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Abstract

Text-attributed Graphs (TAGs) are commonly found in the real world, such as1

social networks and citation networks, and consist of nodes represented by textual2

descriptions. Currently, mainstream machine learning methods on TAGs involve3

a two-stage modeling approach: (1) unsupervised node feature extraction with4

pre-trained language models (PLMs); and (2) supervised learning using Graph5

Neural Networks (GNNs). However, we observe that these representations, which6

have undergone large-scale pre-training, do not significantly improve performance7

with a limited amount of training samples. The main issue is that existing methods8

have not effectively integrated information from the graph and downstream tasks9

simultaneously. In this paper, we propose a novel framework called G-Prompt,10

which combines a graph adapter and task-specific prompts to extract node features.11

First, G-Prompt introduces a learnable GNN layer (i.e., adaptor) at the end of PLMs,12

which is fine-tuned to better capture the masked tokens considering graph neighbor-13

hood information. After the adapter is trained, G-Prompt incorporates task-specific14

prompts to obtain interpretable node representations for the downstream task. Our15

experiment results demonstrate that our proposed method outperforms current16

state-of-the-art (SOTA) methods on few-shot node classification. More importantly,17

in zero-shot settings, the G-Prompt embeddings can not only provide better task18

interpretability than vanilla PLMs but also achieve comparable performance with19

fully-supervised baselines.20

1 Introduction21

Text-Attributed Graphs (TAGs) are a type of graph that have textual data as node attributes. These22

types of graphs are prevalent in the real world, such as in citation networks [12] where the node at-23

tribute is the paper’s abstract. TAGs have diverse potential applications, including paper classification24

[3] and user profiling[14]. However, studying TAGs presents a significant challenge: how to model25

the intricate interplay between graph structures and textual features. This issue has been extensively26

explored in several fields, including natural language processing, information extraction, and graph27

representation learning.28

An idealized approach involves combining pre-trained language models (PLMs) [10, 20] with graph29

neural networks and jointly training them [35, 24]. Nevertheless, this method requires fine-tuning the30

PLMs, which demands substantial computational resources. Additionally, trained models are hard to31

be reused in other tasks because finetuning PLM may bring catastrophic forgetting[2].32

Therefore, a more commonly used and efficient approach is the two-stage process [32, 34, 23]:33

(1) utilizing pre-trained language models (PLMs) for unsupervised modeling of the nodes’ textual34

features. (2) supervised learning using Graph Neural Networks (GNNs). Compared to joint training35

of PLMs and GNNs, this approach offers several advantages in practical applications. For example,36
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it can be combined with numerous GNN frameworks or PLMs, and this approach does not require37

fine-tuning PLMs for every downstream task. However, PLMs are unable to fully leverage the38

wealth of information contained in the graph structure, which represents significant information.39

To overcome these limitations, some works propose self-supervised fine-tuning PLMs using graph40

information to extract graph-aware node features [3]. Such methods have achieved significant success41

across various benchmark datasets[12].42

However, both self-supervised methods and using language models directly to process TAG suffer43

from a fundamental drawback. They cannot incorporate downstream task information, which results in44

identical representations being generated for all downstream tasks. This is evidently counterintuitive45

as the required information may vary for different tasks. For example, height is useful information46

in predicting a user’s weight but fails to accurately predict age. This issue can be resolved by47

utilizing task-specific prompts combined with language models [26] to extract downstream task-48

related representations. For example, suppose we have a paper’s abstract {Abstract} in a citation49

network, and the task is to classify the subject of the paper. We can add some prompts to a node’s50

sentence: {This, is, a, paper, of, [mask], subject, its, abstract, is, :,Abstract}. And then use51

the embedding corresponding to the [mask] token generated by PLMs as the node feature. Yet this52

approach fails to effectively integrate graph information.53

To better integrate task-specific information and knowledge within graph structure, this paper proposes54

a novel framework called G-Prompt. G-Prompt combines a graph adapter and task-specific prompts to55

extract node features. Specifically, G-Prompt contains a graph adapter that helps PLMs become aware56

of graph structures. This graph adapter is self-supervised and trained by fill-mask tasks on specific57

TAGs. G-Prompt then incorporates task-specific prompts to obtain interpretable node representations58

for downstream tasks.59

We conduct extensive experiments on three real-world datasets in the domains of few-shot and zero-60

shot learning, in order to demonstrate the effectiveness of our proposed method. The results of our61

experiments show that G-Prompt achieves state-of-the-art performance in few-shot learning, with an62

average improvement of avg. 4.1% compared to the best baseline. Besides, our G-Prompt embeddings63

are also highly robust in zero-shot settings, outperforming PLMs by avg. 2.7%. Furthermore, we64

conduct an analysis of the representations generated by G-Prompt and found that they have high65

interpretability with respect to task performance.66

2 Background67

2.1 Text-Attributed Graph68

Let G = {V,A} denotes a text-attributed graph (TAG), where V is the node set and A is the69

adjacency matrix. Each node i ∈ V is associated with a sentence Si = {si,0, si,1, ..., si,|Si|}, which70

represents the textual feature of the node. In most cases, the first token in each sentence (i.e., si,0) is71

[cls], indicating the beginning of the sentence. This paper focuses on how to unsupervised extract72

high-quality node features on TAGs for various downstream tasks.73

2.2 Pretrained Language Models74

Before we introduce G-Prompt, we require some basic concepts of pre-trained language models.75

Framework of PLMs. A PLM consists of a multi-layer transformer encoder that takes a sentence Si76

as input and outputs the hidden states of each token:77

PLM({si,0, si,1, ..., si,|Si|}) = {hi,0, hi,1, ..., hi,|Si|}, (1)
where hi,k is the dense hidden state of si,k.78

Pretraining of PLMs. The fill-mask task is commonly used to pre-train PLMs [4, 20, 10]. Given79

a sentence Si, the mask stage involves randomly selecting some tokens and replacing them with80

either [mask] or random tokens, resulting in a modified sentence Ŝi = {si,0, si,1, ..., ŝi,k, ..., si,|Si|},81

where ŝi,k represents the masked token. In the filling stage, Ŝi is passed through the transformer82

encoder, which outputs the hidden states of each token. We denote the hidden state of the masked83

token ŝi,k as ĥi,k, which is used to predict the ID of the masked token:84

ŷi,k = fLM(ĥi,k), (2)
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Figure 1: Framework of G-Prompt

where fLM is a linear transformation with softmax fuction, ŷi,k ∈ N1×T , and T is the size of the85

vocabulary. The loss function of the fill-mask task is defined as L = CE(ŷi,k, yi,k), where yi,k is the86

ID of the masked token, and CE(·, ·) is the cross-entropy loss.87

Sentence Embedding. The hidden state of the [cls] token (hi,0) and the mean-pooling of all hidden88

states are commonly used as sentence embeddings [28, 6].89

Prompting on PLMs. Sentence embedding and token embedding are simultaneously pre-trained90

in many PLMs. However, due to the gap between pretraining tasks and downstream tasks, sentence91

embedding always requires fine-tuning for specific tasks. To address this issue, some studies92

utilize prompts to extract sentence features [13]. For example, suppose we have a paper’s abstract93

{Abstract}, and the task is to classify the subject of it. We can add some prompts to the sentence:94

{This, is, a, paper, of, [mask], subject, its, abstract, is, :,Abstract} (3)

Then this sentence is encoded by PLMs, and we let hi|p denote the hidden state of the [mask] token95

in prompts. Extensive experiment shows that using prompts can shorten the gap between PLMs and96

downstream tasks and maximize the utilization of the knowledge PLMs learned during pretraining.97

2.3 Graph Neural Networks98

Graph Neural Networks (GNNs) have achieved remarkable success in modeling graph-structured99

data[30, 7]. The message-passing framework is a commonly used architecture of GNN. At a high100

level, GNNs take a set of node features X0 and an adjacency matrix A as input and iteratively capture101

neighbors’ information via message-passing. More specifically, for a given node i ∈ V , each layer of102

message-passing can be expressed as:103

xk
i = Pool{fθ(xk−1

j )|j ∈ Ni} (4)

where Pool{·} is an aggregation function that combines the features of neighboring nodes, such as104

mean-pooling. And Ni denotes the set of neighbors of node i.105

3 Method: G-Prompt106

Utilizing the information of downstream tasks and graphs is crucial for generating high-quality107

node representations. The term “high quality” is inherently task-specific, as exemplified by the108

fact that height is a useful feature in predicting user weight but fails to accurately predict age.109

Besides, the valuable topological information of TAGs can significantly enhance the understanding110

of textual features in TAGs. However, extracting node features using both task and graph information111

simultaneously is significantly challenging. Current PLMs used for handling textual features are112

graph-free, while current graph-based methods employed to extract node features are primarily113

task-free. Therefore, this paper proposes a novel self-supervised method, G-Prompt, capable of114

extracting task-specific and graph-aware node representations.115
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3.1 Overview116

While previous works have frequently employed PLMs to process TAGs, these investigations have117

been constrained in extracting a broad node representation from the text-based characteristics and118

have not incorporated task-specific prior knowledge. Consequently, additional learning supervision119

via GNNs is needed to enable the effective adaptation of these node representations to downstream120

tasks. To address this limitation, the paper suggests incorporating prompts and PLMs into the process121

of extracting task-relevant node features from TAGs. Nevertheless, PLMs only utilize contextual122

information to generate the prompts-related output, which may be insufficient for handling TAGs.123

Graph structures often contain essential information that can facilitate a better understanding of124

textual features. For instance, in a citation network, a masked sentence such as “This paper focuses125

on [MASK] learning in AI domain” could have multiple candidate tokens based solely on context.126

However, if many papers related to graphs are cited, we can infer with greater confidence that the127

masked token is likely “graph”. At present, PLMs operate solely based on context, and their structure128

is graph-free. Directly incorporating graph information into PLMs by prompts is not feasible because129

limited prompts cannot describe the entire topological structure adequately.130

Therefore, the proposed G-Prompt leverages a self-supervised based graph adapter and prompts to131

make PLMs aware of the graph information and downstream task. Given a specific TAG, the pipeline132

of G-Prompt is as follows: (1) Training an adapter on the given TAG to make PLMs graph-aware.133

Specifically, we propose a graph adapter that operates on the prediction layer of PLMs to assist134

in capturing graph information, which is fine-tuned by the fill-mask task based on the textual data135

contained by the given TAG. (2) Employing task-specific prompts and fine-tuned graph adapters to136

generate task-aware and graph-aware node features.137

3.2 Fine-Tuning PLMs with the Graph Adapter138

Using adapters to enable PLMs to perceive graph information is a straightforward idea. However,139

unlike adapters used for downstream task fine-tuning [11, 18], the graph adapter is used to combine140

prompts in order to extract task-relevant node representations. This is an unsupervised process, which141

means that the graph adapter only receives self-supervised training on given TAGs. Consequently,142

the most challenging aspect of graph adapters is how to assist PLMs in perceiving graph information143

while also maintaining their contextual understanding capability. Additionally, the graph adapter144

is only trained on a given TAG, generalizing to prompt tokens can also be quite difficult. Next, we145

introduce the graph adapter and discuss how it overcomes these challenges in detail.146

Context-friendly adapter placement. The fill-mask task involves two modules of PLMs: a147

transformer-based module that models context information to obtain representations of masked148

tokens and a linear transformation that decodes the representation to output the probable IDs of the149

masked token. To avoid compromising the contextual modeling ability of PLMs, the Graph Adapter150

only perform on the last layer of PLMs. More specifically, the graph adapter is a GNN structure151

combing with the pre-trained final layer of the PLMs. Given a specific masked token ŝi,k, The inputs152

of the Graph Adapter are the masked token ĥi,k, sentence representations of node i and its neighbors153

and output is the prediction of the IDs’ of the masked token. This process aligns with intuition —154

inferring a possible token based on context first and then determining the final token based on graph155

information. Formally,156

ŷi,k = GraphAdapter{fLM, ĥi,k, zi, {zj ∈ Ni},Θ}, (5)
where the zi and zj denote the sentence embedding of node i and j. Note, sentence embedding is157

task-free and only used to model nodes’ influence on their neighbor. In this paper, we utilize sentence158

embedding of nodes’ textual features as their node feature. Θ is all trainable parameters of the Graph159

Adapter.160

Prompting-friendly network structure. The parameters of the adapter are only trained on the161

fill-mask task based on the textual data contained by the target TAG. But the adapter will be used for162

combining prompts to generate task-related node features in various subsequent downstream tasks.163

So the generalization ability of the adapter is crucial. On the one hand, the distribution of hidden164

states responding to masked tokens in prompts may be different from the hidden states used to train165

the adapter. On the other hand, the candidate tokens for task-specific prompts may not appear in the166

tokens of the TAG. Therefore, we carefully design the network structure of the graph adapter and167

utilize the pre-trained prediction layer of PLM to improve the generalization ability of it.168
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When it comes to the graph adapter’s training stage, it’s possible that the hidden states associated with169

certain prompts may not be present. This means that directly manipulating those hidden states could170

result in overfitting on the tokens already present in the TAGs. Therefore, the graph adapter models171

the influence of each modeled node on the distribution of surrounding neighbor tokens based on node172

feature, which remains unchanged when prompts are added. Considering that some tokens can be173

predicted well based solely on their context and that different neighbors may have different influences174

on the same node, the impact of a neighbor on a token is determined jointly by a gate mechanism and175

the token’s context. Give a specific node i, it’s neighbor j, and hidden states of a masked token ĥi,j ,176

h̃i,k,j = aij ĥi,k + (1− aij)g(zj ,Θg) (6)

where aij = sigmoid((ziWq)(zjWk)
T ). Here, g(·) represents multi-layer perceptions (MLPs) with177

parameters Θg that model the influence of node j. It is worth noting that when considering the entire178

graph, g(zj ,Θg) will be combined with many marked tokens of node j’s neighbors, which can help179

to prevent g(zj ,Θg) from being overfitted on a few tokens.180

Subsequently, the graph adapter combines all neighbor influence to infer the final prediction result.181

Since the prediction layer of PLM (i.e., fLM (·)) is well-trained on massive tokens, it also contains an182

amount of knowledge. Therefore, the graph adapter reuses this layer to predict the final result.183

ỹi,k = Pool{fLM(h̃i,k,j)|j ∈ Ni}, (7)
In this equation, the Pool(·) used in this paper is mean-pooling. It is worth noting that the position184

of fLM(·) can be interchanged with pooling since it is just a linear transformation. All trainable185

parameters in the graph adapter are denoted by Θ = {Θg,Wq,Wk}.186

3.3 Model optimization of G-Prompt187

The graph adapter is optimized by the original fill-mask loss, Li,k = CE(ỹi,k, yi,k), where ŷi,k is the188

predicted probability of the k-th masked token for the node i and yi,k is the true label. We aim to189

minimize Li,k with respect to Θ.190

However, in actual optimization, the prediction results of ỹi,k,j = fLM(h̃i,k,j) consist of many small191

values because of the large vocabulary size of the language model. Therefore, using mean-pooling192

presents a significant problem as it is insensitive to these small values. For example, during some193

stages of the optimization process, a node may have mostly 0.9 predictions for the ground truth based194

on each edge, with only a few being 0.1. Averaging them together would result in a very smooth loss,195

making it difficult to train the influence of neighbors with temporarily predicted values of 0.1. To196

address this issue, we use geometric mean instead of mean-pooling in the finetuning stage of the197

graph adapter, which is more sensitive to small values. It is easy to prove that the geometric mean of198

positive numbers is smaller than the arithmetic means, making it harder to smooth and helping the199

model converge faster. formally, in finetuning stage, the loss function is:200

Li,k = −yi,k ⊙ log{(
∏
j∈Ni

ỹi,k,j)
1/|Ni|} = −

∑
j∈Ni

1

|Ni|
yi,k ⊙ log(ỹi,k,j) (8)

On the right-hand side of the equation, we are essentially minimizing ỹi,k,j through the cross-entropy201

loss Li,k,j =
1

|Ni|CE(ỹi,k,j , yi,k). It is worth noting that the graph adapter is only performed on the202

last layer of PLMs. As a result, we can sample a set of masked tokens and preserve their hidden states203

inferred by the PLMs before training. This implies that training of graph adapters can be achieved204

with very few computing resources.205

3.4 Prompt-based Node Representations206

After training the graph adapter, it can be combined with task-specific prompts to generate task-207

specific and graph-aware node representations. Similar to other prompt-based approaches, we simply208

add task-specific prompts directly into the textual feature. For example, we might use the prompt209

“This is a [MASK] user, consider their profile: [textual feature].” Formally, this process can be210

expressed as ĥi|p = PLM({[P0], [P1]...[MASK], Si}). Where, ĥi|p represents the hidden state of211

the inserted [MASK], while [P0], [P1]... refers to the task-specific prompts. The resulting hidden212

state is then fed into the graph encoder to decode the most probable token.213

ŷi|p = Pool{fLM(ai,j ĥi|p + (1− ai,j)g(zj ,Θg))|j ∈ Ni} (9)
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Table 1: Statistics of the datasets

Dataset # Nodes # Eeges Avg. Node Degree Test Ratio (%) Metric
Arxiv 169,343 1,166,243 13.7 28 ACC

Instagram 11,339 377,812 66.6 60 ROC
Reddit 33,434 198,448 11.9 33 ROC

ŷi|p is a |D|-dimensional vector, where |D| is the size of the PLM vocabulary. Therefore, directly214

using this prediction result for node representation is not conducive to downstream tasks and storage.215

Thus, we use the filtered results as node features, denoted by xi|p = Filter(ŷi|p). Note, each216

dimension represents the probability of a token being inferred by PLMs with the graph adapter based217

on node textual features, neighbors’ information, and task-respected prompts. Intuitively, tokens that218

are unrelated to downstream tasks are almost the same for all nodes. Therefore, for Yp ∈ N|V |×|D|,219

which denotes prediction results of all nodes. This paper sorts all columns of Yp in descending order220

of standard deviation and keeps the top M columns as the node features. Note, we can also manually221

select task-relevant tokens based on prior knowledge of the task and use them as node features.222

4 Experiment223

4.1 Experiment setup224

Dataset. We conduct experiments on three public and real-world datasets, which are Ogbn-arxiv[12]225

(shorted as Arxiv), Instagram[14], and Reddit1, to evaluate the effectiveness of the proposed method226

G-Prompt. Specifically, Ogbn-arxiv is a citation network where edges represent citation relationships,227

nodes represent papers and the text attribute is the abstracts of papers. The task is to predict paper228

subjects. Instagram is a social network where edges represent following relationships, nodes represent229

users, and the prediction task is to classify commercial users and normal users in this network. The230

text attribute is the users’ profile. Reddit is also a social network where each node denotes a user, the231

node features are the content of users’ historically published subreddits, and edges denote whether232

two users have replied to each other. The prediction task is to classify whether a user is in the top233

50% popular (average score of all subreddits). Table 1 shows detailed statistics of these datasets.234

More details about Instagram and Reddit are provided in the Appendix.235

Compared methods. We compare the proposed G-Prompt with PLM-based and Graph-based node236

feature-extracting methods. For the PLM-based methods, we consider three options: (1) direct use of237

sentence embedding as node features, and (2) use of the hidden states of masked tokens based on hard238

prompts as node features. (3) use of the prediction result of masked tokens based on prompts as node239

feature. For graph-based methods, we compare our proposed method with GAE and GIANT, which240

first conduct self-supervised learning on graphs to train PLMs or node feature encoders. To ensure a241

fair comparison, we add prompts into graph-based baselines. Except for GAINT and OGB features,242

the PLM we use in this paper is RoBERTa-Large[20]. Note that all prompts used in baselines are the243

same as those in G-Prompt.244

Implementation details. For G-Prompt, we first train three graph adapters of G-Prompt on Arxiv,245

Instagram, and Reddit with 50 epochs, 100 epochs, and 100 epochs respectively. All of them are246

optimized using AdamW[21] with warm-up. For more details on the hyper-parameter settings, please247

refer to the Appendix. For each node, we replace 10% tokens with [mask] and use these masked248

tokens to train the graph adapter. During the whole training stage, all task-related prompts are249

invisible. Then we use prompts, finetuned graph adapters, and PLMs to jointly extract node features.250

For graph-based methods, we train them on each dataset with searched hyper-parameters.251

4.2 Few-shot learning252

To evaluate the performance of representations generated by different methods in few-shot learning,253

we compare the performance of different representations at different shot numbers based on the same254

GNN backbone. The GNN backbone used in the performance comparison on different shot numbers is255

GraphSAGE[30]. In addition, we also compare the performance of different representations combined256

with three different neural network architectures (i.e., MLP, and RevGAT[17]) on downstream tasks257

1https://convokit.cornell.edu/documentation/subreddit.html
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Table 2: The performance in different shots on three datasets

Dataset Arxiv Instagram Reddit
# shots per class 10 50 100 10 50 100 10 50 100

OGB-Feature 0.4576 ±0.0324 0.5495 ±0.0171 0.5875 ±0.0146 - - - - - -

PLM+GAE 0.5016 ±0.0510 0.5608 ±0.0101 0.5810 ±0.0125 0.5258 ±0.0635 0.5818 ±0.0101 0.5821 ±0.0058 0.5653 ±0.0256 0.6019 ±0.0174 0.6154 ±0.0128

PLM+GAE+prompt 0.5189 ±0.0333 0.5801 ±0.0102 0.6063 ±0.0109 0.5418 ±0.0298 0.5705 ±0.0233 0.5867 ±0.0100 0.5619 ±0.0425 0.5968 ±0.0237 0.6173 ±0.0160

GIANT 0.5050 ±0.0308 0.5798 ±0.0119 0.6081 ±0.0109 0.5185 ±0.0323 0.5601 ±0.0304 0.5752 ±0.0251 0.5618 ±0.0431 0.5954 ±0.0131 0.6130 ±0.0117

GIANT + prompt 0.5140 ±0.0320 0.5809 ±0.0223 0.6126 ±0.0159 0.5239 ±0.0309 0.5721 ±0.0361 0.5949 ±0.0089 0.5661 ±0.0459 0.5968 ±0.0096 0.6145 ±0.0105

PLM-cls 0.4697 ±0.0577 0.5414 ±0.0400 0.5869 ±0.0300 0.5165 ±0.0217 0.5385 ±0.0344 0.5690 ±0.0253 0.4965 ±0.0373 0.5236 ±0.0394 0.5754 ±0.0348

PLM-Prompt-dense 0.5117 ±0.0398 0.5631 ±0.0352 0.5865 ±0.0296 0.5458 ±0.0420 0.5796 ±0.0276 0.6055 ±0.0122 0.5363 ±0.0530 0.5648 ±0.0385 0.5998 ±0.0383

PLM-Prompt-sparse 0.5201 ±0.0284 0.5784 ±0.0213 0.6085 ±0.0203 0.5363 ±0.0348 0.5757 ±0.0225 0.5910 ±0.0229 0.5403 ±0.0424 0.5761 ±0.0359 0.6082 ±0.0192

G-Prompt 0.5248±0.0382 0.5927 ±0.0142 0.6167 ±0.0138 0.5576 ±0.0330 0.5917 ±0.0242 0.6090 ±0.0135 0.5728 ±0.0491 0.6167±0.0289 0.6472 ±0.0224

G-Prompt w/o gate 0.5291 ±0.0315 0.5877 ±0.0192 0.6212 ±0.0190 0.5507±0.0336 0.5706 ±0.0262 0.5942 ±0.0178 0.5501 ±0.0604 0.5926±0.0385 0.6361±0.0268

G-Prompt w/o graph 0.5226 ±0.0322 0.5880±0.0168 0.6059 ±0.0101 0.5234 ±0.0236 0.5657 ±0.0377 0.5914 ±0.0199 0.5536 ±0.0438 0.5683 ±0.0390 0.6054 ±0.0263

G-Prompt w/o SSL 0.5210 ±0.0372 0.5793 ±0.0168 0.6092 ±0.0168 0.5378 ±0.0419 0.5801±0.0269 0.6004±0.0193 0.5494 ±0.0502 0.5885 ±0.0365 0.6149 ±0.0263

with the same number of shots. For Arxiv, we use a publicly available partitioned test set, while for258

Instagram and Reddit, we randomly sample 60% and 33% of the data as the test sets, respectively.259

To consider the randomness of partitioning and training, each experimental result is based on five260

random partitions (the partitions are the same for different baselines), the experiment is repeated five261

times for each partition, and the variance of 5×5 results is reported.262

The experiment results on different shots-num are shown in Table 2. The experiment shows that: (1)263

Graph-aware can improve the performance of node representation. In general, approaches that264

use sentence representations or those that involve self-supervised training with graph information265

tend to outperform non-trained representations. For example, GAE shows an average improvement266

of avg. 6.2% compared to RoBERTa’s [cls], and GIANT shows avg. 6.2% improvement over cls267

representation. For graph-based self-supervised tasks, fine-tuning language models might be more268

suitable for larger datasets. GIANT outperforms GAE by avg. 3.0% on Arxiv, but lags behind269

by avg. 1.4% on Instagram and Reddit. (2) Downstream task-related prompts can improve270

performance for all models. For graph-free language models, prompt-based representations can271

improve performance by avg. 5.7%, and the overall performance of prediction values and hidden272

states corresponding to prompts is similar. For graph-based methods, prompts in GAE improve273

performance by avg. 1.3%, while prompts in GIANT lead to an average improvement of avg. 1.2%.274

However, we note that prompts are unstable for graph-based pre-trained models. GAE shows a decline275

in 4 experiments, while prompts only bring a slight improvement in GIANT (compared to language276

models). (3) Our method is capable of utilizing both graph perception and downstream task277

prompts simultaneously, achieving state-of-the-art performance. Compared to PLM representations278

without prompts, our method improves by avg. 10.6%. Compared to PLM-prompt, it improves by279

avg. 4.6%, and compared to GIANT, it improves by avg. 4.1%.280

Besides, as Figure 2 shows, the node representation extracted by G-Prompt in different GNN-281

backbone also achieves the SOTA performance compared to other baseline methods.282

(a) Arxiv (b) Instagram (c) Reddit

Figure 2: Comparison with different GNN backbone on 50-shots setting
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4.3 In-depth analysis of G-Prompt283

To validate the rationality of G-Prompt, we conduct experiments to compare the performance of284

G-Prompt and its variants. These variants include removing the gate mechanism in graph-adapter285

(denoted as “w/o gate”), keeping only self-loops while removing the input graph (denoted as “w/o286

graph”), and not training graph-adapter by self-supervised learning (denoted as “w/o SSL”). The287

experimental results show that all variants perform worse than G-Prompt. Specifically, removing the288

Graph-Adapter training process leads to avg. 2.8% decrease in performance, which demonstrates the289

effectiveness of training graph-adapter through the fill- mask task. After removing the graph input,290

the performance of G-Prompt decreases by avg. 3.8%, which further confirms that the improvement291

provided by G-Prompt, compared to using language model prompts directly, stems from the graph292

adapter’s ability to assist language models in comprehending graph structures. Moreover, removing293

the gate mechanism results in a avg. 1.8% decrease in performance, indicating that the design of the294

graph-adapter structure is reasonable.295

4.4 Zero-shot node classification and interpretability296

The node features generated through GPrompt represent the probability of each possible word297

for nodes given task-related prompts, where each dimension corresponds to a specific word. This298

probability generation incorporates prior knowledge from PLMs, graph information, and node context.299

Two natural questions arise: How much knowledge is contained within this word probability?300

Whether the node feature can help us interpret the downstream task? Therefore, we further301

conduct zero-shot node classification experiments on node representations. Meanwhile, we conduct a302

case study on Instagram.303

Zero-shot node classification. We select different sets of candidate words and sum up the probabili-304

ties of each word in the set to obtain the prediction result for node classification. We employ the ROC305

as the evaluation metric to assess the performance of node classification. For simplicity, ArXiv dataset306

only selects two categories, “Artificial Intelligence” and “Linguistics and Language”. The other307

two datasets remain unchanged. We select completely random, bag-of-words, RoBERTa-base, and308

RoBERTa-large as baselines, using the same prompts as G-Prompt for PLMs. We provide experiment309

results of G-Prompt based on RoBERTa-base (Ours-B) and RoBERTa-large (Ours-L).310

According to the results shown in Table 3. (1) The bag-of-words method has almost no predictive311

ability. (2)The PLM through Prompts has predictive ability on different tasks (improvement compared312

to BOW by avg. 13%). But there is a performance difference between base and large even with313

the same prompt due to the sensitivity of language models to prompts [22]. (3) Compared to a314

language model, G-Prompt shows significant performance improvement. Specifically, G-Prompt-base315

improved avg. 2.7% compared to the language model. However, it should be noted that the basic316

predictive ability of the language model and G-Prompt are correlated. Specifically, the correlation317

coefficient between the results of GPrompt-L and LM-L is 0.64, while the correlation coefficient with318

LM-B is 0.84. (4) Moreover, selecting more candidate words through prior knowledge can effectively319

help G-Prompt improve its zero-shot capability, with an average improvement of avg. 4.8% for the320

base and avg. 5.3% for the large. However, there is no significant improvement for language models321

and bag-of-words. Surprisingly, by adding a small number of candidate words, G-Prompt’s zero-shot322

performance is already close to or even sometimes surpasses supervised training with 100 shots. This323

result indicates that combining language models and graphs for zero-shot learning on TAG is feasible.324

Interpretability. The task on Instagram is to determine whether a node is a commercial user. We use325

the probability corresponding to each token as the prediction value, calculate its corresponding ROC326

of prediction performance, and then display the top 7 tokens with the highest scores. For comparison,327

we also show the scores of tokens corresponding to RoBERTa-Large under the same prompt. Overall,328

the top 7 tokens given by our model have considerably higher ROC scores than RoBERTa-Large329

resulting in avg. 7.0% improvement. Additionally, our results are intuitive and can even help explain330

the task, for example, “premium.” Based on this result, we search and find that there are “premium331

creator subscriptions” on Instagram, which means “Users can set their own prices and earn extra cash332

each month,”2 and this information is indeed related to commercial activity. Similarly, “niche” is also333

a word related to Instagram business behavior.334

2https://www.pcmag.com/news/instagram-introduces-premium-creator-subscriptions
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Table 3: The performance of different models in zero-shot learning

Dataset Pos. vocab Neg. vocab Rand. BOW LM-B LM-L Ours-B Ours-L 100 shot.

Arxiv

{intellectual} {language} 0.5021
±0.0124

0.4994
±0.0000

0.5955
±0.0000

0.6747
±0.0000

0.5840
±0.0000

0.6765∗

±0.0000
0.9040
±0.0253{intellectual,

decision,
logic, ...}

{language,
translation,
speech, ...}

0.4988
±0.0139

0.5474
±0.0000

0.6284
±0.0000

0.6075
±0.0000

0.6006
±0.0000

0.7064∗

±0.0000

Instagram

{commercial} {normal} 0.5004
±0.0151

0.5001
±0.0007

0.5509∗

±0.0163
0.5365
±0.0054

0.5403
±0.0078

0.5382
±0.0095

0.5690
±0.0253{commercial,

sponsored,
brand, ...}

{normal,
personality,
private, ...}

0.5007
±0.0131

0.5022
±0.0008

0.5586
±0.0117

0.5577
±0.0068

0.5995∗

±0.0074
0.5957
±0.0081

Reddit

{pretty} {simple} 0.5034
±0.0073

0.5053
±0.0019

0.5608
±0.0050

0.5352
±0.0027

0.5630
±0.0082

0.5673∗

±0.0070
0.5754
±0.0348{pretty,

hilarious,
funny, ...}

{simple,
anonymous,
standard, ...}

0.4990
±0.0042

0.5034
±0.0017

0.5604
±0.0081

0.5587
±0.0052

0.5674
±0.0058

0.5742∗

±0.0066

Table 4: Top 7 Tokens related to predicting commercial users on Instagram

RoBERTa-large G-Prompt
Top 7 tokens ROC Top 7 tokens ROC

critical 0.546 special 0.592
convenient 0.542 convenient 0.579

terrific 0.542 premium 0.579
banner 0.542 unique 0.577
gateway 0.539 great 0.575

compelling 0.539 pioneer 0.575
neat 0.538 niche 0.575

5 Related work335

Modeling TAGs involves numerous works related to the NLP domain and Graph domain. Currently,336

pre-trained language models are the primary method for modeling the textual information in text-as-337

graphs [25]. Presently, pre-trained language models are mainly based on transformer structures[29],338

with a variety of pre-training methods, such as fill-mask [4], paragraph prediction[4], adversarial339

learning[10], and auto-regressive learning[27]. Based on these tasks, many excellent pre-trained340

models have emerged, including BERT[4], RoBERTa[20], and GPT3[1]. PLMs contain an amount341

of knowledge acquired through extensive pre-training data[31]. Recently, using prompts has been342

proposed to better utilize the performance of pre-trained language models[1]. Based on this finding,343

prompt learning[19, 8, 16] has achieved impressive results in few-shot and zero-shot learning and has344

been widely applied by other domains. Currently, the structural information in modeling TAGs is345

primarily modeled through GNNs, such as GraphSAGE[9], GAT[30], APPNP[7, 5] and RevGAT[17],346

and there are also many pre-training tasks on graphs such as GAE[15], GraphCL[33] that can be347

extended to TAGs. Recently, many methods explore better utilizing the knowledge of PLMs to model348

TAGs more effectively, such as pre-training language models through graph-related tasks [3] and349

finetuning PLMs together with GNNs via knowledge distillation[24] or variational inference [35].350

6 Conclusion351

This paper proposes G-Prompt to fuse PLMs and Graphs for extracting task-specific and graph-aware352

node representation in TAGs. G-Prompt have two-stage: (1) self-supervised train a graph adapter to353

make PLMs graph-aware based TAGs, and (2) employing prompts with the trained graph adapter to354

extract node representation from TAGs. Experiments with different shot settings using three datasets355

demonstrate that the proposed model can effectively capture both text and graph information, resulting356

in improved performance for few-shot learning. In zero-shot learning, our model achieves comparable357

performance with supervised baselines and has huge potential for future work. Furthermore, our358

model provides useful interpretations, which is essential for understanding the tasks and TAGs.359
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