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ABSTRACT

Spatial transcriptomics offers an unprecedented opportunity to elucidate the spa-
tial organization of tissues by capturing gene expression profiles while preserving
tissue architecture. This enables the identification of spatial niches and deep-
ens our understanding of tissue function and disease-associated microenviron-
ments. However, consistent identification of spatial domains across samples, tis-
sues, and even technological platforms remains a formidable challenge, due to
low-dimensional and heterogeneous gene panels across platforms, pronounced
batch effects, and substantial biological variability between samples. To address
these limitations, we propose STAGE, a generalizable foundation model for spa-
tial transcriptomics via graph embeddings. At its core, STAGE introduces a hierar-
chical prototype mechanism to capture global semantic representations of spatial
niches, alongside an efficient online expectation-maximization algorithm to en-
able scalable learning from large-scale heterogeneous data. Pretrained on a large
dataset comprising 32 million cells from 18 tissue types, STAGE learns robust
cell representations within their neighborhood graphs and supports niche infer-
ence for domain recognition. Comprehensive evaluations on multiple benchmark
datasets demonstrate that STAGE substantially enhances domain consistency in
cross-platform, cross-sample, and cross-tissue spatial domain identification tasks,
outperforming existing state-of-the-art methods. Furthermore, STAGE supports
critical downstream biological analyses, highlighting its strong potential as a pow-
erful tool in biological research.

1 INTRODUCTION

Spatial transcriptomics (ST) has fundamentally transformed biological research by enabling high-
resolution localization of gene expression within intact tissue microenvironments (Bressan et al.,
2023). By retaining spatial context, ST supports the delineation of tissue architecture, identification
of spatial domains (or “niches”), and elucidation of microenvironmental organization underlying
physiological functions and disease mechanisms (Rao et al., 2021).

The rise of diverse ST platforms—ranging from whole-transcriptome sequencing to targeted gene
panels—has introduced substantial heterogeneity in spatial resolution, sequencing depth, gene cov-
erage, and tissue origin. ST technologies are broadly categorized into two types: sequencing-based
methods such as next-generation sequencing (NGS), which provide genome-wide expression pro-
filing but limited spatial resolution (McCombie et al., 2019); and imaging-based approaches, in-
cluding Xenium (Janesick et al., 2023), MERSCOPE (Chen et al., 2015), and CosMX (He et al.,
2022), which achieve subcellular resolution but are constrained by the number of detectable genes.
Although imaging platforms increasingly support larger and customizable gene panels—including
dynamic substitution of low-quality genes during experimentation—this flexibility poses new chal-
lenges for cross-platform integration and standardization (Figure 1 (a)).

In multi-section analyses, pronounced batch effects often obscure shared spatial patterns and im-
pede cross-sample comparisons. Without effective correction, such artifacts hinder the discovery of
consistent biological principles (Figure 1 (b) and Figure 1 (c)).
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Identifying spatial domains remains a core task in ST analysis (Zormpas et al., 2023). Methods such
as Louvain (Blondel et al., 2008), Leiden (Traag et al., 2019), STAGATE (Dong & Zhang, 2022),
GraphST and (Long et al., 2023) perform well on spot-level data from NGS platforms. However,
they face key limitations: (1) Gene panel dependency—reliance on preselected gene sets reduces
adaptability across platforms and resolutions (Xu et al., 2022); (2) Per-sample retraining—most
require retraining and tuning for each dataset, limiting generalizability beyond specific tissues or
platforms (Shen et al., 2024); and (3) Lack of unified semantic representation—conventional clus-
tering methods focus on local structures, impeding modeling of higher-level spatial semantics and
reducing biological interpretability (Hu et al., 2021).

Recently, foundation models such as scGPT (Cui et al., 2024) and Novae (Blampey et al., 2024) have
emerged. scGPT leverages large-scale single-cell transcriptomes to reduce reliance on limited spatial
gene panels, enhancing cross-platform generalization—albeit with potential compromise of spatial
specificity due to non-spatial signals. Novae, a graph-based self-supervised framework, introduces
spatial embedding alignment to improve correspondence across tissues. Nonetheless, these models
still focus mainly on local neighborhoods and lack mechanisms to capture global, multi-scale spatial
patterns, limiting their ability to model cross-domain and cross-tissue semantics.

To address these fundamental challenges in spatial transcriptomics analysis, we propose STAGE
(Spatial Transcriptomics Analysis via Graph Embeddings with Hierarchical Prototypes), a gener-
alizable foundation model that enables robust and consistent spatial domain identification across
diverse experimental conditions (the overall framework is illustrated in Figure 1 (d) and Figure 1
(e)). STAGE makes four key contributions: (1) Universal Clustering Framework: STAGE en-
ables consistent spatial clustering across samples, technologies and tissues without sample-specific
optimization, standardizing spatial transcriptomics analysis; (2) Self-supervised Learning: Com-
bining swapped contrastive learning with online EM optimization, our approach trains on unlabeled
ST data at scale; (3) Comprehensive Validation: Extensive experiments demonstrate STAGE’s
versatility across diverse tasks, establishing it as a universal analysis tool.

Figure 1: (a) Gene panel limitations cause low-dimensional, inconsistent features, leading to batch
effects; (b) Biological heterogeneity; (c) STAGE achieves cross-platform, cross-sample, and cross-
tissue integration, revealing shared spatial domains; (d) An overview of STAGE; STAGE introduces
a hierarchical prototype mechanism to capture global semantic representations of spatial niches,
alongside an efficient online expectation-maximization algorithm to enable scalable learning from
large-scale heterogeneous data; (e) Downstream Applications.
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2 RELATED WORK

2.1 CLASSICAL SPATIAL CLUSTERING

Early spatial domain detection methods typically construct weighted graphs by combining gene ex-
pression and spatial proximity, followed by community detection. The Louvain algorithm, though
efficient, often yields fragmented domains with poor spatial continuity. Leiden improves connec-
tivity via a two-level node–edge refinement but remains sensitive to batch effects in multi-section
integration. Graph neural networks (GNNs) effectively model gene expression and spatial structure
for domain identification. STAGATE integrates expression similarity via graph attention to enable
adaptive edge weighting and 3D alignment. GraphST applies contrastive learning to align local and
global patterns across sections without explicit batch correction. Despite strong performance, GNN
methods often rely on dataset-specific hyperparameters, limiting their cross-platform generalization.

2.2 PRETRAINED FOUNDATION MODELS

To address the generalization limits of traditional methods, pretrained foundation models like scGPT
and Novae have emerged to enable unified representation learning across platforms and tissues.
scGPT, inspired by language modeling, is pretrained on large-scale single-cell data via masked-token
prediction to learn transferable gene–gene and cell–gene relationships. Novae, a self-supervised
graph model, introduces spatial embedding alignment loss for correcting platform discrepancies and
supports zero-shot spatial domain prediction with integrated batch correction.

Figure 2: (a) SwAV contrastive learning. Two augmented graph views generate embeddings Q
and Q’, which are assigned to prototypes via optimal transport (OT) with swapped contrastive loss;
(b) Online EM optimization. Hierarchical prototypes tree is updated through online expectation-
maximization algorithm for scalable learning from ST data; (c) STAGE inference pipeline. Input
ST slide is processed through spatial graph construction, graph encoding, and prototype-based spa-
tial niche identification.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND PRELIMINARIES

We consider an omic set O in the complete vocabulary (e.g., human or mouse genome) and denote
No as the omic set size. A spatial transcriptomics slide captures expression profiles of a subset
P ⊆ {1, . . . , No}, representing the gene panel indices for this specific technology. The expression
data is represented as X = (x1, . . . , xN ) ∈ RN×|P |, where N denotes the number of cells and
|P | represents the panel size. This matrix contains normalized and log-transformed gene expression
values.

Cross-platform Challenges. Different spatial transcriptomics technologies exhibit significant het-
erogeneity: gene panels vary dramatically (Pi ̸= Pj for platforms i and j), batch effects introduce
systematic biases, and biological variability exists across samples and tissues. These challenges ne-
cessitate robust representation learning that can generalize across diverse experimental conditions
while preserving meaningful spatial organization.
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3.2 STAGE FRAMEWORK OVERVIEW

STAGE addresses these challenges through a unified self-supervised learning framework that simul-
taneously models local spatial relationships and global tissue organization. The architecture consists
of three synergistic components:

Gene Embedder. Maps heterogeneous gene panels to a unified embedding space, enabling cross-
platform compatibility through learnable gene representations initialized with biological priors.

GAT Encoder. Learns spatial representations from multi-scale neighborhood graphs using attention
mechanisms to capture both local cellular interactions and broader spatial context. More specifically,
for a given cell i, we define a subgraph Gi consisting of cells within nlocal hops, where node features
are the gene expression vectors of corresponding cells.

Hierarchical Prototype Head. Combines SwAV’s contrastive learning with our novel OT-enhanced
online EM algorithm to discover hierarchical spatial organization, from fine-grained cellular niches
to tissue-level domains.

This integrated design enables STAGE to learn representations that are both locally coherent and
globally structured.

3.3 SPATIAL NEIGHBORHOOD CONSTRUCTION

Following standard practice in spatial transcriptomics, we construct cell graphs based on Euclidean
distances between spatial coordinates. For each cell v, we define multi-scale neighborhoods:

NL(v) = {u : d(u, v) ≤ rlocal}, (1)
NV (v) = {u : rlocal < d(u, v) ≤ rview}, (2)

where d(u, v) denotes the Euclidean distance. This formulation jointly captures immediate microen-
vironments and broader tissue structures, enabling analysis across biological scales.

3.4 LOCAL SPATIAL STRUCTURE LEARNING

We extend the SwAV framework (Caron et al., 2020) to spatial transcriptomics, introducing a con-
trastive scheme that aligns representations of spatially proximal regions. Unlike traditional methods,
our formulation eliminates costly pairwise comparisons while preserving their discriminative power,
enabling efficient learning of local spatial structure.

3.4.1 OPTIMAL TRANSPORT FOR BALANCED CLUSTER ASSIGNMENT.

The core challenge in contrastive learning is preventing representation collapse while ensuring
meaningful cluster formation. We address this through optimal transport, which provides a prin-
cipled approach to balanced assignment.

Given a batch of embeddings Z ∈ RB×d and prototype matrix C ∈ RK×d, we solve the entropic
optimal transport problem:

Q∗ = arg min
Q∈Q

〈
Q,−CZT

〉
+ ϵH(Q) (3)

where H(Q) = −
∑

i,j Qij logQij is the Shannon entropy, ϵ > 0 is the regularization parameter,
and Q is the transportation polytope, Q =

{
Q ∈ RB×K

+ : Q1K = 1
B1B , Q

T1B = 1
K1K

}
.

This formulation ensures that: (1) each sample is assigned to exactly one prototype on average, (2)
each prototype receives equal assignment mass, and (3) the assignment is smooth due to entropy
regularization.

3.4.2 SWAPPED PREDICTION LOSS.

Given two spatially related subgraphs (Gi, Gj) separated by nview edges, we obtain embeddings zi
and zj . The SwAV loss aligns their cluster assignments:

Lswav = −1

2

∑
(i,j)

K∑
k=1

(
qik log pjk + qjk log pik

)
, (4)
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where qi = Q∗
i is the balanced assignment from optimal transport and pi = softmax(z⊤i C/τ) is the

prototype distribution with temperature τ .

By swapping predictions across neighboring subgraphs, this loss enforces representation consistency
without negative sampling. This property is especially advantageous for spatial transcriptomics,
where dense local interactions make conventional contrastive objectives inefficient.

3.5 GLOBAL SPATIAL SEMANTIC LEARNING VIA HIERARCHICAL PROTOTYPES

Local structure learning captures short-range interactions, but tissues exhibit multi-scale organiza-
tion from cellular niches to anatomical regions. To model this, we introduce a hierarchical prototype
framework coupled with an OT-enhanced online EM algorithm.

3.5.1 TREE-STRUCTURED PROTOTYPE HIERARCHY.

We arrange prototypes in a tree T = {Cl}Lp

l=1, where each level encodes spatial patterns at a distinct
resolution:

Cl = {cl1, . . . , clKl
}, cli ∈ Rd. (5)

Each prototype cli has children in Cl+1 and a unique parent, enforcing a valid tree structure with at
least two children per non-leaf node.

This hierarchy reflects the biological reality of spatial transcriptomics: fine-grained cellular states
at lower levels are recursively aggregated into broader tissue domains at higher levels. Unlike flat
prototypes, our tree-structured organization explicitly encodes biological hierarchy, enabling global
semantic representation across scales.

3.5.2 OT-ENHANCED ONLINE EXPECTATION-MAXIMIZATION.

We cast hierarchical prototype learning as a latent-variable model, where each spatial graph G fol-
lows a path zG = {z1G, . . . , z

Lp

G } through the prototype tree, with the constraint zl+1
G ∈ Child(zlG)

ensuring hierarchical consistency.

Our central innovation integrates optimal transport into the EM framework, providing balanced
assignments while maintaining hierarchical consistency:

E-step (OT-enhanced Assignment). Latent assignments are sampled top-down along the tree:

z1G ∼ Cat(softmax(h⊤
GC1/τ)), (6)

zl+1
G ∼ Cat(softmax(h⊤

GChild(zlG)/τ)). (7)

At each level l, Sinkhorn-Knopp yields balanced transport plans:

Q∗
l = Sinkhorn(ClZT /ϵl) subject to zl+1

G ∈ Child(zlG). (8)

This constraint ensures that the hierarchical structure is preserved during assignment, preventing
inconsistent paths through the tree.

M-step (Hierarchical Parameter Update). update network parameters θ and prototypes T by
maximizing the expected complete-data likelihood:

θt+1, T t+1 = argmax
θ,T

EQ∗ [log p(G,Z|θ, T )]. (9)

The hierarchical prototype loss ensures cross-level consistency:

Lglobal =
1

N

N∑
i=1

Lp−1∑
l=1

− log
exp(hT

Gi
czl+1

i
/τ)∑

c∈Child(zl
i)
exp(hT

Gi
c/τ)

. (10)

This formulation offers several advantages: (1) balanced OT assignments prevent prototype collapse,
(2) tree constraints ensure biologically consistent paths, (3) online updates enable scalability, and
(4) differentiable assignments allow end-to-end optimization.
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3.6 SLIDE-SPECIFIC PROTOTYPE SELECTION

Spatial transcriptomics datasets exhibit strong technical and biological heterogeneity across slides.
To address this, STAGE introduces a slide-adaptive prototype selection mechanism that balances
global generalization with local specificity.

The queue weights are computed as W ∈ RS×Lp×K by taking the maximum over the temporal
dimension:

Ws,l,k =
T

max
t=1

Qs,t,l,k. (11)

For each slide s and level l, with θ ∈ (0, 1) a selection threshold, prototypes are selected if:

Ws,l,k > θ ·max
k′

Ws,l,k′ . (12)

This adaptive mechanism explicitly captures slide-specific variations while preventing prototype
collapse, enabling robust modeling across heterogeneous datasets.

3.7 TWO-STAGE TRAINING PROTOCOL

STAGE adopts a two-stage training scheme for stable hierarchical learning.

Warmup. We first optimize only the local objective Lswav, freezing hierarchical prototypes to avoid
premature clustering.

Joint Training. We then jointly optimize local and global objectives:

Ltotal = Lswav + λLglobal, (13)

with λ = 0.1 balancing local coherence and global structure discovery.

This protocol yields stable multi-scale spatial representations with both efficiency and biological
interpretability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

4.1.1 DATASETS.

We trained STAGE on a large-scale spatial transcriptomics dataset ( 32 million cells from 18 tissue
samples) and evaluated its generalizability on three public datasets. Specifically, we conducted:
(1) cross-platform evaluation using colorectal, liver, and ovarian cancer datasets profiled by both
CosMx and Xenium (Ren et al., 2024); (2) cross-batch evaluation on three technical replicates of
a lung cancer sample (Janesick et al., 2023); and (3) pathological condition comparison between
normal and tumor samples of the same tissue (Janesick et al., 2023). Further dataset details are
provided in Appendix Dataset Documentation.

4.1.2 BASELINES.

We compare STAGE with six representative methods across three major categories: classical clus-
tering algorithms (Louvain, Leiden) , Graph neural network (STAGATE, GraphST) and pretrained
foundation models (scGPT, Novae), to comprehensively evaluate performance on spatial domain
identification.

4.1.3 EVALUATION METRICS.

We evaluate model performance using four widely adopted metrics: Jensen–Shannon Divergence
(JSD) (Duan et al., 2024), F1-score of Inter-Domain Edges (FIDE) (Blampey et al., 2024), Purity
of Annotated Subtypes (PAS) (Yuan et al., 2024), and Average Silhouette Width (ASW) (Hu et al.,
2024). Detailed metric definitions are provided in Appendix EVALUATION METRICS.
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Table 1: Comparison of Methods across Three Spatial Transcriptomics Scenarios (PAS and ASW)
Methods PAS ASW

Cross-Platform Paired Dataset

Louvain 0.7678 0.0635
Leiden 0.7857 0.0677
STAGATE 0.3467 0.0509
GraphST 0.3136 0.1132
Novae 0.3002 0.1482
scGPT 0.8185 0.0285
STAGE (zero-shot) 0.2272 0.2384
STAGE 0.2516 0.2605

Same-Tissue, Same-Platform Replicates

Louvain 0.6602 0.0818
Leiden 0.6507 0.0912
STAGATE 0.6273 0.1082
GraphST 0.2696 0.1582
Novae 0.2440 0.1241
scGPT 0.7033 0.0678
STAGE (zero-shot) 0.1558 0.1910
STAGE 0.1502 0.2581

Paired Normal and Tumor Tissues from the Same Organ

Louvain 0.7734 0.0052
Leiden 0.7343 0.0166
STAGATE 0.3104 0.0418
GraphST 0.3021 0.1116
Novae 0.2355 0.1466
scGPT 0.7910 0.0228
STAGE (zero-shot) 0.2760 0.2455
STAGE 0.2348 0.2474

4.2 ABLATION

We conduct comprehensive ablation studies to analyze the sensitivity of our method to two critical
hyperparameters: the hierarchical depth L and batch size B.

The parameter L controls the number of discovered semantic hierarchies in our prototype learning
framework. As shown in Figure 3(a), we evaluate model performance across different L values.
The results demonstrate that performance initially improves with increasing L, reaching an optimal
balance between JSD and FIDE metrics at L=3. Beyond this point, further increases in L lead to
diminishing returns, likely due to over-segmentation of the semantic space and increased model
complexity without corresponding performance gains.

The choice of batch size significantly impacts the quality of likelihood estimation in our training
procedure. Figure 3(b) presents a scatter plot of FIDE vs JSD performance on mouse slides across
different batch sizes. The analysis reveals that B=256 yields optimal performance for STAGE. This
finding aligns with our theoretical understanding: relatively larger batch sizes enable more represen-
tative sampling of the dataset distribution, leading to more precise likelihood expectation estimates
during training.

4.3 HIGH CROSS-PLATFORM CONSISTENCY AND SPATIAL CONTINUITY

To systematically evaluate the generalization and integration capacity of our model across platforms,
we performed consistency analysis on a paired dataset comprising matched samples profiled by

Figure 3: Ablation. (a) Model performance with different hierarchical depths; (b) Model perfor-
mance with different batch sizes.
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Figure 4: Evaluation of Integration Performance Using JSD and FIDE Across Three Dataset Types;
(a) Cross-Platform Paired Dataset; (b) Same-Tissue, Same-Platform Replicates; (c) Paired Normal
and Tumor Tissues from the Same Organ.

different spatial transcriptomics technologies. We applied STAGE for spatial domain identification
and benchmarked its performance against multiple state-of-the-art baselines. Quantitative results
across diverse metrics are reported in Table 1 and Figure 4.

On the cross-platform paired dataset, STAGE consistently outperforms all competitors in both JSD
and the composite FIDE metric under zero-shot and fully supervised settings (Figure 4a), indicating
a substantial reduction in cross-platform divergence of spatial domain distributions. This highlights
STAGE’s strong capability to integrate heterogeneous spatial transcriptomics data and generate con-
sistent annotations. STAGE also achieves superior performance on PAS and ASW, further confirm-
ing its advantage in maintaining spatial continuity and biological relevance. Representative results
are shown in Figure 5 (additional examples in the Supplementary). STAGE demonstrates clear ben-
efits in: (1) Mitigating cross-platform batch effects (Appendix Figure 8); (2) Providing stable and
consistent spatial domain identification (Figure 5); (3) Aligning spatial structures across slices or
experimental batches in latent space, yielding more continuous and structured spatial patterns.

Moreover, experiments on the “Same-Tissue, Same-Platform Replicates” dataset confirm STAGE’s
robustness to technical variation (Appendix Figure 9). Across all evaluation metrics, STAGE con-
sistently surpasses baseline methods, demonstrating strong resistance to batch effects and stable
domain identification under repeated measurements (Table 1, Figure 4b).

4.4 CAPTURING SHARED AND DISEASE-SPECIFIC SPATIAL DOMAINS

Previous studies have shown that tumor and matched normal tissues often share spatial domains as-
sociated with conserved developmental structures, reflecting fundamental patterns of tissue compart-
mentalization (Shi et al., 2025). However, tumors can also develop disease-specific spatial domains
during progression, driven by tumorigenesis and microenvironmental remodeling. For example, in
esophageal cancer, it has been reported that tumor epithelial cells and fibroblasts form a distinct spa-

Figure 5: Visualization of spatial domain identification results by different methods on cross-
platform paired colorectal cancer samples.
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Figure 6: Spatial domain identification results in normal lung and lung tumor tissues.

tial niche absent in normal tissues, which is closely associated with the transition from precancerous
lesions to invasive carcinoma (Chang et al., 2025).

In this study, STAGE demonstrates the ability to identify both shared and disease-specific spatial
domains between tumor and normal samples. As shown in Figure 4 (c), under the task Paired
Normal and Tumor Tissues from the Same Organ, STAGE demonstrates superior performance in
terms of both JSD and FIDE compared to all baseline methods, indicating a stronger ability to
alleviate batch effects across pathological states and to identify shared structural patterns across
conditions. The detailed comparisons of spatial domain identification across different methods are
provided in APPENDIX Figure 10 and Figure 11.

Further analysis reveals substantial differences in the proportions of spatial domains between tumor
and normal tissues. For instance, as illustrated in Figure 6, Niche1003 is predominant in normal
kidney tissue but notably diminished in kidney cancer, while Niche980 and Niche1007 appear ex-
clusively in tumor tissue, suggesting a tumor-specific spatial niche. These tumor-enriched domains
may represent emergent microenvironments that support cancer progression, such as niches involved
in immune evasion or promoting malignant cell proliferation. Such domain-level distinctions offer
valuable insights into disease mechanisms and the spatial reorganization of tumor ecosystems.

5 CONCLUSION

In this paper, we propose STAGE, a generalizable foundation model for spatial transcriptomics
that addresses critical challenges in spatial domain identification across samples, tissues, and plat-
forms. STAGE introduces a hierarchical prototype mechanism and a scalable online expectation-
maximization algorithm to effectively capture global semantic structures from heterogeneous spatial
transcriptomics data. STAGE demonstrates strong performance in learning robust graph-based cell
representations and consistently outperforms current state-of-the-art methods on multiple bench-
marks. Beyond accurate spatial domain delineation, STAGE further enables downstream applica-
tions such as disease-related region localization, spatial domain trajectory analysis, and spatially
variable gene or pathway analysis, underscoring its potential as a powerful and versatile tool for
spatial omics research.
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A APPENDIX

B OPTIMAL TRANSPORT SOLVER

The optimal transport problem is efficiently solved using the Sinkhorn-Knopp algorithm, which
alternates between row and column normalizations:

Q(t+1) = Diag(u(t)) exp

(
CZT

ϵ

)
Diag(v(t)) (14)

where u(t) and v(t) are renormalization vectors computed iteratively to enforce the marginal con-
straints. This algorithm converges rapidly (typically 3 iterations suffice) and can be efficiently im-
plemented on GPU.

C USE OF LARGE LANGUAGE MODELS

We used ChatGPT-5 to assist with language polishing of the manuscript. In addition, ChatGPT-5 was
employed to generate part of the preprocessing code for spatial transcriptomics data. All scientific
ideas, experimental designs, and analyses were conceived and validated by the authors.

D CODE AND DATA AVAILABILITY

All source code, datasets, and experimental configurations are publicly available at:

GitHub Repository: Will be made available after acceptance

The repository includes:

• Complete STAGE implementation with detailed comments

• All preprocessing and evaluation scripts

• Configuration files for reproducing all experiments

• Jupyter notebooks demonstrating usage and analysis

• Environment setup files (requirements.txt, pixi.lock, pixi.toml)

• Detailed README with step-by-step instructions

E DETAILED EXPERIMENTAL RESULTS

E.1 COMPUTING INFRASTRUCTURE AND REPRODUCIBILITY

All experiments were conducted on the following standardized configuration:

• Hardware: Nvidia A100 SXM4 GPU model with 80 GB memory, 28 CPU cores, 1 TB
RAM

• Software: Python 3.10.12, PyTorch 2.2.1, PyTorch Geometric 2.5.2

• Runtime: Training requires approximately 20 hours on the specified hardware

E.2 HYPERPARAMETER CONFIGURATION

The final hyperparameters used across all experiments:
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Table 2: Final Hyperparameters Used in STAGE
Parameter Value
Learning rate 0.0001
Batch size 256
Hierarchical levels (Lp) 3
Temperature (τ ) 0.1
Regularization (ϵ) 0.05
Global loss weight (λ) 0.1
Warmup epochs 33
Total training epochs 60

Hyperparameter Search: We systematically explored batch sizes [64, 128, 256, 512, 1024], hier-
archical levels [1, 2, 3, 4, 5], and global loss weights [0.1, 0.3, 0.5, 1.0, 10]. The final selections
were based on validation performance using JSD and FIDE metrics.

E.3 ADDITIONAL ABLATION

The choice of batch size significantly impacts the quality of likelihood estimation in our training
procedure. Figure 3(b) presents a scatter plot of FIDE vs JSD performance on mouse slides across
different batch sizes. The analysis reveals that B=256 yields optimal performance for STAGE. This
finding aligns with our theoretical understanding: relatively larger batch sizes enable more represen-
tative sampling of the dataset distribution, leading to more precise likelihood expectation estimates
during training.

E.4 STATISTICAL SIGNIFICANCE TESTING

Wilcoxon signed-rank tests confirm statistical significance of STAGE’s improvements over baseline
methods (all p-values <0.05). Detailed p-values are provided in the GitHub repository.

E.5 ADDITIONAL EXPERIMENT RESULTS

Figure 7: Distribution of spatial domains across tissues.
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E.5.1 CROSS-TISSUE SPATIAL DOMAINS

From the perspective of tissue development and disease progression, spatial domains may partially
overlap across different tissues or emerge in a condition-specific manner under particular physiolog-
ical or pathological states.

As shown in Figure 7, STAGE generates spatial domain annotations across spatial transcriptomics
slices from diverse tissue types, demonstrating its robustness in identifying both shared and tissue-
specific domains. Lymph nodes and tonsils exhibit highly similar domain compositions, reflecting
their common immune functions. Moreover, some domains identified in lymphoid tissues are also
present in non-lymphoid tissues such as breast and lung, suggesting that certain spatial patterns
may reflect underlying immune regulation or microenvironmental features rather than being strictly
dictated by anatomical origin.

Hierarchical clustering based on domain composition (Figure 7) further shows that tissues with
similar spatial characteristics cluster together, although these groupings do not fully align with con-
ventional histological classifications. This indicates that spatial domains encode not only cell-type
distributions but also contextual information such as disease states, local microenvironments, and
functional programs. For example, immune activation, inflammation, or tumor progression may
lead to similar spatial patterns across anatomically distinct tissues.

F DATASET DOCUMENTATION

F.1 TRAINING DATASET DETAILED STATISTICS

STAGE was pretrained on 32,444,865 cells from 109 samples across 6 spatial transcriptomics plat-
forms:

Table 3: Training Dataset Tissue Distribution
Tissue Samples Cells (K) Gene Range

Bone 1 33.8 477
Bone marrow 2 310.4 477
Brain 25 1,853.4 79-10,814
Breast 7 4,365.8 280-500
Colon 13 5,507.4 325-6,175
Femur 3 849.6 479
Heart 1 26.4 377
Kidney 2 154.1 377
Liver 8 2,881.8 377-6,175
Lung 17 3,848.5 289-5,001
Lymph node 2 1,087 377-4,624
Ovarian 7 1,843.7 480-6,175
Pancreas 5 719.6 377-21,731
Prostate 3 1,908.5 500-5,006
Skin 7 1,141.6 282-5,006
Tonsil 2 2,214 377
Uterine 3 2,343.5 500
Whole mouse 1 1,355.8 379

Table 4: Training Dataset Platform Distribution
Platform Samples Cells (M) Gene Range Avg/Sample

Xenium 66 19.7 248-5,006 299K
MERSCOPE 18 10.2 500 566K
CosMX 15 2.5 980-21,731 177K
STARmap 3 0.003 166 1K
MERFISH 5 0.028 155 6K
BARISTAseq 3 0.005 79 2K

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F.2 EVALUATION DATASET SPECIFICATIONS

To rigorously assess the effectiveness and generalizability of our method, we conduct systematic
evaluations on three public spatial transcriptomics datasets, covering different technical platforms,
batch variations, and pathological conditions.

Cross-platform consistency evaluation. We construct paired datasets for colorectal cancer, liver
cancer, and ovarian cancer, each profiled by both CosMx and Xenium (Ren et al., 2024). This
enables a direct assessment of whether STAGE can consistently identify spatial domains across
different experimental platforms.

Cross-batch robustness evaluation. We use three technical replicates of the same lung cancer sample
to examine the stability of STAGE under batch variation (Janesick et al., 2023). This setup evaluates
whether the model can maintain consistent spatial structures when sequencing is repeated under
similar conditions.

Pathological condition comparison. We analyze matched normal and tumor samples from the same
tissue to evaluate the ability of STAGE to distinguish shared versus condition-specific spatial do-
mains (Janesick et al., 2023).

Table 5: Cross-platform Dataset Details
Cancer CosMX CosMX Xenium Xenium
Type Cells Genes Cells Genes

Colorectal 292K 6,175 406K 5,001
Liver 237K 6,175 272K 5,001
Ovarian 289K 6,175 410K 5,001

Table 6: Technical Replicate Details
Sample Cells Genes

Lung5 Rep1 100K 980
Lung5 Rep2 107K 980
Lung5 Rep3 100K 980

F.3 DATA PREPROCESSING PIPELINE DETAILS

F.3.1 QUALITY CONTROL PARAMETERS

Standardized filtering criteria applied across all datasets:

• Minimum cells per gene: 50
• Spatial coordinate validation: Removal of cells with missing coordinates

F.3.2 GRAPH CONSTRUCTION PARAMETERS

Spatial neighborhood graphs constructed with:

• Delaunay graph radius: 100µm
• Multi-scale neighborhoods: Local (≤25µm) and extended (25-50µm)

F.4 DATASET AVAILABILITY

Public Access: All evaluation datasets are publicly available with appropriate citations provided in
the main paper. Processed versions with standardized formats are available in the GitHub repository.

Training Data: The complete training dataset will be released upon publication under a research-
friendly license, including preprocessing scripts and metadata.
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G CODE IMPLEMENTATION DETAILS

G.1 STAGE TRAINING ALGORITHM

The complete training procedure for STAGE is detailed in Algorithm 1:

[H] STAGE Training Algorithm [1] Spatial transcriptomics datasets {Gi}, hyperparameters
{K,Lp, λ, τ, ϵ} Pre-trained model parameters θ, hierarchical prototypes T Initialize gene embed-
dings {vg}, network parameters θ0 Initialize prototype tree T0 via K-means + clustering epoch
= 1 to Ewarmup each mini-batch {Gi} Generate augmented views {G′

i} via panel subsetting and
noise Compute embeddings: hi = GraphEncoder(embed(Gi)) Solve optimal transport: Q∗ =
Sinkhorn(ChT

i /ϵ) Compute SwAV loss: Lswav = − 1
2

∑
qik log pjk Update θ via gradient descent

on Lswav epoch = Ewarmup + 1 to max epochs each mini-batch {Gi} Compute embeddings and
SwAV loss as above Sample hierarchical paths: zli ∼ Cat(softmax(hT

i C
l/τ)) Compute global loss:

Lglobal = −
∑Lp−1

l=1 log p(zl+1
i |hi, z

l
i) Update θ, T via gradient descent on Lswav + λLglobal

G.2 BIOLOGICALLY-MOTIVATED DATA AUGMENTATION

To enhance model robustness against technical variations commonly observed in spatial transcrip-
tomics, we apply two biologically relevant augmentations:

Pseudo Batch Effect Simulation: We introduce artificial batch effects to reduce sensitivity to tech-
nical noise. For each cell i, we sample additive noise a ∼ Exponential(λ)|P | and multiplicative
factors s ∼ N (0, σ2I|P |), then update expression as:

x
(noise)
i = a+ xi ⊙ (1 + s) (15)

This augmentation simulates the variability introduced by different experimental conditions, library
preparation protocols, and sequencing depths.

Gene Panel Subsetting: We randomly subset the gene panel according to ratio γ ∈ (0, 1), selecting
⌊γ|P |⌋ genes to create P ′ ⊂ P . This augmentation simulates the effect of different gene panels
across technologies, as if multiple platforms generated the data or the panel was updated during a
longitudinal study.

These augmentations help the model generalize across varying experimental conditions and dataset
characteristics, crucial for building a foundation model applicable to diverse spatial transcriptomics
studies.

G.3 GENE PANEL ALIGNMENT

Cross-platform gene panel differences are addressed through learnable gene embeddings {vg}Gg=1

where vg ∈ RE . For a cell with expression xi and panel P , the embedding is:

embed(xi, P ) =

∑
j∈P xijvj√∑
j∈P ∥vj∥2

(16)

The L2 normalization ensures consistent weighting across different panel sizes, analogous to PCA
where components are trainable gene embeddings. This design allows the model to learn meaningful
gene programs that generalize across platforms while adapting to panel-specific characteristics.

G.4 HIERARCHICAL PROTOTYPE INITIALIZATION

The prototype tree is initialized through a principled bottom-up approach:

1. K-means clustering on learned representations initializes the bottom level
2. Clustering establishes parent-child relationships
3. Sinkhorn-Knopp provides initial balanced assignments across all levels

This initialization strategy ensures that the hierarchical structure reflects meaningful biological or-
ganization from the start of training.
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G.5 MULTI-SCALE SPATIAL GRAPH CONSTRUCTION

Following established practices in spatial transcriptomics analysis, we construct graphs that capture
biologically relevant spatial relationships. The detailed implementation includes:

Neighborhood Definition: For each cell v, we define multi-scale neighborhoods:

Local: NL(v) = {u : dspatial(u, v) ≤ rlocal} (17)
Extended: NV (v) = {u : rlocal < dspatial(u, v) ≤ rview} (18)

where dspatial(u, v) represents Euclidean distance between spatial coordinates.

Edge Weight Computation: Spatial relationships are encoded through distance-based weights:

wuv = exp

(
−
dspatial(u, v)

2

2σ2

)
(19)

where σ is the spatial bandwidth parameter adjusted per platform resolution.

G.6 EVALUATION METRICS

To comprehensively assess model performance, we adopt four widely used evaluation metrics.
Jensen-Shannon Divergence (JSD) (Duan et al., 2024) is used to measure the similarity of spatial
domain distributions across different tissue sections. As a widely used distribution distance mea-
sure, JSD is based on the Kullback-Leibler divergence (KL) between two distributions. The KL
divergence of SPACE between two cells or spots P and Q is defined as:

KL(P,Q) =
∑

Pi log

(
Pi

Qi

)
As a symmetrized, finite, and smoothed version, the Jensen-Shannon Divergence (JSD) is defined
as:

JSD(P,Q) =
1

2
(KL(P,M) +KL(Q,M))

where M = P+Q
2 . A smaller JSD value indicates higher similarity between the distributions, while

a larger value suggests greater dissimilarity.

The F1-score of inter-domain edges (FIDE score) is used to quantify the spatial domain continuity.
Specifically, let C = (Ci)1≤i≤N represent the categorical spatial domain predictions for N cells of
a slide. The FIDE score is defined as:

FIDE(C,A) = F1-score
(
(Ci, Cj)i,j s.t. Aij>0

)
where Aij is positive when cells i and j are graph neighbors. Intuitively, for an edge i ↔ j, the
edge is considered an inter-domain edge if Ci ̸= Cj .

Purity of Annotated Subtypes (PAS) (Yuan et al., 2024) quantifies how well the predicted domains
align with known cell type annotations. The PAS score has been used to quantify the spatial homo-
geneity of spatial domain identification algorithms in spatial transcriptomics. A lower PAS score in-
dicates better continuity of the detected spatial domains, suggesting higher cell homogeneity within
the spatial domains. The PAS score is calculated as the percentage of cells with a spatial domain
label that differs from at least six of its neighboring ten cells.

Average Silhouette Width (ASW) (Hu et al., 2024) assesses the compactness and separability of
clusters, indicating the quality of the embedding space and domain structure. We extend ASW to
evaluate the spatial coherence of predicted domains with respect to the physical space. The value
of ASW ranges from 1 to 1 (we rescale ASW to 0–1), with a value closer to 1 indicating better
performance. To define ASW, silhouette width (SW) should be defined first, and ASW can be
computed by averaging SWs across all cells. Suppose a is the mean distance between a cell and all

18
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other cells in the same spatial domain, and b is the mean distance between a cell and all other cells
in the next nearest cluster, then the SW of a cell is computed as:

SW =
b− a

max(a, b)

G.7 COMPUTATIONAL REQUIREMENTS

Training Requirements:

• GPU Memory: Minimum 24GB for full dataset training
• Training Time: Approximately 20-24 hours on V100/A100
• Storage: 200GB for preprocessed training data

Inference Requirements:

• GPU Memory: 8GB sufficient for most evaluation datasets
• Inference Speed: ∼1 second per 1000 cells
• CPU Alternative: Supported but 10-20x slower

H METHOD LIMITATIONS AND FUTURE DIRECTIONS

H.1 CURRENT LIMITATIONS

• Gene panel dependency: Performance may vary with extremely small gene panels (<200
genes)

• Spatial resolution: Optimized for subcellular to tissue-level analysis
• Computational requirements: Training requires substantial computational resources

H.2 FUTURE ENHANCEMENTS

• Integration with additional spatial omics modalities (proteomics, metabolomics)
• Extension to 3D spatial analysis
• Development of lightweight inference models for resource-constrained environments

I EXTENDED DATA FIGURES
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Figure 8: Effect of STAGE in removing batch effects across different platforms Scatter plots show
the integration of paired tumor samples (colorectal, liver, and ovarian cancers) across two sequencing
platforms using the STAGE method. Each dot represents a single cell, with colors indicating the
platform (blue, CosMx; orange, Xenium). The three panels correspond to the respective tumor types.
The uniform spatial distribution of blue and orange points demonstrates that STAGE effectively
eliminates technical batch effects between platforms, enabling stable and accurate identification of
spatial domains.

Figure 9: Figure X. Spatial domain identification across Same-Tissue, Same-Platform replicates of
lung tissue. Spatial domain identification was evaluated in Same-Tissue, Same-Platform replicates
derived from adjacent lung tissue sections of the same individual. Replicates 1–3 correspond to
three independent experimental runs. Multiple methods were applied for spatial domain detection,
among which STAGE demonstrated the highest consistency across replicates.

Figure 10: Identification of spatial domains in normal lung and lung cancer. This figure shows the
performance of STAGE and five evaluation methods in identifying spatial domains within the spatial
transcriptomes of normal lung and lung cancer.
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Figure 11: Identification of spatial domains in normal pancreas and pancreatic cancer. This figure
shows the performance of STAGE and five evaluation methods in identifying spatial domains within
the spatial transcriptomes of normal pancreas and pancreatic cancer.
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