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ABSTRACT

Under the Markov assumption of Markov Decision Processes (MDPs), an optimal
stationary policy does not need to consider history and is no worse than any non-
stationary or history-dependent policy. Therefore, existing Deep Reinforcement
Learning (DRL) algorithms usually model sequential decision-making as an MDP
and then try to optimize a stationary policy by single-step state transitions. How-
ever, such optimization is often faced with sample inefficiency when the causal
relationships of state transitions are complex. To address the above problem, this
paper investigates if augmenting the states with their historical information can
simplify the complex causal relationships in MDPs and thus improve the sample
efficiency for DRL. First, we demonstrate that a complex causal relationship of
single-step state transitions may be inferred by a simple causal function of the
historically augmented states. Then, we propose a convolutional neural network
architecture to learn the representation of the current state and its historical tra-
jectory. This representation learning compresses the high-dimensional historical
trajectories into a low-dimensional space to extract the simple causal relationships
from historical information and avoid the overfitting caused by high-dimensional
data. Finally, we formulate Historical Augmentation Aided Actor-Critic (HA3C)
algorithm by adding the learned representations to the actor-critic method. The
experiment on standard MDP tasks demonstrates that HA3C outperforms current
state-of-the-art methods in terms of both sample efficiency and performance.

1 INTRODUCTION

Sequential decision-making widely exists in real-world control tasks, such as robot control and
autonomous driving (Dorf & Bishop, 2011; Ibarz et al., 2021; Sallab et al., 2017). Generally speaking,
it can be modelled as a Markov Decision Process (MDP), where an agent iteratively takes action in an
environment for transiting from one state to another (Puterman, 1990). Each transition is evaluated by
a reward signal passing from the environment to the agent so that Reinforcement Learning (RL) can
learn the optimal policy by maximizing the cumulative reward (Sutton & Barto, 2018). The Markov
assumption of MDPs asserts that the probability distributions of the reward and next state depend
only on the current state and action. Under the Markov assumption of MDPs, there exists an optimal
stationary policy which does not need to consider history and is no worse than any non-stationary or
history-dependent policy (Puterman, 2014). Therefore, existing RL algorithms usually try to optimize
a stationary policy by single-step state transitions.

With advances in deep learning, many effective Deep RL (DRL) methods were proposed (Fujimoto
et al., 2018; Haarnoja et al., 2018; Lillicrap et al., 2016; Mnih et al., 2016; 2015). Under the Markov
assumption of MDPs, they are usually based on the actor-critic method where the critic estimates
the Q-function, i.e., the expected cumulative reward after taking action at each state, while the actor
updates the policy to choose the action which can maximize the estimated Q-function (Schulman
et al., 2015; Silver et al., 2014). However, such optimization may miss the useful causal relationships
of state transitions, leading to sample inefficiency (Allen et al., 2021; Buckman et al., 2018; Du
et al., 2020; Guo et al., 2020). An existing partial solution to this issue is representation learning in
which a neural network is trained to infer the causal relationships of state transitions by predicting the
reward or future state of each state-action pair (Munk et al., 2016; Ni et al., 2023; Ravindran, 2004;
Rezaei-Shoshtari et al., 2022). Then, the sample efficiency of DRL can be improved by adding the
learned representations to the actor-critic method. Unfortunately, it is hard to train the neural networks
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which can infer complex causal relationships, e.g., polynomial causal relationships and the basic laws
of physics (Andoni et al., 2014; Cranmer et al., 2020). Standard complexity-theoretic results strongly
suggest that there is no algorithm efficient enough for learning arbitrary target functions, even for
target functions representable by very low-depth networks (Applebaum et al., 2006). Therefore, the
sample efficiency for DRL is still limited in complex MDP tasks.

This paper addresses the above problem by augmenting the states with their historical information.
Based on the analysis and example in Section 3, we believe that although satisfying Markov
assumption, an MDP may have its inherent contextual information. In this case historical
augmentation can simplify the causal relationships of state transitions of this MDP by increasing the
search space of the causal functions (Hallak et al., 2015; Sprunger & Jacobs, 2019). Therefore, we
focus on optimzing a history-dependent stationary policy in an MDP. Our DRL approach comprises
two key components: 1) Learning the state representations to capture the causal relationships in an
MDP and 2) finding the optimal stationary policy by the learned representations. Given an action and
the historically augmented current state, our representation learning utilizes a Convolutional Neural
Network (CNN) architecture to compress the high-dimensional historical trajectory of the given state
into a low-dimensional space while predicting the future state. The compressed historical trajectories
can be seen as the abstracted features which can represent the simple causal relationships and avoid
the overfitting caused by high-dimensional data (Andre & Russell, 2002). To keep the Markov
assumption of MDPs, our representation learning does not compress the current state. We add the
learned state representations to the actor-critic method. In this way, the causal relationships captured
by our representation learning can be utilized to estimate the Q-function and update policy. Therefore,
our new DRL approach can optimize the policy in a complex MDP with high sample efficiency. We
combine historical augmentation, state representations, and TD3 in our approach to formulate a new
DRL algorithm, Historical Augmentation Aided Actor-Critic (HA3C). The experiment on standard
MDP tasks, i.e. Mujoco control tasks and Deep Mind Control (DMC) suite, empirically demonstrates
that HA3C outperforms current state-of-the-art methods in terms of both sample efficiency and
performance (Brockman et al., 2016; Todorov et al., 2012; Tassa et al., 2018).

Our contributions are as follows: 1) It is the first time in the literature that historical augmentation
can be used to improve sample efficiency when Markov assumption is satisfied. 2) We propose a
new DRL approach to address the problem of how to effectively utilize the historical information in
MDPs. 3) Based on this approach, we formulate a new RL algorithm, HA3C, which outperforms
existing state-of-the-art DRL algorithms, e.g. TD7 (Fujimoto et al., 2023).

2 BACKGROUND

An MDP can be written as a 5-tuple M = ⟨S,A, R,P , γ⟩ with state space S , action space A, reward
function R, transition model P , and discount factor γ. In an MDP, RL can maximize the discounted
cumulative reward by learning how to map the states to the actions (Baird, 1995; Duan et al., 2016;
Williams, 1992). For a given state st ∈ S at time step t, the agent executes an action at ∈ A w.r.t. a
policy π : S 7→ A, to obtain a reward rt = R(st,at) and transfer to a new state st+1. The return of
the agent is defined as the discounted cumulative reward Gt =

∑+∞
i=t γi−tri. Based on the Markov

assumption of MDPs, RL can find the optimal policy to maximize the following value function which
is the expected return when st = s and following π thereafter.

V π(s) = Eπ [Gt|st = s] = Eπ

[
+∞∑
i=0

γirt+i|st = s

]
,

where Eπ[∗] denotes the expected value of a random variable given that the agent follows policy π.

With advances in deep learning, combining neural networks into RL has drawn significant attention
in the literature. Many DRL algorithms learn the optimal policy by the actor-critic method (Kaelbling
et al., 1996), where the critic network estimates the Q-function which is the expected return when
st = s, at = a, and following policy π thereafter.

Qπ(s,a) = Eπ [Gt|st = s,at = a] = Eπ

[
+∞∑
i=0

γirt+i|st = s,at = a

]
,

while the actor network updates the policy to maximize the estimated Q-function.
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To improve sample efficiency, some DRL methods learn the state representations of the collected
state transitions and then add the learned representations to the actor-critic method (Anand et al.,
2019; Dayan, 1993; Gelada et al., 2019; Li et al., 2006). This representation learning aims to
capture the causal relationships in MDPs, and thus improves sample efficiency (Liu et al., 2020;
Van Hoof et al., 2016; Ye et al., 2023; Zhang et al., 2021). For example, ML-DDPG learns the state
representations by predicting the next state representation and the reward in MDPs (Munk et al.,
2016). As an improvement of ML-DDPG, OFENet learns the high-dimensional state representations
by predicting the next state in DenseNet architecture (Ota et al., 2020). TD7 improves the learning
of state representations by AvgL1Norm and then combines the learned representations with TD3,
checkpoints, and prioritized replay buffer (Fujimoto et al., 2023).

DRL algorithms need to consider historical information when the Markov assumption of MDPs
is violated (Eysenbach et al., 2020; Majeed & Hutter, 2018; Hafner et al., 2019b). For Partially
Observable MDPs (POMDPs), in which the states are partially observable, deep recurrent Q-network
uses LSTMs to encode state transition trajectories in the Q-function estimation (Hausknecht &
Stone, 2015). As an improvement of deep recurrent Q-network, deep transformer Q-network uses
transformers to encode the state transition trajectories (Esslinger et al., 2022). As a famous DRL
algorithm, Dreamer encodes the historical information into the state at every time step in POMDPs (Ha
& Schmidhuber, 2018; Hafner et al., 2019a). In delayed MDPs, in which the current state and reward
may arrive at the agent with a delay (Katsikopoulos & Engelbrecht, 2003), researchers usually recover
the Markov assumption of MDPs by considering the historical actions (Bouteiller et al., 2020; Derman
et al., 2021). When the Markov assumption of MDPs is violated by the state abstraction, it is possible
to find a history-based policy which works in the abstracted space and is of the same quality as
optimal policy (Patil et al., 2024). However, the history-based DRL for the dynamics which are under
Markov assumption is largely absent from the literature.

3 MOTIVATION

Let ht = {s0,a0, ..., st} as the history up to time step t in a sequential decision-making task. The
optimal policy may change the decision rule in different time steps and select actions based on
historical information. In this case, we should optimize a history-dependent policy π = {dt|t =
0, 1, ...} which selects action at time step t by decision-rule dt(at|ht). Fortunately, based on the
Markov assumption of MDPs, there is an optimal stationary policy π(at|st) which is unrelated to
time and selects action at by only the state st. This Markov assumption asserts that the probability
distributions of state st+1 and reward rt depend only on the st and at as

P{st+1 = s′, rt = r|s0,a0, r0, ..., st,at} = P{st+1 = s′, rt = r|st,at},

where P is the probability distribution in P . Let HR and SR denote the class of history-dependent
and stationary policies, respectively. Lemma 3.1 is the key of most existing RL algorithms (Puterman,
2014)[Thm. 6.2.10]. The different types of policies are detailed in Appendix A.
Lemma 3.1. Under the Markov assumption of MDPs, there exists a policy π∗ ∈ SR such that, for
all t, Vπ∗(st) = supπ∈HR Vπ(ht).

Based on Lemma 3.1, existing DRL algorithms for MDPs usually optimize a stationary policy by
single-step transitions. If the causal relationships in the modelled MDP are simple, e.g., there are
only linear causal relationships in this MDP, such optimization effectively finds the optimal policy.
A classical result is that a neural network with a single hidden layer can successfully learn a linear
function (Andoni et al., 2014). However, it is still hard to capture complex causal relationships by
neural networks. Standard complexity-theoretic results strongly suggest that there is no algorithm
efficient enough for learning arbitrary functions, even for target functions representable by very
low-depth networks (Applebaum et al., 2006). In fact, a more complex causal function requires
neural networks to approximate with more parameters, samples, and time consumption (Bianchini &
Scarselli, 2014).

Although satisfying Markov assumption, many MDPs in real-world applications have their
historical contextual information. In this case, historical augmentation can address the above
problem by simplifying the causal relationships in these MDPs as it can increase the search space
of the causal functions to mine the contextual information on state transitions (Hallak et al., 2015;
Sodhani et al., 2022). For example, if we model the state transitions with Fibonacci sequence as
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s0 = 1, s1 = 1, s2 = 2, s3 = 3, s4 = 5,· · · , when t > 2, the state transitions in this model will
satisfy the Markov assumption of Markov Processes as (Dynkin, 1965)

P{st+1 = s′|s0, ..., st} = P{st+1 = s′|st}.

Without considering history, at st, it is hard to predict st+1. Fortunately, when considering history,
we can predict st+1 by a simple linear function

st+1 = st−1 + st.

A toy experiment on Fibonacci sequence is shown in Appendix B.

In Appendix C, we give two other examples to illustrate that by historical augmentation, a com-
plex causal relationship in single-step transitions may be simplified as a linear causal relationship.
Fig. 1(a) presents the original MDP causal relationships and Fig. 1(b) demonstrates the MDP causal
relationships with state augmentation. When inferring the causal relationships in a trajectory, the

…st-1 st st+1

at-1 at at+1
rtrt-1 rt+1

(a) MDP

…st-1 st st+1

at-1 at at+1
rt rt+1rt-1

(b) MDP with historical augmentation

Figure 1: Causal diagrams of an MDP with or without historical augmentation. The black lines index
the original MDP causal relationships and the red lines index the causal relationships from historical
augmentation.The dashed lines indicate the information needed in the optimization.

causal function in Fig 1(b) can be simpler than the causal function in Fig 1(a).

From the analysis above, the motivation of our work is that historical information can simplify the
complex causal relationships in MDPs and thus has the potential to improve the sample efficiency
of DRL. However, the challenges are 1) how to ensure that the causal relationships learned from
historical augmentation are simple and 2) avoiding overfitting caused by the high-dimensional
historical data.

4 METHOD

…st-1 st st+1

at-1 at at+1
rt rt+1rt-1

DR DRsk-1,t-1sk-1,t-2

Figure 2: Causal diagram of a historically aug-
mented MDP with state abstraction. DR represents
the operation of dimensionality reduction.

In this section, we propose a new DRL approach
by the representation learning of historically
augmented states. Then, we formulate a new
DRL algorithm, HA3C, and illustrate the advan-
tage of this algorithm with a visual example.

4.1 REPRESENTATION LEARNING
ON HISTORICALLY AUGMENTED STATES

To address the problem of how to effectively
utilize the historical information in MDPs, we
propose a new DRL approach by the represen-
tation learning of historically augmented states.
The main idea of this representation learning
is to compress the high-dimensional historical
trajectories into a low-dimensional representa-
tion space (Andre & Russell, 2002; Li et al., 2006). On the one hand, the compressed historical
trajectories can be seen as the abstracted features of the historical information to extract the simple
causal relationships. On the other hand, this compression will avoid the overfitting caused by the
high-dimensional historical data (Ying, 2019).

4
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Figure 3: Network architecture of our represen-
tation learning. FC represents a fully connected
layer and RF represents the state representation
features.

To keep the Markov assumption of MDPs, our
representation learning does not compress the
current state. Let sk,t = {st−k+1, ..., st}. If
t < k, one can set each si ∈ sk−t,−1 by the
zero vector 0. The causal diagram of MDP
with our state abstraction is in Fig. 2. As we
can see, when predicting st+1 by sk,t and at,
the dimensionality reduction is only performed
on sk−1,t−1. A theoretical analysis of sample
complexity reduction from historical augmen-
tation is shown in Appendix E.

Let SkD denote the class of the stationary deter-
ministic policies based on k-order state trajec-
tories. Theorem 4.1 forms the basis of our DRL
approach. This theorem can be implied by Lemma 3.1. For completeness, we provide a proof in
Appendix E.
Theorem 4.1. Under the Markov assumption of MDPs, there exists a stationary deterministic policy
µ∗ ∈ SkD such that, for all t, V µ∗

(sk,t) = supπ∈HR V π(ht).

To capture the simplified causal relationships in MDPs by historical augmentation, we define a pair
of encoders zsk,t = f(sk,t) and zsk,t,at = g(zsk,t ,at). Based on the Markov assumption in MDPs,
we can predict zsk,t+1 , i.e., the representation of sk,t+1, by zsk,t,at . Thus, the two encoders are
trained by minimizing the following predicting loss:

L(f, g) = ||g(f(sk,t),at)− |f(sk,t+1)|×||22 = ||zsk,t,at − |zsk,t+1 |×||22, (1)
where | ∗ |× denotes the stop-gradient operation. As presented in Fig. 3, a simple yet effective CNN
network architecture is utilized in our representation learning. In the network of f(sk,t), we first use
a CNN layer to mine the historical information in sk−1,t−1. This layer produces the feature maps of
sk−1,t−1 by the multiple filters, which are as wide as the state dimensionality. Second, we utilize a
max pooling layer to capture the most important features and an average pooling layer to capture
the tendency features. Third, we compress the captured features into a low-dimensional space and
learn the features of st. Finally, we concatenate the compressed features of sk−1,t−1 and the learned
features of st. The concatenated features are the input of the next fully connected layer to obtain the
representation zsk,t . In the network of g(zsk,t ,at), we put the concatenation of zsk,t and at into the
two fully connected layers to obtain the representation zsk,t,at .

We combine our learned representations with the actor-critic method and thus the Q-function can
be defined as Q̂(zsk,t ,at) and the policy can be defined as µ(zsk,t) ∈ SkD. Define the probability
distribution of zsk,t+1 under µ as

Pµ{zsk,t+1 = zs′
k,: |zsk,t = zsk,:} =

∫
Z
Ea∼µ(zsk,: )

[
p(zs′

k,: |zsk,: ,a)
]
dzsk,: ,

where sk,: is a k-order state trajectory {s0, ..., sk−1} ending with s, i.e., sk−1 = s, Z is the set of all
possible zsk,: , and p(zs′

k,: |zsk,: ,a) is the probability of transferring to zs′
k,: with taking a at zsk,: .

Our optimization is based on a Bellman optimality operator B for µ as
BµQ̂(zsk,: ,a) = max

µ
Eat+1∼µ,zsk,t+1∼Pµ [rt + γQ̂(zsk,t+1 ,at+1)]. (2)

The following theorem gives the conditions to find the optimal stationary policy in our approach. The
proof of this theorem is given in Appendix E.
Theorem 4.2. Given a finite MDP, if 1) f(∗) and g(∗) are fixed, 2) ∀sk,:, s′k,: ∈ Sk,:, s ̸= s′ ⇔
zsk,: ̸= zs′

k,: , and 3) L(f, g) → 0, then Q̂(zsk,t ,at) converges to the optimal Q∗(st,at) by the
Bellman optimality operator in equation 2.

This theorem illustrates that no matter whether different historical trajectories lead to different
representations on the state s, we can still find the optimal stationary policy in the representation
space. To make condition 2) hold, we can increase the dimensionality of s in representation learning.
This operation also can improve sample efficiency (Ota et al., 2020). To see condition 3) hold, there
should exist a s′k,: that satisfies

p{sk,t+1 = s′k,:|sk,t,at} → 1.
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Figure 4: The operations in Q and µ.

There is an analysis of the function approxima-
tion error in Appendix E. We add zsk,t,at to Q̂
to consider the learned relationship between at

and zsk,t in the representation space. We also
add st to Q̂ and µ to consolidate the relation-
ships in single-step transitions. Thus Q and µ

can be writtern as Q̂(zsk,t,at , zsk,t , st,at) and
µ(zsk,t , st), respectively. The operations in Q̂
and µ are shown in Fig. 4. Our approach can
be connected with POMDPs, High-order MDPs
(HMDPs), and state abstraction. A detailed analysis of the connections between our approach and the
related work is shown in Appendix D.

4.2 HA3C ALGORITHM

In this subsection, we propose HA3C algorithm which is a combination of TD3, representation
learning, historical augmentation. HA3C has several networks as follows. Two critic networks
(Q̂ϕ1

, Q̂ϕ2
), two target critic networks (Q̂ϕT

1
, Q̂ϕT

2
), an actor network µθ, a target actor network µθT ,

two encoders (fσ, gσ), two fixed encoders (fσF , gσF ), two target encoders (fσT , gσT ), a checkpoint
actor network πθC , and a checkpoint encoder fσC .

To learn the representations with historical augmentation, fσ , and gσ are trained by the transitions in
buffer B = {sk,i,ai, ri, sk,i+1} to minimize the predicting loss in equation 1. For any parameter set
α, we define

z
sk,t
α = fα(sk,t), z

sk,t,at
α = gα(z

sk,t ,at).

Based on the assumption that fσF and gσF satisfy the conditions in Theorem 4.2 on the most
transitions in B, the Q-function is estimated by the following Huber loss function (Huber, 1992).

L(ϕi) = H(sk,:,a,r)∼B
[
xt − (Q̂ϕi(z

sk,t,at

σF ,zst
σF , st,at)

]
, (3)

xt = rt + γclip(min(Q̂ϕT
i
(z

sk,t+1,a
′

σT ,z
st+1

σT , st+1,a
′)), Q̂min, Q̂max),

a′ = µθT (z
sk,t+1

σT , st+1) + ϵT , ϵT ∼ N ,

where ϵT is target policy noise (Fujimoto et al., 2018), N is a Gaussian distribution N (0, σ), and
Q̂min and Q̂max are updated at each time step as

Q̂max ← max(xt, Q̂
max), Q̂min ← min(xt, Q̂

min).

Based on the learned Q-function, the policy network πθ is updated by

maxθ Esk,t∼B

[∑
i=1,2 Q̂ϕi(z

sk,t,a, zst , st,a)
]
, (4)

a = µθ(z
sk,t

σF , st).

To explore the new actions and thus generate new transitions in B, exploration noise ϵ is added as

at ← at + ϵe, ϵe ∼ N .

In our TD learning, σF , σT , ϕT , and θT are updated by

σF ← σT , σT ← σ, ϕT ← ϕ, θT ← θ. (5)

Because DRL algorithms are unstable (Henderson et al., 2018; Teh et al., 2017), we use the checkpoint
policy to obtain the cumulative reward in our evaluation (Vaswani et al., 2017). In the training of
HA3C, if the current policy outperforms the checkpoint policy, we will update the checkpoint policy
with the current policy, then σC ← σ and θC ← θ. The checkpoint policy can give a more accurate
evaluation by maintaining the high-performance policy unchanged. Furthermore, the LAP replay
buffer is utilized to store and replay the transitions (Fujimoto et al., 2023; 2020). The pseudo code of
online HA3C is presented in Appendix F.
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Figure 5: Visual results of the obtained states in Walker2d environment. Each state is coloured by
the reward of reaching this state. The red circles index the high-reward states, which can be more
frequently reached by the historical augmentation policy.

Fig. 5 is an example to illustrate the advantage of learning the policy in HA3C. We first collect the
obtained states of Walker2d MuJoCo control task by learning the policy with and without historical
augmentation, respectively. The max learning step is 4× 105. Then we map the collected states in
2D space together by UMAP. Finally, we show the reached states without the learning of historical
augmentation in the left subfigure of Fig. 5 and the reached states with the learning of historical
augmentation in the middle subfigure of Fig. 5. Each state is coloured by the reward of reaching it.
As we can see, although the actions to obtain the states in high-reward regions (indexed by the red
circles) can be explored, without historical augmentation, it is hard to learn the policy which can
regenerate these explored actions. Therefore, in the left subfigure, there are only a few states in the
high-reward regions. Fortunately, as shown in the middle subfigure, there are a lot of states in the
high-reward regions when learning the policy with historical augmentation. The histogram of the
rewards in the right subfigure of Fig. 5 also demonstrates the advantage of HA3C.

5 EXPERIMENTAL RESULT

In this section, first, we compare HA3C to five existing RL algorithms on five Mujoco control
tasks (Todorov et al., 2012). Then, we give the ablation study of HA3C to illustrate that historical
augmentation is the real source of the improvement in sample efficiency. Finally, we analyze the
parameter sensitivity on the length of the historical state trajectory and the number of dimensions of
compressed historical trajectories. The experimental setting is in Appendix G. Appendix H has some
supplementary experiments, including BipedaWalker experiment, DMC experiment, HA3C-SAC
experiment, HA3C-LSTM experiment, the comparison between HA3C and CrossQ (Bhatt
et al., 2024), running time analysis, and the state visualization.

5.1 COMPARATIVE EVALUATION

In this subsection, we evaluate our HA3C on five MuJoCo control tasks including Walker2d,
HalfCheetah, Ant, Humanoid, and Hopper. The compared algorithms are TD3 (Fujimoto et al.,
2018), SAC (Haarnoja et al., 2018), TQC (Kuznetsov et al., 2020), TD3+OFE (Ota et al., 2020), and
TD7 (Fujimoto et al., 2023). For all algorithms, each task runs 10 instances with different random
seeds. In each instance, the evaluation is performed every 5000 time steps. The learning curves are
shown in Fig. 6 and the numerical results at 300K time step and 3M time step are shown in Table 1.

From Fig. 6 and Table 1, we can see that 1) with the help of historical augmentation, HA3C
significantly outperforms the compared algorithms in terms of the early average highest returns (300K
time step) and final average highest returns (3M time step); 2) TD3+OFE improves TD3 by the state
representation, therefore, the results of TD3+OFE are better than the results of TD3. 3) With the help
of AvgL1Norm, checkpoints, and prioritized replay buffer, TD7 get the better results than TD3+OFE.

5.2 ABLATION STUDY

Our ablation study aims to prove that our historical augmentation is the real source of the improvement
in sample efficiency. Therefore, we compare HA3C to the following two ablations: 1) Copy Aug.
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HA3C          TD7             TQC

TD3 SAC           TD3+OFE

Figure 6: Learning curves of different RL algorithms on the MuJoCo control tasks. The shaded area
captures a 90% confidence interval around the average performance.

Table 1: The average highest returns over 10 instances on the MuJoCo control tasks at 300K and 3M
time steps. ± captures the standard deviation over trials. The best score is highlighted by cyan and
the second best score is highlighted by orange.

Algorithm Time step Walker2d HalfCheetah Ant Humanoid Hopper

TD3 300K 1848±947 7644±570 1540±1108 2202±807 2130±825
3M 5150±428 14085±613 5819±1216 6159±202 3655±131

SAC 300K 2720±433 8770±679 2366±375 2507±535 3240±116
3M 5575±149 16414±532 6892±269 5894±136 3637±124

TQC 300K 4210±235 6199±248 2778±407 3785±928 3594±47
3M 6706±370 15742±974 7672±1171 8795±991 3972±77

TD3+OFE 300K 4016±219 11085±485 5897±483 4687±441 3251±204
3M 6321±312 17187±165 8391±193 9632±273 3942±154

TD7 300K 5719±174 15002±240 7091±679 6043±159 3323±60
3M 7670±321 17787±286 9225±450 9850±226 4049±156

HA3C 300K 6036±429 16415±437 7488±389 6248±118 3607±106
3M 8563±829 18687±683 9794±891 11521±412 4413±59

copies the current state k times instead of augmenting with k steps of history in our CNN; 2) No Aug.
is TD3 with single-step representation learning and LAP. Our ablation study is performed on Ant,
Hopper, and Walker2d. All of the comparison methods have the same parameter setting.

As we can see from Fig. 7, HA3C significantly outperforms the compared algorithms in terms of both
sample efficiency and performance on Ant and Walker2d. HA3C also significantly outperforms the
compared algorithms in final performance on Hopper. This phenomenon illustrates that historical
augmentation is the real source for improving sample efficiency.
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HA3C           Copy Aug.              No Aug. 

Figure 7: Learning curves of the ablation study on the MuJoCo benchmark.

5.3 PARAMETER SENSITIVITY ANALYSIS

k N

k=6 k=12
 

k=18 k=24 No Aug.k=4 N=8 N=16 N=64 N=256 No Aug.N=6 

Figure 8: Learning curves of the parameter sensi-
tivity analysis on Ant.

In Fig. 8, we analyze the sensitivities of two im-
portant parameters, k and N , on Ant. k is the
length of the historical state trajectory and N is
the number of dimensions of compressed histor-
ical trajectories. Both of the above parameters
are not used in the previous representation-based
RL algorithms. k is set from {4, 6, 12, 18, 24}
and N is set from {6, 8, 16, 64, 256}.
As we can see, HA3C is a little sensitive to k and
N . When k ≤ 12 and N ≤ 16, our historical
augmentation will significantly improve the sam-
ple efficiency. When N = 256, the historical
information cannot improve neither sample effi-
ciency nor final performance. This phenomenon
illustrates that compressing the historical trajectories into a low-dimensional space is the key to
effectively utilize the historical information in MDP tasks. On the one hand, the low-dimensional
representation may simplify the complex causal relationships. On the other hand, it will avoid the
overfitting caused by the high-dimensional historical data (Ying, 2019). The performance is instability
when k = 24. This may be because when the length of the considered historical trajectories exceeds
the length required to extract latent contexts, noise will be generated in the representations.

6 CONCLUSION

Under the Markov assumption of MDPs, the probability distributions of the next state and reward
depend only on the current state and action. Therefore, given a finite Q-table, we can find the optimal
policy in an MDP by a heuristic algorithm which only considers single-step transitions. Different from
the heuristic algorithm, DRL algorithms need to approximate the causal functions by learning the
causal relationships in MDPs. In this case, DRL is often faced with sample inefficiency from complex
causal relationships, as a more complex causal function requires neural networks to approximate with
more parameters, samples, and time consumption.

Inspired by Hallak et al. (2015), to maximize the cumulative reward, the neural networks need to
learn the underlying latent contexts in MDPs. When these contexts are hidden in the historical
trajectories, historical information can be the "prompt" that simplifies the prediction of the next state.
Therefore, we focus on optimzing a history-dependent stationary policy in MDPs and propose a new
RL algorithm, HA3C. The value of k depends on how many transition steps can present the learnable
context for DRL. If we expand the example of the Fibonacci sequence as st+1 =

∑t
i=t−m si, m-

order historical trajectories should be considered in the state prediction. Our experiment demonstrates
the superior performance of HA3C over five state-of-the-art RL algorithms on MuJoCo control tasks.
When it is hard to determine k with little prior knowledge, multi-head CNNs with different values of
k can be utilized to learn the contexts in MDPs. This can be our future work.
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REPRODUCIBILITY STATEMENT

This paper fully discloses all the information needed to reproduce the main experimental results. The
experimental setting is in Appendix G. The experimental results can be reproduced by the updated
source code.
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A DIFFERENT POLICIES

Time-related policies can be History-dependent (H) or k-order Markov (Mk) (Derman et al., 2020;
Puterman, 2014). DenoteHt as the set of possible histories up to time step t. A history-dependent
policy π = {dt|t = 0, 1, ...} at t maps histories to actions as dt : Ht 7→ A. A k-order Markov policy
π = {dt|t = 0, 1, ...} at t maps k-order state transition trajectories to actions as dt : Sk,t 7→ A. A
k-order stationary (Sk) policy is unrelated to time as π : Sk,: 7→ A. In general, a randomized (R)
policy selects the actions by a probability distribution as π(a|∗). π is a deterministic (D) policy if
and only if π(a|∗) ∈ {0, 1}. Based on the above analysis, we can obtain History-dependent Random
(HR) policies, History-dependent Deterministic (HD) policies, k-order Markov Random (MkR)
policies, k-order Markov Deterministic (MkD) policies, k-order Stationary Random (SkR) policies,
and k-order Stationary Deterministic (SkD) policies.

The above policies are summarized in Table 2. The relationships among them are demonstrated in
Fig. 9. It is noteworthy that sometimes historical actions will be considered in decision-making. In
this case, without loss of generality, a historical state si|i≤t−1 can be updated by si ← si ∪ ai.

Table 2: Different types of policies.
Policy Abbreviation Action

History-dependent Random HR at ∼ dt(s0,t), dt ∈ π
History-dependent Deterministic HD at = dt(s0,t), dt ∈ π

k-order Markov Random MkR at ∼ dt(sk−t+1,t), dt ∈ π
k-order Markov Deterministic MkD at = dt(sk−t+1,t), dt ∈ π
k-order Stationary Random SkR at ∼ π(sk−t+1,t)

k-order Stationary Deterministic SkD at = π(sk−t+1,t)

HR HD

MkDMkR

SkR SkD

Figure 9: The relations among different policies.
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Table 3: The result of toy experience on Fibonacci sequence
Agent 5-order Fseq 10-order Fseq 15-order Fseq

A(5) 3 8 13
B(5) 3 3 3
B(10) 3 8 8
B(15) 3 8 13

B THE TOY EXPERIENCE ON FIBONACCI SEQUENCE

We design a toy experience on Fibonacci sequence for didactic purposes as follows. Given a finite
Fibonacci sequence (Fseq), l0 = 1, l1 = 1, l2 = 2, l3 = 3, l4 = 5,..., we define a Markov decision
process as:
1. A state s is defined by the corresponding item l and the initial state is defined by s0 = l1.
2. The action space of a is the natural numbers.
3. Define s′ as the next state of s and l′ as the next item of l. If the agent can accurately predict l′ at
l, i.e., a = l′, the agent will move forward in the sequence, i.e., s′ = l′, otherwise, the agent will
remain stationary, i.e., s′ = l.
4. If s′ = l′, we set reward r = 1, Otherwise, r = 0. This reward is designed to make the agent move
forward in the sequence.

We respectively train two policy networks, A and B, to solve the above MDP. At step t, the input of
A is st−1, st (considering historical information) but the input of B is only st (without considering
historical information). The Table 3 shows the cumulative rewards of training and testing the two
policy networks with different orders of Fseqs. A(i) means training A with i-order Fseq.

As we can see, by training with historical information, policy network A can make the agent move
forward in the Fseq of a higher order than that of the training Fseq, i.e., A can learn the causal
relationships in the Fseq. However, without historical information in training, policy network B can
only make the agent move forward in the Fseq of a lower order than that of the training Fseq, i.e., B
cannot learn the causal relationships in the Fseq but solve the problem by brute-force approximation.
This experience shows that augmenting the states with their historical information can simplify the
complex causal relationships in MDPs and thus improve the sample efficiency of DRL.

C TWO EXAMPLES OF IMPROVING SAMPLE EFFICIENCY IN MDPS BY
HISTORICAL AUGMENTATION

C.1 POLYNOMIAL EXAMPLE

Define a sequence as follows: 1) |β0| ≠ 1; 2) If i > 1, then βi+1 = β2
i .

Based on the sequence above, we can define an MDP M = ⟨S,A, R,P , γ⟩. At time step t, state
st = [βt, βt+2]

⊤ and action at is computed by a linear function f(∗) on state st or augmented state
sk,t. Without considering historical information, reward rt is defined as

rt = −|f(st)− (βt +
√

βt+2 + βt+2)| = −|wst + b− (βt +
√
βt+2 + βt+2)|, (6)

where w is a two-dimensional vector and b is a constant. In transition model P , s0 can be defined as
[β0, β2]

⊤ and st+1 can be computed by st as

st+1 = [β2
t , β

2
t+2]

⊤ = st ⊙ st, (7)

where ⊙ is Hadamard product. γ = 0.99.

From equation 6 and equation 7, it is easy to see that M satisfies the Markov assumption of MDPs.
To maximize the discounted cumulative reward in M, we should minimize

argmin
w,b
||f(st)− (βt +

√
βt+2 + βt+2)||2 = argmin

w,b
||wst + b− (β2

t +
√
βt+2 + βt+2)||2 (8)

at each time step t. However, it is hard to minimize equation 8 by f(st), which is a linear model on
st.
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The above problem can be solved by the historical augmentation of st. When considering the
historical augmentation of st, f(∗) on s2,t can be defined as

f(s2,t) = w0st +w1st−1 + b.

Instead of minimizing equation 8, we can minimize

arg min
w0,w1,b

||f(s2,t)− (βt +
√

βt+2 + βt+2)||2

= arg min
w0,w1,b

||w0st +w1st−1 + b− (β2
t +

√
βt+2 + βt+2)||2.

Let w0 = [1, 1], w1 = [0, 1], and b = 0. From βt+1 =
√
βt+2, we have

||w0st +w1st−1 + b− (βt +
√
βt+2 + βt+2)||2

= ||w0st +w1st−1 + b− (βt + βt+1 + βt+2)||2
= ||([1, 1][βt, βt+2]

⊤ + [0, 1][βt−1, βt+1]
⊤ − (βt + βt+1 + βt+2)||2

= 0.

In this case, the cumulative reward in M can be maximized.

C.2 PHYSICAL EXAMPLE

Newton’s second law of motion states that the acceleration of an object is directly proportional to the
net force acting on it and inversely proportional to its mass, i.e., α⃗ = F⃗ /m, where F⃗ is the force, m
is the mass, and α⃗ is the acceleration.

Based on Newton’s second law of motion, given an object with an initial speed v⃗0 in a physical
model Ω, with the assumption that the forces on the object are only related to Ω, we provide a formal
definition of the MDP example as follows. State st is defined as {m, v⃗t,Ω}. Action at is used to
predict the future speed v⃗t+1. The basic state transition is

st+1 = {m, v⃗t + α⃗t∆t,Ω} = {m, v⃗t +
F⃗t∆t

m
,Ω} = {m, v⃗t +

F(Ω)∆t

m
,Ω}

where F is the force analysis function. As we can see, the causes of the acceleration α⃗t are only m
and F(Ω). However, F is usually hard to approximate. Fortunately, there is historical context of α⃗
as α⃗ = dv⃗/dt. When there is a high sampling frequency of the states, the historical speed can be
regarded as the prompt for quickly approximating the acceleration of the object. Then the future
speed can be accurately predicted. In the above MDP, st+1 is only generated by st and at, but there
can be some historical context in this MDP.

D CONNECTED TO RELATED WORK

D.1 CONNECTED TO HMDPS

In HMDPs, the probability distributions of the reward and next state depend not only on the current
state and action but also on the historical states and actions. For a k-order HMDPs, we have

P{st+1 = s′, rt = r|s0,a0, r0, ..., st,at} = P{st+1 = s′, rt = r|st−k+1,at−k+1, .., st,at}.

The causal diagram of HMDP is presented in Fig. 10(a). Our approach optimizes the policy by a
simplified HMDP model in which the probability distributions of the reward and next state depend on
the current state-action pair and compressed historical trajectory as

P{st+1 = s′, rt = r|s0,a0, r0, ..., st,at} = P{st+1 = s′, rt = r|DR(st−1,k−1), .., st,at}.
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…st-1 st st+1

at-1 at at+1
rt rt+1rt-1

(a) HMDP

…lt-1 lt lt+1

at-1 at at+1
rtrt-1 rt+1

ot-1 ot ot+1

(b) POMDP

Figure 10: Causal diagram of HMDPs and POMDPs.

D.2 CONNECTED TO POMDPS

In POMDPs, the states are partially observable. Define the partially observable state at time step
t as lt and the observable part of lt as ot. The causal diagram of POMDPs is shown in Fig. 10(b).
Under the faithfulness assumption, ot and ot+k are mutually dependent conditional on ∀k > 1,
{oi,ai}t<i<t+k (Kalisch & Bühlman, 2007). Therefore, in a POMDP, the optimal policy π at time
step t should consider not only ot but also the historical information {oi,ai}0≤i<t. When k is large,
long-length rollout estimation is needed in POMDPs.

RL algorithms of world models, such as Dream, model the sequential decision-making as a
POMDP (Ha & Schmidhuber, 2018; Hafner et al., 2019a). They usually encode the historical
information at t by an encoder f t to construct st+1 as

st+1 = f t(ot,at, ..., f
1(o1,a1, f

0(o0,a0)).

When t is large, some partially observable states will be encoded many times, leading to the loss of
some important discriminative information.

Compared with POMDP-based RL algorithms, our HA3C can better adjust the considered steps
in history according to the actual task and thus effectively find the optimal policy in history-based
sequential decision-making.

D.3 CONNECTED TO STATE ABSTRACTION

State abstraction aims to reduce ground MDPs with large state spaces to abstract MDPs with smaller
state spaces by aggregating states according to some notion of equality or similarity (Bartlett,
1966). Through abstraction, intelligent agents may need to consider only the salient distinguishing
information of their environments. Given an abstraction function as F : S → S, we can define the
abstract version of MDP M as M = ⟨S,A, R,P , γ⟩. A Q-irrelevance abstraction function FQ is
that for any action a, FQ(s) = FQ(s′) implies Q(s,a) = Q(s′,a). Then we have the following
theorem.
Theorem D.1. Define an MDP as Mk = ⟨Sk,:,A, R,Pk, γ⟩. Under the conditions 1), 2), and 3) in
Theorem 4.2, encoder f is a Q-irrelevance abstraction on sk,:.

Theorem D.1 illustrates that our representation learning can be seen as the Q-irrelevance abstraction
of the historically augmented states. The proof of this theorem is given in Appendix E.

E THEORETICAL ANALYSIS

E.1 PROOF OF THEOREM 4.1

Now we give the proof to Theorem 4.1. The different types of policies in this proof are summarized
in Table 2. The relationships between these policies are shown in Fig. 9.

Based on the Markov assumption of MDPs, we have

P{st+1 = s′, rt = r|s0,a0, r0, ..., st,at} (9)
= P{st+1 = s′, rt = r|st−k+1,t,at}
= P{st+1 = s′, rt = r|st,at}.
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For any π ∈ HR, we can define Vπ(ht) by

V π(ht) = Eπ

[
+∞∑
i=t

γiR(ht+i,at+i)

]
.

From Fig. 9, we have SkD ∈MkD ∈MkR ∈ HR. In view of equation 9, we see for all t that
sup

π∈HR
V π(ht) = sup

π∈SkD
V π(sk,t).

First, for all t, we demonstrate that
sup

π∈HR
V π(ht) = sup

π∈MkR
V π(sk,t). (10)

This is a direct result of Theorem E.1. The proof of this theorem is presented in E.1.1.
Theorem E.1. Let π = {dt|t = 0, 1, ...} ∈ HR. Then ∀sk,: ∈ Sk,:, based on equation 9, there exists
a policy π′ = {d′t|t = 0, 1, ...} ∈MkR satisfying

pπ(at+i = a′, sk,t+i = s′k,:|sk,t = sk,:) = pπ
′
(at+i = a′, sk,t+i = s′k,:|sk,t = sk,:),

where pπ(∗) denotes the probability of ∗ provided that the agent follows policy π.

Then Theorem E.2 illustrates that the value functions of π ∈ MkD and π ∈ MkR have the same
upper bound. The proof of this theorem is demonstrated in E.1.2.
Theorem E.2. If a bounded function V on Sk,: satisfies the optimal Bellman equation that

V (sk,t) = sup
a∈A

{
R(sk,t,a) + γ

∫
Sk,:

V (sk,t+1|st+1 = s′)p(s′|sk,t,a)ds′k,:

}
,

then
sup

π∈MkD
V π(sk,t) = sup

π∈MkR
V π(sk,t).

Finally, based on equation 9, for all sk,: ∈ Sk,:, if sk,t = sk,:, then
sup
a∈A

V (sk,t) = sup
a∈A

V (sk,:). (11)

Let a = π(sk,:), where π ∈ SkD. It follows that
sup

π∈SkD
V π(sk,:) = sup

π∈MkD
V π(sk,t). (12)

Under equation 10, equation 11 and equation 12, ∀t, if sk,t = sk,:, then
sup

π∈HR
V π(ht) = sup

π∈MkR
V π(sk,t) = sup

π∈MkD
V π(sk,t) = sup

π∈SkD
V π(sk,:).

E.1.1 PROOF OF THEOREM E.1

We assume that Theorem E.1 holds for i = 1, 2, 3, ..., n − 1. Given a policy π ∈ HR, based
on equation 9, we see that there exists a policy π′ ∈MkR satisfying

pπ(sk,t+i = s′′k,:|sk,t = sk,:)

=

∫
Sk,:

∫
A
pπ(sk,t+i−1 = s′k,:,at+i−1 = a′|sk,t = sk,:)p(s

′′|s′k,:,a′)da′ds′k,:

=

∫
Sk,:

∫
A
pπ

′
(sk,t+i−1 = s′k,:,at+i−1 = a′|sk,t = sk,:)p(s

′′|s′k,:,a′)da′ds′k,:

= pπ
′
(sk,t+i = s′′k,:|sk,t = sk,:).

The above equality follows from the induction hypothesis. The π′ also can satisfy

pπ
′
(at+i = a′|sk,t+i = s′k,:) = pπ(at+i = a′|sk,t+i = s′k,:).

Therefore,
pπ

′
(at+i = a′, sk,t+i = s′k,:|sk,t = sk,:)

= pπ
′
(at+i = a′|sk,t+i = s′k,:)p

π′
(sk,t+i = s′k,:|sk,t = sk,:)

= pπ(at+i = a′|sk,t+i = s′k,:)p
π(sk,t+i = s′k,:|sk,t = sk,:)

= pπ(at+i = a′, sk,t+i = s′k,:|sk,t = sk,:).
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E.1.2 PROOF OF THEOREM E.2

In view of MkD ∈MkR, we have

sup
π∈MkD

V π(sk,t) ≤ sup
π∈MkR

V π(sk,t). (13)

It follows that

sup
a∈A

{
R(sk,t,a) + γ

∫
Sk,:

V (sk,t+1|sk,t+1 = s′)p(s′|sk,t,a))ds′
}

≥
∫
A
p(dt(sk,t) = a)

[
R(sk,t,a) + γ

∫
Sk,:

V (sk,t+1|st+1 = s′)p(s′|sk,t,a))ds′k,:

]
da,

where dt ∈MkR. Thus

sup
π∈MkD

V π(sk,t) ≥ sup
π∈MkR

V π(sk,t). (14)

Combining equation 13 and equation 14, we have

sup
π∈MkD

V π(sk,t) = sup
π∈MkR

V π(sk,t).

E.2 PROOF OF THEOREM 4.2

To prove Theorem 4.2, we give the proof of Theorem D.1 first. Under the condition 1) of Theorem 4.2,
one sees that there are only two independent variables sk,: and a. Under the Markov assumption and
the condition 2) of Theorem 4.2, we have

P{sk,t+1 = s′k,:|s0,a0, r0, ..., st,at} = P{sk,t+1 = s′k,:|zsk,t ,at}. (15)

Then, under the condition 3) of Theorem 4.2, we have

P{zsk,t+1 = zs′
k,: |sk,t,at}

.
= P{zsk,t+1 = zs′

k,: |zsk,t,at} (16)

= P{zsk,t+1 = zs′
k,: |g(f(sk,t),at)}

= P{zsk,t+1 = zs′
k,: |g(zsk,t ,at)}

= P{zsk,t+1 = zs′
k,: |zsk,t ,at}.

Define an MDP as Mk = ⟨Sk,:,A, R,Pk, γ⟩. From equation 15 and equation 16, we obtain

zsk,: = zs′
k,: → Q(sk,:,a) = Q(s′k,:,a)

Because zsk,: = f(sk,:), we see that encoder f is a Q-irrelevance abstraction on sk,:.

Define an abstracted MDP of Mk as Mk = ⟨Z,A, R,Pk, γ⟩, where Z is the encoded space of Sk,:.
Operator Bµ can be written as

BµQ̂(zsk,: ,a) = R(zsk,: ,a) + max
µ

γ

∫
Z
Q̂(zsk,: , µ(zsk,:))p(zs′

k,: |zsk,:,a)dzs′
k,: .

Now we provide a proof (sketch) to Theorem 4.2. Since the optimality of µ follows from the optimal
actions as well as their Q-values are preserved after abstraction, we see that B is a contraction in the
sup-norm and the optimal Q-function Q̂∗ is the unique fixed point of B. Thus we can finally find the
optimal policy µ∗ by Bµ (Melo, 2001). When the agent estimates the optimal Q-function based on
experience, we have the following update rule in each time step T by Lemma E.3 (Jaakkola et al.,
1993; Melo, 2001).

Q̂t+1(z
sk,t ,at) = Q̂t(z

sk,t ,at) + αt(rt + γmax
µ

Q̂t(z
sk,t+1 , µ(zsk,t+1))− Q̂t(z

sk,t ,at)).

Q̂t converges to Q∗ as long as
∞∑
t=0

αt =∞,

∞∑
t=0

α2
t <∞.
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Lemma E.3. The random process {∆t} taking values in Rn and defined as
∆t+1(y) = (1− αt)∆t(y) + αtFt(y)

converges to zero under the following assumptions:
1)

∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞,

2) E [||Ft(y)|Ft||w] ≤ γ||∆t||w with γ < 1, and
3) Var[Ft(y)|Ft] ≤ C(1 + ||∆t||2w) for C > 0,
where F = {∆t,∆t−1, ..., Ft−1, ..., αt−1, ..., } strands for the past at step t and || ∗ ||w refers to
some weighted maximum norm.

E.3 APPROXIMATION ERROR ANALYSIS

Define the value function in Z as V̂ . The bound of the approximation error between the transition
probabilities in space Sk,:, and Z based on the optimal value function V̂ ∗ can be defined as (Müller,
1997)

max
sk,:,a

∣∣∣∣ ∫
Sk,:

V̂ ∗(zs′
k,:)p(s′k,:|sk,:,a)ds′k,: −

∫
Z
V̂ ∗(zs′

k,:)p(zs′
k,: |zsk,: ,a)dzs′

k,:

∣∣∣∣ = δ.

Based on δ, we analyze the approximation error in Theorem E.4.
Theorem E.4. The worst-case difference between V µ(zsk,:) and optimal value function V ∗(s) is
bounded as:

||V ∗(s)− V̂ ∗(zsk,:)||∞ ≤
γδ

1− γ
.

We provide the proof to the above theorem as follows. Based on the Markov assumption of MDPs,
we have

||V ∗(s)− V̂ ∗(zsk,:)||∞ = ||V ∗(sk,:)− V̂ ∗(zsk,:)||∞.

Now we prove that

||V ∗(sk,:)− V̂ ∗(zsk,:)||∞ ≤
γδ

1− γ
. (17)

In view of R(s,a) = R(sk,:,a) = R(zsk,: ,a) in the value function approximation, we have

||V ∗(sk,:)− V̂ ∗(zsk,:)||∞
≤ max

sk,:,a
||Q∗(sk,:,a)− Q̂∗(zsk,: ,a)||

= max
sk,:,a

∣∣∣∣R(sk,:,a) + γ

∫
Sk,:

V ∗(s′k,:)p(s
′
k,:|sk,:,a)ds′k,:

− R(zsk,: ,a)− γ

∫
Z
V̂ ∗(zs′

k,:)p(zs′
k,: |zsk,: ,a)dzs′

k,:

∣∣∣∣
≤ γ max

sk,:,a

∣∣∣∣ ∫
Sk,:

V ∗(s′k,:)p(s
′
k,:|sk,:,a)ds′k,: − V̂ ∗(zs′

k,:)p(s′k,:|sk,:,a)ds′k,:
∣∣∣∣

+ γ max
sk,:,a

∣∣∣∣ ∫
Sk,:

V̂ ∗(zs′
k,:)p(s′k,:|sk,:,a)ds′k,: −

∫
Z
V̂ ∗(zs′

k,:)p(zs′
k,: |zsk,: ,a)dzs′

k,:

∣∣∣∣
≤ γ

(
||V ∗(sk,:)− V̂ ∗(zsk,:)||∞ + δ

)
.

This proves equation 17. Thus Theorem E.4 holds.

E.4 SAMPLE COMPLEXITY ANALYSIS

E.4.1 CONNECTED TO TRADITIONAL Q-LEARNING

In traditional Q-learning for an MDP, we should minimize the Bellman loss function which iterates
over all the states in S as

L =

∣∣∣∣∣∣
∣∣∣∣∣∣Qt(s,a)−

∑
j∈|S|

Ps,j(a)

(
R(s,a) + γmax

b
Qt(j, b)

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

.
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Table 4: Symbol definitions in time complexity analysis.
Symbol Definition

K History length
N Dimensional number of the compressed historical trajectory
|S| State number

nepoch Epoch number in training
ds Dimensional number of the state
w Number of convolution steps

Cnet The time complexity of neural networks in No. Aug
C

(A)
net The time complexity of neural networks in HA3C

Csam The time complexity from the state number in No. Aug
C

(A)
sam The time complexity from the state number in HA3C

Ctotal The total time complexity of No. Aug
C

(A)
total The total time complexity of HA3C

In this case, from the perspective of PAC, we get a |S|-based sample complexity as shown in Theorem
2 of Even-Dar & Mansour (2003). The Bellman loss function for DRL is

L =

∣∣∣∣∣∣
∣∣∣∣∣∣Qt(s, πθ(s))−

∑
j∈|S|

Ps,j(πθ(s))

(
R(s, πθ(s)) + γmax

θ
Qt(j, πθ(j))

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

This loss function should be minimized by training the networks to approximate the causal relation-
ships in MDPs, i.e., training the policy network to generate the optimal action as a∗ = πθ(s) and
predicting the future state in representation learning. Existing sample efficiency analysis is based
on the Bellman loss of the traditional RL approach and thus do not consider the sample efficiency
of training neural networks in the above causal inference. Our historical augmentation improves
sample efficiency for DRL by making the causal inference easier, which is beyond traditional sample
efficiency analysis for RL.

Our Bellman loss function is

L =

∣∣∣∣∣∣
∣∣∣∣∣∣Qt(z

sk,: , πΘ(z
sk,:))−

∑
j∈|S|

Psk,:,jk,:(πΘ(z
sk,:))

(
R(sk,:, πΘ(z

sk,:)) + γmax
Θ

Qt(jk,:, πΘ(z
sk,:))

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

Based on the fact that historical information can simplify the causal relationships in MDPs, our
historical augmentation can make policy network πΘ easier to generate a∗ than πθ and the future
state easier to be predicted by representation learning. In this way, sample efficiency can be improved.
The detailed analysis is shown in Motivation and the following subsection.

E.4.2 TIME COMPLEXITY ANALYSIS

Based on the above analysis, we perform the time complexity analysis on our HA3C and No. Aug..
First, we list the symbol definitions in Table 4.

Now, we compare the total time complexities of HA3C and No. Aug.. As we can see, Ctotal is based
on Cnet, Csam, and nepoch as

Ctotal = Cnet × Csam × nepoch.

We also have

C
(A)
total = C

(A)
net × C(A)

sam × nepoch.

The time complexity of our CNN in our representation is O(d2swKN), thus

C
(A)
net = Cnet +O(d2swKN).

When the causal relationships in an MDP cannot be learned by No. Aug., but can be learned by
HA3C, we get Csam = O(|S|) and C

(A)
sam = O(1).
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For example, when training a neural network to predict the next item of each item in a M -order
Fibonacci sequence as l(0) = 1, l(1) = 1, l(2) = 2, l(3) = 3, l(4) = 5,..., without considering
historical information, this neural network may perform brute-force approximation on every item
in this sequence. In this case, the time complexity from the item number is O(M). However, with
historical information, only a few consecutive items are needed for the neural network to learn the
simple linear causal relationship in the Fibonacci sequence, i.e., l(i+ 1) = l(i) + l(i− 1). In this
case, the time complexity from the item number is O(1).

Therefore, when the time complexity of No Aug. is

Ctotal = Cnet × |S| × nepoch.

The best time complexity of HA3C is

C
(A)
total−best = (Cnet +O(d2swKN))× nepoch.

E.4.3 ANALYZING SAMPLE EFFICIENCY IN EXPLORATION AND EXPLOITATION

In this subsection, we illustrate the benefit of sample efficiency from history augmentation based on
two facts:
1) Historical augmentation can improve exploration in DRL. The policy can generate different actions
for different transition trajectories that end with the same state;
2) Historical augmentation can also improve exploitation in DRL. History augmentation may simplify
the causal relationships between the state and the explored high-reward action, thus the policy network
can effectively learn and then regenerate this action.

The detailed analysis of these two facts is as follows. In the previous DRL methods for MDPs, when
the policy µ and st = s are fixed, we can get only one action by

at = µ(st), µ ∈ S1D.

However, based on our history-based policy

at = µ(sk,t), µ ∈ SkD|k≥2.

at can be changed by the change of the sk−1,t−1. We define the set of possible actions from policy
µ ∈ SkD at state s as As

µ and the set of possible k-order trajectories end with state s as Ss
k . As we

can see, |As
µ| ≤ |Ss

k |.
Fig. 11 is the causal diagram of regenerating a high-reward action with or without historical aug-
mentation. For a policy network µθ ∈ S1D and a = µθ(s), we may get a∗ = a + ϵ with
R(s,a∗) > R(s,a). However, it may be hard to regenerate a∗ by the policy network µθ(s) because
the noise ϵ is independent of parameter θ. Fortunately, the causal relationship between sk,t|k≥2

and a∗ may be simpler than the causal relationship between st and a∗ (See the example in Ap-
pendix C). In this case, we can effectively learn the policy µθ ∈ SkD to regenerate the a∗ at state s
by a∗ = µθ(sk,t) (See the example in Fig. 5).
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…st-1st

a*

st

t( )θµ s k,t( )θµ s

st-k+1

A high-reward action 
from random explorations

Regenerate  a* without
historical augmentation

Regenerate  a* with
historical augmentation

Figure 11: The causal diagram of regenerating a high-reward action with or without historical
augmentation. The dashed lines indicate the information needed in the optimization.

F HA3C ALGORITHM

Algorithm 1 Online HA3C
Initialize the hyper-parameters and networks
Initialize replay buffer B
for episode = 0 to episodemax do

Collect k-order transitions by µθ and store them in LAP buffer B
if Checkpoint condition then

if µθ outperforms µθc then then
Update checkpoint networks µθc ← µθ and fσc ← fσ

end if
end if
Sample k-order transitions from LAP buffer B
Train the encoder fσ and gσ by equation 1
Train Q̂ϕ1 and Q̂ϕ2 by equation 3
Train πθ by equation 4
if Target update frequency steps have passed then

Update target networks by equation 5
end if

end for

G EXPERIMENTAL SETTING

All experiments are run on a single Nvidia 3090 GPU and AMD 5900X CPU. We use the following
software versions:
• Python 3.9.12
• Pytorch 2.0.0 (Paszke et al., 2019)
• CUDA 12.2
• Gymnasium 0.29.1 (Brockman et al., 2016)
• MuJoCo 3.2.3 (Todorov et al., 2012)

The environments in our experiment are shown in Fig. 12 and detailed as follows:
1) Walker2d aims to walk in the forward direction as fast as possible.
2) HalfCheetah aims to run forward as fast as possible.
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Walker2d HalfCheetah Ant Humanoid Hopper

Figure 12: The environments in our experiments.

Table 5: Hyper-parameters.
Parameter Value Brief explanation

Start-timesteps 25000 Time steps of the initial random policy is used
Batch-size 512 Batch size for both actor and critic

tpol 3 Policy update frequency
ttar 250 Target update rate
tear 1 Early assessment episodes for checkpoint operation
tlat 10 Late assessment episodes for checkpoint operation
Tear 750K Early time steps for checkpoint operation
σe 0.1 Std of exploration noise
σT 0.05 Std of target policy noise
c (-0.11,0.11) Target policy noise clipping
k 6 The length of the considering state sequences
γ 0.99 Discount factor
le 0.0006 The learning rate of the encoder network
lp 0.0003 The learning rate of the actor-network
lQ 0.0003 The learning rate of the network of the Q-functions
α 0.25 Controlling the amount of prioritization in LAP
Pm 1.1 Minimum priority in LAP

3) Ant aims to coordinate the four legs to move in the forward direction as fast as possible.
4) Humanoid aims to walk forward as fast as possible without falling over.
5) Hopper aims to make hops that move in the forward direction as fast as possible.

The compared RL algorithms in our experiment are detailed as follows.
• Online:
1) TD3 takes the minimum value between a pair of critic networks to address the overestimation of
Q-value and reduces per-update error by delaying policy updates (Fujimoto et al., 2018).
2) SAC is an actor-critic algorithm based on the maximum entropy approach. The objective
encourages policy stochasticity by augmenting the reward with the entropy at each step (Haarnoja
et al., 2018).
3) OFE-TD3 increases the input dimensionality of the networks by representation learning to improve
the sample efficiency of TD3 (Ota et al., 2020).
4) TQC addresses the overestimation of Q-value by the combination of the distributional representa-
tion of a critic, truncation of critic prediction, and ensembling of multiple critics (Kuznetsov et al.,
2020).
5) TD7 is an effective DRL algorithm which combines TD3, state representation learning,
checkpoints, prioritized experience replay, and a behaviour cloning term (only used for offline
RL) (Fujimoto et al., 2023).

The hyper-parameters of HA3C are shown in Table 5. For Hopper, γ is set as 0.992. Network
architecture details are described in Pseudocode 1-3. The optimizer of our networks is Adam Kingma
(2015).
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Pseudocode 1: Critic network Details

Critic network:
L1 = Linear(state-dim + action-dim, 256)
L2 = Linear(zs-dim * 2 + 256, 256)
L3 = Linear(256, 256)
L4 = Linear(256, 1)
Critic forward pass:
x = Concatenate([st, at])
x = AvgL1Norm(L1(x))
x = Concatenate([zsk,t,at , zsk,t , x])
x = Elu(L2(x ))
x = Elu(L3(x ))
τ(sk,t,at) = L4(x )

Pseudocode 3: Encoder Details

State Encoder f Network:
Conv = Conv2d(kernel-num=64, kernel-size=(3, state-dim), stride=1)
Pool = MaxPool2d((1, 1))
L1 = Linear(128, 8)
L2 = Linear(state-dim, 256)
L3 = Linear(256+8, 256)
L4 = Linear(256, zs-dim)

State Encoder f Forward Pass:
x = Conv(sk−1,t−1)
x = Pool(x)
x = Elu(L1(x))
x = AvgL1Norm(x)
y = Elu(L2(st))
x = Concatenate([x, y])
x = Elu(L3(x))
zsk,t = AvgL1Norm(L4(x))

State-Action Encoder g Network:
L1 = Linear(action-dim + zs-dim, 256)
L2 = Linear(256, 256)
L3 = Linear(256, zs-dim)
State-Action Encoder g Forward Pass:
x = Concatenate([at, zsk,t ])
x = Elu(L1(x))
x = Elu(L2(x))
zsk,t,at = L3(x)
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Pseudocode 2: Actor network Details

Actor network:
L1 = Linear(state-dim, 256)
L2 = Linear(zs-dim + 256, 256)
L3 = Linear(256, 256)
L4 = Linear(256, action-dim)
Actor forward pass:
x = AvgL1Norm(L1(st))
x = Concatenate([zsk,t , x])
x = ReLU(l1(x))
x = ReLU(l2(x))
at = Tanh(l3(x))

H SUPPLEMENTARY EXPERIMENT

H.1 BIPEDAWALKER EXPERIMENT

To illustrate the benefit of history augmentation for complex MDP tasks, we test HA3C and No
Aug. (HA3C without historical augmentation) on BipedalWalker and BipedalWalker-hardcore tasks.
In BipedalWalker a robot is trained to move forward with slightly uneven terrain. Compared with
BipedalWalker, BipedalWalker-hardcore is a more complex task, where the above robot is trained to
move forward with ladders, stumps, and pitfalls. Therefore, the causal relationships in the transitions
of BipedalWalker-hardcore are more complex than those in the transitions of BipedalWalker. The
environments and learning curves are shown in Fig. 13 and the numerical results are shown in Table 6.

HA3C           No Aug. 

Figure 13: The environments and learning curves on BipedalWalker and BipedalWalker-hardcore
tasks.
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Table 6: The average highest returns of HA3C and No Aug. on BipedaWalker and BipedaWalker-
hardcore tasks.

Algorithm BipedalWalke BipedalWalker-hardcore

HA3C 332 ±27 316 ±19
No Aug. 325 ±31 171 ±21

As we can see, although, both HA3C and No Aug. can get the high cumulative rewards in Bipedal-
Walker, only HA3C can get the high cumulative rewards in BipedalWalker-hardcore. This is because
by historical augmentation our HA3C can simplify the causal relationships in the transitions of
BipedalWalker-hardcore.

H.2 DEEP MIND CONTROL SUITE EXPERIMENT

In this subsection, we evaluate our HA3C on five DMC tasks including ball_in_cup-catch, walker-run,
quadruped-run, cheetah-run, and reacher-hard (Tassa et al., 2018). The compared algorithms are
TD3 (Fujimoto et al., 2018) and TD7 (Fujimoto et al., 2023). For all algorithms, each task runs
10 instances with 106 time steps with different random seeds. In each instance, the evaluation is
performed every 5000 time steps. Some parameters are changed as follows. For quadruped-run, le is
set as 0.0006, σT is set as 0.06, and c is set as (−0.12, 0.12). For other tasks, le is set as 0.0005 and
c is set as (−0.1, 0.1). The learning curves are shown in Fig. 14 and the numerical results at 300K
time step and 1M time step are shown in Table 7.

HA3C           TD7          TD3 

Figure 14: Learning curves of different RL algorithms on the deep mind control suite tasks.

As we can see, in most cases, HA3C has higher cumulative rewards than the compared algorithms.
For walker-run, quadruped-run, and reacher-hard, HA3C outperforms the compared algorithms in
terms of both the early performance and the final performance. For ball_in_cup-catch and cheetah-run,
HA3C outperforms all of the compared algorithms in the final performance but the average return of
HA3C is lower than the average return of TD7 in the early performance.

H.3 COMBINING HISTORICAL REPRESENTATION LEARNING WITH SAC

In this subsection, we combine our historical representation learning with SAC to construct HA3C-
SAC method (Haarnoja et al., 2018). Then we evaluate HA3C-SAC on three MuJoCo control
tasks including Walker2d, Humanoid, and Hopper. The compared methods includes the original
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Table 7: The average highest returns over 10 instances on the deep mind control suite tasks at 400K
and 1M time steps.

Algorithm Time step ball_in_cup-catch walker-run quadruped-run cheetah-run reacher-hard

TD3 400K 981±2 387±71 331±65 550±76 971±3
1M 985±1 481±54 444±22 729±39 979±1

TD7 400K 990±2 654±96 531±69 836±75 879±91
1M 991±1 706±95 703±54 868±56 979±5

HA3C 400K 989±2 713±41 598±36 834±108 976±5
1M 992±1 789±19 758±24 916±5 985±5

SAC and SALE-SAC, which combines the representation learning with SAC without historical
augmentation (Fujimoto et al., 2023). The learning curves are shown in Fig. 15 and the numerical
results are shown in Table 8.

HA3C-SAC SALE-SAC SAC

Figure 15: Learning curves of different RL algorithms on SAC, SALE-SAC, and HA3C-SAC on
Mujoco tasks.

Table 8: The average highest returns on Mujoco control tasks at 400K and 1M time steps.
Algorithm Time step Walker2d Humanoid Hopper

SAC 400K 2843±148 2268±905 3195±33
1M 3921±163 5498±131 3422±86

SALE-SAC 400K 5414±377 6430±191 3515±125
1M 6021±492 8368±330 4038±126

HA3C-SAC 400K 5796±395 7112±339 3566±39
1M 6950±623 9047±238 4131±48

As we can see, HA3C-SAC outperforms SAC and SALE-SAC on the three Mujoco control tasks.
The above results and the results Section 5.1 illustrate that our historical representation learning is
robust to different algorithms and tasks.

H.4 THE COMPARISON BETWEEN CNN AND LSTM ON HA3C

In this subsection, a new algorithm, HA3C-LSTM, is constructed to learn the historical representation
by the LSTM architecture (Hochreiter & Schmidhuber, 1997). Like HA3C, HA3C-LSTM compresses
historical trajectories into an 8-dimensional space in the representation learning. The learning curves
are shown in Fig. 16 and the numerical results are shown in Table 9.
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HA3C-CNN

HA3C-LSTM

Figure 16: Learning curves of HA3C-CNN and HA3C-LSTM on Mujoco tasks.

Table 9: The average highest returns on Mujoco control tasks at 300K and 1M time steps.
Algorithm Time step Walker2d HalfCheetah Ant Humanoid Hopper

HA3C-CNN 300K 6036±429 16415±437 7488±389 6248±188 3594±106
1M 7324±433 17863±515 8771±362 8572±446 4110±105

HA3C-LSTM 300K 5809±394 16637±334 7514±442 6185±273 3734±178
1M 7242±409 18160±413 8784±552 8259±279 4212±64

Overall, the performances of HA3C and HA3C-LSTM are competitive (similar). HA3C slightly
outperforms HA3C-LSTM on Walker2d and Humanoid. HA3C-LSTM slightly outperforms HA3C
on HalfCheetah, Hopper, and Ant. However, as we can see from Fig. 18, HA3C-CNN runs faster
than HA3C-LSTM. Therefore, we choose CNN architecture in our historical representation learning.

H.5 THE COMPARISON BETWEEN HA3C AND CROSSQ

In this subsection, we compare HA3C with CrossQ on Mujoco benchmark with 3M time steps in the
following The learning curves are shown in Fig. 17 and the numerical results are shown in Table 10.

Table 10: The average highest returns on Mujoco control tasks at 300K and 3M time steps.
Algorithm Time step Walker2d HalfCheetah Ant Humanoid Hopper

CrossQ 300K 6036±429 10192±1958 5712±684 9261±473 3551±62
3M 7324±433 14251±2020 7913±459 11978±510 3780±200

HA3C 300K 6036±429 16415±437 7488±389 6248±188 3594±106
3M 8563±829 18687±683 9794±891 11521±412 4413±59

We can see that 1) with the help of our historical representation learning, HA3C significantly
outperforms CrossQ on Walker2d, HalfCheetah, Ant and Hopper at 300K and 3M time steps; 2)
CrossQ significantly outperforms HA3C on Humanoid at 300K timesteps and slightly outperforms
HA3C at 3M timesteps.
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HA3C

CrossQ

Figure 17: Learning curves of HA3C and CrossQ on Mujoco tasks.

Figure 18: Running times of different algorithms for 1M time steps.

H.6 RUNNING TIME

To understand the computational cost of HA3C, we compare the running times of different algorithms
with identical computational resources in HalfCheetah control task. The result is shown in Fig. 18.
As we can see, the computational cost of HA3C is less than the computational costs of TD3+OFE
and TQC but is more than the computational costs of TD3, SAC, and TD7.

The computational cost of HA3C-LSTM is more than that of HA3C. From Section H.4, we can
see that the performances of HA3C and HA3C-LSTM are similar. Therefore, we choose CNN
architecture in our historical representation learning.

Fig. 19 presents the visual results and the histogram of the transitions in HA3C and No Aug. The
collected states of each control task are mapped together by UMAP. The max learning step is 4× 105

and each state is coloured by the reward of reaching it.

As we can see, in Walker2d, Ant, and Humanoid, the high-reward states from HA3C are more than
those from No Aug. This result illustrates that the sample efficiency of DRL can be effectively
improved by learning the state representations with historical augmentation.
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Figure 19: Visualized results of the explored states in No Aug. and HA3C.

I THE USAGE OF LARGE LANGUAGE MODELS

In this paper, large language models are used for grammar checking and polishing.
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