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ABSTRACT

Inductive inference, or extrapolation of general rules from finite instances, is un-
derstood to be the foundation of human intelligence. Unfortunately, Deep Neural
Networks (DNNs) struggle with inductive inference and thus fail to learn even the
simplest algorithms in Algorithmic Reasoning (AR). Existing research efforts on
AR with DNNs are limited to those on the architectural design for DNNs. In this
study, we investigate the influence of optimization techniques on AR performance.
Through toy experiments designed to understand an optimizer’s susceptibility to
shortcuts in AR, we reveal that Adam, the naı̈ve choice of optimization, is easily
fooled by spurious correlations. To overcome this shortcoming of Adam, we pro-
pose a novel optimizer that avoids spurious correlations by balancing gradients of
low- and high-frequencies (BGF). We present extensive experiments and analy-
ses to demonstrate the broad and multifaceted advantages of BGF across various
architectures and AR tasks. In particular, BGF expands the AR capability of all
explored DNN models and even shows the potential to enable learning of tasks that
they previously failed at. The observed success of BGF in climbing the Chomsky
hierarchy underscores the importance of optimization for developing advanced
artificial intelligence with DNNs.

1 INTRODUCTION

The goal of Algorithmic Reasoning (AR) (Veličković & Blundell, 2021), expressed through sequence
prediction tasks, is to learn the general output-generating logic from the finite data with a maximum
sentence length of l ≤ N , which can be generalized to arbitrary length l ∈ [1,∞). Therefore, the
ability to perform inductive inference, which involves deriving a general rule from finite instances,
is the key to the successful execution of AR (Delétang et al., 2022). While inductive inference is
understood to be the foundation of human-level intelligence (Pazzani & Kibler, 1992; Klauer & Phye,
2008), Deep Neural Networks (DNNs), the most powerful of current-day machine learning (ML)
models, are incapable of conducting inductive inference. For instance, Large Language Models
(LLMs) with remarkable human-like emergent properties (Brown et al., 2020; Chen et al., 2021;
Chowdhery et al., 2023; Touvron et al., 2023) are known to struggle with learning simple algorithms
like addition or parity through inductive inference (Nogueira et al., 2021; Ontanon et al., 2021; Wu
et al., 2023; Saparov et al., 2024; Anil et al., 2022).

DNNs’ struggle with inductive inference is attributed to the lack of statistical guarantee for their
out-of-distribution (OOD) generalization property. The current generalization property of ML models,
including DNNs, is grounded on the statistical learning theory (Vapnik et al., 1998), which assumes
that training and test data are independent and identically distributed and does not consider OOD
scenarios where test data do not belong in the training distribution (Solomonoff, 1964; Fisher, 1935).
Searching for the desired OOD generalization solution among many hypotheses fitting the training
data requires meta-information outside given training data (Mitchell, 1980). In the DNN training
process, this meta-information is translated into inductive bias, governed by the DNN architecture,
optimization methods, and initial parameters (Goyal & Bengio, 2022). Previously, extensive research
has been conducted on how various DNN architectures can perform different types of logical reasoning
tasks (Skachkova et al., 2018; Chomsky, 1956; Merrill, 2019). Research on Transformers reported
that while they can learn some Dyck languages (Bhattamishra et al., 2020), in most AR tasks, they
tend to learn statistically brittle shortcuts and fail to learn the underlying algorithms (Liu et al., 2022;
Lee et al., 2023; Abbe et al., 2023; Nogueira et al., 2021). In Deletang et al. (Delétang et al., 2022)
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and Merrill et al. (Merrill et al., 2022), comprehensive experiments are conducted to investigate the
ability of recurrent models to learn AR tasks of varying difficulties (Chomsky, 1956).

Contrary to the exhaustive studies on architectures, the influence of optimization methods on OOD
generalization in the context of AR has been largely overlooked. Through carefully designed toy
experiments, we analyze whether Adam (Kingma & Ba, 2014), the de facto optimizer in AR research,
models the general output-generating logic. In our toy experiments, we create synthetic spurious
correlations between train inputs and ground truth outputs. These spurious correlations function
as easily tractable proxies to conceptually abstract shortcuts and enable explicit analysis of AR
tasks from an optimization standpoint. Our exploratory study reveals that Adam exhibits inherent
vulnerability to shortcuts and necessitates advancements on the optimization front to achieve true
OOD generalization.

In this regard, we propose a novel optimizer, named BGF (Balancing of Gradient Frequencies), which
circumvents shortcuts and enhances OOD generalization by balancing gradients of high- and low-
frequencies. We first observe the occurrence of “train-test splitting,” where OOD generalization
on test data is achieved far after the model fits training data, when training DNNs on AR tasks
with Adam. Train-test splitting can be interpreted as a mild form of grokking (Power et al., 2022).
A frequency-domain analysis of gradients obtained over the course of AR training indicates that
high-frequency components, which are dominant at early training steps where the training accuracy
increases, are visibly suppressed once the training accuracy saturates. Following the suppression
of high-frequency components, the test accuracy starts to improve, implying that low-frequency
components provide a necessary diversion from shortcuts to guide the training process to learn the
general underlying logic. Thus, we posit that balancing high- and low-frequency gradients can
improve OOD generalization. Our initial results of replacing Adam with BGF in our toy experiments
consolidate that BGF is indeed more capable of evading shortcuts, consolidating its capability to
encourage learning of general rules.

Extensive experimental results evidence that BGF improves AR performance and accelerates AR
learning on eight DNN models employed by Deletang et al. (Delétang et al., 2022). 1) BGF improves
the best test accuracy of evaluated models on all 15 AR tasks and shows potential to enable learning
of high-complexity tasks that they previously failed at (i.e., Recurrent Neural Network (RNN) on
the Missing Duplicate task). Length generalization in AR was perceived to be bounded by the
inductive bias of a DNN architecture. BGF’s model-agnostic evasion of shortcuts relieves this strong
contingency of AR performance on the choice of a DNN architecture. 2) BGF alleviates train-test
splitting and reduces the number of training steps required to obtain over 90% accuracy on test data.

In addition, we present the results of diverse analyses that uncover the advantages of BGF. The com-
parison of BGF with optimizers proposed to improve generalization in conventional ML illuminates
that BGF is a superior method of optimization for AR. The verification of BGF’s generalization
capability on longer sequences shows that BGF has facilitated learning of the underlying logic.
Analyzing the variance of the training speeds computed over different initializations corroborates
BGF’s capability to stabilize the AR training process. The sharpness analysis of the loss landscapes
obtained with BGF shows that it smoothens the loss surface of trained DNNs, offering insights
into how BGF induces DNNs with improved generalization capacity on AR. Our contributions are
summarized as follows:

• We propose BGF, a novel optimizer that is capable of improving length generalization in AR
through the mitigation of shortcut learning. Notably, BGF shows an instance of climbing
the Chomsky hierarchy by enabling the complete execution of a previously impossible task.

• To accentuate the necessity of an optimization technique tailored toward AR, we disclose
the vulnerability of Adam to shortcuts in AR tasks through toy experiments. In contrast, the
verification of BGF on these toy experiments shows its strong promise at battling shortcuts.

• The existence of the train-test splitting phenomenon in AR is reported for the first time.
Analyzing the change in gradient patterns over AR training steps reveals that when the
test accuracy starts to improve, the high-frequency components in gradients are visibly
suppressed; this analysis inspires the design of BGF that balances low- and high-frequencies.

• Our extensive experimental results demonstrate that BGF brings upon over-arching improve-
ments in performance and training speed. We provide insightful analyses into what makes
BGF advantageous for length generalization in AR.
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2 PRELIMINARY

2.1 ALGORITHMIC REASONING AND CHOMSKY HIERARCHY

While DNNs excel at function approximation and feature extraction (Mao & Jain, 1995), they exhibit
unpredictable behavior beyond the confines of the training data (Vapnik, 1999; Liang et al., 2018).
Conversely, classical algorithms, grounded in predetermined rules, offer scalability to diverse datasets,
performance guarantees, and interpretability. The complementary nature of these methodologies
inspired numerous studies on equipping DNNs with the characteristics of classical algorithms through
algorithmic modeling (Trask et al., 2018; Yan et al., 2020). However, these endeavors are limited
by their reliance on defining task-specific parameterized functions under human supervision (Gaunt
et al., 2017; Valkov et al., 2018). The emerging “learning from data” approach, which involves
acquiring proficiency in arbitrary logical tasks without task supervision, holds promise for addressing
this limitation (Delétang et al., 2022; Liu et al., 2022; Veličković et al., 2022; Minder et al., 2023).

AR refers to the process of learning underlying algorithms through finite pairs of input and output
sequence data (train length l < N ). The inference is then conducted on unobserved inputs to deter-
mine whether the model has learned an underlying rule capable of generalization (inference length
l >> N ). There exist two main approaches to representing AR tasks, sequence prediction (Delétang
et al., 2022) and graph learning (Veličković et al., 2022). In this paper, we employ the sequence pre-
diction approach because it theoretically subsumes all computational problems and can be represented
with formal languages (Sipser, 1997; Rich, 2007).

The Chomsky hierarchy organizes formal languages into four levels according to their complexity.
Regular languages (R) and corresponding finite automata require the simplest memory complexity.
Context-free (CF) languages and push-down automata necessitate stack-type memory. Context-
sensitive (CS) languages and linear bounded automata require linear tape memory. Lastly, recursively
enumerable (RE) languages and Turing machine demand infinite tape memory. The levels of formal
language (in which AR tasks are expressed) that various DNN models can learn revealed the Chomsky
hierarchy boundary for each architecture, as summarized in Table A2 (Delétang et al., 2022).

2.2 SPURIOUS CORRELATION AND OUT-OF-DISTIBUTION GENERALIZATION

In AR, DNNs models, despite achieving 100% accuracy on training data, fail to generalize to test
cases. This lack of generalization capability, particularly in Transformer models, is commonly
associated with their tendency to learn easier shortcuts that apply only to the training data rather
than general rules. While preventing models from learning shortcuts or spurious correlations and
enhancing OOD generalization performance are central goals in machine learning, limited research
has been conducted for AR tasks from these perspectives.

Methods to mitigate spurious correlations can be broadly categorized into data manipulation, rep-
resentation learning, and learning strategy (Liu et al., 2021b; Ye et al., 2024). Approaches in data
manipulation include corrupting semantic information in the data (Puli et al., 2022), increasing
diversity through mix-up (Yao et al., 2022), using counterfactual generators (Zeng et al., 2020),
and pseudo-label generation (Nam et al., 2022). Even though data manipulation is demonstrated
to be effective in vision and natural language tasks, its application to AR is implausible since the
distribution of training inputs in AR tasks is numerically defined and spans all possible input spaces.

Representation learning, whose aim is to learn domain-agnostic robust representations, has been
widely adopted to enable OOD generalization (Zhang et al., 2022; Harary et al., 2022). Unsupervised
representation learning approach is unsuitable for AR tasks as it only relies on input patterns. For
instance, parity check and binary addition share identical input domains, requiring output information
for learning. For supervised representation learning, methods with environment labels (Pfister et al.,
2019; Albuquerque et al., 2019; Zhu et al., 2023) also do not align with the philosophy of AR.
Methods that do not rely on environment labels commonly decorrelate input into label-relevant and
irrelevant information (Zhang et al., 2021; Lachapelle et al., 2023; Creager et al., 2021; Liu et al.,
2021a). These approaches are also impractical for AR, as every pixel of the input data is associated
with labels, and a single pixel change can alter the class.

The limitations of data manipulation and representation learning leave us with optimization-based
mitigation of spurious correlations. Fortunately, loss landscape sharpness-based optimization strate-
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gies have shown promise in simple logical tasks (Klindt, 2022). The correlation between the loss
landscape sharpness and generalization has been studied theoretically (Hochreiter & Schmidhuber,
1994) and practically (Dinh et al., 2017). Optimization methods enforcing loss landscape flatness
include LPF-SGD (Bisla et al., 2022) and SAM (Foret et al., 2021). An alternative approach emulates
this effect through weight ensembling (Izmailov et al., 2018; Cha et al., 2021). SWAD (Cha et al.,
2021) employs a dense, overfit-aware weight sampling strategy for ensemble selection.

3 METHODOLOGY

Existing research efforts in AR are mostly directed toward studying the influence of different DNN
architectures and their inductive bias on OOD generalization performance. However, the design of the
optimizer, another important dimension that constitutes inductive bias, remains underexplored in AR.
In this study, we aim to investigate and improve OOD generalization in AR tasks from the perspective
of optimization. Through the two toy experiments in Section 3.1, we disclose the susceptibility of
Adam, the default optimizer used in AR, to shortcuts, embodied in the form of spurious correlations.
In Section 3.2, we observe the occurrence of train-test splitting in AR and reveal that low-frequency
components in gradients contribute to the increase in test, instead of training, accuracy. Inspired
by this analysis, we propose BGF, a novel optimizer that circumvents shortcuts and encourages the
learning of generic rules in train data, by balancing of high- and low-frequency gradients.

3.1 MOTIVATION

Definition of Shortcuts: In AR, the Adam optimizer typically achieves near-perfect training accuracy,
exhausting available information from the data, but yields noticeably lower test accuracy. Thus, AR
distinguishes itself from typical ML problems where in distribution (ID) accuracy often predicts
or correlates with OOD generalization (Miller et al., 2021; Hendrycks et al., 2021) and requires
performing inductive inference. The main challenge in inductive inference (including AR) is that data
alone cannot determine a single hypothesis among those that fit the data. For example, predicting
the next number in the sequence 1, 3, 5, 7 has infinite possible continuations. In this work, among
hypotheses fitting the training data, those that enable OOD generalization (e.g., 9 for the continuation)
are defined as “general logic”, whereas non-generalizing hypotheses are termed “shortcuts”. Shortcuts
can be interpreted as learning non-generalizing correlations between inputs and outputs that are valid
in the training distribution but do not hold in the target distribution; such misleading correlations are
regarded to be spurious correlations.

In this section, we expose that the vulnerability of Adam to the shortcuts in AR tasks creates a
major roadblock for DNNs trying to learn the underlying data-generating logic of AR. Unfortunately,
it is infeasible for us humans to pinpoint and explicate which shortcuts are implicitly learned
by models. Therefore, we design toy experiments as a test bed to study the susceptibility of
current optimization approaches to shortcuts. In these toy experiments, we utilize synthetic spurious
correlations between train inputs and outputs as representations of conceptually abstract shortcuts.
Comparing the robustness of different optimizers to spurious correlations allows close monitoring of
whether an optimizer can avoid shortcuts embodied in the form of tangible confounding factors.

We study two different types of spurious correlations, whose examples for the “Modular Arithmetic”
task are depicted in Figure 1. (The Modular Arithmetic (MA) task is defined to be: given a sequence
of inputs and operations sampled from {0, 1, 2, 3, 4} and {+, -, ×}, compute modulo 5 of the result
of applying the operation on the sequence.) The first spurious correlation is induced by concatenating
the ground truth output to the original input sequence as seen in Figure 1(b). At test time, the ground
truth output is replaced with a randomized value to observe whether the optimizer learned the logic
embedded in the original input without memorizing the concatenated ground truth. The second type
of synthetic confounding factor we utilize is the input length. The example in Figure 1(c) depicts how
the “Modular Arithmetic” task is modified to implement input length confounding. In this task, the
potential input length ranges from 1 to 40, and the number of ground truth outputs is 5. Consequently,
our confounding rule partitions data into five groups according to the input length: the inputs of
length 1 ∼ 8 are labeled as 0, those of length 9 ∼ 16 as 1, and so forth. To force spurious correlation
based on the input length, we only select instances that satisfy the above rule and discard the rest.
The model trained on manipulated train data is tested on normal test data sans spurious correlation. In
both toy experiments, the degree of spurious correlation is controlled with probability P . For instance,
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Figure 1: (a) depicts an example of the original “Modular Arithmetic” task. In (b), the ground truth
output is attached to the input sequence, creating the opportunity for the DNN to memorize this
ground truth instead of learning the arithmetic rule. In (c), we present a confounding logic to create
a spurious correlation between the input length and the ground truth output. In the given example,
when the length of the example input is 7, we only select examples with the ground truth output of 0.
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Figure 2: Qualitative visualization of how spurious correlation with label concatenation affects the
performance and the training speed of Adam (Red) and BGF (Green). Adam shows a decrease in
performance and an increase in training speed as stronger degrees of spurious correlations are induced.
BGF exhibits visible improvements over Adam on both fronts.

when P = 0.8, 80% of train data are manipulated to exhibit spurious correlation. The length of the
train and test input sequences are set to be 1 ∼ 40 and 100, respectively. All the results of our toy
experiments are averages of results obtained over three different seeds. The first toy experiment is
conducted on eleven tasks, in which the input length is greater than or equal to the output length. This
condition is necessary to concatenate the ground truth without changing the length of the original
input sequence. In Figure 2, we visualize the effect of this synthetic spurious correlation on the
performance and training speed of Adam, quantified through its best test accuracy and the number of
time steps it took to reach 95% accuracy, respectively. In both figures, the dotted gray line denotes the
original performance and training speed of Adam obtained from clean training data free of synthetic
spurious correlations (P = 0). Adam experiences a consistent drop in performance or substantial
increase in training steps with the introduction of spurious correlations of various degrees.

The second experiment is conducted on seven tasks with an output length of one because it is
ambiguous to create length-based spurious correlations on tasks with an output length greater than one.
Due to the page limit, the extended results of both toy experiments are included in Appendix A3. In
congruence with the qualitative results from the first toy experiment, Adam shows a consistent decline
in performance when spurious correlations are introduced. These results collectively demonstrate
that Adam is susceptible to learning spurious correlations in AR tasks, highlighting the need for a
new optimizer better suited for training DNN models on such tasks.
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Figure 3: (a) shows how training and test accuracies evolve during training. (b-1 ∼ 5) visualize FFT
results of normalized gradient signals from five randomly sampled layers. The title for each plot
notes the layer from which the gradient was obtained. Following (a), red and blue signals correspond
to FFT results of training and generalization phase gradients, respectively. Cyan, orange, and green
boxes mark low-, high-, and very-high frequency regions. The intensity of the generalization phase
gradient is visibly dominant in the low-frequency regime.
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Figure 4: (a) and (b) visualize FFT results of normalized gradients from the label concatenation
toy experiment on Bucket Sort. The title for each plot notes the layer from which the gradient was
obtained. Gradients from the first 20,000 training steps are collected to analyze the impact of spurious
correlations. Training gradients from P=0.0 (yellow), 0.99 (orange), and 0.995 (green) are compared.

3.2 BGF: MITIGATING SHORTCUT LEARNING VIA BALANCING OF GRADIENT FREQUENCIES

We take a closer look at the AR training process of Adam by plotting the training and test accuracy
curves of the LSTM model on the “Solve Equation” task in Figure 3 (a). Training and test accuracies
improve at two disparate points in the training curve. This phenomenon, which we dub “train-test
splitting,” is a moderate version of grokking. From here on, we denote the point in the learning curve
in which training accuracy increases but test accuracy does not as the training phase (red), and the
point in which only test accuracy increases as the generalization phase (blue).

To understand what learning signals contribute to improving the test accuracy and enabling OOD
generalization, we analyze the evolution of gradients over the course of training. Figure 3 (b
1 ∼ 5) are the Fast Fourier Transform (FFT) results of gradient signals obtained from training and
generalization phases. In early steps, when the training accuracy continuously rises while the test
accuracy is stagnant, the gradient patterns are dominated by high-frequency components (red signal).
Interestingly, the intensity of high-frequency gradients substantially attenuates in later gradient
signals that yield OOD generalization capability (blue signal), further validating that relatively lower
frequency gradients are preferable for learning of the general logic. Such a result indicates that the
low-frequency components play a crucial role in avoiding shortcuts and promoting the learning of
general logic.

We additionally analyze the normalized gradient signals from the “Bucket Sort” task with different
degrees of spurious correlation induced by label concatenation. The FFT results for gradient signals
obtained at P ∈ [0.0, 0.99, 0.995] are visualized in Figure 4. As the degree of spurious correlation
between input data and labels gets stronger, the low-frequency components of gradient signals visibly
decrease. This result further evidences that in AR, spurious correlations or shortcuts significantly
weaken low-frequency gradients, and that amplifying low-frequency gradients may hold the key to
facilitating inductive inference.

These analyses lead us to the design of BGF, a novel optimizer that guides the training process
toward general logic and away from shortcuts by balancing the gradients in low- and high-frequency
regimes. The most intuitive approach to obtaining low-frequency gradients is through the adoption of
a low-pass filter, which removes high-frequency components with stochastic and fine-grained signals
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in gradients of a single training step. Instead of converting gradients to the frequency domain, BGF
mimics the behavior of a low-pass filter by applying the moving average filter with the window size
of λ. λ is used to adjust the filtering range in a low-pass filter and is treated as a hyperparameter that
controls the cut-off frequency. Let gt denote the gradient of some loss function L computed with
respect to the trainable parameters θt at t-th training step: gt = ∇θtL(θt). We store gradients from
t− 1− λ to t− 1 training steps in a gradient queue Qgrad, which has a fixed size of λ by definition:
Qgrad = {gi}i=t−1

i=t−1−λ. The past gradients are averaged over the time dimension to compute the
low-pass filtered gradients: glowt =

1
λ

∑i=t−1
i=t−1−λ gi.

Once the low-pass filtered gradients have been obtained, they are balanced with the high-frequency
gradients computed from the current batch as follows:

gBGFt
= α ∗ gt +

β ∗ ||gt||F
||glowt

||F
∗ glowt

, where α+ β = 1.0. (1)

|| · ||F denotes the Frobenius norm computed on each layer of a DNN model. α and β are coefficients
used to balance two gradient signals. We normalize the low-pass filtered gradients to stabilize the
optimization process of BGF by aligning the scale of two disparate gradients. We report the results
of removing the balancing and normalization steps of BGF in Appendix A4; they show that this
normalization step is crucial for stabilizing BGF.

The initial results of replacing Adam with BGF in the toy experiments from Section 3.1 demon-
strate that BGF is more competent than Adam at avoiding spurious correlations. On the first toy
experiment, Figure 2 delineates that BGF surpasses the performance of Adam and accelerates the
training speed across all levels of spurious correlation. The extended quantitative comparison of
the performance of Adam and BGF on both toy experiments, presented in Appendix A3, further
consolidates the effectiveness of BGF.

4 RESULTS

4.1 EXPERIMENTAL SET-UP

Tasks and Data Generation: We utilize the 15 sequence prediction tasks defined in Deletang et
al. for empirical verification of our method. The list of tasks, associated abbreviations, and detailed
formalization can be found in Appendix A1. The synthetic data for each task are generated following
the procedure in Deletang et al.. The ranges of training and test sequence lengths are 1 ∼ 40 and 100,
respectively. All training processes are executed for 100, 000 steps.
Architectures: To demonstrate BGF can be utilized in an architecture-agnostic manner, we consider
eight different DNN architectures: 4 variants of a recurrent model (RNN, Stack-RNN (Joulin &
Mikolov, 2015), Tape-RNN (Suzgun et al., 2019; Delétang et al., 2022), LSTM (Hochreiter &
Schmidhuber, 1997b)) and 4 variants of the Transformer encoder, each one with different positional
encoding: none (None), classical sin/cos (SinCos) (Vaswani et al., 2017), ALiBi (ALIBI) (Press et al.,
2021), and relative positional encodings of Transformer-XL (Rot) (Dai et al., 2019).
Implementation and Training Details: All our experiments are implemented using JAX (Bradbury
et al., 2018) and PyTorch (Paszke et al., 2019) and run on NVIDIA A40 and L40 GPUs. More
details on hyperparameters used for compared methods are included in Appendix A2. Unless stated
otherwise, all of the reported results are averages of three different random seeds.

4.2 PERFORMANCE COMPARISON

In Table 1, we compare the best test accuracy obtained by Adam and BGF on 120 task - architecture
combinations (15 tasks × 8 architectures). BGF’s superiority to Adam is clearly demonstrated through
performance improvements in 93.3% of combinations, with an average increase in accuracy of 3.3%p
(p-value < 0.001). Notably, BGF exhibits staggering improvement of 46.1%p on the “Missing
Duplicate” task (MD) with Tape-RNN, and there are 11 scenarios where BGF’s improvement exceeds
10%p. We further emphasize that on the “MD” task, training RNN with BGF achieves 100% test
accuracy. This impressive result indicates that BGF enables learning of the MD task with RNN,
which represents an instance of climbing the Chomsky hierarchy. In Appendix A5, we compare
the performance of AdamW (Loshchilov, 2017), a more advanced variant of Adam, and BGF on
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Table 1: Best accuracy comparison against Adam, a naı̈ve approach to optimization in AR. Rows
corresponding to the performance of BGF are highlighted in blue for improved visibility. Accuracies
over 90%, considered to be indications of achieving OOD generalization, are marked in bold.

Level Task Optim. RNN Stack-RNN Tape-RNN LSTM TF (None) TF (Sin-Cos) TF (ALIBI) TF (Rot)

R

EP Adam 1.000 1.000 1.000 1.000 0.531 0.629 0.960 1.000
BGF 1.000 1.000 1.000 1.000 0.533 0.683 0.967 1.000

MA Adam 1.000 1.000 1.000 1.000 0.223 0.222 0.227 0.227
BGF 1.000 1.000 1.000 1.000 0.227 0.223 0.252 0.248

PC Adam 1.000 1.000 1.000 1.000 0.529 0.529 0.529 0.529
BGF 1.000 1.000 1.000 1.000 0.556 0.533 0.532 0.541

CN Adam 1.000 1.000 1.000 0.978 0.861 0.271 0.590 0.494
BGF 1.000 1.000 1.000 1.000 0.979 0.349 0.871 0.566

CF

SM Adam 0.572 0.763 0.793 0.712 0.507 0.518 0.613 0.597
BGF 0.577 0.763 0.826 0.718 0.510 0.530 0.624 0.605

RS Adam 0.743 0.713 0.722 0.716 0.542 0.539 0.699 0.719
BGF 0.761 0.715 0.731 0.707 0.542 0.542 0.728 0.708

MAB Adam 0.458 0.796 0.508 0.820 0.326 0.327 0.326 0.321
BGF 0.512 0.987 0.947 0.912 0.327 0.327 0.328 0.326

SE Adam 0.844 0.908 0.859 0.962 0.222 0.225 0.226 0.228
BGF 0.843 0.906 0.896 0.953 0.224 0.226 0.225 0.223

CS

DS Adam 0.541 0.558 0.541 0.650 0.541 0.536 0.534 0.535
BGF 0.546 0.584 0.548 0.696 0.542 0.541 0.539 0.578

MD Adam 0.544 0.635 0.539 0.560 0.549 0.545 0.603 0.560
BGF 1.000 0.725 1.000 0.706 0.589 0.550 0.656 0.592

OF Adam 0.544 0.575 0.541 0.560 0.542 0.539 0.536 0.564
BGF 0.548 0.593 0.558 0.684 0.542 0.541 0.539 0.563

BA Adam 0.496 0.534 0.507 0.596 0.510 0.506 0.502 0.536
BGF 0.504 0.545 0.515 0.634 0.513 0.513 0.506 0.558

BM Adam 0.503 0.530 0.502 0.551 0.500 0.504 0.503 0.554
BGF 0.506 0.530 0.508 0.578 0.501 0.506 0.506 0.554

CS Adam 0.569 0.609 0.569 0.618 0.513 0.513 0.511 0.577
BGF 0.573 0.612 0.601 0.628 0.514 0.514 0.516 0.581

BS Adam 0.738 0.954 0.805 0.957 0.255 0.391 0.700 0.948
BGF 0.867 0.980 0.844 0.989 0.255 0.501 0.924 0.959

recurrent models. These results further demonstrate that BGF clearly outperforms AdamW (with
an average increase of 3.3%p and a maximum increase of 46.8%p) and successfully learns tasks
that AdamW failed to learn completely. To demonstrate that the performance discrepancy between
Adam and BGF is not a byproduct of the difference in their ability to fit the training distribution, in
Appendix A6, we present the average “training distribution accuracy” associated with Table 1. Both
Adam and BGF achieve near-perfect accuracy on the training distribution (the average accuracy of
Adam is 0.979, and that of BGF is 0.983), underscoring that the AR tasks require inductive inference.
Notably, for the “MD” task, the training distribution accuracy exceeds 0.999 in all cases.

4.3 TRAINING SPEED COMPARISON

R:
CF:
CS:

(a) Training Speed to 90% (b) Training Speed to 95%

0.0-0.5 0.5 0.0-0.5 0.5

B
G

F is Faster

R:
CF:
CS: B

G
F is Faster

Figure 5: Visualization of training step comparison.

In this section, we compare the train-
ing speed of Adam and BGF in terms
of the number of time steps each opti-
mizer takes to reach (a) 90% and (b)
95% accuracy. For each AR task, we
average the training speed over all ar-
chitectures with the exception of archi-
tectures on which neither one of the
optimizers achieves 90% or 95% accu-
racy. For visualization purposes, we plot
0.5 − TBGF/(TAdam + TBGF), where
TAdam and TBGF denote the training speed of Adam and BGF measured in time steps, respectively.
When this value is greater than 0, it means that BGF achieves the target accuracy with fewer steps
than Adam. The results in Figure 5 demonstrate that BGF reduces the number of training steps to
reach 90% or 95% accuracy in the majority of AR tasks. BGF’s convergence speed is particularly
superior to Adam “context-free” and “context-sensitive” tasks, which are more challenging than
“Regular” tasks.
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Table 2: Best accuracy comparison against existing optimizers borrowed from conventional ML.

Architecture Optimizer Train Test
SM RS SE MD BA BS SM RS SE MD BA BS

RNN

Adam 0.988 1.000 0.999 1.000 0.893 0.995 0.572 0.743 0.844 0.544 0.496 0.738
SAM 0.941 0.998 0.905 0.997 0.799 0.965 0.568 0.707 0.465 1.000 0.490 0.430
SWAD 0.975 1.000 0.908 1.000 0.855 0.994 0.561 0.716 0.222 0.540 0.492 0.751
LPF-SGD 0.972 1.000 0.934 1.000 0.854 0.994 0.557 0.715 0.225 0.543 0.493 0.722
BGF 0.996 1.000 0.999 1.000 0.911 0.999 0.577 0.761 0.843 1.000 0.504 0.867

Stack-RNN

Adam 1.000 1.000 1.000 1.000 0.943 1.000 0.763 0.713 0.908 0.635 0.534 0.954
SAM 1.000 1.000 0.998 0.999 0.874 0.997 0.766 0.709 0.746 0.724 0.507 0.495
SWAD 1.000 1.000 0.985 1.000 0.886 1.000 0.762 0.714 0.444 0.567 0.509 0.914
LPF-SGD 1.000 1.000 0.989 1.000 0.880 1.000 0.763 0.713 0.760 0.625 0.512 0.915
BGF 1.000 1.000 1.000 1.000 0.953 1.000 0.763 0.715 0.906 0.725 0.545 0.980

Tape-RNN

Adam 1.000 1.000 1.000 1.000 0.959 1.000 0.793 0.722 0.859 0.539 0.507 0.805
SAM 1.000 1.000 0.993 0.996 0.865 0.998 0.713 0.657 0.645 0.547 0.492 0.507
SWAD 1.000 1.000 1.000 1.000 0.892 0.994 0.806 0.693 0.760 0.537 0.501 0.784
LPF-SGD 1.000 1.000 0.992 1.000 0.889 0.995 0.754 0.675 0.757 0.535 0.509 0.762
BGF 1.000 1.000 1.000 1.000 0.962 1.000 0.826 0.731 0.896 1.000 0.515 0.844

LSTM

Adam 1.000 1.000 1.000 1.000 1.000 1.000 0.712 0.716 0.962 0.560 0.596 0.957
SAM 0.995 0.999 0.995 1.000 0.930 1.000 0.617 0.684 0.738 0.565 0.512 0.781
SWAD 0.996 1.000 0.985 1.000 0.912 1.000 0.640 0.674 0.224 0.552 0.503 0.892
LPF-SGD 0.997 1.000 0.988 1.000 0.911 1.000 0.638 0.662 0.221 0.552 0.499 0.888
BGF 1.000 1.000 1.000 1.000 0.999 1.000 0.718 0.707 0.953 0.706 0.634 0.989

5 ANALYSES

5.1 COMPARISON WITH OTHER OPTIMIZERS

We now compare our approach against three additional optimizers with a shared goal of evading
spurious correlations: SAM (Foret et al., 2021), SWAD (Cha et al., 2021), and LPF-SGD (Bisla
et al., 2022). The description and hyperparameter settings of each optimizer are in Appendix A2.
In Table 2, we compare the train and test accuracies of five optimizers. The extended results are in
Appendix A7. Surprisingly, the previously proposed optimizers are completely inept at improving the
OOD generalization performance on test sequences despite attaining ∼ 100% on training distribution.
The failure of optimizers adopted from conventional ML indicates that seeking generalization alone
does not automatically lead to improved logic-based length generalization in AR.

5.2 EXCLUSIVENESS AND FLEXIBILITY OF BGF

Table 3: Experiments are conducted on the “MD” task. [Left] shows Adam and BGF with various
momentum parameters trained for 1 million steps. [Right] shows results for Adam, BGF, and BGF
implemented with an exponential moving average (BGFema).

1M steps
Arch Adam0.8 BGF0.8 Adam0.9 BGF0.9 Adam0.95 BGF0.95

RNN 0.528 1.000 0.528 1.000 0.530 1.000
Stack-RNN 0.675 0.628 0.684 0.651 0.758 0.667
Tape-RNN 0.529 1.000 0.529 1.000 0.530 0.993
LSTM 0.625 0.701 0.549 0.743 0.656 0.650

100k steps
Arch Adam BGF BGFema

RNN 0.544 1.000 1.000
Stack-RNN 0.635 0.725 1.000
Tape-RNN 0.539 1.000 1.000
LSTM 0.560 0.706 0.582

Comparison to Single Momentum: Here, we observe how changing the momentum parameter in
Adam affects the performance of Adam and BGF. In Table 3 [Left], we compare the performance of
BGF against that of Adam with three different momentum parameters (0.8, 0.9, 0.95). These results
are obtained after 1 million training steps to show that increasing the number of training steps does
not bridge the performance gap between the two optimizers. Across all momentum strengths, BGF
outperforms Adam, and Adam consistently fails to achieve OOD generalization. This experiment
brings to light that because gBGF balances low- and high-frequency gradients, it is infeasible to
substitute gBGF and mimic its effects with single momentum.
BGF Implementation with Exponential Moving Average (EMA): We also study the effect of
implementing the gradient filtering in BGF with an EMA instead of a queue. The results of BGF
with EMA in Table 3 [Right] show that implementing BGF with EMA instead of a queue achieves
OOD generalization on the “MD” task with reduced memory cost. In particular, we note that BGF
with EMA reaches 100% accuracy additionally on Stack-RNN.
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Figure 6: Performance comparison of Adam vs. BGF on test sequences of longer lengths.

Table 5: Loss landscape analysis of the DNN models trained with Adam and BGF.

Measure Regular Context-Free Context-Sensitive
LPF (↓) Fim (↓) Shannon (↓) LPF (↓) Fim (↓) Shannon (↓) LPF (↓) Fim (↓) Shannon (↓)

Adam 0.3712 0.0206 1.08e-04 0.0581 363.34 0.0107 0.5305 3810.23 0.1047

BGF 0.1027 0.0053 5.61e-05 0.0405 315.23 0.0122 0.3175 3353.29 0.0937

p-value 0.129 0.220 0.237 0.205 0.372 0.394 0.182 0.345 0.015

5.3 ADVANTAGEOUS PROPERTIES OF BGF

Extreme Length Generalization: To test whether BGF truly learns the general logic of the MD task,
traditionally considered to be unlearnable by RNNs, we verify its length generalization capability on
test sequences of lengths up to 1000. Figure 6 demonstrates that the RNN trained with BGF maintains
its performance even under this extreme OOD scenario. Results on additional tasks are provided
in Appendix A8. This result supports that BGF induces learning of the underlying algorithm.

Table 4: Standard deviation of the training
speed of Adam and BGF and associated p-value
of the paired t-test.

RNN (↓) SR (↓) TR (↓) LSTM (↓) TF (↓)

Adam 27.4k 28.4k 28.0k 30.2k 39.9k

BGF 6.0k 16.6k 20.5k 22.4k 33.8k

p-value 0.106 0.130 0.256 0.015 0.733

Variance Reduction: We analyze the variance of
training speed to demonstrate that BGF is not only
faster but also more stable at training DNNs on
AR tasks. Like in Section 4.3, cases where neither
Adam nor BGF achieves 90% accuracy are omitted
from comparison. In cases where only a subset of
the three seeds reach 90% accuracy, we calculate
the variance assuming a Poisson distribution. Ta-
ble 4 shows that across all DNN models, BGF ex-
hibits lower variance in training speed, which can
be equated to improved training stability.

Sharpness Analysis: It is widely accepted that the generalization performance of a model is negatively
correlated with the sharpness of its loss landscape (Hochreiter & Schmidhuber, 1997a). We compare
Adam and BGF from the optimization landscape perspectives using three representative measures
of sharpness: low-pass filter-based method (LPF) (Bisla et al., 2022), the Fisher Rao Norm-based
method (Fim) (Liang et al., 2019), and the Shannon Entropy-based method (Shannon) (Pereyra et al.,
2016). The results in Table 5 provide a meaningful insight that the superior performance of BGF is a
product of its smoother loss landscape.

6 CONCLUSION

To the best of our knowledge, this is the first work to study the effect of optimization on generalization
in AR. Our investigative results exposed the susceptibility of Adam to spurious correlations in AR
tasks, necessitating the development of a new optimizer. We then analyzed the evolution of gradients
throughout the AR training process, unveiling the occurrence of the train-test splitting phenomenon
and the contribution of low-frequency components to enabling OOD generalization. Based on these
findings, we proposed BGF, a novel optimizer to encourage learning of general logic in AR, and
demonstrated its effectivenss through extensive experiments and analyses. Limitations: Although
BGF considerably improves the AR performance compared to Adam, it still fails to promote learning
of many AR tasks. Therefore, a considerable amount of research opportunities remain on both the
architecture design and optimization approach fronts to enable DNNs to perform inductive inference.
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A APPENDIX

A1 15 SEQUENCE PREDICTION TASKS FOR ALGORITHMIC REASONING

Table A1: Summary of AR tasks each DNN model is traditionally known to be able to perform. † and
⋆ denote permutation-invariant and counting tasks; ◦ refers to tasks that demand a nondeterministic
controller; and × indicates the requirement of super linear running time in terms of the input length.
The checkmark denotes that the DNN model can perform the task in the corresponding row.

Level Task RNN Stack-RNN Tape-RNN Transformer LSTM

R

Even Pairs (EP) ✓ ✓ ✓ ✓ ✓
Modular Arithmetic (MA) ✓ ✓ ✓ ✓
Parity Check† (PC) ✓ ✓ ✓ ✓
Cycle Navigation† (CN) ✓ ✓ ✓ ✓

CF

Stack Manipulation (SM) ✓ ✓
Reverse String (RS) ✓ ✓
Modular Arithmetic Brackets (MAB) ✓ ✓
Solve Equation◦ (SE)

CS

Duplicate String (DS) ✓
Missing Duplicate (MD) ✓
Odds First (OF) ✓
Binary Addition (BA) ✓
Binary Multiplication× (BM)
Compute Sqrt (CS)
Bucket Sort†⋆ (BS) ✓ ✓

Table A2: AR tasks categorized according to the Chomsky hierarchy and associated example
input/output pairs. This table was largely borrowed from (Delétang et al., 2022).

Level Task Example Input Example Output

R

Even Pairs (EP) aaabbaabba True
Modular Arithmetic (MA) 1× 4 + 3− 4 3
Parity Check† (PC) abbbbaa True
Cycle Navigation† (CN) 010211 2

CF

Stack Manipulation (SM) abaab POP PUSH a POP abaa
Reverse String (RS) abaab baaba
Modular Arithmetic Brackets (MAB) 1× (4 + 3)− 4 3
Solve Equation◦ (SE) 1× (4 + x)− 4 0

CS

Duplicate String (DS) abaab abaababaab
Missing Duplicate (MD) 10011021 0
Odds First (OF) abaab aabba
Binary Addition (BA) 1010 + 11 1101
Binary Multiplication× (BM) 1010× 11 11110
Compute Sqrt (CS) 10000 100
Bucket Sort†⋆ (BS) 431401 011344

Our empirical verification is conducted on 15 sequence prediction tasks proposed by Delétang et al.
(2022). For the completeness of our work, we include a summary of each task below. We clearly
acknowledge that this summarized description of task formulation is largely borrowed from the
original paper (Delétang et al., 2022).

Regular tasks
• Even Pairs (EP): Computer the number of a’s and b’s in a binary sequence, e.g., babaa.
• Modular Arithmetic (MA): Given a sequence of inputs and operations sampled from {0, 1, 2, 3,
4} and {+, -, ×}, compute modulo 5 of the result of applying the operation on the sequence.
• Parity Check (PC): Given a binarized input sequence, e.g., aaabba, compute if the number of b’s
is even.
• Cycle Navigation (CN): Based on a sequence of movements with the cycle length 5, compute
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the final position. The potential movements are {STAY, INCREASE, DECREASE}, which are
represented as: {0, 1, 2}.

Context Free tasks
• Modular Arithmetic Brackets (MAB): This task is the same as the Modular Arithmetic Task
with the exception of brackets.
• Reverse String (RS): Determine the reverse of a given binary string.
• Solve Equation (SE): Given equation that is constructed by numbers from {0, 1, 2, 3, 4}, brackets,
and operations from {+, −, ×}, and an unknown variable, solve the equation to compute the value of
z such that the equation holds after modulo 5.
• Stack Manipulation (SM): Based on a binary string representation of a stack’s contents (ordered
by: bottom-to-top) and an action sequence constructed by a combination of potential actions {PUSH
a, PUSH b, POP}, determine the final stack content after applying the action sequence on the stack.

Context Sensitive tasks
• Binary Addition (BA): Compute the sum in base 2 of two binary numbers.
• Binary Multiplication (BM): Compute the product in base 2 of two binary numbers.
• Compute Sqrt (CS): Compute the floor of the square root of a binary number.
• Duplicate String (DS): Output the original binary string and its duplicate.
• Missing Duplicate (MD): The input consists of a binary string and its duplicate. Find one token
that has been masked from the original binary string.
• Odds First (OF): Output the values at the odd positions of the binary string first, followed by
those at the even positions.
• Bucket Sort (BS): Given an input sequence over an alphabet of fixed size, sort this string in an
ascending order.

A2 TRAINING DETAILS FOR BGF AND OTHER BASELINES

In this section, we provide descriptions and hyperparameter settings of compared optimizers in our
main experiments. As noted in the main paper, all training processes are run for 100, 000 steps.
• Adam: is the default optimizer used in (Delétang et al., 2022)
• SAM (Foret et al., 2021): searches for neighboring regions with uniformly low losses. To do so, it
applies perturbations to gradients during training, so that they optimize losses in the neighboring
regions as well. The degree of perturbation in SAM is set to 0.5. The perturbed gradients are
multiplied by this value perturbation to control their effect.
• LPF-SGD (Bisla et al., 2022): reduces the influence of the data and label noise by applying the
low pass filter kernel to the loss. The integral in the convolution operation is approximated with the
MC method.
• SWAD (Cha et al., 2021): determines the training interval in which overfitting has occurred by
tracking the validation loss. It then averages all parameters in this training interval to obtain the
final model. The interval for parameter saving in SWAD is determined by three values: an optimum
patient parameter (Np), an overfitting patient parameter (No), and a tolerance rate rtol. The start
saving step happens when the test loss no longer decreases for Np number of steps. The end step
happens when the test loss value exceeds rtol for No number of steps. All parameters within this
interval are saved. Np, No, and rtol are set to 10, and 10, and 0.005, such that a reasonable interval is
selected.
• BGF (Ours): α and β are two hyperparameters involved in BGF. Their sum is always
controlled to be one, so that BGF balances their influences. α and β are searched by conducting a
hyperparameter search on the following sets of {α, β}: {0.95, 0.05}, {0.9, 0.1},{0.8, 0.2},{0.7, 0.3}.

A3 COMPREHENSIVE RESULTS ON TOY EXPERIMENTS

Table A3 and Table A4 present the full results of the Adam and BGF performance in the Label
Concatenation experiment (Toy 1), respectively. Table A5 and Table A6 showcase the full results of
the Adam and BGF performance in the Input Length Confounding experiment (Toy 2), respectively.
In Table A3 and Table A5, we report the best test accuracy achieved during 100,000 steps of training.
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For Tables Table A4 and Table A6, we report the training step at which the test accuracy first reached
90%. All values are averaged across three random seeds. For seeds that did not achieve 90% accuracy
throughout the entire training, we report the performance at 100,000 steps and calculate the average.
In the Label Concatenation experiment, we did not conduct experiments when the best accuracy of
both Adam and BGF with the synthetic spurious correlation probability P 0 is close to random (<
0.3 for MA, CN, MAB, SE, BS, and < 0.6 for the rest). These cells are left blank.
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Table A7: Influence of spurious correlations ([Left] Label Concatenation [Right] Input Length
Confounding) with “ADD” method. BGF effectively addresses spurious correlation to a greater extent
compared to Adam. However, the ”ADD” method, which does not implement gradient normalization
and balancing, appears to be highly susceptible to spurious correlation.

P = 0.0 0.8 0.9 0.95 0.99 0.995

Adam 0.809 0.804 0.793 0.772 0.733 0.708

BGF 0.864 0.841 0.828 0.809 0.753 0.707

“ADD” 0.839 0.818 0.804 0.771 0.676 0.617

P = 0.0 0.8 0.9 0.95 0.99 0.995

Adam 0.844 0.754 0.710 0.698 0.584 0.567

BGF 0.910 0.755 0.712 0.701 0.595 0.560

“ADD” 0.882 0.729 0.628 0.522 0.401 0.368

Table A8: Best Accuracy Comparison against ADD and BGF. Rows corresponding to the performance
of BGF are highlighted in blue for improved visibility. Accuracies > 90%, indicative of achieving
OOD generalization, are marked in bold.

Level Task Method RNN Stack-RNN Tape-RNN LSTM TF (None) TF (Sin-Cos) TF (ALIBI) TF (Rot)

R

EP ADD 1.000 1.000 1.000 1.000 0.530 0.627 0.916 1.000
Ours 1.000 1.000 1.000 1.000 0.533 0.683 0.967 1.000

MA ADD 1.000 1.000 1.000 1.000 0.226 0.225 0.243 0.238
Ours 1.000 1.000 1.000 1.000 0.227 0.223 0.252 0.248

PC ADD 1.000 1.000 1.000 1.000 0.544 0.530 0.530 0.530
Ours 1.000 1.000 1.000 1.000 0.556 0.533 0.532 0.541

CN ADD 1.000 1.000 1.000 1.000 0.891 0.851 0.845 0.565
Ours 1.000 1.000 1.000 1.000 0.979 0.349 0.871 0.566

CF

SM ADD 0.630 0.765 0.813 0.727 0.510 0.529 0.654 0.601
Ours 0.577 0.763 0.826 0.718 0.510 0.530 0.624 0.605

RS ADD 0.734 0.736 0.726 0.710 0.542 0.541 0.738 0.720
Ours 0.761 0.715 0.731 0.707 0.542 0.542 0.728 0.708

MAB ADD 0.418 0.926 0.671 0.849 0.327 0.327 0.327 0.327
Ours 0.512 0.987 0.947 0.912 0.327 0.327 0.328 0.326

SE ADD 0.584 0.767 0.625 0.933 0.228 0.224 0.224 0.226
Ours 0.843 0.906 0.896 0.953 0.224 0.226 0.225 0.223

CS

DS ADD 0.544 0.573 0.550 0.700 0.542 0.541 0.540 0.565
Ours 0.546 0.584 0.548 0.696 0.542 0.541 0.539 0.578

MD ADD 1.000 1.000 1.000 0.797 0.554 0.551 0.630 0.581
Ours 1.000 0.725 1.000 0.706 0.589 0.550 0.656 0.592

OF ADD 0.552 0.594 0.562 0.695 0.542 0.541 0.540 0.595
Ours 0.548 0.593 0.558 0.684 0.542 0.541 0.539 0.563

BA ADD 0.504 0.548 0.506 0.645 0.505 0.514 0.508 0.593
Ours 0.504 0.545 0.515 0.634 0.513 0.513 0.506 0.558

BM ADD 0.509 0.532 0.508 0.579 0.501 0.506 0.505 0.552
Ours 0.506 0.530 0.508 0.578 0.501 0.506 0.506 0.554

CS ADD 0.571 0.608 0.573 0.628 0.514 0.514 0.518 0.569
Ours 0.573 0.612 0.601 0.628 0.514 0.514 0.516 0.581

BS ADD 0.829 0.973 0.819 0.998 0.255 0.517 0.899 0.953
Ours 0.867 0.980 0.844 0.989 0.255 0.501 0.924 0.959

A4 BGF WITHOUT NORMALIZATION

We now compare BGF to its more naı̈ve version without the balancing and normalization steps. This
“ADD” method is implemented as follows:

gAddt
= α ∗ gt + β ∗ glowt

where (α = 1 & β > 0) (A1)

Note that removing the α + β = 1.0 condition no longer guarantees that gt and glowt
are

properly balanced. We experimente with β values of 0.5, 1.0, 2.0, and 3.0. The results of toy
experiments are presented in Table A7. It reveals that while BGF consistently outperforms Adam
overall, ADD consistently shows statistically significantly lower results compared to BGF (p-value ¡
0.05). Moreover, as the degree of spurious correlation increases, ADD exhibits a noticeable decrease
in performance, even compared to Adam. In Table A8, we compare the performance of ADD and
BGF on AR tasks. ADD generally exhibited lower performance compared to BGF, and in many cases
where BGF achieved an accuracy of 0.9, ADD failed to achieve this.
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A5 PERFORMANCE COMPARISON FOR ADAMW AND BGF

We demonstrated the performance of AdamW and BGF (implemented on AdamW for fairness) on
recurrent models in Table A9. These results demonstrate that BGF clearly outperforms AdamW (with
an average increase of 3.3%p and a maximum increase of 46.8%p) and successfully learns tasks that
AdamW failed to learn completely.

Table A9: Best accuracy comparison against with AdamW. To guarantee experimental consistency
and fairness, BGF was implemented on top of AdamW. Regular (R) tasks were excluded, as both
AdamW and BGF achieved 1.0 on all of them. Accuracies > 90%, which are indicative of OOD
generalization, are marked in bold.

Arch. Optim. Context-Free (CF) Context-Sensitive (CS)
SM RS MAB SE DS MD OF BA BM CS BS

RNN AdamW 0.582 0.712 0.460 0.827 0.526 1.000 0.533 0.494 0.500 0.568 0.699
BGF 0.569 0.747 0.538 0.817 0.537 1.000 0.527 0.498 0.500 0.572 0.885

Stack-RNN AdamW 0.762 0.709 0.875 0.892 0.551 0.702 0.562 0.533 0.527 0.607 0.960
BGF 0.762 0.715 0.982 0.880 0.554 1.000 0.561 0.526 0.523 0.610 0.962

Tape-RNN AdamW 0.740 0.694 0.985 0.959 0.528 0.532 0.548 0.500 0.500 0.533 0.789
BGF 0.827 0.703 0.995 0.923 0.539 1.000 0.541 0.510 0.500 0.537 0.759

LSTM AdamW 0.717 0.697 0.856 0.940 0.667 0.645 0.635 0.635 0.544 0.625 0.972
BGF 0.710 0.705 0.907 0.920 0.684 0.724 0.682 0.632 0.554 0.630 0.996

A6 TRAINING DISTRIBUTION ACCURACY ANALYSIS

In typical ML problems, accuracy on the training distribution (IID) is known to be predictive of (Miller
et al., 2021), or at least correlated with (Hendrycks et al., 2021), OOD generalization performance.
In contrast, for inductive inference, even if a model perfectly learns the training distribution, it may
learn shortcuts or favorable hypotheses depending on various inductive biases. In Table A10, we
showed that the model’s accuracy on the training distribution approaches 1.0, demonstrating that
the AR task can indeed be considered an inductive inference problem. Reported average accuracy
in the main: Adam 0.979, BGF 0.983 are averaged over all 15 AR tasks and 7 models (excluding
Transformer without positional embedding).

A7 TRAIN PERFORMANCE OF OTHER OPTIMIZERS

Table A11a continues from Table 2, presenting the remaining results. Optimization methods de-
signed for OOD generalization in traditional vision tasks often fail to achieve high performance in
the validation of AR tasks, and frequently show poor learning performance even on the training
distribution.

A8 EXTREME LENGTH GENERALIZATION ANALYSIS ON ADDITIONAL TASKS

Figure A1 presents the extreme generalization results up to length 1000 for each model across 9
different tasks. We excluded models that showed results close to random chance at a validation length
of 100. In almost all experiments, BGF outperforms Adam in extreme OOD scenarios and maintains
robust performance regardless of length when it has learned the general rule.

aThe results in this table are run on as many random seeds (1 ∼ 3) as possible. In the revised version, the
updated table with results averaged over all three seeds will be included.
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Table A10: Average training distribution accuracy of Adam and BGF optimizer. BGF rows are
highlighted in blue. Accuracies > 90% are marked in bold.

Level Task Optim. RNN Stack-RNN Tape-RNN LSTM TF (None) TF (Sin-Cos) TF (ALIBI) TF (Rot)

R

EP Adam 1.000 1.000 1.000 1.000 0.633 1.000 1.000 1.000
BGF 1.000 1.000 1.000 1.000 0.635 1.000 1.000 1.000

MA Adam 1.000 1.000 1.000 1.000 0.454 0.973 0.978 0.996
BGF 1.000 1.000 1.000 1.000 0.458 0.989 0.992 0.998

PC Adam 1.000 1.000 1.000 1.000 1.000 0.999 0.999 1.000
BGF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CN Adam 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BGF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CF

SM Adam 0.988 1.000 1.000 1.000 0.511 0.998 0.999 1.000
BGF 0.996 1.000 1.000 1.000 0.512 0.999 1.000 1.000

RS Adam 1.000 1.000 1.000 1.000 0.672 0.994 1.000 1.000
BGF 1.000 1.000 1.000 1.000 0.672 0.999 1.000 1.000

MAB Adam 0.978 0.997 0.981 1.000 0.610 0.618 0.956 0.982
BGF 0.983 1.000 0.995 1.000 0.610 0.769 0.957 0.988

SE Adam 0.999 1.000 1.000 1.000 0.588 0.716 0.993 0.991
BGF 0.999 1.000 1.000 1.000 0.592 0.706 0.999 0.998

CS

DS Adam 0.873 0.954 0.975 1.000 0.672 0.998 1.000 1.000
BGF 0.902 0.963 0.982 1.000 0.672 0.999 1.000 1.000

MD Adam 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BGF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

OF Adam 0.938 0.986 0.997 1.000 0.672 1.000 0.993 1.000
BGF 0.949 0.991 0.999 1.000 0.671 1.000 0.997 1.000

BA Adam 0.893 0.943 0.959 1.000 0.445 0.990 0.998 1.000
BGF 0.911 0.953 0.962 0.999 0.444 0.995 0.999 1.000

BM Adam 0.840 0.893 0.886 0.945 0.554 0.942 0.942 0.962
BGF 0.851 0.902 0.893 0.964 0.552 0.956 0.951 0.970

CS Adam 0.937 0.972 0.940 0.981 0.644 0.968 0.956 0.965
BGF 0.941 0.972 0.958 0.983 0.644 0.971 0.957 0.968

BS Adam 0.995 1.000 1.000 1.000 0.452 1.000 1.000 1.000
BGF 0.999 1.000 1.000 1.000 0.451 1.000 1.000 1.000

Table A11: Result continued from Table 2. Other optimizers not only fail to achieve high performance
in validation but also often exhibit poor learning performance even on the training distribution.

Architecture Optimizer Train Test
MAB DS OF BM CS MAB DS OF BM CS

RNN

Adam 0.978 0.873 0.938 0.840 0.937 0.458 0.541 0.544 0.503 0.569
SAM 0.878 0.814 0.873 0.788 0.915 0.330 0.537 0.536 0.501 0.569
SWAD 0.882 0.867 0.921 0.819 0.921 0.328 0.529 0.528 0.500 0.557
LPF-SGD 0.878 0.863 0.920 0.812 0.918 0.329 0.527 0.526 0.503 0.554
BGF 0.983 0.902 0.949 0.851 0.941 0.512 0.546 0.548 0.506 0.573

Stack-RNN

Adam 0.997 0.954 0.986 0.893 0.972 0.796 0.558 0.575 0.530 0.609
SAM 0.908 0.867 0.921 0.835 0.941 0.390 0.563 0.564 0.509 0.589
SWAD 0.898 0.905 0.950 0.838 0.944 0.339 0.545 0.562 0.507 0.586
LPF-SGD 0.897 0.905 0.952 0.836 0.944 0.342 0.548 0.564 0.509 0.588
BGF 1.000 0.963 0.991 0.902 0.972 0.987 0.584 0.593 0.530 0.612

Tape-RNN

Adam 0.981 0.975 0.997 0.886 0.940 0.508 0.541 0.541 0.502 0.569
SAM 0.911 0.891 0.926 0.844 0.922 0.353 0.549 0.549 0.503 0.569
SWAD 0.910 0.888 0.950 0.855 0.924 0.338 0.543 0.544 0.504 0.558
LPF-SGD 0.913 0.886 0.954 0.853 0.921 0.340 0.538 0.545 0.504 0.558
BGF 0.995 0.982 0.999 0.893 0.958 0.947 0.548 0.558 0.508 0.601

LSTM

Adam 1.000 1.000 1.000 0.945 0.981 0.820 0.650 0.560 0.551 0.618
SAM 0.911 0.975 0.998 0.886 0.954 0.364 0.573 0.541 0.519 0.593
SWAD 0.913 0.975 0.997 0.865 0.936 0.339 0.529 0.539 0.506 0.570
LPF-SGD 0.925 0.972 0.998 0.866 0.936 0.339 0.531 0.530 0.514 0.570
BGF 1.000 1.000 1.000 0.964 0.983 0.912 0.696 0.684 0.578 0.628
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Figure A1: Additional results on length generalization on extreme OOD (up to length 1000). In
each figure, the solid line represents the performance of BGF, while the dotted line represents the
performance of Adam. The standard deviation across the 3 seeds is indicated by a shaded background
of the same color. In most tasks, BGF achieves higher length generalization.
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R1 APPLICABILITY TO REAL-WORLD REASONING TASKS
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Figure R1: The training and test accuracy curves of the decoder-only transformer architecture with
Adam, BGF, and BGFema on the composition task. The red and blue arrows denote the beginning of
training and generalization phases.

(a) Early Layer Gradients

(a) Later Layer Gradients

Training Phase Generalization Phase Low-Frequency Regime High-Frequency Regime Very High-Frequency Regime (Noise)

Figure R2: FFT results of training and generalization phase gradients obtained from (a) early and
(b) later layers of the above decoder-only transformer architecture. Cyan, orange, and green boxes
mark low-, high-, and very-high frequency regions. In early layers, the intensity of the generalization
phase gradient is visibly dominant in the low-frequency regime, while in later layers, this difference
diminishes.
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R2 LAYER-WISE GRADIENT ANALYSIS ON A DEEPER LSTM MODEL

(a) Early Layer Gradients

Training Phase Generalization Phase Low-Frequency Regime High-Frequency Regime Very High-Frequency Regime (Noise)

(b) Later Layer Gradients

Figure R3: FFT results of training and generalization phase gradients obtained from (a) early and
(b) later layers of the 4-layer LSTM architecture on the solve equation task. Cyan, orange, and
green boxes mark low-, high-, and very-high frequency regions. In early layers, the intensity of the
generalization phase gradient is visibly dominant in the low-frequency regime, while in later layers,
this difference diminishes.
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