analyze the impact of spurious
correlations. Training gradients from P=0.0 (yellow), 0.99 (orange), and 0.995 (green) are compared.

3.2 BGF: MITIGATING SHORTCUT LEARNING VIA BALANCING OF GRADIENT FREQUENCIES

We take a closer look at the AR training process of Adam by plotting the training and test accuracy
curves of the LSTM model on the “Solve Equation” task in Figure 3 (a). Training and test accuracies
improve at two disparate points in the training curve. This phenomenon, which we dub “train-test
splitting,” is a moderate version of grokking. From here on, we denote the point in the learning curve
in which training accuracy increases but test accuracy does not as the training phase (red), and the
point in which only test accuracy increases as the generalization phase (blue).

To understand what learning signals contribute to improving the test accuracy and enabling OOD
generalization, we analyze the evolution of gradients over the course of training. Figure 3 (b
1 ∼ 5) are the Fast Fourier Transform (FFT) results of gradient signals obtained from training and
generalization phases. In early steps, when the training accuracy continuously rises while the test
accuracy is stagnant, the gradient patterns are dominated by high-frequency components (red signal).
Interestingly, the intensity of high-frequency gradients substantially attenuates in later gradient
signals that yield OOD generalization capability (blue signal), further validating that relatively lower
frequency gradients are preferable for learning of the general logic. Such a result indicates that the
low-frequency components play a crucial role in avoiding shortcuts and promoting the learning of
general logic.

We additionally analyze the normalized gradient signals from the “Bucket Sort” task with different
degrees of spurious correlation induced by label concatenation. The FFT results for gradient signals
obtained at P ∈ [0.0, 0.99, 0.995] are visualized in Figure 4. As the degree of spurious correlation
between input data and labels gets stronger, the low-frequency components of gradient signals visibly
decrease. This result further evidences that in AR, spurious correlations or shortcuts significantly
weaken low-frequency gradients, and that amplifying low-frequency gradients may hold the key to
facilitating inductive inference.

These analyses lead us to the design of BGF, a novel optimizer that guides the training process
toward general logic and away from shortcuts by balancing the gradients in low- and high-frequency
regimes. The most intuitive approach to obtaining low-frequency gradients is through the adoption of
a low-pass filter, which removes high-frequency components with stochastic and fine-grained signals

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

in gradients of a single training step. Instead of converting gradients to the frequency domain, BGF
mimics the behavior of a low-pass filter by applying the moving average filter with the window size
of λ. λ is used to adjust the filtering range in a low-pass filter and is treated as a hyperparameter that
controls the cut-off frequency. Let gt denote the gradient of some loss function L computed with
respect to the trainable parameters θt at t-th training step: gt = ∇θtL(θt). We store gradients from
t− 1− λ to t− 1 training steps in a gradient queue Qgrad, which has a fixed size of λ by definition:
Qgrad = {gi}i=t−1

i=t−1−λ. The past gradients are averaged over the time dimension to compute the
low-pass filtered gradients: glowt =

1
λ

∑i=t−1
i=t−1−λ gi.

Once the low-pass filtered gradients have been obtained, they are balanced with the high-frequency
gradients computed from the current batch as follows:

gBGFt
= α ∗ gt +

β ∗ ||gt||F
||glowt

||F
∗ glowt

, where α+ β = 1.0. (1)

|| · ||F denotes the Frobenius norm computed on each layer of a DNN model. α and β are coefficients
used to balance two gradient signals. We normalize the low-pass filtered gradients to stabilize the
optimization process of BGF by aligning the scale of two disparate gradients. We report the results
of removing the balancing and normalization steps of BGF in Appendix A4; they show that this
normalization step is crucial for stabilizing BGF.

The initial results of replacing Adam with BGF in the toy experiments from Section 3.1 demon-
strate that BGF is more competent than Adam at avoiding spurious correlations. On the first toy
experiment, Figure 2 delineates that BGF surpasses the performance of Adam and accelerates the
training speed across all levels of spurious correlation. The extended quantitative comparison of
the performance of Adam and BGF on both toy experiments, presented in Appendix A3, further
consolidates the effectiveness of BGF.

4 RESULTS

4.1 EXPERIMENTAL SET-UP

Tasks and Data Generation: We utilize the 15 sequence prediction tasks defined in Deletang et
al. for empirical verification of our method. The list of tasks, associated abbreviations, and detailed
formalization can be found in Appendix A1. The synthetic data for each task are generated following
the procedure in Deletang et al.. The ranges of training and test sequence lengths are 1 ∼ 40 and 100,
respectively. All training processes are executed for 100, 000 steps.
Architectures: To demonstrate BGF can be utilized in an architecture-agnostic manner, we consider
eight different DNN architectures: 4 variants of a recurrent model (RNN, Stack-RNN (Joulin &
Mikolov, 2015), Tape-RNN (Suzgun et al., 2019; Delétang et al., 2022), LSTM (Hochreiter &
Schmidhuber, 1997b)) and 4 variants of the Transformer encoder, each one with different positional
encoding: none (None), classical sin/cos (SinCos) (Vaswani et al., 2017), ALiBi (ALIBI) (Press et al.,
2021), and relative positional encodings of Transformer-XL (Rot) (Dai et al., 2019).
Implementation and Training Details: All our experiments are implemented using JAX (Bradbury
et al., 2018) and PyTorch (Paszke et al., 2019) and run on NVIDIA A40 and L40 GPUs. More
details on hyperparameters used for compared methods are included in Appendix A2. Unless stated
otherwise, all of the reported results are averages of three different random seeds.

4.2 PERFORMANCE COMPARISON

In Table 1, we compare the best test accuracy obtained by Adam and BGF on 120 task - architecture
combinations (15 tasks × 8 architectures). BGF’s superiority to Adam is clearly demonstrated through
performance improvements in 93.3% of combinations, with an average increase in accuracy of 3.3%p
(p-value < 0.001). Notably, BGF exhibits staggering improvement of 46.1%p on the “Missing
Duplicate” task (MD) with Tape-RNN, and there are 11 scenarios where BGF’s improvement exceeds
10%p. We further emphasize that on the “MD” task, training RNN with BGF achieves 100% test
accuracy. This impressive result indicates that BGF enables learning of the MD task with RNN,
which represents an instance of climbing the Chomsky hierarchy. In Appendix A5, we compare
the performance of AdamW (Loshchilov, 2017), a more advanced variant of Adam, and BGF on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Best accuracy comparison against Adam, a naı̈ve approach to optimization in AR. Rows
corresponding to the performance of BGF are highlighted in blue for improved visibility. Accuracies
over 90%, considered to be indications of achieving OOD generalization, are marked in bold.

Level Task Optim. RNN Stack-RNN Tape-RNN LSTM TF (None) TF (Sin-Cos) TF (ALIBI) TF (Rot)

R

EP Adam 1.000 1.000 1.000 1.000 0.531 0.629 0.960 1.000
BGF 1.000 1.000 1.000 1.000 0.533 0.683 0.967 1.000

MA Adam 1.000 1.000 1.000 1.000 0.223 0.222 0.227 0.227
BGF 1.000 1.000 1.000 1.000 0.227 0.223 0.252 0.248

PC Adam 1.000 1.000 1.000 1.000 0.529 0.529 0.529 0.529
BGF 1.000 1.000 1.000 1.000 0.556 0.533 0.532 0.541

CN Adam 1.000 1.000 1.000 0.978 0.861 0.271 0.590 0.494
BGF 1.000 1.000 1.000 1.000 0.979 0.349 0.871 0.566

CF

SM Adam 0.572 0.763 0.793 0.712 0.507 0.518 0.613 0.597
BGF 0.577 0.763 0.826 0.718 0.510 0.530 0.624 0.605

RS Adam 0.743 0.713 0.722 0.716 0.542 0.539 0.699 0.719
BGF 0.761 0.715 0.731 0.707 0.542 0.542 0.728 0.708

MAB Adam 0.458 0.796 0.508 0.820 0.326 0.327 0.326 0.321
BGF 0.512 0.987 0.947 0.912 0.327 0.327 0.328 0.326

SE Adam 0.844 0.908 0.859 0.962 0.222 0.225 0.226 0.228
BGF 0.843 0.906 0.896 0.953 0.224 0.226 0.225 0.223

CS

DS Adam 0.541 0.558 0.541 0.650 0.541 0.536 0.534 0.535
BGF 0.546 0.584 0.548 0.696 0.542 0.541 0.539 0.578

MD Adam 0.544 0.635 0.539 0.560 0.549 0.545 0.603 0.560
BGF 1.000 0.725 1.000 0.706 0.589 0.550 0.656 0.592

OF Adam 0.544 0.575 0.541 0.560 0.542 0.539 0.536 0.564
BGF 0.548 0.593 0.558 0.684 0.542 0.541 0.539 0.563

BA Adam 0.496 0.534 0.507 0.596 0.510 0.506 0.502 0.536
BGF 0.504 0.545 0.515 0.634 0.513 0.513 0.506 0.558

BM Adam 0.503 0.530 0.502 0.551 0.500 0.504 0.503 0.554
BGF 0.506 0.530 0.508 0.578 0.501 0.506 0.506 0.554

CS Adam 0.569 0.609 0.569 0.618 0.513 0.513 0.511 0.577
BGF 0.573 0.612 0.601 0.628 0.514 0.514 0.516 0.581

BS Adam 0.738 0.954 0.805 0.957 0.255 0.391 0.700 0.948
BGF 0.867 0.980 0.844 0.989 0.255 0.501 0.924 0.959

recurrent models. These results further demonstrate that BGF clearly outperforms AdamW (with
an average increase of 3.3%p and a maximum increase of 46.8%p) and successfully learns tasks
that AdamW failed to learn completely. To demonstrate that the performance discrepancy between
Adam and BGF is not a byproduct of the difference in their ability to fit the training distribution, in
Appendix A6, we present the average “training distribution accuracy” associated with Table 1. Both
Adam and BGF achieve near-perfect accuracy on the training distribution (the average accuracy of
Adam is 0.979, and that of BGF is 0.983), underscoring that the AR tasks require inductive inference.
Notably, for the “MD” task, the training distribution accuracy exceeds 0.999 in all cases.

4.3 TRAINING SPEED COMPARISON

R:
CF:
CS:

(a) Training Speed to 90% (b) Training Speed to 95%

0.0-0.5 0.5 0.0-0.5 0.5

B
G

F is Faster

R:
CF:
CS: B

G
F is Faster

Figure 5: Visualization of training step comparison.

In this section, we compare the train-
ing speed of Adam and BGF in terms
of the number of time steps each opti-
mizer takes to reach (a) 90% and (b)
95% accuracy. For each AR task, we
average the training speed over all ar-
chitectures with the exception of archi-
tectures on which neither one of the
optimizers achieves 90% or 95% accu-
racy. For visualization purposes, we plot
0.5 − TBGF/(TAdam + TBGF), where
TAdam and TBGF denote the training speed of Adam and BGF measured in time steps, respectively.
When this value is greater than 0, it means that BGF achieves the target accuracy with fewer steps
than Adam. The results in Figure 5 demonstrate that BGF reduces the number of training steps to
reach 90% or 95% accuracy in the majority of AR tasks. BGF’s convergence speed is particularly
superior to Adam “context-free” and “context-sensitive” tasks, which are more challenging than
“Regular” tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Best accuracy comparison against existing optimizers borrowed from conventional ML.

Architecture Optimizer Train Test
SM RS SE MD BA BS SM RS SE MD BA BS

RNN

Adam 0.988 1.000 0.999 1.000 0.893 0.995 0.572 0.743 0.844 0.544 0.496 0.738
SAM 0.941 0.998 0.905 0.997 0.799 0.965 0.568 0.707 0.465 1.000 0.490 0.430
SWAD 0.975 1.000 0.908 1.000 0.855 0.994 0.561 0.716 0.222 0.540 0.492 0.751
LPF-SGD 0.972 1.000 0.934 1.000 0.854 0.994 0.557 0.715 0.225 0.543 0.493 0.722
BGF 0.996 1.000 0.999 1.000 0.911 0.999 0.577 0.761 0.843 1.000 0.504 0.867

Stack-RNN

Adam 1.000 1.000 1.000 1.000 0.943 1.000 0.763 0.713 0.908 0.635 0.534 0.954
SAM 1.000 1.000 0.998 0.999 0.874 0.997 0.766 0.709 0.746 0.724 0.507 0.495
SWAD 1.000 1.000 0.985 1.000 0.886 1.000 0.762 0.714 0.444 0.567 0.509 0.914
LPF-SGD 1.000 1.000 0.989 1.000 0.880 1.000 0.763 0.713 0.760 0.625 0.512 0.915
BGF 1.000 1.000 1.000 1.000 0.953 1.000 0.763 0.715 0.906 0.725 0.545 0.980

Tape-RNN

Adam 1.000 1.000 1.000 1.000 0.959 1.000 0.793 0.722 0.859 0.539 0.507 0.805
SAM 1.000 1.000 0.993 0.996 0.865 0.998 0.713 0.657 0.645 0.547 0.492 0.507
SWAD 1.000 1.000 1.000 1.000 0.892 0.994 0.806 0.693 0.760 0.537 0.501 0.784
LPF-SGD 1.000 1.000 0.992 1.000 0.889 0.995 0.754 0.675 0.757 0.535 0.509 0.762
BGF 1.000 1.000 1.000 1.000 0.962 1.000 0.826 0.731 0.896 1.000 0.515 0.844

LSTM

Adam 1.000 1.000 1.000 1.000 1.000 1.000 0.712 0.716 0.962 0.560 0.596 0.957
SAM 0.995 0.999 0.995 1.000 0.930 1.000 0.617 0.684 0.738 0.565 0.512 0.781
SWAD 0.996 1.000 0.985 1.000 0.912 1.000 0.640 0.674 0.224 0.552 0.503 0.892
LPF-SGD 0.997 1.000 0.988 1.000 0.911 1.000 0.638 0.662 0.221 0.552 0.499 0.888
BGF 1.000 1.000 1.000 1.000 0.999 1.000 0.718 0.707 0.953 0.706 0.634 0.989

5 ANALYSES

5.1 COMPARISON WITH OTHER OPTIMIZERS

We now compare our approach against three additional optimizers with a shared goal of evading
spurious correlations: SAM (Foret et al., 2021), SWAD (Cha et al., 2021), and LPF-SGD (Bisla
et al., 2022). The description and hyperparameter settings of each optimizer are in Appendix A2.
In Table 2, we compare the train and test accuracies of five optimizers. The extended results are in
Appendix A7. Surprisingly, the previously proposed optimizers are completely inept at improving the
OOD generalization performance on test sequences despite attaining ∼ 100% on training distribution.
The failure of optimizers adopted from conventional ML indicates that seeking generalization alone
does not automatically lead to improved logic-based length generalization in AR.

5.2 EXCLUSIVENESS AND FLEXIBILITY OF BGF

Table 3: Experiments are conducted on the “MD” task. [Left] shows Adam and BGF with various
momentum parameters trained for 1 million steps. [Right] shows results for Adam, BGF, and BGF
implemented with an exponential moving average (BGFema).

1M steps
Arch Adam0.8 BGF0.8 Adam0.9 BGF0.9 Adam0.95 BGF0.95

RNN 0.528 1.000 0.528 1.000 0.530 1.000
Stack-RNN 0.675 0.628 0.684 0.651 0.758 0.667
Tape-RNN 0.529 1.000 0.529 1.000 0.530 0.993
LSTM 0.625 0.701 0.549 0.743 0.656 0.650

100k steps
Arch Adam BGF BGFema

RNN 0.544 1.000 1.000
Stack-RNN 0.635 0.725 1.000
Tape-RNN 0.539 1.000 1.000
LSTM 0.560 0.706 0.582

Comparison to Single Momentum: Here, we observe how changing the momentum parameter in
Adam affects the performance of Adam and BGF. In Table 3 [Left], we compare the performance of
BGF against that of Adam with three different momentum parameters (0.8, 0.9, 0.95). These results
are obtained after 1 million training steps to show that increasing the number of training steps does
not bridge the performance gap between the two optimizers. Across all momentum strengths, BGF
outperforms Adam, and Adam consistently fails to achieve OOD generalization. This experiment
brings to light that because gBGF balances low- and high-frequency gradients, it is infeasible to
substitute gBGF and mimic its effects with single momentum.
BGF Implementation with Exponential Moving Average (EMA): We also study the effect of
implementing the gradient filtering in BGF with an EMA instead of a queue. The results of BGF
with EMA in Table 3 [Right] show that implementing BGF with EMA instead of a queue achieves
OOD generalization on the “MD” task with reduced memory cost. In particular, we note that BGF
with EMA reaches 100% accuracy additionally on Stack-RNN.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

A
cc

ur
ac

y

Inference Length

(a) RNN
1.0

0.8

0.6

0.4

0.2

0.0
2000 400 600 800 1000

(b) Stack-RNN
1.0

0.8

0.6

0.4

0.2

0.0
2000 400 600 800 1000

(c) Tape-RNN
1.0

0.8

0.6

0.4

0.2

0.0
2000 400 600 800 1000

(d) LSTM
1.0

0.8

0.6

0.4

0.2

0.0
2000 400 600 800 1000

(e) TF-ALIBI
1.0

0.8

0.6

0.4

0.2

0.0
1000 200 300 400 500

Adam
BGF

Figure 6: Performance comparison of Adam vs. BGF on test sequences of longer lengths.

Table 5: Loss landscape analysis of the DNN models trained with Adam and BGF.

Measure Regular Context-Free Context-Sensitive
LPF (↓) Fim (↓) Shannon (↓) LPF (↓) Fim (↓) Shannon (↓) LPF (↓) Fim (↓) Shannon (↓)

Adam 0.3712 0.0206 1.08e-04 0.0581 363.34 0.0107 0.5305 3810.23 0.1047

BGF 0.1027 0.0053 5.61e-05 0.0405 315.23 0.0122 0.3175 3353.29 0.0937

p-value 0.129 0.220 0.237 0.205 0.372 0.394 0.182 0.345 0.015

5.3 ADVANTAGEOUS PROPERTIES OF BGF

Extreme Length Generalization: To test whether BGF truly learns the general logic of the MD task,
traditionally considered to be unlearnable by RNNs, we verify its length generalization capability on
test sequences of lengths up to 1000. Figure 6 demonstrates that the RNN trained with BGF maintains
its performance even under this extreme OOD scenario. Results on additional tasks are provided
in Appendix A8. This result supports that BGF induces learning of the underlying algorithm.

Table 4: Standard deviation of the training
speed of Adam and BGF and associated p-value
of the paired t-test.

RNN (↓) SR (↓) TR (↓) LSTM (↓) TF (↓)

Adam 27.4k 28.4k 28.0k 30.2k 39.9k

BGF 6.0k 16.6k 20.5k 22.4k 33.8k

p-value 0.106 0.130 0.256 0.015 0.733

Variance Reduction: We analyze the variance of
training speed to demonstrate that BGF is not only
faster but also more stable at training DNNs on
AR tasks. Like in Section 4.3, cases where neither
Adam nor BGF achieves 90% accuracy are omitted
from comparison. In cases where only a subset of
the three seeds reach 90% accuracy, we calculate
the variance assuming a Poisson distribution. Ta-
ble 4 shows that across all DNN models, BGF ex-
hibits lower variance in training speed, which can
be equated to improved training stability.

Sharpness Analysis: It is widely accepted that the generalization performance of a model is negatively
correlated with the sharpness of its loss landscape (Hochreiter & Schmidhuber, 1997a). We compare
Adam and BGF from the optimization landscape perspectives using three representative measures
of sharpness: low-pass filter-based method (LPF) (Bisla et al., 2022), the Fisher Rao Norm-based
method (Fim) (Liang et al., 2019), and the Shannon Entropy-based method (Shannon) (Pereyra et al.,
2016). The results in Table 5 provide a meaningful insight that the superior performance of BGF is a
product of its smoother loss landscape.

6 CONCLUSION

To the best of our knowledge, this is the first work to study the effect of optimization on generalization
in AR. Our investigative results exposed the susceptibility of Adam to spurious correlations in AR
tasks, necessitating the development of a new optimizer. We then analyzed the evolution of gradients
throughout the AR training process, unveiling the occurrence of the train-test splitting phenomenon
and the contribution of low-frequency components to enabling OOD generalization. Based on these
findings, we proposed BGF, a novel optimizer to encourage learning of general logic in AR, and
demonstrated its effectivenss through extensive experiments and analyses. Limitations: Although
BGF considerably improves the AR performance compared to Adam, it still fails to promote learning
of many AR tasks. Therefore, a considerable amount of research opportunities remain on both the
architecture design and optimization approach fronts to enable DNNs to perform inductive inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic
reasoning and degree curriculum. In International Conference on Machine Learning, pp. 31–60.
PMLR, 2023.

Isabela Albuquerque, João Monteiro, Tiago H Falk, and Ioannis Mitliagkas. Adversarial target-
invariant representation learning for domain generalization. arXiv preprint arXiv:1911.00804, 8,
2019.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020.

Devansh Bisla, Jing Wang, and Anna Choromanska. Low-pass filtering sgd for recovering flat optima
in the deep learning optimization landscape. In International Conference on Artificial Intelligence
and Statistics, pp. 8299–8339. PMLR, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
and Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural
Information Processing Systems, 34:22405–22418, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Noam Chomsky. Three models for the description of language. IRE Transactions on information
theory, 2(3):113–124, 1956.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In International Conference on Machine Learning, pp. 2189–2200. PMLR, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. arXiv preprint arXiv:2207.02098, 2022.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Ronald A Fisher. The logic of inductive inference. Journal of the royal statistical society, 98(1):
39–82, 1935.

11

http://github.com/jax-ml/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021.

Alexander L Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable programs
with neural libraries. In International Conference on Machine Learning, pp. 1213–1222. PMLR,
2017.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
Proceedings of the Royal Society A, 478(2266):20210068, 2022.

Sivan Harary, Eli Schwartz, Assaf Arbelle, Peter Staar, Shady Abu-Hussein, Elad Amrani, Roei
Herzig, Amit Alfassy, Raja Giryes, Hilde Kuehne, et al. Unsupervised domain generalization
by learning a bridge across domains. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5280–5290, 2022.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
Advances in neural information processing systems, 7, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997a.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997b.

P Izmailov, AG Wilson, D Podoprikhin, D Vetrov, and T Garipov. Averaging weights leads to wider
optima and better generalization. In 34th Conference on Uncertainty in Artificial Intelligence 2018,
UAI 2018, pp. 876–885, 2018.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. Advances in neural information processing systems, 28, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Karl Josef Klauer and Gary D Phye. Inductive reasoning: A training approach. Review of educational
research, 78(1):85–123, 2008.

David A Klindt. Controlling neural network smoothness for neural algorithmic reasoning. Transac-
tions on Machine Learning Research, 2022.

Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio, Simon
Lacoste-Julien, and Quentin Bertrand. Synergies between disentanglement and sparsity: General-
ization and identifiability in multi-task learning. In International Conference on Machine Learning,
pp. 18171–18206. PMLR, 2023.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations, 2018.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, geometry,
and complexity of neural networks. In The 22nd international conference on artificial intelligence
and statistics, pp. 888–896. PMLR, 2019.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representations,
2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, and Zheyan Shen. Kernelized heterogeneous risk
minimization. 35th Conference on Neural Information Processing Systems, 2021a.

Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021b.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Jianchang Mao and Anil K Jain. Artificial neural networks for feature extraction and multivariate
data projection. IEEE transactions on neural networks, 6(2):296–317, 1995.

William Merrill. Sequential neural networks as automata. arXiv preprint arXiv:1906.01615, 2019.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar,
Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the strong correlation
between out-of-distribution and in-distribution generalization. In International conference on
machine learning, pp. 7721–7735. PMLR, 2021.

Julian Minder, Florian Grötschla, Joël Mathys, and Roger Wattenhofer. Salsa-clrs: A sparse and
scalable benchmark for algorithmic reasoning. In The Second Learning on Graphs Conference,
2023.

Tom M Mitchell. The need for biases in learning generalizations. 1980.

Junhyun Nam, Jaehyung Kim, Jaeho Lee, and Jinwoo Shin. Spread spurious attribute: Improving
worst-group accuracy with spurious attribute estimation. arXiv preprint arXiv:2204.02070, 2022.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
simple arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.

Santiago Ontanon, Joshua Ainslie, Vaclav Cvicek, and Zachary Fisher. Making transformers solve
compositional tasks. arXiv preprint arXiv:2108.04378, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Michael Pazzani and Dennis Kibler. The utility of knowledge in inductive learning. Machine learning,
9:57–94, 1992.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. In International Conference on
Learning Representations, 2016.

Niklas Pfister, Peter Bühlmann, and Jonas Peters. Invariant causal prediction for sequential data.
Journal of the American Statistical Association, 114(527):1264–1276, 2019.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2021.

Aahlad Puli, Nitish Joshi, He He, and Rajesh Ranganath. Nuisances via negativa: Adjusting for
spurious correlations via data augmentation. arXiv preprint arXiv:2210.01302, 2022.

13

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Elaine Rich. Automata, Computability and Complexity. Prentice-Hall, 2007.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Mehran Kazemi,
Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
models using ood examples. Advances in Neural Information Processing Systems, 36, 2024.

Michael Sipser. Introduction to the theory of computation. PWS Publishing Company, 1997.

Natalia Skachkova, Thomas Alexander Trost, and Dietrich Klakow. Closing brackets with recurrent
neural networks. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pp. 232–239, 2018.

Ray J Solomonoff. A formal theory of inductive inference. part i. Information and control, 7(1):1–22,
1964.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, and Stuart M Shieber. Memory-augmented
recurrent neural networks can learn generalized dyck languages. arXiv preprint arXiv:1911.03329,
2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic
logic units. Advances in neural information processing systems, 31, 2018.

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri. Houdini:
Lifelong learning as program synthesis. Advances in neural information processing systems, 31,
2018.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks,
10(5):988–999, 1999.

Vladimir Naumovich Vapnik, Vlamimir Vapnik, et al. Statistical learning theory. 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković and Charles Blundell. Neural algorithmic reasoning. Patterns, 2(7), 2021.

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning benchmark.
In International Conference on Machine Learning, pp. 22084–22102. PMLR, 2022.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations of
language models through counterfactual tasks. arXiv preprint arXiv:2307.02477, 2023.

Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi. Neural
execution engines: Learning to execute subroutines. Advances in Neural Information Processing
Systems, 33:17298–17308, 2020.

Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. Improving
out-of-distribution robustness via selective augmentation. In International Conference on Machine
Learning, pp. 25407–25437. PMLR, 2022.

Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, Xia Hu, and Aidong Zhang. Spurious
correlations in machine learning: A survey. arXiv preprint arXiv:2402.12715, 2024.

Xiangji Zeng, Yunliang Li, Yuchen Zhai, and Yin Zhang. Counterfactual generator: A weakly-
supervised method for named entity recognition. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 7270–7280, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, and Zheyan Shen. Deep stable
learning for out-of-distribution generalization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5372–5382, 2021.

Xingxuan Zhang, Linjun Zhou, Renzhe Xu, Peng Cui, Zheyan Shen, and Haoxin Liu. Towards
unsupervised domain generalization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4910–4920, 2022.

Didi Zhu, Yinchuan Li, Min Zhang, Junkun Yuan, Jiashuo Liu, Kun Kuang, and Chao Wu. Bridging
the gap: Neural collapse inspired prompt tuning for generalization under class imbalance. arXiv
preprint arXiv:2306.15955, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

A1 15 SEQUENCE PREDICTION TASKS FOR ALGORITHMIC REASONING

Table A1: Summary of AR tasks each DNN model is traditionally known to be able to perform. † and
⋆ denote permutation-invariant and counting tasks; ◦ refers to tasks that demand a nondeterministic
controller; and × indicates the requirement of super linear running time in terms of the input length.
The checkmark denotes that the DNN model can perform the task in the corresponding row.

Level Task RNN Stack-RNN Tape-RNN Transformer LSTM

R

Even Pairs (EP) ✓ ✓ ✓ ✓ ✓
Modular Arithmetic (MA) ✓ ✓ ✓ ✓
Parity Check† (PC) ✓ ✓ ✓ ✓
Cycle Navigation† (CN) ✓ ✓ ✓ ✓

CF

Stack Manipulation (SM) ✓ ✓
Reverse String (RS) ✓ ✓
Modular Arithmetic Brackets (MAB) ✓ ✓
Solve Equation◦ (SE)

CS

Duplicate String (DS) ✓
Missing Duplicate (MD) ✓
Odds First (OF) ✓
Binary Addition (BA) ✓
Binary Multiplication× (BM)
Compute Sqrt (CS)
Bucket Sort†⋆ (BS) ✓ ✓

Table A2: AR tasks categorized according to the Chomsky hierarchy and associated example
input/output pairs. This table was largely borrowed from (Delétang et al., 2022).

Level Task Example Input Example Output

R

Even Pairs (EP) aaabbaabba True
Modular Arithmetic (MA) 1× 4 + 3− 4 3
Parity Check† (PC) abbbbaa True
Cycle Navigation† (CN) 010211 2

CF

Stack Manipulation (SM) abaab POP PUSH a POP abaa
Reverse String (RS) abaab baaba
Modular Arithmetic Brackets (MAB) 1× (4 + 3)− 4 3
Solve Equation◦ (SE) 1× (4 + x)− 4 0

CS

Duplicate String (DS) abaab abaababaab
Missing Duplicate (MD) 10011021 0
Odds First (OF) abaab aabba
Binary Addition (BA) 1010 + 11 1101
Binary Multiplication× (BM) 1010× 11 11110
Compute Sqrt (CS) 10000 100
Bucket Sort†⋆ (BS) 431401 011344

Our empirical verification is conducted on 15 sequence prediction tasks proposed by Delétang et al.
(2022). For the completeness of our work, we include a summary of each task below. We clearly
acknowledge that this summarized description of task formulation is largely borrowed from the
original paper (Delétang et al., 2022).

Regular tasks
• Even Pairs (EP): Computer the number of a’s and b’s in a binary sequence, e.g., babaa.
• Modular Arithmetic (MA): Given a sequence of inputs and operations sampled from {0, 1, 2, 3,
4} and {+, -, ×}, compute modulo 5 of the result of applying the operation on the sequence.
• Parity Check (PC): Given a binarized input sequence, e.g., aaabba, compute if the number of b’s
is even.
• Cycle Navigation (CN): Based on a sequence of movements with the cycle length 5, compute

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the final position. The potential movements are {STAY, INCREASE, DECREASE}, which are
represented as: {0, 1, 2}.

Context Free tasks
• Modular Arithmetic Brackets (MAB): This task is the same as the Modular Arithmetic Task
with the exception of brackets.
• Reverse String (RS): Determine the reverse of a given binary string.
• Solve Equation (SE): Given equation that is constructed by numbers from {0, 1, 2, 3, 4}, brackets,
and operations from {+, −, ×}, and an unknown variable, solve the equation to compute the value of
z such that the equation holds after modulo 5.
• Stack Manipulation (SM): Based on a binary string representation of a stack’s contents (ordered
by: bottom-to-top) and an action sequence constructed by a combination of potential actions {PUSH
a, PUSH b, POP}, determine the final stack content after applying the action sequence on the stack.

Context Sensitive tasks
• Binary Addition (BA): Compute the sum in base 2 of two binary numbers.
• Binary Multiplication (BM): Compute the product in base 2 of two binary numbers.
• Compute Sqrt (CS): Compute the floor of the square root of a binary number.
• Duplicate String (DS): Output the original binary string and its duplicate.
• Missing Duplicate (MD): The input consists of a binary string and its duplicate. Find one token
that has been masked from the original binary string.
• Odds First (OF): Output the values at the odd positions of the binary string first, followed by
those at the even positions.
• Bucket Sort (BS): Given an input sequence over an alphabet of fixed size, sort this string in an
ascending order.

A2 TRAINING DETAILS FOR BGF AND OTHER BASELINES

In this section, we provide descriptions and hyperparameter settings of compared optimizers in our
main experiments. As noted in the main paper, all training processes are run for 100, 000 steps.
• Adam: is the default optimizer used in (Delétang et al., 2022)
• SAM (Foret et al., 2021): searches for neighboring regions with uniformly low losses. To do so, it
applies perturbations to gradients during training, so that they optimize losses in the neighboring
regions as well. The degree of perturbation in SAM is set to 0.5. The perturbed gradients are
multiplied by this value perturbation to control their effect.
• LPF-SGD (Bisla et al., 2022): reduces the influence of the data and label noise by applying the
low pass filter kernel to the loss. The integral in the convolution operation is approximated with the
MC method.
• SWAD (Cha et al., 2021): determines the training interval in which overfitting has occurred by
tracking the validation loss. It then averages all parameters in this training interval to obtain the
final model. The interval for parameter saving in SWAD is determined by three values: an optimum
patient parameter (Np), an overfitting patient parameter (No), and a tolerance rate rtol. The start
saving step happens when the test loss no longer decreases for Np number of steps. The end step
happens when the test loss value exceeds rtol for No number of steps. All parameters within this
interval are saved. Np, No, and rtol are set to 10, and 10, and 0.005, such that a reasonable interval is
selected.
• BGF (Ours): α and β are two hyperparameters involved in BGF. Their sum is always
controlled to be one, so that BGF balances their influences. α and β are searched by conducting a
hyperparameter search on the following sets of {α, β}: {0.95, 0.05}, {0.9, 0.1},{0.8, 0.2},{0.7, 0.3}.

A3 COMPREHENSIVE RESULTS ON TOY EXPERIMENTS

Table A3 and Table A4 present the full results of the Adam and BGF performance in the Label
Concatenation experiment (Toy 1), respectively. Table A5 and Table A6 showcase the full results of
the Adam and BGF performance in the Input Length Confounding experiment (Toy 2), respectively.
In Table A3 and Table A5, we report the best test accuracy achieved during 100,000 steps of training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

For Tables Table A4 and Table A6, we report the training step at which the test accuracy first reached
90%. All values are averaged across three random seeds. For seeds that did not achieve 90% accuracy
throughout the entire training, we report the performance at 100,000 steps and calculate the average.
In the Label Concatenation experiment, we did not conduct experiments when the best accuracy of
both Adam and BGF with the synthetic spurious correlation probability P 0 is close to random (<
0.3 for MA, CN, MAB, SE, BS, and < 0.6 for the rest). These cells are left blank.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Ta
bl

e
A

3:
Fu

ll
re

su
lts

of
th

e
be

st
ac

cu
ra

cy
in

th
e

La
be

lC
on

ca
te

na
tio

n
to

y
ex

pe
rim

en
t.

W
e

ex
cl

ud
ed

ta
sk

s
fr

om
th

e
ex

pe
rim

en
tw

he
re

bo
th

A
da

m
an

d
B

G
F

re
su

lte
d

in
ou

tc
om

es
cl

os
e

to
ra

nd
om

ch
an

ce
an

d
le

ft
th

es
e

ce
lls

bl
an

k.

L
ev

el
Ta

sk
M

et
ho

d
R

N
N

St
ac

k-
R

N
N

Ta
pe

-R
N

N
L

ST
M

0.
8

0.
9

0.
95

0.
99

0.
99

5
0.

8
0.

9
0.

95
0.

99
0.

99
5

0.
8

0.
9

0.
95

0.
99

0.
99

5
0.

8
0.

9
0.

95
0.

99
0.

99
5

R

E
P

N
N

C
H

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

O
ur

s
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0

M
A

N
N

C
H

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
99

6
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

95
9

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
80

7
1.

00
0

1.
00

0
1.

00
0

0.
99

7
0.

22
1

O
ur

s
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

85
7

1.
00

0
1.

00
0

1.
00

0
0.

99
6

0.
22

2
1.

00
0

1.
00

0
1.

00
0

0.
99

9
0.

65
1

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
50

5

PC
N

N
C

H
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
O

ur
s

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

C
N

N
N

C
H

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

96
2

O
ur

s
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0

C
F

R
S

N
N

C
H

0.
71

1
0.

71
7

0.
71

7
0.

71
3

0.
71

4
0.

71
0

0.
71

0
0.

70
9

0.
71

2
0.

71
3

0.
61

0
0.

59
3

0.
66

2
0.

59
2

0.
61

5
0.

70
3

0.
69

9
0.

63
6

0.
57

2
0.

54
8

O
ur

s
0.

72
3

0.
72

5
0.

71
4

0.
71

8
0.

71
9

0.
71

2
0.

70
8

0.
70

8
0.

70
8

0.
71

0
0.

66
2

0.
65

9
0.

70
9

0.
63

5
0.

65
8

0.
68

6
0.

66
0

0.
63

0
0.

58
9

0.
56

5

M
A

B
N

N
C

H
0.

33
2

0.
30

7
0.

28
3

0.
25

6
0.

23
9

0.
51

4
0.

39
4

0.
28

4
0.

25
5

0.
23

6
0.

32
9

0.
30

4
0.

26
6

0.
26

0
0.

24
9

0.
71

1
0.

61
1

0.
42

2
0.

29
1

0.
29

1
O

ur
s

0.
33

8
0.

31
0

0.
28

7
0.

25
0

0.
23

1
0.

39
7

0.
28

6
0.

26
8

0.
25

5
0.

23
8

0.
42

7
0.

26
8

0.
26

7
0.

24
6

0.
23

1
0.

82
6

0.
67

9
0.

60
0

0.
30

6
0.

29
1

SE
N

N
C

H
0.

85
2

0.
76

9
0.

49
7

0.
21

9
0.

21
9

0.
81

9
0.

78
1

0.
65

7
0.

21
9

0.
21

9
0.

84
1

0.
78

2
0.

60
7

0.
21

9
0.

21
9

0.
89

1
0.

85
6

0.
72

6
0.

21
9

0.
21

9
O

ur
s

0.
81

1
0.

69
5

0.
43

0
0.

21
9

0.
21

9
0.

84
9

0.
79

8
0.

71
2

0.
21

9
0.

21
9

0.
82

7
0.

73
5

0.
45

8
0.

21
9

0.
21

9
0.

93
1

0.
88

0
0.

79
1

0.
21

9
0.

21
9

C
S

M
D

N
N

C
H

0.
68

6
0.

84
1

0.
85

7
1.

00
0

1.
00

0
0.

59
0

0.
63

2
0.

61
4

1.
00

0
1.

00
0

0.
52

5
0.

52
6

0.
84

1
1.

00
0

1.
00

0
0.

52
6

0.
52

8
0.

52
9

0.
52

8
0.

52
7

O
ur

s
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
60

4
0.

74
4

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
62

2
0.

77
6

0.
66

6
0.

74
0

0.
88

0

O
F

N
N

C
H

0.
56

8
0.

56
9

0.
54

9
0.

51
9

0.
51

6
O

ur
s

0.
64

7
0.

65
5

0.
57

2
0.

53
4

0.
52

8

C
S

N
N

C
H

0.
60

1
0.

57
6

0.
53

9
0.

52
0

0.
51

5
0.

56
4

0.
56

4
0.

52
0

0.
50

8
0.

50
8

O
ur

s
0.

60
4

0.
57

8
0.

55
0

0.
52

0
0.

51
9

0.
61

1
0.

59
6

0.
57

9
0.

51
3

0.
50

9

B
S

N
N

C
H

0.
73

2
0.

72
8

0.
75

1
0.

73
4

0.
70

8
0.

94
3

0.
94

5
0.

94
3

0.
92

9
0.

91
6

0.
68

2
0.

61
1

0.
64

9
0.

61
0

0.
70

8
0.

92
8

0.
90

9
0.

81
4

0.
58

6
0.

58
8

O
ur

s
0.

82
0

0.
82

1
0.

84
9

0.
78

7
0.

81
0

0.
95

2
0.

96
7

0.
96

6
0.

96
3

0.
93

6
0.

76
4

0.
78

0
0.

81
9

0.
77

9
0.

76
3

0.
98

2
0.

96
7

0.
95

1
0.

85
6

0.
76

4

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Ta
bl

e
A

4:
Fu

ll
re

su
lts

of
tim

e
st

ep
s

re
qu

ir
ed

to
re

ac
h

90
%

ac
cu

ra
cy

in
th

e
L

ab
el

C
on

ca
te

na
tio

n
to

y
ex

pe
ri

m
en

t.
W

e
m

ar
ke

d
“-

”
fo

rc
as

es
w

he
re

no
ne

of
th

e
th

re
e

se
ed

s
re

ac
he

d
0.

9
ac

cu
ra

cy
by

10
0,

00
0

st
ep

s.

L
ev

el
Ta

sk
M

et
ho

d
R

N
N

St
ac

k-
R

N
N

Ta
pe

-R
N

N
L

ST
M

0.
8

0.
9

0.
95

0.
99

0.
99

5
0.

8
0.

9
0.

95
0.

99
0.

99
5

0.
8

0.
9

0.
95

0.
99

0.
99

5
0.

8
0.

9
0.

95
0.

99
0.

99
5

R

E
P

N
N

C
H

32
7

48
4

67
5

23
37

39
28

26
6

35
5

58
0

20
20

33
07

11
47

1
38

23
17

72
55

42
81

03
17

64
28

95
49

43
14

40
4

21
53

2
O

ur
s

28
3

35
1

55
0

19
39

33
46

25
1

33
4

51
3

16
14

29
60

21
41

81
8

11
38

37
31

58
54

10
92

20
39

35
20

10
63

9
16

07
2

M
A

N
N

C
H

70
97

10
24

3
15

18
2

45
25

9
84

26
9

70
55

97
85

14
58

1
46

54
9

90
93

9
58

31
85

82
13

69
9

47
22

7
98

82
1

18
32

4
25

06
3

35
58

3
91

99
3

-
O

ur
s

51
50

79
54

12
82

6
46

95
4

96
72

8
60

37
93

17
16

29
3

72
23

0
-

52
34

76
84

12
17

1
44

72
1

97
80

4
94

49
12

99
7

20
68

5
63

42
4

-

PC
N

N
C

H
47

4
65

7
10

38
26

81
46

24
58

8
86

7
12

08
35

13
48

90
46

0
68

5
10

59
28

80
42

03
59

16
72

49
89

50
16

49
7

27
01

7
O

ur
s

38
8

43
1

70
7

18
59

35
07

47
2

65
7

99
8

26
20

41
50

32
6

42
0

63
6

21
34

34
82

28
94

31
39

41
87

95
65

14
67

7

C
N

N
N

C
H

18
54

23
85

37
59

10
01

6
15

86
8

18
23

25
05

38
52

10
44

8
17

47
3

14
26

20
29

32
02

91
22

15
11

3
21

79
1

23
59

7
27

60
9

63
54

1
94

50
8

O
ur

s
12

49
15

52
23

52
72

46
12

18
6

13
58

18
81

29
69

88
65

14
55

9
11

11
16

39
25

20
75

79
14

49
7

87
99

12
03

4
16

60
3

38
17

0
54

72
2

C
F

R
S

N
N

C
H

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

O
ur

s
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

M
A

B
N

N
C

H
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
O

ur
s

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

SE
N

N
C

H
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

94
27

0
-

-
-

-
O

ur
s

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
64

36
5

88
42

0
-

-
-

C
S

M
D

N
N

C
H

89
91

7
43

43
3

36
99

3
16

81
3

17
04

9
-

-
-

99
55

26
85

0
-

-
39

08
8

14
96

1
33

54
3

-
-

-
-

-
O

ur
s

27
02

33
75

38
13

12
90

1
21

97
0

-
67

93
3

40
72

11
10

2
22

91
9

24
22

37
55

56
08

10
10

5
14

66
0

-
68

99
7

-
74

38
7

53
72

3

O
F

N
N

C
H

-
-

-
-

-
O

ur
s

-
-

-
-

-

C
S

N
N

C
H

-
-

-
-

-
-

-
-

-
-

O
ur

s
-

-
-

-
-

-
-

-
-

-

B
S

N
N

C
H

-
-

-
-

-
16

97
1

16
91

3
17

95
0

69
35

9
81

30
0

-
-

-
-

-
65

67
6

71
22

1
-

-
-

O
ur

s
-

-
-

-
-

45
10

44
25

48
55

21
35

6
61

73
9

-
-

-
-

-
64

03
54

69
16

60
3

74
33

7
86

41
7

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Ta
bl

e
A

5:
Fu

ll
re

su
lts

of
th

e
be

st
ac

cu
ra

cy
in

th
e

In
pu

tL
en

gt
h

C
on

fo
un

di
ng

ex
pe

ri
m

en
t.

L
ev

el
Ta

sk
M

et
ho

d
R

N
N

St
ac

k-
R

N
N

Ta
pe

-R
N

N
L

ST
M

0.
8

0.
9

0.
95

0.
99

0.
99

5
0.

8
0.

9
0.

95
0.

99
0.

99
5

0.
8

0.
9

0.
95

0.
99

0.
99

5
0.

8
0.

9
0.

95
0.

99
0.

99
5

R

E
P

N
N

C
H

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
90

2
0.

93
5

0.
89

8
0.

94
4

0.
93

5
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

O
ur

s
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

97
1

1.
00

0
0.

95
2

1.
00

0
0.

69
5

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
93

2

M
A

N
N

C
H

1.
00

0
1.

00
0

1.
00

0
0.

28
1

0.
22

0
1.

00
0

1.
00

0
1.

00
0

0.
36

6
0.

22
0

0.
92

7
0.

47
0

0.
52

6
0.

22
0

0.
22

0
1.

00
0

1.
00

0
1.

00
0

0.
22

0
0.

21
9

O
ur

s
1.

00
0

1.
00

0
1.

00
0

0.
22

1
0.

21
9

1.
00

0
1.

00
0

1.
00

0
0.

22
0

0.
22

0
1.

00
0

0.
49

4
0.

48
1

0.
37

4
0.

22
0

1.
00

0
1.

00
0

1.
00

0
0.

22
1

0.
22

0

PC
N

N
C

H
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

83
8

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
O

ur
s

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

83
7

0.
84

3
0.

78
5

0.
52

7
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

84
3

C
N

N
N

C
H

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
99

9
1.

00
0

0.
99

9
1.

00
0

0.
94

2
0.

89
1

0.
79

6
0.

69
6

0.
22

0
0.

22
0

O
ur

s
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
99

9
0.

91
6

0.
92

2
1.

00
0

0.
91

7
0.

87
8

0.
79

8
0.

42
7

0.
22

0

C
F

M
A

B
N

N
C

H
0.

35
7

0.
30

2
0.

26
2

0.
21

0
0.

20
8

0.
35

7
0.

28
8

0.
24

3
0.

20
3

0.
21

9
0.

27
3

0.
25

0
0.

24
3

0.
22

3
0.

20
5

0.
52

1
0.

32
1

0.
31

3
0.

29
6

0.
28

1
O

ur
s

0.
32

9
0.

28
2

0.
27

6
0.

20
3

0.
23

8
0.

29
2

0.
25

2
0.

26
7

0.
20

2
0.

22
3

0.
28

1
0.

31
3

0.
30

8
0.

20
0

0.
20

1
0.

57
6

0.
38

2
0.

31
2

0.
31

0
0.

31
6

SE
N

N
C

H
0.

22
0

0.
22

1
0.

22
0

0.
22

0
0.

22
0

0.
46

5
0.

30
8

0.
22

0
0.

22
0

0.
22

0
0.

22
8

0.
22

0
0.

22
0

0.
22

0
0.

22
0

0.
69

0
0.

39
1

0.
22

1
0.

22
0

0.
22

0
O

ur
s

0.
22

7
0.

22
0

0.
21

9
0.

22
1

0.
22

0
0.

33
0

0.
30

8
0.

22
0

0.
22

0
0.

22
0

0.
22

0
0.

24
4

0.
22

0
0.

22
0

0.
22

0
0.

70
4

0.
45

9
0.

29
7

0.
22

0
0.

22
1

C
S

M
D

N
N

C
H

0.
53

1
0.

68
8

0.
68

8
0.

68
5

0.
52

7
0.

68
4

0.
63

4
0.

73
1

0.
53

2
0.

68
5

0.
53

1
0.

52
7

0.
53

1
0.

53
0

0.
52

7
0.

53
3

0.
53

0
0.

53
3

0.
52

9
0.

52
7

O
ur

s
0.

53
3

0.
52

8
0.

52
7

0.
52

7
0.

52
7

0.
66

8
0.

62
3

0.
60

8
0.

64
3

0.
52

7
0.

52
9

0.
52

9
0.

52
8

0.
53

8
0.

68
5

0.
57

3
0.

58
6

0.
84

2
1.

00
0

0.
99

8

Ta
bl

e
A

6:
Fu

ll
re

su
lts

of
tim

e
st

ep
s

re
qu

ir
ed

to
re

ac
h

90
%

ac
cu

ra
cy

in
th

e
In

pu
tL

en
gt

h
C

on
fo

un
di

ng
ex

pe
ri

m
en

t.
W

e
m

ar
ke

d
“-

”
fo

rc
as

es
w

he
re

no
ne

of
th

e
th

re
e

se
ed

s
re

ac
he

d
0.

9
ac

cu
ra

cy
by

10
0,

00
0

st
ep

s.

L
ev

el
Ta

sk
M

et
ho

d
R

N
N

St
ac

k-
R

N
N

Ta
pe

-R
N

N
L

ST
M

0.
8

0.
9

0.
95

0.
99

0.
99

5
0.

8
0.

9
0.

95
0.

99
0.

99
5

0.
8

0.
9

0.
95

0.
99

0.
99

5
0.

8
0.

9
0.

95
0.

99
0.

99
5

R

E
P

N
N

C
H

30
9

37
0

52
1

19
30

38
00

30
9

44
8

75
5

23
28

40
18

68
47

5
45

21
6

37
10

5
50

19
4

43
01

3
30

05
59

64
93

35
20

88
8

32
94

7
O

ur
s

29
6

35
6

46
6

22
83

52
93

31
1

46
4

83
4

29
17

67
59

14
86

7
11

72
2

34
53

3
24

66
9

-
31

12
66

21
10

32
3

23
08

7
55

82
7

M
A

N
N

C
H

12
13

2
19

20
5

28
08

7
-

-
11

43
4

19
14

4
32

11
6

-
-

43
44

5
80

52
2

75
15

2
-

-
39

48
1

54
02

7
87

41
7

-
-

O
ur

s
10

79
6

17
87

7
31

78
1

-
-

13
17

7
23

63
3

48
37

5
-

-
11

01
2

79
07

1
80

98
6

-
-

22
81

9
34

92
5

52
66

9
-

-

PC
N

N
C

H
50

2
89

8
14

27
38

49
68

38
57

8
85

5
25

59
46

91
11

39
0

13
07

9
29

32
30

66
4

13
15

2
81

87
2

92
11

12
67

4
16

61
3

33
16

9
35

32
6

O
ur

s
14

94
49

37
75

98
15

76
5

29
67

5
63

9
10

07
15

72
62

92
14

06
9

14
24

9
71

71
2

59
34

4
-

-
71

80
11

11
9

19
47

3
47

18
6

76
30

3

C
N

N
N

C
H

10
43

5
51

11
88

04
23

13
1

36
91

6
67

66
14

59
4

83
69

34
85

4
40

37
8

10
94

2
24

94
6

20
88

9
34

76
1

65
70

3
99

72
4

-
-

-
-

O
ur

s
33

68
52

59
78

81
24

16
2

41
33

5
42

44
64

44
90

95
24

51
7

42
78

7
66

75
10

56
3

43
18

8
54

87
6

41
83

3
75

25
9

-
-

-
-

C
F

M
A

B
N

N
C

H
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
O

ur
s

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

SE
N

N
C

H
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
O

ur
s

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

C
S

M
D

N
N

C
H

-
69

82
6

70
17

0
75

08
0

-
-

-
70

10
6

-
89

15
0

-
-

-
-

-
-

-
-

-
-

O
ur

s
-

-
-

-
-

-
-

-
-

-
-

-
-

-
86

86
0

-
-

47
86

6
50

05
4

72
40

5

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table A7: Influence of spurious correlations ([Left] Label Concatenation [Right] Input Length
Confounding) with “ADD” method. BGF effectively addresses spurious correlation to a greater extent
compared to Adam. However, the ”ADD” method, which does not implement gradient normalization
and balancing, appears to be highly susceptible to spurious correlation.

P = 0.0 0.8 0.9 0.95 0.99 0.995

Adam 0.809 0.804 0.793 0.772 0.733 0.708

BGF 0.864 0.841 0.828 0.809 0.753 0.707

“ADD” 0.839 0.818 0.804 0.771 0.676 0.617

P = 0.0 0.8 0.9 0.95 0.99 0.995

Adam 0.844 0.754 0.710 0.698 0.584 0.567

BGF 0.910 0.755 0.712 0.701 0.595 0.560

“ADD” 0.882 0.729 0.628 0.522 0.401 0.368

Table A8: Best Accuracy Comparison against ADD and BGF. Rows corresponding to the performance
of BGF are highlighted in blue for improved visibility. Accuracies > 90%, indicative of achieving
OOD generalization, are marked in bold.

Level Task Method RNN Stack-RNN Tape-RNN LSTM TF (None) TF (Sin-Cos) TF (ALIBI) TF (Rot)

R

EP ADD 1.000 1.000 1.000 1.000 0.530 0.627 0.916 1.000
Ours 1.000 1.000 1.000 1.000 0.533 0.683 0.967 1.000

MA ADD 1.000 1.000 1.000 1.000 0.226 0.225 0.243 0.238
Ours 1.000 1.000 1.000 1.000 0.227 0.223 0.252 0.248

PC ADD 1.000 1.000 1.000 1.000 0.544 0.530 0.530 0.530
Ours 1.000 1.000 1.000 1.000 0.556 0.533 0.532 0.541

CN ADD 1.000 1.000 1.000 1.000 0.891 0.851 0.845 0.565
Ours 1.000 1.000 1.000 1.000 0.979 0.349 0.871 0.566

CF

SM ADD 0.630 0.765 0.813 0.727 0.510 0.529 0.654 0.601
Ours 0.577 0.763 0.826 0.718 0.510 0.530 0.624 0.605

RS ADD 0.734 0.736 0.726 0.710 0.542 0.541 0.738 0.720
Ours 0.761 0.715 0.731 0.707 0.542 0.542 0.728 0.708

MAB ADD 0.418 0.926 0.671 0.849 0.327 0.327 0.327 0.327
Ours 0.512 0.987 0.947 0.912 0.327 0.327 0.328 0.326

SE ADD 0.584 0.767 0.625 0.933 0.228 0.224 0.224 0.226
Ours 0.843 0.906 0.896 0.953 0.224 0.226 0.225 0.223

CS

DS ADD 0.544 0.573 0.550 0.700 0.542 0.541 0.540 0.565
Ours 0.546 0.584 0.548 0.696 0.542 0.541 0.539 0.578

MD ADD 1.000 1.000 1.000 0.797 0.554 0.551 0.630 0.581
Ours 1.000 0.725 1.000 0.706 0.589 0.550 0.656 0.592

OF ADD 0.552 0.594 0.562 0.695 0.542 0.541 0.540 0.595
Ours 0.548 0.593 0.558 0.684 0.542 0.541 0.539 0.563

BA ADD 0.504 0.548 0.506 0.645 0.505 0.514 0.508 0.593
Ours 0.504 0.545 0.515 0.634 0.513 0.513 0.506 0.558

BM ADD 0.509 0.532 0.508 0.579 0.501 0.506 0.505 0.552
Ours 0.506 0.530 0.508 0.578 0.501 0.506 0.506 0.554

CS ADD 0.571 0.608 0.573 0.628 0.514 0.514 0.518 0.569
Ours 0.573 0.612 0.601 0.628 0.514 0.514 0.516 0.581

BS ADD 0.829 0.973 0.819 0.998 0.255 0.517 0.899 0.953
Ours 0.867 0.980 0.844 0.989 0.255 0.501 0.924 0.959

A4 BGF WITHOUT NORMALIZATION

We now compare BGF to its more naı̈ve version without the balancing and normalization steps. This
“ADD” method is implemented as follows:

gAddt
= α ∗ gt + β ∗ glowt

where (α = 1 & β > 0) (A1)

Note that removing the α + β = 1.0 condition no longer guarantees that gt and glowt
are

properly balanced. We experimente with β values of 0.5, 1.0, 2.0, and 3.0. The results of toy
experiments are presented in Table A7. It reveals that while BGF consistently outperforms Adam
overall, ADD consistently shows statistically significantly lower results compared to BGF (p-value ¡
0.05). Moreover, as the degree of spurious correlation increases, ADD exhibits a noticeable decrease
in performance, even compared to Adam. In Table A8, we compare the performance of ADD and
BGF on AR tasks. ADD generally exhibited lower performance compared to BGF, and in many cases
where BGF achieved an accuracy of 0.9, ADD failed to achieve this.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A5 PERFORMANCE COMPARISON FOR ADAMW AND BGF

We demonstrated the performance of AdamW and BGF (implemented on AdamW for fairness) on
recurrent models in Table A9. These results demonstrate that BGF clearly outperforms AdamW (with
an average increase of 3.3%p and a maximum increase of 46.8%p) and successfully learns tasks that
AdamW failed to learn completely.

Table A9: Best accuracy comparison against with AdamW. To guarantee experimental consistency
and fairness, BGF was implemented on top of AdamW. Regular (R) tasks were excluded, as both
AdamW and BGF achieved 1.0 on all of them. Accuracies > 90%, which are indicative of OOD
generalization, are marked in bold.

Arch. Optim. Context-Free (CF) Context-Sensitive (CS)
SM RS MAB SE DS MD OF BA BM CS BS

RNN AdamW 0.582 0.712 0.460 0.827 0.526 1.000 0.533 0.494 0.500 0.568 0.699
BGF 0.569 0.747 0.538 0.817 0.537 1.000 0.527 0.498 0.500 0.572 0.885

Stack-RNN AdamW 0.762 0.709 0.875 0.892 0.551 0.702 0.562 0.533 0.527 0.607 0.960
BGF 0.762 0.715 0.982 0.880 0.554 1.000 0.561 0.526 0.523 0.610 0.962

Tape-RNN AdamW 0.740 0.694 0.985 0.959 0.528 0.532 0.548 0.500 0.500 0.533 0.789
BGF 0.827 0.703 0.995 0.923 0.539 1.000 0.541 0.510 0.500 0.537 0.759

LSTM AdamW 0.717 0.697 0.856 0.940 0.667 0.645 0.635 0.635 0.544 0.625 0.972
BGF 0.710 0.705 0.907 0.920 0.684 0.724 0.682 0.632 0.554 0.630 0.996

A6 TRAINING DISTRIBUTION ACCURACY ANALYSIS

In typical ML problems, accuracy on the training distribution (IID) is known to be predictive of (Miller
et al., 2021), or at least correlated with (Hendrycks et al., 2021), OOD generalization performance.
In contrast, for inductive inference, even if a model perfectly learns the training distribution, it may
learn shortcuts or favorable hypotheses depending on various inductive biases. In Table A10, we
showed that the model’s accuracy on the training distribution approaches 1.0, demonstrating that
the AR task can indeed be considered an inductive inference problem. Reported average accuracy
in the main: Adam 0.979, BGF 0.983 are averaged over all 15 AR tasks and 7 models (excluding
Transformer without positional embedding).

A7 TRAIN PERFORMANCE OF OTHER OPTIMIZERS

Table A11a continues from Table 2, presenting the remaining results. Optimization methods de-
signed for OOD generalization in traditional vision tasks often fail to achieve high performance in
the validation of AR tasks, and frequently show poor learning performance even on the training
distribution.

A8 EXTREME LENGTH GENERALIZATION ANALYSIS ON ADDITIONAL TASKS

Figure A1 presents the extreme generalization results up to length 1000 for each model across 9
different tasks. We excluded models that showed results close to random chance at a validation length
of 100. In almost all experiments, BGF outperforms Adam in extreme OOD scenarios and maintains
robust performance regardless of length when it has learned the general rule.

aThe results in this table are run on as many random seeds (1 ∼ 3) as possible. In the revised version, the
updated table with results averaged over all three seeds will be included.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table A10: Average training distribution accuracy of Adam and BGF optimizer. BGF rows are
highlighted in blue. Accuracies > 90% are marked in bold.

Level Task Optim. RNN Stack-RNN Tape-RNN LSTM TF (None) TF (Sin-Cos) TF (ALIBI) TF (Rot)

R

EP Adam 1.000 1.000 1.000 1.000 0.633 1.000 1.000 1.000
BGF 1.000 1.000 1.000 1.000 0.635 1.000 1.000 1.000

MA Adam 1.000 1.000 1.000 1.000 0.454 0.973 0.978 0.996
BGF 1.000 1.000 1.000 1.000 0.458 0.989 0.992 0.998

PC Adam 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000
BGF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CN Adam 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BGF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CF

SM Adam 0.988 1.000 1.000 1.000 0.511 0.998 0.999 1.000
BGF 0.996 1.000 1.000 1.000 0.512 0.999 1.000 1.000

RS Adam 1.000 1.000 1.000 1.000 0.672 0.994 1.000 1.000
BGF 1.000 1.000 1.000 1.000 0.672 0.999 1.000 1.000

MAB Adam 0.978 0.997 0.981 1.000 0.610 0.618 0.956 0.982
BGF 0.983 1.000 0.995 1.000 0.610 0.769 0.957 0.988

SE Adam 0.999 1.000 1.000 1.000 0.588 0.716 0.993 0.991
BGF 0.999 1.000 1.000 1.000 0.592 0.706 0.999 0.998

CS

DS Adam 0.873 0.954 0.975 1.000 0.672 0.998 1.000 1.000
BGF 0.902 0.963 0.982 1.000 0.672 0.999 1.000 1.000

MD Adam 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BGF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

OF Adam 0.938 0.986 0.997 1.000 0.672 1.000 0.993 1.000
BGF 0.949 0.991 0.999 1.000 0.671 1.000 0.997 1.000

BA Adam 0.893 0.943 0.959 1.000 0.445 0.990 0.998 1.000
BGF 0.911 0.953 0.962 0.999 0.444 0.995 0.999 1.000

BM Adam 0.840 0.893 0.886 0.945 0.554 0.942 0.942 0.962
BGF 0.851 0.902 0.893 0.964 0.552 0.956 0.951 0.970

CS Adam 0.937 0.972 0.940 0.981 0.644 0.968 0.956 0.965
BGF 0.941 0.972 0.958 0.983 0.644 0.971 0.957 0.968

BS Adam 0.995 1.000 1.000 1.000 0.452 1.000 1.000 1.000
BGF 0.999 1.000 1.000 1.000 0.451 1.000 1.000 1.000

Table A11: Result continued from Table 2. Other optimizers not only fail to achieve high performance
in validation but also often exhibit poor learning performance even on the training distribution.

Architecture Optimizer Train Test
MAB DS OF BM CS MAB DS OF BM CS

RNN

Adam 0.978 0.873 0.938 0.840 0.937 0.458 0.541 0.544 0.503 0.569
SAM 0.878 0.814 0.873 0.788 0.915 0.330 0.537 0.536 0.501 0.569
SWAD 0.882 0.867 0.921 0.819 0.921 0.328 0.529 0.528 0.500 0.557
LPF-SGD 0.878 0.863 0.920 0.812 0.918 0.329 0.527 0.526 0.503 0.554
BGF 0.983 0.902 0.949 0.851 0.941 0.512 0.546 0.548 0.506 0.573

Stack-RNN

Adam 0.997 0.954 0.986 0.893 0.972 0.796 0.558 0.575 0.530 0.609
SAM 0.908 0.867 0.921 0.835 0.941 0.390 0.563 0.564 0.509 0.589
SWAD 0.898 0.905 0.950 0.838 0.944 0.339 0.545 0.562 0.507 0.586
LPF-SGD 0.897 0.905 0.952 0.836 0.944 0.342 0.548 0.564 0.509 0.588
BGF 1.000 0.963 0.991 0.902 0.972 0.987 0.584 0.593 0.530 0.612

Tape-RNN

Adam 0.981 0.975 0.997 0.886 0.940 0.508 0.541 0.541 0.502 0.569
SAM 0.911 0.891 0.926 0.844 0.922 0.353 0.549 0.549 0.503 0.569
SWAD 0.910 0.888 0.950 0.855 0.924 0.338 0.543 0.544 0.504 0.558
LPF-SGD 0.913 0.886 0.954 0.853 0.921 0.340 0.538 0.545 0.504 0.558
BGF 0.995 0.982 0.999 0.893 0.958 0.947 0.548 0.558 0.508 0.601

LSTM

Adam 1.000 1.000 1.000 0.945 0.981 0.820 0.650 0.560 0.551 0.618
SAM 0.911 0.975 0.998 0.886 0.954 0.364 0.573 0.541 0.519 0.593
SWAD 0.913 0.975 0.997 0.865 0.936 0.339 0.529 0.539 0.506 0.570
LPF-SGD 0.925 0.972 0.998 0.866 0.936 0.339 0.531 0.530 0.514 0.570
BGF 1.000 1.000 1.000 0.964 0.983 0.912 0.696 0.684 0.578 0.628

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Inference length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

even_pairs

BFG rnn
BFG lstm
BFG stack_rnn
BFG tape_rnn
BFG TF
Adam rnn
Adam lstm
Adam stack_rnn
Adam tape_rnn
Adam TF

0 200 400 600 800 1000
Inference length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

modular_arithmetic
BFG rnn
BFG lstm
BFG stack_rnn
BFG tape_rnn
Adam rnn
Adam lstm
Adam stack_rnn
Adam tape_rnn

0 200 400 600 800 1000
Inference length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

parity_check

BFG rnn
BFG lstm
BFG stack_rnn
BFG tape_rnn
Adam rnn
Adam lstm
Adam stack_rnn
Adam tape_rnn

0 200 400 600 800 1000
Inference length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

cycle_navigation

BFG rnn
BFG lstm
BFG stack_rnn
BFG tape_rnn
BFG TF
Adam rnn
Adam lstm
Adam stack_rnn
Adam tape_rnn
Adam TF

0 200 400 600 800 1000
Inference length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

stack_manipulation
BFG lstm
BFG stack_rnn
BFG tape_rnn
Adam lstm
Adam stack_rnn
Adam tape_rnn

0 200 400 600 800 1000
Inference length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

modular_arithmetic_brackets
BFG rnn
BFG lstm
BFG stack_rnn
BFG tape_rnn
Adam rnn
Adam lstm
Adam stack_rnn
Adam tape_rnn

0 200 400 600 800 1000
Inference length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

solve_equation
BFG rnn
BFG lstm
BFG stack_rnn
BFG tape_rnn
Adam rnn
Adam lstm
Adam stack_rnn
Adam tape_rnn

0 200 400 600 800 1000
Inference length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

duplicate_string
BFG lstm
Adam lstm

0 200 400 600 800 1000
Inference length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

odds_first
BFG lstm
Adam lstm

Figure A1: Additional results on length generalization on extreme OOD (up to length 1000). In
each figure, the solid line represents the performance of BGF, while the dotted line represents the
performance of Adam. The standard deviation across the 3 seeds is indicated by a shaded background
of the same color. In most tasks, BGF achieves higher length generalization.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

R1 APPLICABILITY TO REAL-WORLD REASONING TASKS

50k
Training Steps

10k 20k 30k 40k

BGFema(Train)
BGF (Train)

BGF (Test)
BGFema(Test)

Adam (Test)

Adam (Train)A
cc

ur
ac

y

0.0

0.2

0.4

0.6

0.8

1.0

100k~ ~

Figure R1: The training and test accuracy curves of the decoder-only transformer architecture with
Adam, BGF, and BGFema on the composition task. The red and blue arrows denote the beginning of
training and generalization phases.

(a) Early Layer Gradients

(a) Later Layer Gradients

Training Phase Generalization Phase Low-Frequency Regime High-Frequency Regime Very High-Frequency Regime (Noise)

Figure R2: FFT results of training and generalization phase gradients obtained from (a) early and
(b) later layers of the above decoder-only transformer architecture. Cyan, orange, and green boxes
mark low-, high-, and very-high frequency regions. In early layers, the intensity of the generalization
phase gradient is visibly dominant in the low-frequency regime, while in later layers, this difference
diminishes.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

R2 LAYER-WISE GRADIENT ANALYSIS ON A DEEPER LSTM MODEL

(a) Early Layer Gradients

Training Phase Generalization Phase Low-Frequency Regime High-Frequency Regime Very High-Frequency Regime (Noise)

(b) Later Layer Gradients

Figure R3: FFT results of training and generalization phase gradients obtained from (a) early and
(b) later layers of the 4-layer LSTM architecture on the solve equation task. Cyan, orange, and
green boxes mark low-, high-, and very-high frequency regions. In early layers, the intensity of the
generalization phase gradient is visibly dominant in the low-frequency regime, while in later layers,
this difference diminishes.

27

	Introduction
	Preliminary
	Algorithmic Reasoning and Chomsky Hierarchy
	Spurious Correlation and Out-of-distibution Generalization

	Methodology
	Motivation
	BGF: Mitigating Shortcut Learning via Balancing of Gradient Frequencies

	Results
	Experimental Set-up
	Performance Comparison
	Training Speed Comparison

	Analyses
	Comparison with Other Optimizers
	Exclusiveness and flexibility of BGF
	Advantageous Properties of BGF

	Conclusion
	Appendix
	15 Sequence Prediction Tasks for Algorithmic Reasoning
	Training Details for BGF and Other Baselines
	Comprehensive Results on Toy Experiments
	BGF without Normalization
	Performance comparison for AdamW and BGF
	Training Distribution Accuracy Analysis
	Train Performance of Other Optimizers
	Extreme Length Generalization Analysis on Additional Tasks
	Applicability to real-world reasoning tasks
	Layer-wise gradient analysis on a deeper LSTM model

