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Abstract

We consider the problem of answering complex
questions, given access to a large unstructured
document corpus. The de facto approach to solv-
ing the problem is to leverage language models
that (iteratively) retrieve and reason through the
retrieved documents, until the model has suffi-
cient information to generate an answer. Attempts
at improving this approach focus on retrieval-
augmented generation (RAG) metrics such as ac-
curacy and recall and can be categorized into two
types: (a) fine-tuning on large question answering
(QA) datasets augmented with chain-of-thought
traces, and (b) leveraging RL-based fine-tuning
techniques that rely on question-document rele-
vance signals. However, efficiency in the num-
ber of retrieval searches is an equally important
metric, which has received less attention. In this
work, we show that: (1) Large-scale fine-tuning
is not needed to improve RAG metrics, contrary
to popular claims in recent literature. Specifi-
cally, a standard ReAct pipeline with improved
prompts can outperform state-of-the-art methods
on benchmarks such as HotPotQA. (2) Supervised
and RL-based fine-tuning can help RAG from the
perspective of frugality, i.e., the latency due to
number of searches at inference time. For ex-
ample, we show that we can achieve competitive
RAG metrics at nearly half the cost (in terms of
number of searches) on popular RAG benchmarks,
using the same base model, and at a small training
cost (1000 examples).

1. Introduction

We study the problem of answering questions, such as
“Can a microwave melt Toyota Prius battery?”, given ac-
cess to a large unstructured corpus like Wikipedia. The
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de facto approach to solving the problem is to use lan-
guage models (LMs) coupled with the ability to retrieve
relevant documents (e.g.,, Wiki passages) against queries,
i.e.,, the retrieval-augmented generation (RAG) paradigm
(Jeong et al., 2024; Jiang et al., 2023; Chan et al., 2024; Asai
et al., 2023). However, answering complex questions often
requires multi-hop reasoning and retrieval, i.e.,, the LM has
to iteratively decompose the user utterance into sub-queries
or search phrases (e.g.,, “melting point of Toyota Prius bat-
tery”), retrieve documents relevant to the sub-queries, and
reason through the retrieved documents to issue further sub-
queries, until the LM is able to generate an answer for the
original query.

Most of recent work in this space focus exclusively on the
accuracy of generated answers, using (a) supervised fine-
tuning (SFT) techniques on large QA training datasets (Asai
et al., 2023; Chan et al., 2024; Hsu et al., 2024), or
(b) reinforcement-learning (RL) based techniques such as
GRPO (Jin et al., 2025) and DPO (Hsu et al., 2024). In
either case, they rely on tens or even hundreds of thousands
of training data points, either in the form of <question,
answer> demonstrations or as <question, documents>
relevance signals. For instance, the most recent work
SearchR1 (Jin et al., 2025) applies GRPO to fine-tune
the Qwen-2.5-7B-Instruct (Yang et al., 2024) model us-
ing more than 100000 training examples on the popular
HotPotQA (Yang et al., 2018) dataset. Similarly, another re-
cent RAG framework called LeReT (Hsu et al., 2024) uses
more than 90000 training examples on the same dataset,
using Llama3.1-8B (Grattafiori et al., 2024). However, in
real-world QA settings, ground-truth labelled examples are
difficult to obtain and latency of the system is critical for
user experience. In this work, we challenge the claims in
the recent literature in multiple ways:

(1) Efficiency, i.e.,, number of hops or searches needed to
accurately answer, is equally important;

(2) The oft-overlooked simple baseline strategy of ReAct for
iterative retrieval and reasoning (Yao et al., 2023; Shao et al.,
2023), with optimized few-shot prompting, already is quite
competitive to several recent techniques; the prompt opti-
mization needs tens of examples, in stark contrast to afore-
mentioned RAG techniques like Self-RAG and SearchR1
that need several orders of magnitude more number of ex-
amples, and
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(3) We can leverage RL-based techniques like GRPO to fur-
ther improve such strong baselines, from the perspective of
efficiency where they often underperform, using just 1000
training examples.

Our solution, FRUGALRAG, is a two-stage framework that
removes the need for large-scale labels while still achieving
effective and efficient inference-time search. In the first
stage, the model is trained to maximize evidence coverage
by generating diverse and informative search queries across
multiple hops. In the second stage, we post-train the model
to decide when to stop retrieving and generate an answer.
This decision is modeled explicitly, allowing the model to
weigh the cost of further retrievals against the confidence in
the retrieved evidence.

Optimizing for coverage and efficiency in a single stage
leads to unstable training; we find that models either over-
retrieve or stop too early. Our key insight is that learning
when to stop is more naturally learned through reinforce-
ment learning (RL) signals, whereas better coverage can be
obtained by repeatedly issuing high quality search queries
using frameworks such as ReAct. By separating the explo-
ration stage from decision making, FRUGALRAG better
aligns the learning signal with the multi-hop RAG task re-
sulting in high quality and efficient retrievals.

We evaluate FRUGALRAG on standard benchmarks such
as HotPotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho
et al., 2020) and MuSiQue (Trivedi et al., 2022b), using
both document retrieval metrics such as recall and answer
quality metrics. Compared to baselines, we show that FRU-
GALRAG obtains the highest document recall and answer
quality while incurring a low number of search queries per
question. In particular, on HotPotQA, FRUGALRAG using
a 3B model obtains higher document recall with only two
searches per question compared to methods such as LeReT
and SearchR1 that are based on 8B and 7B models and
include finetuning on thousands of examples.

2. Related Work

Which metric to optimize. Multi-hop QA involves two sub-
tasks: retrieving relevant documents, and then answering
the question based on the documents. Some methods report
document retrieval-specific metrics such as recall (Hsu et al.,
2024) whereas others report final answer metrics such as
exact match (Jin et al., 2025). Typically, a model is trained
to optimize a particular metric (such as recall) and also
evaluated on the same metric. For robustness, in this work
we train on the recall metric and test on all metrics, including
final answer metrics.

Finetuning-based techniques. A prevalent method for
multi-hop QA using small LMs is supervised finetuning
using reasoning traces from a large LM such as GPT-4 (Asai

et al., 2023; Chan et al., 2024). Other methods are trained
to predict the next query to be retrieved (Chan et al., 2024).
Methods that scale the test-time compute that infer using
multiple trajectories have also been proposed (Wang et al.,
2025). Recently, reinforcement learning-based techniques
have been proposed that develop a reward based on out-
putting the ground-truth answer (Jin et al., 2025). However,
none of the techniques focus on efficiency of the solution.
In fact, in Search-R1, the goal of RL is to increase the
number of searches. Instead, we use RL to decrease the
average number of searches done by our model. We provide
a detailed account of related works in Appendix D.

3. FrugalRAG: Two-stage training framework

In this section, we describe FRUGALRAG, a novel frame-
work for enhancing retrieval augmented generation in LMs
by decoupling the evidence exploration stage from answer
generation. FRUGALRAG demonstrates several key advan-
tages over contemporary RAG approaches — (1) Requires
only 1000 annotated training examples which is a 100 times
reduction in dataset size compared to existing works (Jin
et al., 2025; Hsu et al., 2024; Chan et al., 2024), (2) Dy-
namically adapts test-time compute which results in low
inference time latency and high retrieval recall, unlike exist-
ing fixed compute methods (Hsu et al., 2024).

Setup. Let () denote the user utterance which is a complex
question requiring multiple iterative retrievals, and f de-
note an LM, that, at each hop, inspects the current context
and decides on a next action. At hop h (with 1 < h < B,
where B is the total budget of allowed hops), f generates a
thought—action pair (T}, Ap,): the action Ay, includes gener-
ating a search query S}, that is passed to the retriever R(-),
yielding a set of documents D;, = R(.S}). We write Dy for
any initial context (either empty or containing R(Q)), and
the available context to f at hop h is the union of @ with
all previously retrieved documents {Dy,...,Dy_1}, and
thought-action pairs {(Zo, Ao), ..., (Th-1, Ar—1)}. When
the model generates FINISH, say at hm hops (alternatively
at B), we invoke a generator LM denoted as g, condition-
ing it on the original query (), and the available context
{Dy,, Ty, Ah}Z‘;'"(‘) to produce the final answer. In this set-
ting, the challenge lies in having f iteratively craft highly
targeted queries S}, so that the standard retriever R can sur-
face the minimal collection of relevant documents needed
to answer () within the allocated budget.

FRUGALRAG framework requires access to only the ground
truth documents (Y') during both its training phases and
does not leverage the final answer annotation. These ground
truth documents are essential for providing fine-grained
feedback to the model. During inference, FRUGALRAG
only leverages the question (@), the document index (Z),
and a trained retriever model (R).
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Our key observation is that with sufficient test-time compute,
even a base model is capable of generating multiple, differ-
ent search queries to help answer a given question, following
a ReAct framework (e.g., see Section 5, Table 1, with base
models such as Qwen-2.5-7B-Instruct) . Therefore, learning
is required not to scale the compute at test-time as argued
in (Jin et al., 2025; Chen et al., 2025), but to control it
adaptively based on a question’s difficulty. In the follow-
ing subsections we discuss the two stages of our learning
algorithm: Stage I: Generating a base policy aimed at max-
imizing evidence coverage through exploration (Sec. 3.1);
and Stage 2: Finetuning the policy using RL to control test-
time compute (Sec. 3.2). We present our overall framework
in Algorithm. 1.

3.1. Stage 1: Coverage Maximization (Explore)

Gathering evidence plays a crucial role in answering multi-
hop questions, which often require iterative retrieval and
reasoning across multiple sources. Drawing on recent ad-
vances in test-time scaling, we observe that we can boost
evidence coverage (i.e., recall) simply by letting the model
f issue multiple search queries S}, at inference time. This
approach sidesteps the need for massive supervised fine-
tuning—instead, it harnesses the model’s own generated
rollouts to gather, and then integrate additional information.
In the next section, we describe how we construct our train-
ing data and design our fine-tuning protocol to fully leverage
this capability.

Training Dataset Generation. We choose ReAct (Yao
et al., 2023) for generating rollouts. Here, a rollout is
a set of outputs generated by the model f. In the stan-
dard ReAct setup, an off-the-shelf model f generates a
thought-action pair (7}, A, ) at each hop h € [1, B], where
Ay, is either a call to the retriever R or FINISH indicat-
ing the end of rollout. At each hop h, we generate sam-
ples {(T}}, A%, S3) ... (T, AR, S7)} using n bootstrapped
prompts (Khattab et al., 2023) (See Appendix A). For each
search query S}, i € [1,n] we retrieve corresponding doc-
uments D! = R(S} ), then discard any documents already
present in the context. We then compute recall against
ground-truth labels and add the sample ¢ that achieves the
highest recall to the context for the next hop i + 1. This
dataset generation strategy is simple and easily paralleliz-
able. We conduct two separate runs — the standard ReAct
framework where f is allowed to generate FINISH, and the
second where f can only call the retriever. Although the
former is more efficient and finishes before B search hops,
we observe that the latter yields a significantly higher over-
all recall owing to a greater number of retrievals. Unlike
previous work (Chan et al., 2024; Asai et al., 2023; Hsu
et al., 2024; Jin et al., 2025) that generated orders of magni-
tude more data, we only use 1000 questions to generate our
dataset during this step.

Supervised ‘“Exploration” Finetuning (FRUGALRAG-
Explore). Although the base model f without FINISH max-
imizes exploration, we cannot use it directly for reinforce-
ment learning because it does not include FINISH. Conse-
quently, during fine-tuning, we sample rollouts from both
configuration described above, 90% without FINISH and
10% with it. We want to use supervised finetuning to
build a strong base-policy for RL, that prioritizes explo-
ration while ensuring that FINISH remains in the model’s
generation distribution. Hence, we finetune the model
f to obtain our base policy fs. At each iteration, the
model predicts the next (7}, Ap, Sy) tuple given the roll-
out which comprises interleaved thought-action-search tu-
ples and retrieved documents represented as an ordered set
{(Do, To, Ao, S0) - - - (Dn—1,Th—1, Ap—1,Sh—1)} till h—
1, using standard cross-entropy error as the objective func-
tion. fg has several notable advantages — (1) off-the-shelf
model f does not explore. Despite prompt optimization, f
is generally over-confident and predicts the answer without
sufficient exploration. (2) removing FINISH results in over-
retrievals. We observe that simply removing FINISH from
the ReAct loop yields high recall even with the base model
f, however, the model is forced to utilize the full budget for
every question and cannot be post-trained for efficiency as
it never generates a rollout with FINISH.

3.2. Stage 2: Controlling test-time compute with RL

Given a finetuned base policy model fg, we propose a strat-
egy that enables the model to generate extended rollouts only
when required. This mechanism is crucial for inference-time
efficiency, as it allows the model to adaptively determine
the appropriate rollout length. Since fg generally prioritizes
exploration, our only goal is to learn when to sufficient evi-
dence has been gathered, thereby reducing overall search
latency during inference. Below we show how this problem
can be formulated as a reinforcement learning task, as it
requires evaluating and comparing different rollouts. How-
ever, unlike recent work using RL for scaling the number of
retrievals (Jin et al., 2025), here our focus is to use RL to
reduce the number of retrievals per question.

Reward Design. Our reward function is designed to guide
the model towards the optimal rollout length. To achieve
that, we first generate the entire rollout using fg and then
compute the reward. Let h* denote the optimal rollout
length (or hop), such that the subsequent retrievals do not im-
prove the overall recall, denoted by c. If the model chooses
to terminate at hop hm > h*, we penalize the additional
wasted steps. Conversely, we also penalize the model if
herm < h* making sure it never loses its ability to explore.
This ensures that model learns to explore adequately for
complex questions while avoiding redundant retrievals. The
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reward is as follows:

max(— Rupax, min(log %, 0)) — B,
fA<O0, ec>7

max(_Rmaxa min(log %a Rmax))7
ifA>0,¢c>71

Rmax + - %7
ifA=0,¢c>71

max(— Ryax, min(log %, 0)),
ife<t

where R,.x is the maximum possible reward, A is the dif-
ference hyerm — h* normalized by maximum budget B, and
B, a,, T tunable hyper-parameters which control the early
penalty, correct bonus, and minimum recall threshold re-
spectively. The early penalty S ensures that the model never
under-explores, and the correct bonus is scaled by h*/B
(when A = 0) giving higher reward to difficult rollouts.
Conceptually, our reward function penalizes the policy in
proportion to the magnitude of |Al; as |A| decreases, the
reward approaches the upper bound Ry, .y, with the maxi-
mum attained when the policy emits FINISH exactly at the
optimal location h* based on the ground truth.

In addition to Eq. 1, we incorporate format reward R fol-
lowing (Shao et al., 2024) to ensure fg consistently adheres
to ReAct style formatting. If the generated output deviates
from the expected format and results in no retrievals, we as-
sign areward of —1 for each such instances and compute the
average across hops. Finally, our overall reward is the sum
of Ry and R, with range [—Rmax — 8 — 1, Rpax + &+ 1].

Optimization. Motivated by the recent success and mem-
ory efficiency of GRPO (Shao et al., 2024), we adopt it
as our optimization algorithm. At each hop h, we sample
v tuples {7}, A% Si1?_ |, and retrieve their corresponding
documents D}, and de-duplicate. We repeat this until we
reach the maximum budget h = B, collecting sample tuples
and documents. For each rollout ¢, we then compute a cu-
mulative reward using Eq. 1: R* < R({D} }}"_,,Y7), and
backpropagate through every logit produce by the policy
along that rollout and mask any further generations once fg
emits the FINISH.

4. Experiments
4.1. Experimental Setup

Benchmarks. We conduct evaluation of FRUGALRAG us-
ing three widely adopted Multi-Hop RAG benchmarks— Hot-
PotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho et al.,
2020), and MuSiQue (Trivedi et al., 2022b), under their
full-wiki setting using a ColBERT-v2 (Santhanam et al.,
2021) retriever index over Wikipedia passages provided in

official datasets. These datasets emphasize the need for
models to perform reasoning across multiple documents to
arrive at an answer. The HotPotQA benchmark comprises
of of 7405 development examples requiring supporting evi-
dence from Wikipedia abstracts. We report the results on the
entire dev-set to access the models ability to perform end-
to-end reasoning and retrieval. For the 2WikiMultiHopQA
benchmark, we utilize 12576 development examples, each
coupled with its supporting evidence and document title.
This evaluates a model’s ability to hop between structured
and unstructured wikipedia text. Finally, for MuSiQue, we
test on its 2405 development examples of 2-4 hop questions
derived from a composition of two-hop queries. We provide
details of the datasets and the index in Appendix C.

Metrics. While past work tends to focus on either recall of
documents (Hsu et al., 2024) or final answer accuracy (Jin
et al., 2025), we evaluate our methods on all three metrics:
final answer, recall of retrievals, and efficiency. To access
the final answer fidelity we report F1, EM (Exact Match),
and Match score. F1 score is the token level harmonic mean
of precision and recall between predicted and ground truth
string. EM requires the predicted string to exactly match the
ground truth. Match requires the ground truth to be a sub-
string of the generated answer. We also evaluate the align-
ment of supporting evidence with the retrieved documents
by reporting Recall, Support-F1 (Trivedi et al., 2022b),
and Latency (number of searches). During both training
and testing, we set the number of retrieved documents per
query to 3, 5, and 5 for HotPotQA, 2WikiMultiHopQA, and
MuSiQue. A detailed overview of metrics is presented in
the Appendix B

Baselines. We evaluate FRUGALRAG by comparing it
against no-retrieval and retrieval-based baselines. The no-
retrieval baselines include naive generation and chain-of-
thought (CoT) prompting (Wei et al., 2022). The retrieval-
based baselines are vanilla retrieval-augmented generation
(RAG) with CoT, ReAct (Yao et al., 2023), and optimized
few-shot prompting with ReAct (Khattab et al., 2023).
We also compare FRUGALRAG to recently proposed ap-
proaches that leverage large-scale fine-tuning, including
Search-R1 (Jin et al., 2025) and LeReT (Hsu et al., 2024),
where applicable. However, we note that these recent meth-
ods do not report all metrics that we consider and their
metrics may not be directly comparable (due to varying
model sizes). Therefore, we conduct comparisons using the
closest model scales and overlapping subsets of evaluation
metrics. Furthermore, we compare FRUGALRAG with our
version of Search-R1 (Jin et al., 2025) by replicating their
reward function consistent with our setup.

Training. We train FRUGALRAG in two stages using
Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct as our base
models. In both the supervised finetuning and reinforcement
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learning (RL) stages, we leverage the TRL library (von
Werra et al., 2020), and our ReAct pipeline with prompt
bootstrapping is built on DsPy (Khattab et al., 2023). For
each dataset, we prepare the Stage 1 finetuning dataset with
1000 randomly sampled examples from the corresponding
training split. We perform prompt optimization, dataset
generation using Qwen2.5-7B-Instruct. Stage 1 (Sec. 3.1)
consists of full-parameter finetuning for a single epoch, us-
ing a learning rate of 2 x 10~° and a weight decay of 0.01 for
all models and datasets. We choose a maximum sequence
length of 4096 during finetuning. In Stage 2 (Sec. 3.2), we
refine the finetuned models via GRPO (Shao et al., 2024).
We present a detailed list of hyperparameters in the Ap-
pendix A.

4.2. Main results on HotPotQA

In Tables 1 and 2, we compare FRUGALRAG against
baselines on HotPotQA, using Qwen2.5-3B-Instruct and
Qwen2.5-7B-Instruct as the base models, respectively. For
fair comparison, all baselines use the ColBERTv2 (San-
thanam et al., 2021) retriever indexed on Wikipedia. The
key takeaway is that FRUGALRAG consistently outperforms
the baselines on both answer and retrieval metrics, using
competitive or significantly smaller number of searches on
average.

The ReAct Few Shot (FS) baseline (Yao et al., 2023; Khat-
tab et al., 2023) outperforms vanilla Retrieval Augmented
Generation and ReAct without few shot prompts consis-
tently. The optimized prompts enable ReAct FS to generate
more search queries, and as a result achieve very strong per-
formance on HotPotQA; 71.47 % and 77.65 % recall with
Qwen?2.5-3B-Instruct and Qwen2.5-7B-Instruct respectively.
Note that it obtains almost the same as the recall reported
by LeReT (77.1% using Llama3.1-8B) after significant fine-
tuning, and comparable Exact Match (42.1) to the highest
obtained Exact Match reported by recently proposed meth-
ods such as Search-R1 (43.3); signifying the importance of
building a strong baseline (see Table 4).

Table 1 demonstrates the effectiveness of FRUGALRAG
using Qwen2.5-3B-Instruct, achieving the highest score on
all metrics. Specifically, compared to ReAct FS, FRUGAL-
RAG improves F1 score by +5.9 and recall by +10.22, while
reducing latency by 1.58 (3.33 — 2.10) times. Similarly,
Table 2 presents the accuracy metrics and retrieval metrics
using Qwen2.5-7B-Instruct. FRUGALRAG achieves sub-
stantial improvements over the strongest baseline ReAct FS
with similar number of searches, of +5.16, +5.03, and +1.20
on F1, EM, and Match Scores respectively, while introduc-
ing a negligible increase in latency of 0.09 average searches.
Finally, we note that FRUGALR AG-Explore is either best or
second best in terms of both answer and recall metrics but
introduces a very high latency compared to FRUGALRAG.

Table 1. Performance of FRUGALRAG vs. baselines on HotPotQA

with Qwen2.5-3B-Instruct. We report answer-level (F1, EM,

Match), retrieval-level (Recall, Sup. F1), and average search count.
Method F1 EM Match Recall Sup.F1 Searches

Naive 833 124 2241 0 0 0

CoT 13.90 6.54 2223 0 0 0

RAG (3) 3529 21.85 4329 5856 66.29 1.0
RAG (5) 36.56 2537 36.63 6320 69.94 1.0
RAG (10) 3527 2330 37.73 67.92 73.67 1.0
ReAct 2535 10.84 4291 65.13  73.96 1.88
ReAct FS 50.88 38.02 47.65 7147 78.64 3.33
ReAct FS Explore (B=2) 50.53 37.40 47.70 66.55 75.23 2.00
ReAct FS Explore (B=3) 52.64 42.70 52.10 7230 78.64 3.00

ReAct FS Explore (B=4) 51.01 36.80
ReAct FS Explore (B=5) 51.77 39.00
ReAct FS Explore (B=6) 53.73 41.80

FRUGALRAG-Explore 53.17 40.56 49.65 81.41 85.72 5.90
FRUGALRAG 56.78 43.59

Table 2. Performance of FRUGALRAG vs. baselines on HotPotQA

with Qwen2.5-7B-Instruct. We report answer-level (F1, EM,

Match), retrieval-level (Recall, Sup. F1), and average search count.
Method F1 EM Match Recall Sup.F1 Search

Naive 13.63 549 2430 0 0 0

CoT 23.64 14.07 24.96 0 0 0

RAG (ndocs=3) 35.67 2220 44.01 5856 66.29 1.0
RAG (ndocs=5) 36.53 22770 46.54 6320 69.94 1.0
RAG (ndocs=10) 37.62 2328 4749 6513 7396 1.0
ReAct 29.75 11.85 56.28 73.45 80.03 2.07
ReAct FS 53.59 42.10 53.20 77.65 82.80 291
ReAct FS Explore (B=2) 57.70 4430 55.00 7440 80.87 2.00
ReAct FS Explore (B=3) 59.82 46.10 57.00 78.50 83.74 3.00

ReAct FS Explore (B=4) 59.78 46.50
ReAct FS Explore (B=5) 57.90 44.10
ReAct FS Explore (B=6) 57.59 4470 56.30 80.75 85.36 6.00

61.84 47.67 57.01
61.22 47.87 5477 79.88  84.80 2.90

FRUGALRAG-Explore
FRUGALRAG

Overall, our results highlight that our method strikes a sig-
nificantly better efficiency-accuracy tradeoff, compared to
strong baselines.

Adaptive vs fixed budget searches. A simple way to
make ReAct baselines more efficient is to limit their num-
ber of searches to a fixed budget. Does variable compute
(searches) really help in handling questions of varying dif-
ficulty?  To get an estimate of the query difficulty and
search requirements, we look at the histogram of number
of searches in the trajectories of FRUGALR AG-Explore up
until when 100% Recall is attained. Fig. 1 illustrates that
most additional searches beyond a certain point are redun-
dant (Estimated Optimal Searches), and the utility of each
additional query diminishes exponentially, from the perspec-
tive of Recall. So, we can expect ReAct baselines with fixed
(small) search budget to attain competitive performance.

We investigate the utility of variable compute in Tables 1- 2
with Qwen3.5-3B-Instruct and Qwen3.5-7B-Instruct respec-
tively. We consider the best baseline (ReAct FS), and give
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Table 3. Ablation results on the HotPotQA dataset using Qwen2.5-3B-Instruct demonstrate that both exploration fine-tuning and test-time

compute control are essential for effective Multi-Hop RAG.

Method F1 EM Match Recall Sup.F1 Search
ReAct FS 45.81 3354 4212 7147  78.64 3.33
FRUGALRAG-SFT (w/o GRPO, w FINISH) 51.08 3846 47.58 77.85 83.27 2.92
FRUGALRAG (w/o Explore-SFT) 5333 39 498 7530  81.49 271
FRUGALRAG-Explore (w/o GRPO, w/o FINISH)  53.17 41.80 51.10 8141 85.72 5.90
FRUGALRAG 56.78 43.59 52.69 81.69  86.01 2.10

it a search budget B, and ensure that it does not generate
FINTSH till the entire budget B is consumed. This allows
us to directly compare the accuracy of FRUGALRAG that
uses variable budget per query with fixed-budget baselines.
With Qwen2.5-3B-Instruct (Table 1), we find that FRUGAL-
RAG is superior to all budgets B = {2,3,4,5,6} in F1,
Recall, and Sup. F1 while also being more efficient (2.10
avg. searches). This trend also holds true for Qwen2.5-7B-
Instruct - FRUGALRAG outperforms its close counterpart
in terms of efficiency (B = 3.0) by +1.4, +1.38, and +1.06
on F1, Recall and Sup. F1, while having a slightly smaller
latency (0.10 fewer searches on average). The benefits of
FRUGALRAG are more pronounced at the 3B scale, likely
because the dataset poses a greater challenge for smaller
models, amplifying the need for variable compute.

Impact of Exploration Finetuning. We investigate the im-
portance of exploration finetuning in Table 3. Exploration
finetuning enables us to build a better base policy fg for
GRPO, since it has the ability to both explore (issue large
number of searches), and generate FINISH. This property
makes it the ideal choice for GRPO, since GRPO requires
access to diverse and high-quality rollouts. To validate the
effectiveness of fg (alternatively, FRUGALRAG-Explore)
as a base policy, we perform GRPO with our reward func-
tion Eq. 1 using the base model Qwen2.5-3B-Instruct on
HotPotQA dataset and present the results in Table 3. As
hypothesized, FRUGALRAG (w/o Explore-SFT) achieves a
recall of 75.30 (2.77 searches) compared to FRUGALRAG,
which outperforms it with a recall of 81.69 (2.10 searches).

Impact of Controlling test-time compute. Table 3 eval-
uates the contribution of GRPO within the FRUGALRAG
framework. GRPO’s role is to learn the optimal stopping
point h* at which to terminate the search. One natural
question is: Can h* be learned through supervised fine-
tuning on labeled data? To answer this, we compare our
reinforcement-learning—based approach (FRUGALRAG)
against a supervised finetuning variant (FRUGALRAG-SFT
w/ FINISH). Across both answer-level and retrieval-level
metrics, FRUGALRAG significantly outperforms FRUGAL-
RAG-SFT: itimproves F1 by +5.01 and Recall by +3.85. Al-
though FRUGALRAG-SFT attains a high Recall of 77.85%,
it does so at the cost of efficiency, on average perform-
ing 2.92 searches. This ablation confirms that learning the

stopping policy via GRPO is both more accurate and more
efficient.

FrugalRAG: Histogram of Search Count
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Figure 1. Histogram of number of searches over 1,000 random
examples from the HotPotQA dataset.

4.3. Comparison Against RL-based Techniques

In Table 5, we compare FRUGALRAG with the recent RL-
based techniques including LeReT (Llama3.1-8B), Search-
R1 (Qwen2.5-3B, Qwen2.5-7B), and Search-R1-Instruct
(Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct). It is notewor-
thy that LeReT leverages the entire HotPotQA (Yang et al.,
2018) train-set (90k examples) with its ground truth evi-
dence annotation for preference learning. Similarly, Search-
R1 combines Natural Questions (Kwiatkowski et al., 2019)
and HotPotQA (Yang et al., 2018) training datasets with
their final answer annotations, resulting in over 100000
training examples. Unlike existing methods, FRUGALRAG
only requires 1000 evidence annotated examples for train-
ing. We note that a direct comparison with these baselines
is non-trivial due differences in underlying base models
and retrievers. Consequently, we directly report the met-
rics provided by the authors in their official papers. To
enable a fairer comparison, we replicate Search-R1 (Jin
et al., 2025) using a final answer F1 score as its reward, and
train Qwen2.5-7B-Instruct on 1000 HotPotQA examples
with ColBERTV2 (Santhanam et al., 2021) retriever, similar
to the setup in FRUGALRAG. Table 5 demonstrates that
both the 7B and 3B version of FRUGALRAG outperform
Search-R1-7B-Instruct trained with 1000 examples by a
large margin of +22.92 and +17.26 F1 respectively. We find
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Table 4. Comparison of FRUGALRAG with baselines on 2WikiMultiHopQA and MuSiQue. We show that FRUGALRAG is better on both
answer-level (F1, EM, Match) and retrieval-level (Recall, Sup. F1, Search latency) metrics.

Method 2Wiki

MuSiQue

F1 EM Match Recall Sup.F1 Search F1 EM Match Recall Sup.F1 Search

Qwen2.5-7B-Instruct

Naive 1643 9.88 3247 0.00 0.00 0 6.40 0.70 8.00 0.00 0.00 0
CoT 24.24 1830 29.60 0.00  0.00 0 10.80 3.59 8.06 0.00 0.00 0
RAG (ndocs=3) 1495 6.34 3038 32.87 4616 100 10.52 4.00 1253 1995 23.61 1.00
RAG (ndocs=5) 16.82 7.28 3327 3638 4946 1.00 11.51 479 1253 2273 2552 1.00
RAG (ndocs=10) 20.32 10.13 37.03 40.61 53.16 1.00 11.59 4.55 14.06 27.13 27.85 1.00
ReAct 21.28 6.80 43.80 45.80 58.62 278 10.69 3.56 20.39 3094 29.11 3.13
ReAct FS 41.74 3290 4250 49.25 61.03 348 2026 1191 1899 3390 30.50 4.16

FRUGALRAG-Explore 42.55 33.07 45.61 55.01 64.97
FRUGALRAG 44.22 3420 4390 52.05 62.03

5.89 22.09 1323 22.67 37.11 31.88 4.32
4.16 2424 13.94 20.68 3346 30.04 2.63

Table 5. Comparison with recent techniques that use large-scale
Reinforcement Learning. FRUGALRAG demonstrates superior
performance on all metrics compared to the state-of-the-art on
HotPotQA dataset using both Qwen2.5-3B and Qwen2.5-7B.

Method F1 EM Match Recall Sup.F1 Search
LeReT (Llama3.1-8B) - 52.5 - 77.1 - 2.0
SearchR1-3B - 284 - - - -
SearchR1-3B-Instruct - 324

SearchR1-7B - 43.3

SearchR1-7B-Instruct - 37.0

SearchR1-7B-Instruct*®

(1000 examples) 39.52 25.61 5349 76.19 82.34 5.97
FRUGALRAG-Explore (3B) 53.17 40.56 49.65 81.41 8572 5.90
FRUGALRAG (3B) 56.78 4359 52.69 81.69 86.01 2.10
FRUGALRAG-Explore (7B) 61.22 47.87 57.31 84.19 87.63 5.88
FRUGALRAG (7B) 61.84 47.60 54.77 79.88  84.80 2.90

the FRUGALRAG is clearly better than Search-R1 because
it leverages fine-grained feedback from the ground truth doc-
uments, demonstrating the effectiveness of FRUGALRAG
with limited data.

4.4. Comparison on 2WikiMultiHopQA and MuSiQue

In Table 4, we analyze the performance of FRUGALRAG
on 2WikiMultiHopQA (2Wiki) and MuSiQue datasets with
Qwen2.5-7B-Instruct. Notably, our framework excels on
the particularly challenging MuSiQue (Trivedi et al., 2022b)
dataset — improving F1 score by +3.98, and reducing the
latency by 1.58 times, compared to ReAct FS. FRUGAL-
RAG increases the average number of searches by +0.68 on
2Wiki (Ho et al., 2020). Despite the slight latency increase,
FRUGALRAG still yields a notable improvement of +2.8
in F1 score, underscoring its effectiveness even in more
heterogeneous (2Wiki) retrieval settings. Overall, across the
datasets, the accuracy metrics of FRUGALRAG are compet-
itive wrt FRUGALRAG-Explore (which is the best or the
second best method in terms of accuracy), and its number
of searches is competitive wrt ReAct FS baseline (which
is the most frugal on 2 out of 3 datasets). This emphasizes

FRUGALRAG’s ability to generate high quality answers
with remarkable efficiency. Further results on these datasets
are provided in Appendix E.

5. Conclusions, limitations, and future work

In this work, we argue that efficiency is an equally important
metric to study in RAG solutions, besides the traditional
RAG metrics such as retrieval performance and accuracy of
the generated answers. We demonstrate that simple ReAct
baseline that iteratively retrieves (by invoking the search
tool) and reasons (to decide what search call to issue next)
is quite competitive, especially if we can optimize its few-
shot prompt using just tens of training examples. We pro-
pose a two-stage framework FRUGALRAG that a) works
with 1000 training examples, compared to state-of-the-art
RAG techniques that use over 100,000 examples, and b) yet
achieves competitive accuracies while also using far fewer
search queries at inference time, on popular multi-hop QA
datasets.

Even though our method uses a small number of examples
for training, it has some limitations in the analysis, and
leaves room for future work in the following aspects: (a) in
terms of generalization to new domains with no access to
training data, and (b) in terms of coping with different types
of retrievers (e.g., can we strike better efficiency-accuracy
trade-off with a more powerful retriever?).
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A. Training Details

We train FRUGALRAG in two stages using Qwen2.5-3B-
Instruct and Qwen2.5-7B-Instruct as our base models. In
both the supervised finetuning and reinforcement learning
(RL) stages, we leverage the TRL library (von Werra et al.,
2020). Algorithm 1 shows the overall training framework of
FRUGALRAG. We plan to publicly release our code soon
and have attached a copy of the codebase for review in the
meantime. Below, we discuss each step along with their
implementation details.

Few-Shot Prompt Optimization Details. We leverage
DSPy (Khattab et al., 2023) for automatic few-shot prompt
generation following LeReT (Hsu et al., 2024). Specifi-
cally, we use 50 training examples (Ljn;;) with the BOOT-
STRAPFEWSHOTWITHRANDOMSEARCH method, which
uses the LM f to generate few-shot examples, selecting the
best performing ones for subsequent prompting. We select
4 best performing few-shot prompts from a total of 15 can-
didate sets using the sum of answer EM and answer passage
match. Answer EM checks for an exact string-match be-
tween the generated and actual answer, and passage match
checks if the actual answer is present in the retrieved pas-
sages. This step is crucial because it facilitates dataset
generation using diverse rollouts and ensures the answer
format is followed by the model. For this step, we serve
our model on one A100 80GB GPU using SGLang (Zheng
et al., 2024). For all experiments involving Qwen2.5, we
utilize the 7B-Instruct variant for prompt optimization. The
optimized prompts are then reused without modification for
the 3B variant.

Dataset Generation Details. For each few-shot prompt p;,
the model f generates a tuple (7}, A}, S} ) representing a
candidate output for the next hop. As described in Sec. 3.1,
we evaluate all candidate tuples at hop h and select one with
the highest recall. This selected candidate is then used as
the context for the next hop and the process is repeated till
budget B (optionally till the selected candidate action Ay
indicates FINISH). We set the budget B = 6, where the
initial retrieval step is always R(Q")) with Q) denoting
the original user utterance. The generated dataset is denoted
by D. For all experiments involving Qwen2.5, we utilize the
7B-Instruct variant along with its prompts to generate the
dataset. For each dataset, we prepare the Stage 1 finetuning
dataset with 1000 randomly sampled examples from the
corresponding training split. For further improving results,
we can repeat few shot prompt optimization and dataset
generation using different base models.

Supervised “Explore” Finetuning Details. Stage 1
(Sec. 3.1) consists of full-parameter finetuning for a sin-
gle epoch, using a learning rate of 2 x 10~° and a weight
decay of 0.01 for all models and datasets. We choose a
maximum sequence length of 4096 during finetuning and
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use the standard next token prediction loss given by:

max E(zy)~plogps(zly) @

where y = (Th,Ap,Sp) and =z QY U
{(Tx, Ak, Sk, Dy) }7—} sampled from the generated dataset

D.

We train the model f for 1 epoch using a batch size of 4
and apply gradient accumulation of 2 steps, resulting in an
effective batch size of 8. Optimization is performed using
AdamW (Loshchilov and Hutter, 2017) with a learning rate
of 2 x 1075, We use a linear learning rate scheduler with a
warmup phase of 20 steps. The training is performed using
8 H100 80GB GPUs and takes about 15 minutes.

Controlling test-time compute with RL. Our RL step
employs GRPO for fine-tuning the base policy fs. Specifi-
cally, following the notation in DeepSeekMath (Shao et al.,
2024), for each question Q/), we sample a group of outputs
{o},,0%,...,0"} athop h, where v is set to 4. We optimize
our base policy fg using the standard GRPO objective using
the cumulative rollout reward as defined in Eq. 1. We use a
KL divergence penalty with weight 0.001, set the maximum
reward Ry,.x = 2.0, and apply an early penalty 5 = 3. We
set 7 to 60%, 40%, and 30% for HotPotQA, 2Wiki, and
MuSiQue datasets respectively to improve the diversity of
rollouts. Generation is limited to a maximum of 256 comple-
tion tokens and the maximum prompt size is 2048. Training
is conducted using DeepSpeed-Zero2 (Rasley et al., 2020)
and 8 H100 GPUs with a learning rate of 1075, Due to
the long prompt (which includes retrieved documents from
previous hops), we use a total batch size of 16 with gradi-
ent accumulation set to 2. Training the model for 500 steps
takes between 8 and 10 hours. We select the best performing
checkpoint before any collapse in reward, following (Jin
et al., 2025) since RL training maybe unstable.

B. Metrics

F1. is the harmonic mean of the precision and recall mea-
sured at the word-level, and is given by

. TPans
TPans +0.5 # (FPns + FNups)

Fl=2 3)

where TP,,, denotes correctly predicted words, FP , rep-
resents the extra words, and FN,, are the missing words in
the generated answer.

Exact Match. is the exact match between the normalized
generated answer string and normalized ground truth answer.
It is 100% if the two strings match exactly, and 0 otherwise.

Match Score. measures the accuracy of generated answer
by checking if the ground truth answer string is present in
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the generated answer string. It is 100% if the ground truth
string is in the generated answer, and O otherwise.

Recall. is a retrieval metric, that measures the percentage
of ground truth documents retrieved by the model. It is
given by the ratio of correctly retrieved document titles
TPy and the total number of ground truth document titles
TPgyoc + FNgoc. We measure recall following LeReT (Hsu
et al., 2024), using document titles. The document-level
recall is given by —

Algorithm 1: Our novel two-stage framework, FRUGAL-
RAG consists of (1) Dataset Generation and Supervised
”Explore” Finetuning, and (2) Controlling test-time com-
pute wth RL.

Input: Labeled dataset £ = {(QW), Y(9))}1900,

Linit = {(Q(j), Y(j))}?gl, retriever R, base LM f,
budget B, max hops m, number of samples v

TP doc
Recall = ————— 4
TPdoc + FNdoc

// Prompt Optimization

1 Generate few-shot prompts {p1, . ..

,pn } using f and Lini;

// Dataset Generation

2 Initialize finetuning dataset: D < [|;
3 for QU YW jn £ do

4

e ® 9 & wm

11
12

13
14

15
16
17

18

19
20

21

Initialize buffer: main_-rollout « [|;
Initialize Dy + R(QY) or
Initialize Ty, Ao;
Ho + {QY), Ty, Ao, Do} ;
Append Hp tomain_rollout;
for h = 1tomdo
fori =1tondo
for h =1l B do ‘
(T}L ;mS;L) <~ f(H;L—hp’b)’
// occurs in 10% of calls
if A} = FINISH then
| break
b R(SL): ,
Remove duplicate retrievals from Dy, ;

Evaluate all {D},}; (recall against ground truth
vy );
Select best-performing trajectory #H*;
| Append H" tomain_rollout;

Append each hop frommain_rollout to D;

Sup. F1. measures the word-level F1 score (3) between the
ground truth evidence sentences and those retrieved from
the documents. Following (Trivedi et al., 2022b), we com-
pute the average F1 score across the ground truth evidence
sentences, comparing them with corresponding retrieved
documents. The evidence sentences are are provided in
all three datasets. Supporting Document F1 or Sup. F1 is
serves as a more reliable metric for retrieval with 2Wiki-
MultiHopQA and MuSiQue since it considers fine-grained
evidence rather than just the document titles.

C. Dataset and Retrieval Index

We use the pre-processed Wikipedia abstracts index ! pro-
vided by ColBERTV2 (Santhanam et al., 2021) for all our
experiments on HotPotQA (Yang et al., 2018). For each
instance, we retrieve the top 3 documents and their titles and
perform a maximum 6 retrievals. HotPotQA annotations
consists of document title and evidence sentences which are
used to compute the Recall and Supporting Document F1
respectively.

Since 2WikiMultiHopQA (Ho et al, 2020) and
MuSiQue (Trivedi et al., 2022b) datasets are created

// Stage 1 (Sec. 3.1) . . . .
22 fs < Fine-tune f usingD // See Eq. 2 using both the body and abstract of \.Jv1.k1pe.d1a art{cles
we use the pre-processed dump of Wikipedia provided
// Stage 2 (Sec. 3.2)

28

for QU YW in £ do

for h =1t mdo
| Generate v sample tuples {7}, Aj,, Sj,, Dj, i ;
fori =1tov do
Compute reward R* < R({D},}7",, Y9, fs)
// See Egq. 1
Backpropagate loss on {T}., A}, S} 17, using R’;
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by (Karpukhin et al., 2020) and index it using Col-
BERTvV2 (Santhanam et al., 2021). The generated index
consists of 21M passages. For each instance, we retrieve
top 5 documents and append it to our context.

D. Related Work

Which metric to optimize. Multi-hop QA involves two sub-
tasks: retrieving relevant documents, and then answering
the question based on the documents. Some methods report
document retrieval-specific metrics such as recall (Hsu et al.,

"https://downloads.cs.stanford.edu/nlp/
data/colbert/baleen/wiki.abstracts.2017.tar.
gz
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2024) whereas others report final answer metrics such as
exact match (Jin et al., 2025). Typically, a model is trained
to optimize a particular metric (such as recall) and also
evaluated on the same metric. For robustness, in this work
we train on the recall metric and test on all metrics, including
final answer metrics.

Finetuning-based techniques. A prevalent method for
multi-hop QA using small LMs is supervised finetuning
using reasoning traces from a large LM such as GPT-4 (Asai
et al., 2023; Chan et al., 2024). Other methods are trained
to predict the next query to be retrieved (Chan et al., 2024).
Methods that scale the test-time compute that infer using
multiple trajectories have also been proposed (Wang et al.,
2025). Recently, reinforcement learning-based techniques
have been proposed that develop a reward based on out-
putting the ground-truth answer (Jin et al., 2025). However,
none of the techniques focus on efficiency of the solution. In
fact, in Search-R1, the goal of RL is to increase the number
of searches. Instead, we use RL to decrease the average
number of searches done by our model. Next we discuss
each sub-category in detail:

1. Traditional RAG approaches Early work in ground-
ing generation with real world documents focused
on end-to-end differentiable encoder-decoder pipeline
REALM (Guu et al., 2020), which augments Masked-
Language Modeling (MLM) with a latent retriever
model, backpropagating through retrieval to learn both
retriever and generator jointly. However, this approach
incurs significant computational cost and has only been
shown to work with relatively smaller models like
T5 (Raffel et al., 2020). Building on this, (Lewis
et al., 2020) proposed a general finetuning strategy,
RAG-Token which demonstrated that join-training out-
performs fixed dense retrieval and BM25.

2. Prompting-based RAG approaches With the recent
advancements in the capabilities of large API-based
LMs, some works explored prompting to call exter-
nal search/retrievers at inference. Toolformer(Schick
et al., 2023) uses a self-supervised objective to train
an external model that decides to call tools (like Bing
and Google search engines). ReAct (Yao et al., 2023)
is another powerful prompting technique that allows
the model to structure its outputs as thoughts, actions
and observations, yielding significant improvements in
the ability of LLMs to interact with external environ-
ments. (Trivedi et al., 2022a) proposed IRCoT, another
prompting strategy that alternates between chain-of-
thought (Wei et al., 2022) steps and gathering evidence
through retrievals. By using the intermediate traces, the
IRCoT is able to decide what to retrieve by issuing the
right search queries. Iter-RetGen (Shao et al., 2023)
improves evidence gathering in multi-hop scenarios
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by combining retrieval and generation iteratively, such
that a model’s response is incorporated in the reasoning
trace. However, both IRCoT (Trivedi et al., 2022a) and
Iter-RetGen (Shao et al., 2023) rely on a fixed or pre-
defined number of retrieval loops at inference, offering
limited control over latency.

. Large-scale training Some efforts have also been

made to improve retriever-generator architectures, cou-
pled with large scale training for better grounding.
(Muennighoff et al., 2024) introduced a 7B scale
model, GRITLM, that can perform both embedding
tasks (retrieval) and generation through instruction tun-
ing. GRITLM demonstrated improved performance on
MTEB (Muennighoff et al., 2022) while outperform-
ing existing models of its scale on generative tasks.
REPLUG (Shi et al., 2023) aligns its dense retriever
with the generator by treating generator models as API-
based black box models. Specifically, (Shi et al.,
2023) it minimizes the KL divergence between the
retriever’s document score distribution and the gener-
ator’s log-likelihoods over retrieved passages, yield-
ing tighter coupling between retriever and generator.
RETRO (Borgeaud et al., 2021) pretrains an autore-
gressive model augmented with a frozen BERT (De-
vlin, 2018) based retriever by cross-attending the re-
trieved document chunks with preceding tokens. In
contrast, our method avoids retriever pretraining: it
trains only the search-query generator on a small su-
pervised dataset, yet still achieves high recall and gen-
eration quality. FRUGALRAG is independent of the
retriever model and can be augmented with the afore-
mentioned existing retrievers.

. RL-based Retrieval Augmented Generation Re-

cently, framing search query as an RL problem has
received attention. LeReT (Hsu et al., 2024) performs
preference optimization using diverse few shot prompts
leveraging hundred-thousands of ground truth anno-
tated documents. However, LeReT utilizes a fixed
amount of compute per instance during inference and
cannot be readily generalized to variable-hop scenar-
ios. Similarly, concurrent works, (Jin et al., 2025)
and (Chen et al., 2025) propose end-to-end RL-based
optimization that only leverages the final answer anno-
tation. These methods show that RL can effectively be
used to teach the search query generator model to issue
more search queries for multi-hop problems without
considering latency. Our two-stage RL framework, by
contrast, first explores without RL to maximize recall
and then learns to stop at test time using RL.
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Table 6. Comparison of FRUGALRAG with baselines on 2WikiMultiHopQA and MuSiQue. We show that FRUGALRAG is better on both
answer-level (F1, EM, Match) and retrieval-level (Recall, Sup. F1, Search latency) metrics.

Method 2Wiki MuSiQue

F1 EM Match Recall Sup.F1 Search F1 EM Match Recall Sup.F1 Search
Qwen2.5-3B-Instruct
Naive 9.84 0.62 37.64 0.00 0.00 0 436  0.20 7.36 0.00 0.00 0
CoT 1531 7.07 2538 0.00 0.00 0 6.62 194 5.95 0.00 0.00 0
RAG (ndocs=3) 18.15 12.19 21.54  32.87 46.16 1.00 9.15 4.26 8.27 19.95 23.61 1.00
RAG (ndocs=5) 20.11 13.78 2433  36.38 49.46 1.00 9.63 397 8.02 22.73 25.52 1.00
RAG (ndocs=10) 22.02 14.86 27.05 40.61 53.16 1.00 1073 484 1050 27.13 27.85 1.00
ReAct 1587 2.64 3484 39.76 52.67 2.30 746 144 1175 2585 26.81 2.68
ReAct FS 23.83 1623 2418 45.71 57.67 3.99 1330 7.73 11.66  30.44 29.09 4.32
FRUGALRAG-Explore 2597 17.08 28.19 54.13 64.17 591 1829 11.21 1613 37.10 32.03 5.87
FRUGALRAG 2994 19.27 33.06 43.15 55.49 2.32 15.02 7.65 10.09 29.46 28.46 3.07

Table 7. Performance comparison of FRUGALRAG on HotPotQA using different generator models g and common Qwen?2.5-3B-Instruct

base model f.
Method F1 EM Match Recall Sup.F1 Search
ReAct (Generator 3B) 2535 10.84 4291 65.13 73.96 1.88
ReAct (Generator 7B) 2545 999 46.77 64.88 73.80 1.90
ReAct FS (Generator 3B) 50.88 38.02 47.65 7147 78.64 333
ReAct FS (Generator 7B) 51.26 38.69 47.73 72.16 79.21 343
FRUGALRAG (Generator 3B) 56.78 43.59 52.69 81.69  86.01 2.10
FRUGALRAG (Generator 7B) 61.37 4698 57.05 8145 85.84 2.12

Performance Metrics vs. Training Dataset Size
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Figure 2. Effect of scaling dataset size on FRUGALRAG (Qwen2.5-
3B-Instruct) on HotPotQA dataset. We see a sharp decrease in
number of searches when we increase the dataset size from 500 to
1000 examples.

E. Additional Results

Performance on 2WikiMultiHopQA and MuSiQue. Ta-
ble 6 presents a comparison between FRUGALRAG and
ReAct FS on the 2WikiMultiHopQA and MuSiQue datasets
using Qwen2.5-3B-Instruct. We observe a similar trend as
Table 4 — FRUGALRAG significantly decreases the aver-
age number of searches for both 2WikiMultiHopQA (from
3.99 to 2.32) and MuSiQue (from 4.32 to 3.07).0On 2Wiki-
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MultiHopQA, FRUGALRAG achieves the highest F1 score
(29.94), which is +6.11 higher than ReAct FS, while re-
quiring 0.68 fewer searches on average. Similarly, on
MuSiQue, FRUGALRAG outperforms ReAct FS in F1 score
and achieves comparable EM and Match scores, while is-
suing 1.25 fewer searches on average. These experiments
highlight the effectiveness of FRUGALRAG across various
datasets and model scales.

Dataset Scaling Results. In Fig. 2, we observe that as the
training dataset size increases from 500 to 1000, there is a
significant improvement in answer metrics, for example F1
score improves from 40 to 57. However, at 2000 examples,
the F1 score drops slightly to 54. Interestingly, the average
number of searches decreases significantly from 3.33 at 500
examples to approximately 2 at larger sizes, indicating more
efficient retrieval as the model becomes better trained with
diverse data. We plan on incorporating a comprehensive
study of different data mixtures and sizes in our future work.

Generator Model Scaling. Table 7 presents the perfor-
mance of FRUGALRAG across different generator models
g on the HotPotQA dataset. In all experiments, we use
Qwen2.5-3B-Instruct as the search query model f and vary
the answer generation model g to evaluate its impact. As ex-
pected, FRUGALRAG demonstrates improved performance
on standard answer quality metrics (F1, EM, and Match)
when equipped with a stronger generator model (7B) com-
pared to a smaller 3B variant.

The relative gains in performance brought about by im-
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proved retrieval are noteworthy. While both generator sizes
benefit from enhanced retrieval quality, the magnitude of im-
provement is significantly larger for the stronger 7B model.
Specifically, the F1 score increases from 51.26 to 61.37
when using the larger model, +10.11 point gain. In contrast,
the smaller 3B model improves from 50.88 to 56.78. This
disparity highlights a key insight; larger models are more
capable of leveraging improvements in retrieval to generate
better answers. Consequently, improving the retrieval qual-
ity disproportionately benefit more capable generator mod-
els, emphasizing the importance of optimizing the search
query model f.
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