

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PALATE: PECULIAR APPLICATION OF THE LAW OF TOTAL EXPECTATION TO ENHANCE THE EVALUATION OF DEEP GENERATIVE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning, yielding noteworthy advancements in domains such as image synthesis, natural language processing, and other related areas. However, a comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge. A recently introduced solution that has emerged as a promising approach in this regard is the Feature Likelihood Divergence (FLD), a method that offers a theoretically motivated practical tool, yet also exhibits some computational challenges. In this paper, we propose PALATE, a novel enhancement to the evaluation of DGMs that addresses the limitations of FLD regarding computational efficiency. Our approach is based on a peculiar application of the law of total expectation to random variables representing accessible real data. When combined with the MMD baseline metric and DINOv2 feature extractor, PALATE offers a holistic evaluation framework that matches or surpasses state-of-the-art solutions while providing superior computational efficiency and scalability to large-scale datasets. Through a series of experiments, we demonstrate the effectiveness of the PALATE enhancement, contributing a computationally efficient, holistic evaluation approach that advances the field of DGMs assessment, especially in detecting sample memorization and evaluating generalization capabilities.

1 INTRODUCTION

In recent years, deep generative models (DGMs) have garnered significant attention, becoming a subject of interest not only for the machine learning community, but also for researchers across other scientific disciplines, practitioners, and even the general public (Ravuri et al., 2023). DGMs have already reached a sufficient level of maturity for utilization in downstream tasks, leading to the generation of substantial results. These include, but are not limited to, photorealistic imagery (Rombach et al., 2022), verbal expressions that emulate authentic discourse (Goel et al., 2022), and written text reminiscent of human composition (OpenAI, 2023).

Regardless of the architectural framework employed, a critical component of any deep generative model is the generator, i.e., a network meticulously designed and trained to produce synthetic data that are indistinguishable from real data. Although the learning of DGMs typically entails an optimization process for a model-specific objective function, a fair post-learning assessment necessitates the utilization of an adequate approach that is not biased towards any particular underlying architecture. This is usually achieved by implementing an appropriate technique that utilizes samples of generated data, otherwise referred to as “fake data,” preferably in relation to the real data. Consequently, in such a case, it can be asserted that we are dealing with a sample-based evaluation metric. The most prominent state-of-the-art examples of such metrics include inception score (IS) (Salimans et al., 2016) and Fréchet inception distance (FID) (Heusel et al., 2017). The popularity of IS and FID stems from their quite reasonable consistency with human perceptual similarity judgment, ability to recognize diversity within generated samples, and ease of use. Additionally, FID has been shown to effectively capture sample fidelity, a consequence of its definition as a statistical distance between feature distributions appropriately fitted to real and generated data samples. Nevertheless, despite its treatment as a gold evaluation standard, FID generally lacks the capacity to detect overfitting

054 or sample memorization (Jiralerspong et al., 2024). This limitation has not been resolved by more
 055 recent, somewhat popular approaches such as kernel inception distance (KID) (Bifkowski et al.,
 056 2018) or precision and recall (P&R) (Sajjadi et al., 2018), which were otherwise designed to add
 057 nuance to the evaluation process by addressing some other weaknesses of FID, such as strong bias,
 058 normality assumption, or the inability to capture fidelity and diversity as separate characteristics.
 059 Instead, the extant proposals have encompassed the implementation of autonomous metrics, such as
 060 the C_T score (Meehan et al., 2020) and authenticity (Alaa et al., 2022). The development of these
 061 approaches has been undertaken with the objective of detecting overfitting (or sample memorization)
 062 and consequently evaluating the generalization properties of DGMs.

063 While the significance of a thorough examination of the quality of the outcomes of generative models
 064 cannot be overstated, this subject appears to be underrepresented and underestimated in the literature.
 065 Among the various properties of a good evaluation metric, the most important seems to be its holistic
 066 nature, which can be understood as the ability to validate generated samples in a trichotomous way
 067 involving their fidelity, diversity, and novelty—a newly defined concept opposite to memorization.
 068 The most recent and promising advancement in this field was proposed by the authors of (Jiralerspong
 069 et al., 2024), who introduced the Feature Likelihood Divergence (FLD), especially designed to verify
 070 generalization capabilities while preserving the advantages of existing approaches. Nevertheless,
 071 while FLD has proven to be a viable metric for holistic evaluation, it has been observed to encounter
 072 computational challenges when applied to more complex and varied real-world datasets. This is
 073 due to the fact that for such datasets, it is necessary to use a substantial number of data samples to
 074 calculate reliable metric values, which appears to be computationally demanding (see the results from
 075 our experiments on the large-scale ImageNet dataset (Deng et al., 2009) presented in Section 5). In
 076 order to address this issue, we propose a novel enhancement to the evaluation of deep generative
 077 models, which we refer to as PALATE. Our solution is grounded in a **peculiar application of the law**
 078 of **total expectation** (hence the name). The objective of the PALATE enhancement is to deliver a
 079 technique that improves upon a given baseline metric capable of validating the fidelity and diversity
 080 of generated samples, to account for their novelty. Our experimental results demonstrate that this
 081 approach, when implemented in conjunction with a DINOv2 version of the recently developed
 082 CLIP-MMD (CMMD) metric (Jayasumana et al., 2024), which we call DINOv2-MMD (DMMD),
 083 facilitates the creation of a holistic evaluation metric that is aligned with state-of-the-art solutions and
 084 exhibits superior computational efficiency.

085 In summary, our work contributes the following: *(i) we propose PALATE, a novel enhancement to the*
 086 *evaluation of DGMs*, which is designed to improve a baseline metric to ensure its sensitivity to the
 087 memorization of training samples, *(ii) we present a theoretical justification for our approach*, which
 088 derives from the law of total expectation applied in a peculiar way to random variables representing
 089 all available real data, *(iii) we conduct extensive experiments on real-world data*, which confirm
 090 the usefulness of our approach to provide a computationally efficient holistic evaluation metric that
 091 matches (or even surpasses) state-of-the-art solutions.

2 PRELIMINARIES

092 This section summarizes the basic concepts underlying generative models and explains the law of
 093 total expectation, an essential tool for the approach we propose.

094 **Generative Models** In this work, we consider a scenario in which we have access to two distinct
 095 collections of real data: a train dataset and a test dataset, with the former dedicated for training and
 096 the latter for evaluation purposes exclusively. These data can be considered independently drawn
 097 from a random variable X acting on a given multidimensional Euclidean data space \mathcal{X} . Additionally,
 098 following (Bengio et al., 2013; Loaiza-Ganem et al., 2024), it is assumed that all accessible data lie
 099 on a lower dimensional manifold $\mathcal{M}_{\text{data}} \subset \mathcal{X}$, i.e., $\mathbb{P}(X \in \mathcal{M}_{\text{data}}) = 1$.

100 Despite the existence of numerous generative architectures, each of them contains an indispensable
 101 part that plays the role of a generator—henceforth denoted by G —designed and trained to produce
 102 synthetic data that are indistinguishable from real data. These generated data can also be regarded as
 103 being drawn independently from a random variable Y defined on the common data space \mathcal{X} , which
 104 follows another distribution p_G that is determined by the model. It is important to note that while the
 105 real data distribution p_X , though unknown, remains fixed, the fake data distribution p_G is subject
 106 to change during the training process. The objective is to force p_G to approximate p_X as closely
 107

108 as possible, a goal that is typically achieved by optimizing a model-specific loss function utilizing
 109 training data samples. On the other hand, when attempting to draw fair comparisons among various
 110 optimized generative models, a model-agnostic evaluation metric is required, one that can effectively
 111 access the learning effects. Such a metric can be constructed to consider either only the properties
 112 of p_G (as IS) or the discrepancy between p_X and p_G (as FID). This is typically accomplished by
 113 leveraging respective test and generated data samples, resulting in a sample-based metric. In addition,
 114 the prevailing approaches employ an ancillary feature extractor ϕ , such as the pre-trained Inception-
 115 v3 (Szegedy et al., 2016), DINOv2 (Oquab et al., 2023), or CLIP (Radford et al., 2021) network. The
 116 objective of this network is to embed samples into a perceptually meaningful feature space, thereby
 117 reducing the task to the assessment of the feature distributions $p_{\phi(X)}$ and $p_{\phi(G)}$. In the subsequent
 118 section, we present our selection of the most salient state-of-the-art evaluation metrics for DGMs,
 119 which are pertinent to our work.
 120

Law of Total Expectation The law of total expectation (Kolmogorov, 1933; Feller, 1968),
 121 alternatively referred to as the law of iterated expectations or the tower rule, is a foundational
 122 principle in probability theory. Its application to a partition of the sample space proves particularly
 123 advantageous, as it facilitates computation of the expected value of a random variable through its
 124 decomposition into conditional expectations over mutually exclusive and exhaustive events. This is
 125 the subject of the following theorem.
 126

Theorem 1 *Let Z be a random variable with finite expectation, and let $\{A_1, \dots, A_n\}$ be a partition
 127 of a sample space Ω , i.e., $\bigcup_{i=1}^n A_i = \Omega$ and $A_i \cap A_j = \emptyset$ for $i \neq j$, with $\mathbb{P}(A_i) > 0$ for all i . Then
 128 the following equality holds:*

$$\mathbb{E}(Z) = \sum_{i=1}^n \mathbb{E}(Z|A_i)\mathbb{P}(A_i). \quad (1)$$

132 For the convenience of the reader, a simplified proof of Theorem 1 is provided in Appendix C.
 133

134 3 RELATED WORK

136 In this section, we present state-of-the-art evaluation metrics for DGMs that are relevant to our work.
 137

Fidelity and Diversity Metrics Inception score (IS) (Salimans et al., 2016) is a sample-based
 138 metric, which utilizes the pre-trained Inception-v3 network (Szegedy et al., 2016) to evaluate the
 139 diversity of generated samples. However, IS is constrained in its ability to assess the fidelity of these
 140 samples to real data. To address this limitation, several metrics have been proposed that focus on both
 141 fidelity and diversity. These include Fréchet inception distance (FID) (Heusel et al., 2017), kernel
 142 inception distance (KID) (Bińkowski et al., 2018), and CLIP-MMD (CMMMD) (Jayasumana et al.,
 143 2024) metrics. FID utilizes the feature distributions of real and generated data, extracted using the
 144 Inception-v3 network, to calculate the Wasserstein distance between them, thereby offering a means
 145 to evaluate both fidelity and diversity. As part of a broader evaluation framework, in (Stein et al.,
 146 2024) the authors introduce $\text{FD}_{\text{DINOv2}}$, a variant of FID that uses DINOv2 features, which better
 147 capture global structure and salient objects, improving perceptual alignment. While FID is widely
 148 accepted as the gold evaluation standard, it is sensitive to the biases inherent in the inception space
 149 and suffers from approximation of features of both real and generated data by a normal distribution.
 150 Conversely, KID is a metric based on maximum mean discrepancy (MMD) between the feature
 151 distributions, which does not assume normality and is less affected by biases. CMMMD, another
 152 recently proposed metric, also utilizes MMD but employs the Gaussian RBF characteristic kernel
 153 and CLIP embeddings instead of the rational quadratic kernel and Inception-v3 embeddings used
 154 by KID. Improved Precision and Recall (Kynkäanniemi et al., 2019) further decompose sample
 155 quality and coverage using non-parametric manifolds, offering more nuanced evaluation than FID.
 156 **Density and Coverage** (Naeem et al., 2020) offer an empirically reliable and theoretically grounded
 157 approach that successfully addresses the limitations of Precision and Recall. However, these metrics
 158 are ineffective in addressing the challenges posed by memorization and overfitting in DGMs. **Other**
 159 recently proposed evaluation metrics that more reliably quantify fidelity and diversity include Vendi
 160 Score (Friedman & Dieng, 2023), FKEA (Ospanov et al., 2024), and RKE Score (Jalali et al.,
 161 2023). The Vendi Score employs a diversity measure grounded in kernel methods, offering robust
 162 diversity assessment. FKEA introduces a scalable, reference-free evaluation leveraging feature kernel
 163 approximations for fidelity and diversity, while the RKE Score uses information-theoretic criteria to

162 evaluate multi-modal distributions. These recent advances represent significant progress in capturing
 163 generative model performance beyond classical metrics.

164 **Holistic Metrics** The field of holistic evaluation of DGMs has recently emerged as a novel
 165 approach to assessing their generalization capabilities, which has been achieved by simultaneously
 166 considering multiple aspects of sample quality. A notable example is Feature Likelihood Divergence
 167 (FLD) (Jiralerspong et al., 2024), which integrates fidelity, diversity, and novelty into a single metric.
 168 FLD employs a kernel density estimator (KDE) with an isotropic Gaussian kernel to model the
 169 feature distribution of generated data. Subsequently, KDE is applied to test data features extracted
 170 using networks such as Inception-v3 or DINOv2. It is noteworthy that the KDE bandwidth matrix
 171 is optimized to penalize the memorization of training samples, thereby enabling FLD to detect
 172 overfitting while maintaining other benefits. However, FLD faces challenges with complex real-
 173 world datasets, as it requires a large number of samples to produce reliable results, which can be
 174 computationally demanding.

175 **Memorization Metrics** Concerns regarding the tendency of DGMs to memorize training data and
 176 overfit have given rise to the development of metrics capable of detecting such behaviors. Notable
 177 examples include C_T score (Meehan et al., 2020) and authenticity (Alaa et al., 2022). These metrics
 178 are designed to identify instances where generated samples exhibit a high degree of similarity to
 179 training data, suggesting a potential for memorization. Specifically, the C_T score quantifies the
 180 probability that a generated sample will be indistinguishable from a real sample, thereby helping to
 181 detect overfitting. On the other hand, authenticity is determined through a binary sample-wise test
 182 to ascertain whether a sample is authentic (i.e., overfit), and is typically expressed as the AuthPct
 183 score, which quantifies the percentage of generated samples classified as authentic. In this context,
 184 it is also pertinent to mention Generalization Gap FLD, which is a memorization metric calculated
 185 by subtracting the value of FLD from its version computed using the train dataset instead of the
 186 test dataset. Novelty assessment has further benefited from metrics like FINC (Zhang et al., 2025),
 187 which employs scalable differential clustering to detect generation uniqueness. On the other hand,
 188 complementary metrics such as the Rarity Score (Han et al., 2022) and KEN score (Zhang et al.,
 189 2024) aim to quantify the uniqueness and informational entropy of generated outputs in relation to
 190 the training set. While these metrics provide important insights into memorization and overfitting,
 191 they do not fully capture the holistic quality of generated samples that includes fidelity and diversity.
 192 This motivates the design of evaluation frameworks that consider all these aspects jointly.

193 4 PALATE ENHANCEMENT

194 This section presents a novel enhancement for the evaluation of DGMs, referred to as PALATE,
 195 which leverages a peculiar application of the law of total expectation (hence the name). The objective
 196 is to enhance existing baseline methods by accounting for the memorization of training samples,
 197 thereby creating a holistic evaluation metric consistent with state-of-the-art solutions such as FLD.
 198 The following paragraphs outline the general formulation of our approach and discuss relevant
 199 hyperparameters.

200 **PALATE** The following assumptions underpin our approach: (A1) for the samples of training data
 201 $x_{\text{train}} = \{x_1^{\text{train}}, \dots, x_m^{\text{train}}\}$ and test data $x_{\text{test}} = \{x_1^{\text{test}}, \dots, x_n^{\text{test}}\}$, which are selected for evaluation,
 202 we have two non-trivial disjoint parts¹ $\mathcal{M}_{\text{train}}$ and $\mathcal{M}_{\text{test}}$ of the manifold of data $\mathcal{M}_{\text{data}}$, such that
 203 $\mathcal{M}_{\text{data}} = \mathcal{M}_{\text{train}} \cup \mathcal{M}_{\text{test}}$, $x_{\text{train}} \subset \mathcal{M}_{\text{train}}$, and $x_{\text{test}} \subset \mathcal{M}_{\text{test}}$, (A2) the ratio of the cardinalities of x_{train}
 204 and x_{test} (i.e., m/n) remains constant across all models and datasets, (A3) a baseline metric M_{base}
 205 capable of capturing the fidelity and diversity of generated samples is defined by the conditional
 206 expectation operator, i.e., $M_{\text{base}} = \mathbb{E}(Z|X \in \mathcal{M}_{\text{test}})$ for some random variable Z with $\mathbb{E}(Z) = 0$ if
 207 and only if $p_X = p_G$ (note that any such Z must implicitly depend on the random variables X and
 208 Y —see Equation (5) for an example). Given these conditions, the law of total expectation, as stated in
 209 Theorem 1, can be applied to Z and the partition $\Omega = \{\omega \mid X(\omega) \in \mathcal{M}_{\text{test}}\} \cup \{\omega \mid X(\omega) \in \mathcal{M}_{\text{train}}\}$,
 210 yielding the following formula:

$$211 \mathbb{E}(Z) = \mathbb{E}(Z|X \in \mathcal{M}_{\text{data}}) = a \mathbb{E}(Z|X \in \mathcal{M}_{\text{test}}) + (1 - a) \mathbb{E}(Z|X \in \mathcal{M}_{\text{train}}), \quad (2)$$

212 ¹We emphasize that these parts do not require any special structure (specifically, they do not need to be
 213 submanifolds or connected sets), are induced solely by the data samples selected for evaluation, and are not
 214 predetermined or fixed subsets.

216 where $a = \mathbb{P}(X \in \mathcal{M}_{\text{test}}) = 1 - \mathbb{P}(X \in \mathcal{M}_{\text{train}})$. It is crucial to acknowledge that Equation (2)
 217 integrates the baseline approach (the first right-hand side term), which is predicated on fidelity
 218 and diversity, with the concept of novelty (the second right-hand side term) in a concise formula.
 219 Specifically, this expression enables the recognition of the extent to which the generation of samples
 220 by an optimized model that closely align with the manifold of data is attributable to overfitting or
 221 even replication of training data samples. The assessment of this phenomenon can be facilitated by
 222 employing the following formula:

$$223 \quad \text{PALATE}(M_{\text{base}}) = \frac{\mathbb{P}(X \in \mathcal{M}_{\text{test}}) \mathbb{E}(Z|X \in \mathcal{M}_{\text{test}})}{\mathbb{E}(Z|X \in \mathcal{M}_{\text{data}})} = \frac{a \mathbb{E}(Z|X \in \mathcal{M}_{\text{test}})}{a \mathbb{E}(Z|X \in \mathcal{M}_{\text{test}}) + (1-a) \mathbb{E}(Z|X \in \mathcal{M}_{\text{train}})}. \quad (3)$$

225 This definition clearly shows that the value yielded by Equation (3) approaches 1 (i.e., the maximum)
 226 for the copycat model, which merely samples from the train dataset, while for an optimized model—
 227 that is, one that attains a superior baseline metric score—it has been minimized. Consequently, we
 228 can conclude that DGMs exhibiting a tendency to memorization (or overfitting) are those for which
 229 $\text{PALATE}(M_{\text{base}}) > a$ (see Appendix C, where we also provide complementary theoretical study
 230 relating the PALATE approach to the classical concept of data-copying proposed in (Meehan et al.,
 231 2020)).

232 **PALATE Enhancement** As discussed above, there is a compelling argument for adopting
 233 $\text{PALATE}(M_{\text{base}})$ as an alternative evaluation metric, as it demonstrates significant advances in
 234 terms of recognizing memorization of training data samples when compared to M_{base} . Nevertheless,
 235 it is crucial to acknowledge the ambiguity that it introduces when differentiating between well-
 236 optimized and poorly-optimized models. Specifically, it is a typical occurrence for $\mathbb{E}(Z|X \in \mathcal{M}_{\text{test}})$
 237 to approximate $\mathbb{E}(Z|X \in \mathcal{M}_{\text{train}})$, irrespective of the quality of the model, which leads to score
 238 flattening². To address this issue, we propose to strengthen the impact that M_{base} has on the final
 239 metric value. The PALATE enhancement can therefore be delineated in terms of a weighted average
 240 of the baseline metric score (scaled to $[0, 1]$) and the value provided by Equation (3), i.e.:

$$241 \quad M_{\text{PALATE}}(M_{\text{base}}) = \alpha \text{SCALE}(M_{\text{base}}) + (1 - \alpha) \text{PALATE}(M_{\text{base}}), \quad (4)$$

242 where $\alpha \in [0, 1]$ is a weighting constant. Note that such a general formula relies on various
 243 hyperparameters, the selection of which is discussed in the following paragraphs.

244 **Baseline Metric and Scaling Method** Since the baseline metric is assumed to be defined as the
 245 expectation of a random variable, the most suitable candidates are those based on the maximum mean
 246 discrepancy (MMD) (Gretton et al., 2006) between two probability distributions p and q , which can
 247 be derived from the following general formula:

$$248 \quad \text{MMD}_k^2(p, q) = \mathbb{E}(Z) \text{ for } Z = k(X_1, X_2) + k(Y_1, Y_2) - 2k(X_1, Y_1), \quad (5)$$

250 where X_1, X_2 and Y_1, Y_2 are independently distributed by p and q , respectively, and $k(\cdot, \cdot)$ is a
 251 given positive definite kernel. In the context of evaluation of DGMs, Equation (5) is employed
 252 for feature distributions $p_{\phi(X)}$ and $p_{\phi(G)}$. State-of-the-art examples include KID and (more recent)
 253 CMMMD metrics, which were delineated in Section 3. We opt to use CMMMD as a baseline metric
 254 due to its superiority over KID, as it utilizes the characteristic Gaussian RBF kernel $k^{\text{RBF}}(x, y) =$
 255 $\exp(-\frac{1}{2\sigma^2} \|x - y\|^2)$, which renders MMD a distribution-free statistical distance and facilitates the
 256 following straightforward scaling technique:

$$257 \quad \text{SCALE}(\text{MMD}_{k^{\text{RBF}}}^2(p, q)) = \frac{\text{MMD}_{k^{\text{RBF}}}^2(p, q)}{\mathbb{E}(k^{\text{RBF}}(X_1, X_2)) + \mathbb{E}(k^{\text{RBF}}(Y_1, Y_2))} \in [0, 1]. \quad (6)$$

259 Furthermore, a specific value of the bandwidth parameter proposed in (Jayasumana et al., 2024), i.e.,
 260 $\sigma = 10$, is maintained. However, in our approach, we abandon the use of CLIP embedding network,
 261 as in the case of CMMMD, but employ DINOv2 as the feature extractor. Thus, the baseline metric is
 262 designated as DINOv2-MMD (DMMD), rather than CMMMD. This substitution is motivated by the
 263 fact that CLIP lacks the fine-grained recognition capabilities, which is due to the poor separability
 264 of object characteristics in the CLIP latent space (Bianchi et al., 2024). It is important to note that
 265 the ability to distinguish between subtle object features like color and shape seems to be crucial
 266 when we try to detect overfitting or memorization. On the other hand, DINOv2 feature space has
 267 been demonstrated to facilitate a more comprehensive evaluation of DGMs and to exhibit stronger
 268 correlation with human judgment in comparison to Inception-v3, as asserted by the authors of (Stein
 269 et al., 2024), which further supports our choice.

²This is due to the fact that both training and test data are assumed to follow the same data distribution p_X .

270

271
272
273
Table 1: Evaluation of different DGMs on CIFAR-10 and ImageNet. Our proposed metrics are shown
in blue. The remaining results are rewritten from (Jiralerspong et al., 2024; Stein et al., 2024).

Dataset	Model	Human error rate \uparrow	Holistic metrics				Memorization metrics			
			$M_{\text{PALATE}} \downarrow$	FLD \downarrow	$\text{FD}_{\text{DINOv2}} \downarrow$	$\text{PALATE} \downarrow$	Gen. Gap	$\text{FD}_{\text{DINOv2}} \uparrow$	$C_T \uparrow$	AuthPct \uparrow
CIFAR-10	PFGM-++	0.436 ± 0.011	0.7079	4.58	80.47	0.4999	-0.59	32.79	83.54	
	iDDPM-DDIM	0.400 ± 0.013	0.7140	5.63	128.57	0.5003	-0.56	39.65	84.60	
	StyleGAN-XL	0.399 ± 0.012	0.7217	5.58	109.42	0.4995	-0.37	36.79	85.29	
	StyleGAN2-ada	0.393 ± 0.012	0.7265	6.86	178.64	0.4997	-0.24	45.31	86.40	
	BigGAN-Deep	0.387 ± 0.014	0.7282	9.28	203.90	0.4995	-0.06	55.70	88.10	
	MHGAN	0.336 ± 0.015	0.7342	8.84	231.38	0.4997	-0.19	47.87	86.69	
	LOGAN	0.206 ± 0.020	0.7486	6.07	881.73	0.5070	0.18	55.66	84.10	
	ACGAN-Mod	0.148 ± 0.013	0.7486	24.22	1143.07	0.4994	0.17	26.11	72.09	
ImageNet 256x256	LDM	0.309 ± 0.017	0.6061	3.41	82.42	0.5042	-0.74	33.63	69.23	
	DiT-XL-2	0.286 ± 0.016	0.5919	1.98	62.42	0.5058	-0.99	22.57	65.79	
	RQ-Transformer	0.223 ± 0.012	0.7174	11.55	212.99	0.5016	-0.53	125.48	86.10	
	Mask-GIT	0.183 ± 0.016	0.6923	6.74	144.23	0.5025	-0.63	78.97	80.02	
	GigaGAN	0.16 ± 0.01	0.7390	8.34	156.40	0.5001	-0.42	98.78	82.48	
	StyleGAN-XL	0.153 ± 0.013	0.7050	8.46	150.27	0.5017	-0.40	98.69	84.10	

286

287
288 **Splitting of Datasets** Despite the proposed approach being predicated on the division of the data
289 manifold into two disjoint parts related to the selected samples of training and test data, in this case,
290 only the value of $a = \mathbb{P}(X \in \mathcal{M}_{\text{test}}) \in (0, 1)$ is required to perform all of the computations. Given
291 that the data distribution p_X is unknown, the sole method is to treat a as a hyperparameter and
292 estimate it from the given data samples. This can be achieved by applying the law of total expectation
293 once again, but this time to a one-dimensional embedding of the random variable X . The value of
294 a should thus be established as a fraction of test data samples within all data samples selected for
295 evaluation, i.e., $a = n/(m + n)$ (note that, due to assumption (A2), the value of a remains constant
296 across all models and datasets). A detailed proof of this formula can be found in Appendix C. The
297 other factors influencing computations are sample sizes m , n , and k , utilized for the train, test, and
298 generated datasets, respectively. We recommend using samples of equal size ($m = n = k$), as this is a
299 common approach for evaluating DGMs—note that this choice fixes $a = 1/2$. However, the PALATE
300 enhancement, in contrast to most state-of-the-art solutions, also incorporates training data samples,
301 which is in pair with the FLD metric. It is imperative to note that, for the calculation of FLD, it is
302 crucial to utilize sufficient number training samples, as otherwise it is possible to obtain negative
303 metric values. This is due to the necessity of employing a portion of the train dataset to estimate a
304 particular dataset-dependent constant, as outlined in (Jiralerspong et al., 2024). Consequently, such
305 an issue influences the computational efficiency of FLD, as confirmed by our experiments presented
306 in Section 5.

306 **Weighting Constant** The weighting constant α signifies the degree to which our metric prioritizes
307 memorization, thus affecting the sensitivity to fidelity and diversity in the generated samples. While
308 its value can be set arbitrarily, depending on the specific goal, we examine two notable cases: $\alpha = 0$
309 and $\alpha = 1/2$. In the first case, the metric is maximally oriented towards the detection of sample
310 memorization, while in the second case it balances this capacity equally with other abilities. Therefore,
311 our work focuses on these specific values of the hyperparameter α .

312 In the last paragraph of this section, we address the issue of estimating the proposed evaluation
313 metrics. Then, the experimental analysis is provided in Section 5.

314
315 **Estimation of Metrics** As noted above, our primary focus is on two evaluation metrics, namely
316 PALATE (memorization metric) and M_{PALATE} (holistic metric), derived from Equations (3) and (4)
317 with $\alpha = 0$ and $\alpha = \frac{1}{2}$, respectively. We use DMMD as the baseline metric, with the SCALE
318 function given in Equation (6). The next step is to compute metric values based on selected real and
319 generated data samples x^{train} , x^{test} , and y . To this end, we propose to replace all kernel expectations
320 with their respective V-statistics, a common practice in MMD estimation (see, e.g., (Gretton et al.,
321 2012)). In Appendix D, we provide direct formulas for the PALATE and M_{PALATE} metrics, along
322 with implementation details.

323 **At the end of this section, we discuss the relationship of our approach with traditional data splitting
324 and cross-validation concepts.**

Figure 1: Comparison of the effects of different transformations, applied to samples generated by PFGM++ trained on CIFAR-10, on M_{PALATE} and FLD (corresponding values for other models are provided for reference). *Left*: Nearly imperceptible transformations. *Right*: Large transformations.

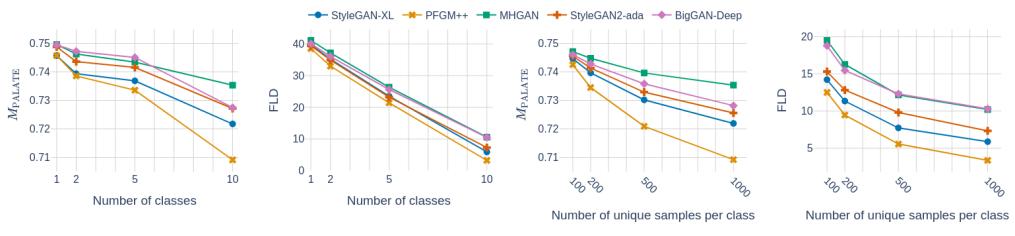


Figure 2: Capability of M_{PALATE} (our) and FLD to capture sample diversity in two experimental settings. *Left*: Varying the number of classes while maintaining a fixed total sample size of 10000 by adjusting the duplication of 1000 fixed samples per class. *Right*: Varying the number of unique samples per class, with equal replication across classes to maintain class balance and a total sample size of 10000.

Relationship with data splitting and cross-validation. The PALATE approach does not introduce the concept of data splitting per se but rather incorporates the train-test split within a comprehensive evaluation framework, similar to FLD, which, to the best of our knowledge, was the first metric to employ this approach for jointly assessing fidelity, diversity, and memorization. Unlike cross-validation, which is a training technique used to estimate model generalization during learning (Hastie et al., 2009), our method uses a train-test split solely for evaluation purposes of deep generative models. Traditional evaluation metrics often treat the entire dataset as a whole without explicitly distinguishing between training and testing subsets, thereby limiting assessment to fidelity and diversity while omitting memorization and overfitting analysis. By explicitly integrating the split into the evaluation metric, the resulting holistic metric M_{PALATE} quantifies how closely generated samples resemble training data versus novel test data, addressing a critical gap in classical frameworks. In summary, the PALATE approach builds on the concept of data splitting but does not claim novelty in splitting itself. Instead, it applies the split within a principled, post-learning evaluation metric that captures memorization, an aspect not directly addressed by classical whole-dataset evaluations.

5 EXPERIMENTS

In this section, we present the results of our experimental study, which was conducted on two real-world datasets, namely CIFAR-10 and ImageNet³, and one synthetic 2D dataset. We address all facets of a holistic evaluation metric, encompassing the fidelity, diversity, and novelty of the generated samples. In addition, we investigate computational efficiency. We use data examples and implementations of state-of-the-art evaluation metrics provided in (Stein et al., 2024; Jiralerpong et al., 2024). Unless otherwise stated, an equal number of 10000 training, test, and generated samples is utilized. We also emphasize that, in most of our experiments, we validate our method against FLD, which, to our best knowledge, is the only metric that considers all of the mentioned aspects (i.e., fidelity, diversity, and novelty) in one score. To this end, we apply an experimental setup from

³This choice is due to the fact that these datasets provide an explicit separation between training and test data examples.

Figure 3: *Left:* M_{PALATE} and FLD evaluated on the mixture of generated and training images from CIFAR-10, ranging from 0% train (purely generated) to 100% train (purely training). Since FLD eventually “blows up,” its y-axis is plotted on a log scale. *Right:* Direct comparison within the range [0%, 80%].

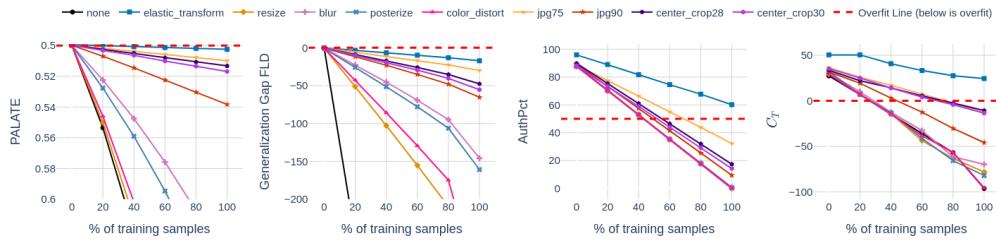


Figure 4: Capability of PALATE (our) to capture sample novelty, compared to different memorization metrics. The y -axis for our metric has been inverted for visual consistency.

(Jiralerpong et al., 2024). The source code can be found in the supplementary materials and will be made publicly available.

Evaluation of DGMs In Table 1, we present a comparison of our approach with state-of-the-art evaluation metrics for a variety of DGMs on CIFAR-10 and ImageNet datasets. The results show that M_{PALATE} provides a ranking similar to that of FLD. Furthermore, it is observed that models trained on ImageNet have a slightly higher tendency to overfit ($\text{PALATE} > 1/2$), which is consistent with negative Generalization Gap FLD scores.

Sample Fidelity Figure 1 shows the behavior of M_{PALATE} and FLD when different image distortions are applied to samples generated by PFGM++ trained on CIFAR-10. For the imperceptible transformations (“Posterize”, “Light Blur”, and “JPG90”), both metrics have slightly worse values compared to the baseline; however, they indicate that the samples are still better than those generated by StyleGAN-XL. On the other hand, for large transformations such as “Elastic Transform” or “Heavy Blur,” both metrics evaluate the produced samples as worse than those produced by StyleGAN2-ada, which is the expected behavior. In summary, the negative impact on both metrics is proportional to the disturbance strength in both cases.

Sample Diversity To assess the ability to accurately capture sample diversity, M_{PALATE} was evaluated on the CIFAR-10 dataset with varying numbers of classes in the generated samples from different conditional generative models. For each class, 1000 samples were randomly selected and fixed to ensure that the same samples were used across all classes. This approach allows us to accurately measure how the metric responds to the addition of new classes, independent of variations in sample selection. To keep the total sample size constant while varying the number of classes, we adjusted the number of times each sample was duplicated based on the number of classes included. Specifically, when C classes were included, 1000 pre-determined samples were selected from each class and duplicated equally for a total of 10000 samples. The duplication factor was determined by dividing 10000 by the number of samples selected, meaning that each sample was repeated $10/C$ times. This ensured a consistent sample size while systematically increasing class diversity.

In the other experiment, all classes were represented, but each generated sample was replicated an equal number of times to reach a total of 10000 samples. To achieve this, a set of 1000 samples was randomly selected and fixed for each class. Then, equal-sized subsets of each class were taken

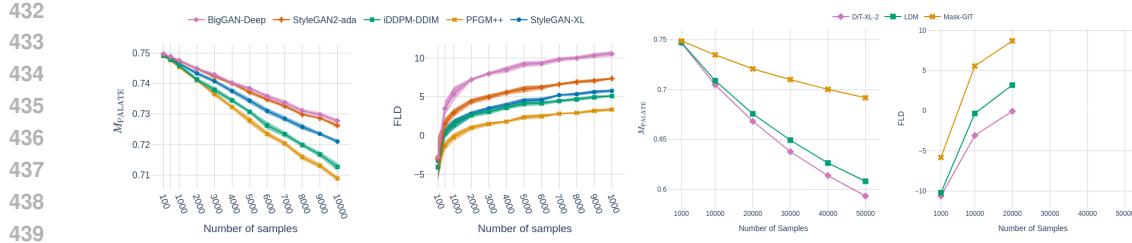


Figure 5: *Left:* Evaluation of M_{PALATE} and FLD for different sample sizes on the CIFAR-10 dataset. *Right:* Evaluation of M_{PALATE} and FLD for different sample sizes on the ImageNet dataset. The FLD plot is truncated at a sample size of 20000 due to its memory inefficiency on larger datasets.

and multiplied as necessary to achieve the desired total sample size. Precisely, for the number of N unique samples per class, each sample was replicated $10000/(NC)$ times. This experimental design allowed for controlled variation in sample diversity while maintaining class balance.

As shown in Figure 2, M_{PALATE} achieves comparable results to FLD in both scenarios. The metric scores obtained demonstrate a decreasing trend as either new classes are introduced or the number of unique samples per class increases, indicating that it adequately reflects the diversity variations in the generated samples.

Sample Novelty To investigate the ability of our metric to capture sample novelty, we conducted an experiment in which samples generated by DGMs (trained on CIFAR-10) were progressively mixed with those from the training dataset. The results are presented in Figure 3. We can observe that values of both M_{PALATE} and FLD increase (indicating overfitting) as more training samples are added. However, the increase in M_{PALATE} is more gradual and smooth compared to the sharp spike observed in FLD, which experiences an explosive jump from 80% to 100% of the training samples. This suggests that M_{PALATE} captures novelty more consistently, while FLD shows a more abrupt shift when the training dataset becomes complete.

Expanding on this, we apply various distortions to the mixture of images from PFGM++ and images from the training dataset. Within this setup, we compared PALATE with different memorization metrics, namely Generalization Gap FLD, AuthPct, and C_T score. The results are shown in Figure 4. It can be observed that PALATE performs comparably to the other metrics, as its value increases with the increasing involvement of training samples in the evaluation, regardless of the distortions applied. However, it struggles with more severe distortions, such as elastic transform, a challenge shared by all of the metrics compared.

Computational Efficiency and Stability We assess M_{PALATE} and FLD on CIFAR-10 and ImageNet using various sample sizes, as illustrated in Figure 5. As the sample size increases, both metrics exhibit monotonic behavior. Despite neither plot reaching a plateau, the ranking of DGMs remains consistent across both metrics. However, the results obtained indicate the necessity of using larger sample sizes for both metrics, which warrants further investigation into computational efficiency. This is presented in Figure 6, where we compare the computation time of M_{PALATE} and FLD on the ImageNet dataset, with experiments performed on the NVIDIA GeForce RTX 4090 GPU. As shown, M_{PALATE} outperforms FLD in terms of computation time when the number of samples ranges from about 5000 to 20000. Additionally, FLD shows memory inefficiencies when processing 30000 samples or more, preventing us from computing it for such large datasets. This limitation is significant since FLD shows instability (or even negative values) for small sample sizes (see Figure 5). The efficiency of M_{PALATE} is largely due to its reliance on matrix multiplications, which

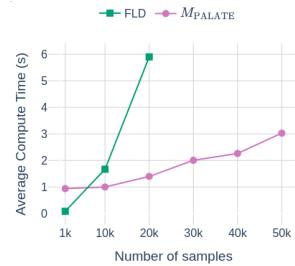


Figure 6: Computing time comparison for both metrics on ImageNet. The FLD plot is truncated at a sample size of 20000 due to its memory inefficiency on larger datasets.

486 are highly parallelizable and optimized in deep learning libraries such as TensorFlow, PyTorch, and
 487 JAX. Computational times were averaged over fifteen random seeds.
 488

489 **Experiment on Synthetic Data** To further
 490 investigate the ability of M_{PALATE} to capture
 491 model fit, an experiment was performed on syn-
 492 thetic 2D data. First, 2000 samples were gen-
 493 erated from the mixture of three isotropic Gaus-
 494 sian distributions $\mathcal{N}(\cdot, I)$ centered at the ver-
 495 tices of an equilateral triangle with side length
 496 3, which were then divided into the training and
 497 test datasets in a 50/50 ratio. The process of
 498 training the model was simulated by sampling
 499 from KDEs computed with bandwidth σ vary-
 500 ing from 10^{-4} to 10^2 . For each value of σ , 1000
 501 samples were generated and compared to the
 502 original data distribution using three evalua-
 503 tion metrics: FLD, FID, and M_{PALATE} .

503 As shown in Figure 7, sweeping through a range of σ , starting from high values that lead to underfitting
 504 and gradually decreasing to low values that lead to overfitting, it can be observed that M_{PALATE}
 505 decreases as the model better captures the data distribution. FLD exhibits similar behavior, but
 506 reaches its minimum later. Both metrics reflect for overfitting by increasing their values. In contrast,
 507 while FID effectively tracks the “training” phase, it fails to adapt when the generated samples closely
 508 match the training data, making it unsuitable for comprehensive evaluation.

510 6 CONCLUSIONS

511 This work proposes PALATE, a novel enhancement to the evaluation of deep generative models
 512 grounded in the law of total expectation. It provides assessment sensitive to sample memorization
 513 and overfitting. By combining PALATE with an MMD baseline metric and leveraging DINOv2
 514 embeddings, we obtain a holistic evaluation tool which accounts for fidelity, diversity, and novelty of
 515 generated samples while maintaining computational efficiency. Experiments conducted on the CIFAR-
 516 10 and ImageNet datasets demonstrate the ability of the proposed metric to reduce computational
 517 demands while preserving evaluation efficiency, which is comparable or even superior to that of
 518 state-of-the-art competitors.

519 **Limitations** The primary constraint of the proposed metric is limited range, attributable to minimal
 520 disparities between values of the baseline metric calculated for the train and test data samples.
 521 Additionally, our approach has not yet been evaluated beyond the domain of DGMs trained on image
 522 datasets. These limitations are considered potential avenues for future research endeavors.

524 525 REFERENCES

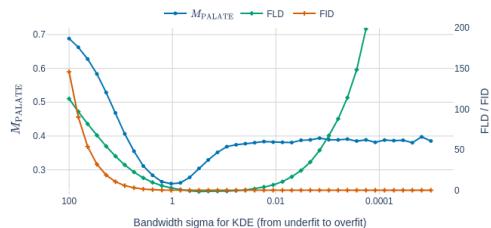
526 Ahmed Alaa, Boris Van Breugel, Evgeny S Saveliev, and Mihaela van der Schaar. How faithful
 527 is your synthetic data? sample-level metrics for evaluating and auditing generative models. In
 528 *International Conference on Machine Learning*, pp. 290–306. PMLR, 2022.

529 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
 530 perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828,
 531 2013.

533 Lorenzo Bianchi, Fabio Carrara, Nicola Messina, and Fabrizio Falchi. Is clip the main roadblock for
 534 fine-grained open-world perception? *arXiv preprint arXiv:2404.03539*, 2024.

535 Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD
 536 GANs. In *International Conference on Learning Representations*, 2018.

538 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 539 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 pp. 248–255. Ieee, 2009.



509 Figure 7: Evaluation of model fitting using
 510 M_{PALATE} and FLD across varying values of σ . The
 511 results were averaged over 100 runs with different
 512 seeds.

540 William Feller. *An Introduction to Probability Theory and Its Applications. 3rd Edition*, volume 1.
 541 Wiley, 1968.
 542

543 Dan Friedman and Adji Boussou Dieng. The vendi score: A diversity evaluation metric for machine
 544 learning. *Transactions on Machine Learning Research*, 2023.

545 Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It's raw! audio generation with
 546 state-space models. In *International Conference on Machine Learning*, pp. 7616–7633. PMLR,
 547 2022.

548 Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex Smola. A kernel
 549 method for the two-sample-problem. *Advances in neural information processing systems*, 19,
 550 2006.

551 Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
 552 kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773, 2012.

553 Jiyeon Han, Hwanil Choi, Yunjey Choi, Junho Kim, Jung-Woo Ha, and Jaesik Choi. Rarity score
 554 : A new metric to evaluate the uncommonness of synthesized images, 2022. URL <https://arxiv.org/abs/2206.08549>.

555

556 Trevor Hastie, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning: Data
 557 Mining, Inference, and Prediction*. Springer Science & Business Media, 2009.

558 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 559 trained by a two time-scale update rule converge to a local Nash equilibrium. In *Adv. in Neural
 560 Information Processing Systems*, NeurIPS, pp. 6626–6637, 2017.

561

562 Mohammad Jalali, Cheuk Ting Li, and Farzan Farnia. An information-theoretic evaluation of genera-
 563 tive models in learning multi-modal distributions. *Advances in Neural Information Processing
 564 Systems*, 36:9931–9943, 2023.

565

566 Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
 567 Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In
 568 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 569 9307–9315, 2024.

570

571 Marco Jiralerspong, Joey Bose, Ian Gemp, Chongli Qin, Yoram Bachrach, and Gauthier Gidel. Feature
 572 likelihood score: Evaluating the generalization of generative models using samples. *Advances in
 573 Neural Information Processing Systems*, 36, 2024.

574

575 Andrei Nikolaevich Kolmogorov. Foundations of the theory of probability. 1933.

576

577 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Im-
 578 proved precision and recall metric for assessing generative models. In H. Wallach,
 579 H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-
 580 vances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
 581 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/0234c510bc6d908b28c70ff313743079-Paper.pdf.

582

583 Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L Caterini, and Jesse C
 584 Cresswell. Deep generative models through the lens of the manifold hypothesis: A survey and new
 585 connections. *arXiv preprint arXiv:2404.02954*, 2024.

586

587 TorchVision maintainers and contributors. Torchvision: Pytorch's computer vision library. <https://github.com/pytorch/vision>, 2016.

588

589 Casey Meehan, Kamalika Chaudhuri, and Sanjoy Dasgupta. A non-parametric test to detect data-
 590 copying in generative models. In *International Conference on Artificial Intelligence and Statistics*,
 591 2020.

592

593 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
 594 fidelity and diversity metrics for generative models. In *International conference on machine
 595 learning*, pp. 7176–7185. PMLR, 2020.

594 R OpenAI. Gpt-4 technical report. arxiv 2303.08774. *View in Article*, 2(5), 2023.
 595

596 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 597 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning
 598 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

599

600 Azim Ospanov, Jingwei Zhang, Mohammad Jalali, Xuenan Cao, Andrej Bogdanov, and Farzan
 601 Farnia. Towards a scalable reference-free evaluation of generative models. *Advances in Neural
 602 Information Processing Systems*, 37:120892–120927, 2024.

603

604 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 605 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 606 models from natural language supervision. In *International conference on machine learning*, pp.
 607 8748–8763. PMLR, 2021.

608

609 Suman Ravuri, Mélanie Rey, Shakir Mohamed, and Marc Peter Deisenroth. Understanding deep
 610 generative models with generalized empirical likelihoods. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, pp. 24395–24405, 2023.

611

612 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 613 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 614 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

615

616 Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
 617 generative models via precision and recall. *Advances in neural information processing systems*, 31,
 618 2018.

619

620 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 621 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 622 2016.

623

624 George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villecroze,
 625 Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of
 626 generative model evaluation metrics and their unfair treatment of diffusion models. *Advances in
 Neural Information Processing Systems*, 36, 2024.

627

628 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
 629 the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer
 630 vision and pattern recognition*, pp. 2818–2826, 2016.

631

632 Jingwei Zhang, Cheuk Ting Li, and Farzan Farnia. An interpretable evaluation of entropy-based
 633 novelty of generative models, 2024. URL <https://arxiv.org/abs/2402.17287>.

634

635 Jingwei Zhang, Mohammad Jalali, Cheuk Ting Li, and Farzan Farnia. Unveiling differences in
 636 generative models: A scalable differential clustering approach. In *Proceedings of the Computer
 Vision and Pattern Recognition Conference*, pp. 8269–8278, 2025.

637

638

639 **A BROADER IMPACTS**

640

641 The objective of this work was to enhance the evaluation process of deep generative models. It
 642 is crucial to recognize that the implementation of generative modeling in real-world applications
 643 necessitates meticulous oversight to avert the intensification of societal biases embedded in the data.
 644 Moreover, it is anticipated that the findings of our study will exert an influence on subsequent research
 645 in related domains, particularly in the field of deepfake detection, which has witnessed a marked
 646 increase in interest due to advancements in deep generative models. The emergence of sophisticated
 647 techniques has led to a significant challenge in discerning authenticity from fabrication, underscoring
 the critical importance of evaluation in mitigating potential threats.

648 **B GENAI USAGE DISCLOSURE**
649650 Generative AI software tools were used exclusively during the writing stage to edit and improve the
651 clarity and quality of the existing manuscript text. No AI-generated content was used to produce
652 novel research ideas, analyses, or results.
653654 **C ADDITIONAL THEORETICAL STUDY**
655656 **Data-copying** In (Meehan et al., 2020), the authors introduced the concept of data-copying, a form
657 of overfitting that differs from previous work investigating over-representation (Heusel et al., 2017;
658 Sajjadi et al., 2018). Intuitively, it refers to situations where the model distribution p_G is closer to the
659 train dataset than the real data distribution p_X happens to be. Below we provide a precise definition,
660 keeping notation introduced in the main paper.
661662 **Definition 1** Let $d: \mathcal{X} \rightarrow \mathbb{R}$ be a function that quantifies a squared Euclidean distance to the train
663 dataset (calculated in a feature space). A given generative model is said to be data-copying the train
664 dataset, if random draws from $d(Y)$ are systematically smaller than random draws from $d(X)$, i.e.,
665 $\mathbb{E}(\mathbb{1}_{d(Y) < d(X)}) > \frac{1}{2}$, where $\mathbb{1}$ denotes a characteristic function.
666667 On the other hand, having done a separate test dataset for evaluation, like in our approach, we
668 can modify condition from Definition 1 in order to take into account situations where the model
669 distribution is closer to the train dataset than to the test dataset. This is a subject of the following
670 definition.
671672 **Definition 2** A given generative model is said to be data-copying the train dataset, relative to the
673 test dataset, if random draws from Y are in average closer to random draws from X conditioned on
674 $X \in \mathcal{M}_{\text{train}}$ than to those conditioned on $X \in \mathcal{M}_{\text{test}}$, i.e.:
675

676
$$\mathbb{E}(Z|X \in \mathcal{M}_{\text{train}}) < \mathbb{E}(Z|X \in \mathcal{M}_{\text{test}}). \quad (7)$$

677 It should be noted that generative models satisfying the above definition are exactly those for which
678 we have the PALATE score greater than $a = \mathbb{P}(X \in \mathcal{M}_{\text{test}})$ (recall that we set $a = 1/2$ in our metric
679 implementation). To see this, we need to prove the following equivalence:
680

681
$$\mathbb{E}(Z|X \in \mathcal{M}_{\text{train}}) < \mathbb{E}(Z|X \in \mathcal{M}_{\text{test}}) \iff \text{PALATE}(\mathcal{M}_{\text{base}}) > a. \quad (8)$$

683 “ \implies ” Assuming $\mathbb{E}(Z|X \in \mathcal{M}_{\text{train}}) < \mathbb{E}(Z|X \in \mathcal{M}_{\text{test}})$, we obtain
684

685
$$\text{PALATE}(\mathcal{M}_{\text{base}}) > \frac{a\mathbb{E}(Z|X \in \mathcal{M}_{\text{test}})}{a\mathbb{E}(Z|X \in \mathcal{M}_{\text{test}}) + (1-a)\mathbb{E}(Z|X \in \mathcal{M}_{\text{test}})} = \frac{a\mathbb{E}(Z|X \in \mathcal{M}_{\text{test}})}{\mathbb{E}(Z|X \in \mathcal{M}_{\text{test}})} = a. \quad (9)$$

688 “ \iff ” If $\text{PALATE}(\mathcal{M}_{\text{base}}) > a$, then
689

690
$$\mathbb{E}(Z|X \in \mathcal{M}_{\text{test}}) > a\mathbb{E}(Z|X \in \mathcal{M}_{\text{test}}) + (1-a)\mathbb{E}(Z|X \in \mathcal{M}_{\text{train}}), \quad (10)$$

692 which implies that
693

694
$$\mathbb{E}(Z|X \in \mathcal{M}_{\text{test}}) > \mathbb{E}(Z|X \in \mathcal{M}_{\text{train}}). \quad (11)$$

696 Consequently, we conclude that DGMs exhibiting a tendency to memorization are exactly those for
697 which $\text{PALATE}(\mathcal{M}_{\text{base}}) > a$.
698699 **Proof of Theorem 1** In general, the expectation of a random variable Z over a sample space Ω is
700 provided by the following formula:
701

702
$$\mathbb{E}(Z) = \int_{\Omega} Z(\omega) d\mathbb{P}(\omega), \quad (12)$$

702 where \mathbb{P} is the probability measure on Ω . Given the partition $\{A_1, \dots, A_n\}$ of Ω , we can decompose
 703 the above integral into a sum of integrals over each event A_i , i.e.:
 704

$$705 \mathbb{E}(Z) = \int_{\Omega} Z(\omega) d\mathbb{P}(\omega) = \sum_{i=1}^n \int_{A_i} Z(\omega) d\mathbb{P}(\omega). \quad (13)$$

708 Then, since $\mathbb{P}(A_i) > 0$, we can express the integral over A_i using the definition of conditional
 709 expectation:
 710

$$711 \int_{A_i} Z(\omega) d\mathbb{P}(\omega) = \mathbb{E}(Z|A_i) \mathbb{P}(A_i). \quad (14)$$

713 Substituting this back into the sum in Equation (13) we obtain:
 714

$$715 \mathbb{E}(Z) = \sum_{i=1}^n \int_{A_i} Z(\omega) d\mathbb{P}(\omega) = \sum_{i=1}^n \mathbb{E}(Z|A_i) \mathbb{P}(A_i), \quad (15)$$

717 which completes the proof.
 718

719 **Proof of the Formula for $a = \mathbb{P}(X \in \mathcal{M}_{\text{test}})$** Consider any nontrivial measurable function $g: \mathcal{X} \rightarrow$
 720 \mathbb{R} . Applying the law of total expectation (see Theorem 1 in the main paper) to the random variable
 721 $g(X)$ and the partition of the sample space $\Omega = \{\omega \mid X(\omega) \in \mathcal{M}_{\text{test}}\} \cup \{\omega \mid X(\omega) \in \mathcal{M}_{\text{train}}\}$, we
 722 obtain:
 723

$$724 \mathbb{E}(g(X)) = \mathbb{E}(g(X)|X \in \mathcal{M}_{\text{data}}) = a \mathbb{E}(g(X)|X \in \mathcal{M}_{\text{test}}) + (1 - a) \mathbb{E}(g(X)|X \in \mathcal{M}_{\text{train}}). \quad (16)$$

725 Replacing all expectations in Equation (16) with their sample means yields:
 726

$$727 \frac{1}{m+n} \left(\sum_{i=1}^m g(x_i^{\text{train}}) + \sum_{i=1}^n g(x_i^{\text{test}}) \right) = \frac{1-a}{m} \sum_{i=1}^m g(x_i^{\text{train}}) + \frac{a}{n} \sum_{i=1}^n g(x_i^{\text{test}}), \quad (17)$$

730 From this, we can compute the hyperparameter a as follows:
 731

$$732 a = \frac{\frac{1}{m+n} \left(\sum_{i=1}^m g(x_i^{\text{train}}) + \sum_{i=1}^n g(x_i^{\text{test}}) \right) - \frac{1}{m} \sum_{i=1}^m g(x_i^{\text{train}})}{\frac{1}{n} \sum_{i=1}^n g(x_i^{\text{test}}) - \frac{1}{m} \sum_{i=1}^m g(x_i^{\text{train}})} \\ 733 = \frac{\frac{1}{m+n} \sum_{i=1}^n g(x_i^{\text{test}}) - \frac{n}{m(m+n)} \sum_{i=1}^m g(x_i^{\text{train}})}{\frac{1}{n} \sum_{i=1}^n g(x_i^{\text{test}}) - \frac{1}{m} \sum_{i=1}^m g(x_i^{\text{train}})} \\ 734 = \frac{n}{m+n} \frac{\frac{1}{n} \sum_{i=1}^n g(x_i^{\text{test}}) - \frac{1}{m} \sum_{i=1}^m g(x_i^{\text{train}})}{\frac{1}{n} \sum_{i=1}^n g(x_i^{\text{test}}) - \frac{1}{m} \sum_{i=1}^m g(x_i^{\text{train}})} \\ 735 = \frac{n}{m+n} \cdot \frac{n}{m+n} = \frac{n}{m+n}. \quad (18)$$

742 It is noteworthy that the derived value of a is independent of the given data samples and depends only
 743 on their sizes.
 744

745 D IMPLEMENTATION DETAILS

748 **Formulas for Calculating Metrics** We begin by providing complete formulas to compute the
 749 values of the PALATE and M_{PALATE} metrics, based on available real and generated data samples
 750 $x_{\text{train}} = \{x_1^{\text{train}}, \dots, x_n^{\text{train}}\}$, $x_{\text{test}} = \{x_1^{\text{test}}, \dots, x_n^{\text{test}}\}$, and $y = \{y_1, \dots, y_n\}$. They display as follows:
 751

$$752 \text{PALATE} = \frac{\bar{k}_{x_{\text{test}}, x_{\text{test}}} + \bar{k}_{y, y} - 2 \bar{k}_{x_{\text{test}}, y}}{\bar{k}_{x_{\text{test}}, x_{\text{test}}} + \bar{k}_{y, y} - 2 \bar{k}_{x_{\text{test}}, y} + \bar{k}_{x_{\text{train}}, x_{\text{train}}} + \bar{k}_{y, y} - 2 \bar{k}_{x_{\text{train}}, y}}, \quad (19)$$

$$753 M_{\text{PALATE}} = \frac{1}{2} \frac{\bar{k}_{x_{\text{test}}, x_{\text{test}}} + \bar{k}_{y, y} - 2 \bar{k}_{x_{\text{test}}, y}}{\bar{k}_{x_{\text{test}}, x_{\text{test}}} + \bar{k}_{y, y}} + \frac{1}{2} \text{PALATE}, \quad (20)$$

756 where $\bar{k}_{\cdot,\cdot}$ are respective V -statistics for kernel expectations, i.e.:

$$758 \quad 759 \quad \bar{k}_{x_{\text{test}}, x_{\text{test}}} = \frac{1}{n^2} \sum_{i,j=1}^n \exp(-\|x_i^{\text{test}} - x_j^{\text{test}}\|^2 / (2\sigma^2)), \quad (21)$$

$$761 \quad 762 \quad \bar{k}_{x_{\text{train}}, x_{\text{train}}} = \frac{1}{n^2} \sum_{i,j=1}^n \exp(-\|x_i^{\text{train}} - x_j^{\text{train}}\|^2 / (2\sigma^2)), \quad (22)$$

$$764 \quad 765 \quad \bar{k}_{y,y} = \frac{1}{n^2} \sum_{i,j=1}^n \exp(-\|y_i - y_j\|^2 / (2\sigma^2)), \quad (23)$$

$$767 \quad 768 \quad \bar{k}_{x_{\text{test}}, y} = \frac{1}{n^2} \sum_{i,j=1}^n \exp(-\|x_i^{\text{test}} - y_j\|^2 / (2\sigma^2)), \quad (24)$$

$$770 \quad 771 \quad \bar{k}_{x_{\text{train}}, y} = \frac{1}{n^2} \sum_{i,j=1}^n \exp(-\|x_i^{\text{train}} - y_j\|^2 / (2\sigma^2)), \quad (25)$$

772 and σ is a dataset dependent constant, i.e., $\sigma = 10$ for the real world datasets and $\sigma = 1$ for the
773 synthetic 2D dataset.

774
775
776 Table 2: List of torchvision functions with corresponding parameters for image transformations used
777 in our experiments.

779 Transformation	780 Python function	781 Arguments
780 Posterize	781 torchvision.transforms.functional.posterize	782 bits=5
781 Light Blur	782 torchvision.transforms.GaussianBlur	783 kernel_size=5, sigma=0.5
782 Heavy Blur	783 torchvision.transforms.GaussianBlur	784 kernel_size=5, sigma=1.4
783 Center Crop 30	784 torchvision.transforms.functional.center_crop	785 output_size=30
784	785 torchvision.transforms.functional.pad	786 padding=1
785 Center Crop 28	786 torchvision.transforms.functional.center_crop	787 output_size=28
786 Color Distort	787 torchvision.transforms.functional.pad	788 padding=2
787 Elastic transform	789 torchvision.transforms.ColorJitter	790 brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5
	791 torchvision.transforms.ElasticTransform	792 -

788 **Algorithmic Specifics** The DMMD implementation uses a memory-efficient approach to calculate
789 the maximum mean discrepancy (MMD) between two sets of embeddings by splitting the data into
790 smaller parts with a block size of 1000. Experimentally, this block size has been found to offer the
791 fastest performance by balancing memory usage and computational speed effectively. Instead of
792 creating full kernel matrices, DMMD processes the data in chunks of 1000 samples at a time. For
793 each chunk, it computes parts of the kernel matrix separately and then combines the results, keeping
794 memory requirements low. Additionally, the `@jax.jit` decorator helps boost performance by compiling
795 the function with XLA (accelerated linear algebra). This allows the code to execute faster on GPUs
796 and TPUs by optimizing operations and running them in parallel. As a result, this combination of the
797 experimentally chosen block size and JIT compilation makes DMMD both memory-efficient and fast,
798 enabling it to handle large datasets effectively.

799 **Transformations** For the experiments with image transformations we used popular torchvision
800 library (maintainers & contributors, 2016). The exact function names and corresponding arguments
801 are listed in Table 2.

802
803
804
805
806
807
808
809