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Abstract. Object proposal generation is often the first step in many
detection models. It is lucrative to train a good proposal model, that
generalizes to unseen classes. This could help scaling detection models
to larger number of classes with fewer annotations. Motivated by this, we
study how a detection model trained on a small set of source classes can
provide proposals that generalize to unseen classes. We systematically
study the properties of the dataset – visual diversity and label space
granularity – required for good generalization. We show the trade-off
between using fine-grained labels and coarse labels. We introduce the idea
of prototypical classes: a set of sufficient and necessary classes required
to train a detection model to obtain generalized proposals in a more
data-efficient way. On the Open Images V4 dataset, we show that only
25% of the classes can be selected to form such a prototypical set. The
resulting proposals from a model trained with these classes is only 4.3%
worse than using all the classes, in terms of average recall (AR). We also
demonstrate that Faster R-CNN model leads to better generalization of
proposals compared to a single-stage network like RetinaNet.

Keywords: object proposals, object detection, generalization

1 Introduction

Object detection systems have shown considerable improvements for fully su-
pervised settings [27, 18, 20, 26, 3], as well as weakly supervised settings [7, 1, 32]
that only use image-level labels. Both approaches typically consider detection as
a combination of two tasks: (a) spatial localization of the objects using proposals
and (b) classification of the proposals into correct classes. A generalized proposal
model that localizes all classes can help in scaling object detection. This could
lead to the use of fewer or no bounding box annotations to only solve the clas-
sification task and development of more sophisticated classifiers, as explored in
works like [35, 30].

Many detection models [27, 18] have been developed in recent years, which
can be used to obtain high quality object proposals. However, an equally impor-
tant aspect that determines the generalization ability of proposals is the dataset
used to train these models. As illustrated in Fig. 1, the objects and class labels
in a dataset significantly impact the ability to generalize to new classes. Intu-
itively, to localize a fine-grained vehicle like taxi in a target dataset, it might be
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bus taxi

target
barge gondola truck vansports car

source (vehicle)target

x

Fig. 1: Proposal models learned on seen vehicle classes can localize unseen
classes which share similar localization structure like “bus” and “taxi”. However,
“barge” and “gondola”, which are also vehicles will not be precisely localized by
this model, due to lack of visual diversity in the training dataset for vehicles

sufficient to train a localization model with other vehicles like cars or vans in
the source dataset. For localization (unlike classification), we may not need any
training data for this class. On the other hand, training with these classes will
not help in localizing other vehicles like boat.

While few works leverage this intuition for weakly supervised learning [35],
the extent to which object localization depends on the categories used to train
the model has not been well quantified and studied in detail. Towards this end, we
define “generalization” as the ability of a model to localize (not classify) objects
not annotated in the training dataset. In our work, we answer the question:
What kind of dataset is best suited to train a model that generalizes even to
unseen object classes?

We further study the ability of popular detection models like Faster R-CNN
[27] and RetinaNet [18] to generate proposals that generalize to unseen classes.
These networks are designed to improve the detection quality for the small set
of seen classes in the training dataset. We carefully study these design choices
and provide a way to obtain proposals that generalize to a larger set of unseen
classes.

We answer several questions about dataset properties and modeling choices
required for generalized proposals:

– What are the properties of object classes to ensure generalization
of proposals from a model? First, we show that it is crucial to have vi-
sual diversity to obtain generalized proposals. We need examples of different
vehicles like “car” and “boats”, even if the examples are only labelled as
“vehicle”. Further, we hypothesize the existence of prototypical classes as a
subset of leaf classes in a semantic hierarchy that are sufficient and neces-
sary to construct a dataset to train a model for proposal generalization. We
define new quantitative metrics to measure these properties for any set of
classes and show that it is possible to construct a small prototypical set of
object classes. This has positive implications for large taxonomies, since it
is sufficient to annotate examples only for the prototypical classes.

– Does the label-granularity of the dataset affect generalization? If
so, what is the coarsest granularity that can be used? Coarse-grained
labels (“vehicles” instead of “taxis”) are significantly less tedious to anno-
tate and more accurate than fine-grained labels. Past works like RFCNN-
3000 [30] argued that a single super class might be sufficient to obtain good
proposals. However, we show that there is a trade-off between using very few
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coarse classes and large-number of fine-grained classes, and a middle-ground
approach leads to best generalization.

– What are the modeling choices that are critical for leveraging
state-of-the-art detectors to obtain generalized proposals? We show
that: (a) detections from two-stage networks like Faster R-CNN are better for
obtaining generalized proposals than a single-stage network like RetinaNet,
(b) while class-specific bounding box regression is typically used in Faster R-
CNN, it is beneficial only when considering larger number of proposals (aver-
age recall AR@1000) and class-agnostic regression is better when considering
fewer proposals (AR@100) and (c) choice of NMS threshold is dependent on
the number of proposals being considered (AR@100 or AR@1000).

On OIV4 [16], we show that compared to training with all the object classes,
using a prototypical subset of 25% of the object classes only leads to a drop
of 4.3% in average recall (AR@100), while training with 50% of such classes
leads to a negligible drop of 0.9%. We also show how the detections from Faster
R-CNN can be fused to obtain high quality proposals that have 10% absolute
gain in AR@100 compared to the class-agnostic proposals of the RPN from the
same network and 3.5% better than RetinaNet. To stress the practical impor-
tance of generalized proposals, we also show that generalization ability is directly
correlated with the performance of weakly supervised detection models.

2 Related Work

Generalizing localization across multiple classes: The idea of different
object classes sharing the same structure has been exploited in building detec-
tion models for a long time[5, 22, 23, 29, 34]. More recently, [3, 27] also have a
dedicated proposal network for object localization. However these works do not
measure the transferability of proposals trained on one set of classes to another.

Uijlings et al. [35] tried to transfer information from coarse source classes to
fine-grained target classes that share similar localization properties. They showed
that this can help weakly supervised detection for the target classes. LSDA [11]
transformed classifiers into detectors by sharing knowledge between classes. Mul-
tiple works [33, 12, 28, 9] showed the benefit of sharing localization information
between similar classes to improve semi supervised and weakly supervised de-
tection. Yang et al. [37] trained a large-scale detection model following similar
principles. Singh et al. [30] showed that even a detector trained with one class can
localize objects of different classes sufficiently well due to commonality between
classes. We generalize this idea further. There has also been work on learning
models [37, 26, 6] with a combination of bounding boxes for certain classes and
only class labels for others. They inherently leverage the idea that localization
can generalize across multiple classes. We provide systematic ways to quantify
and measure this property for proposal models.
Object proposal generation models: There have been many seminal works
on generating class-agnostic object proposals [36, 38, 25, 14]. A comprehensive
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Land
Vehicle

Car Bicycle

Van Limousine Bicycle
Wheel

Aerial
Vehicle

Airplane Rocket

Entity

Vehicle Animal

Mammal

Marine
Mammal Carnivore

Dolphin Seal Cat

Bird

Turkey Sparrow

L0

L1

L2

L3

L4

(a) Label semantic hierarchy

vehicle

cars airplane vehicle

low label granularity +  high visual diversity

high label granularity +  
high visual diversity

low label granularity 
+ low visual diversity

(b) Granularity vs. Diversity

Fig. 2: We study two important dataset properties needed to train a proposal
model: label granularity and visual diversity. (a) Label granularity can be rep-
resented by different levels in a semantic hierarchy as shown. (b) The difference
between label granularity and visual diversity is illustrated. At the same granu-
larity, we can either have high or low visual diversity as shown

study of different methods can be found in [13] and a study of proposal evalu-
ation metrics can be found in [2]. Proposal models have also been trained with
dedicated architectures and objectives in [24, 15, 31]. In our work, we leverage
standard models like Faster R-CNN and focus on the dataset properties required
to achieve generalization with this model.

3 Approach

We study two important aspects involved in obtaining generalized proposals
from a detection model:

(1) Data Properties such as the granularity of the label space (shown in
Fig. 2a), and the visual diversity of object classes under each label, required for
generalization of proposals. The idea of label granularity and visual diversity is
shown in Fig. 2b. We investigate how a smaller subset of “prototypical” object
classes in a dataset which is representative of all other classes can be identified.

(2) Modeling Choice for leveraging a detector trained on a dataset with
seen classes to obtain proposals that generalize to unseen classes.

3.1 Dataset Properties

The choice of labels and data used to train the model is crucial for generalization.
To study these properties, we assume: (a) classes are organized in a semantic tree
and (b) internal nodes do not have any data of their own, that are not categorized
into one of its child nodes. In practice, such a hierarchy is either already available
(OIV4) or can be obtained from Wordnet [21]. These assumptions help us study
the datasets under controlled settings. However, later we explore a way to identify
“prototypical” subsets even when a semantic hierarchy is unavailable.

Label Space Granularity As we noted through some examples earlier, it is
intuitive that we might not need fine-grained labels to train a good localization
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model. To quantitatively study the effect of granularity, we construct different
datasets with the same set of images and object bounding boxes, but consider
classes at different levels of semantic hierarchy (Fig. 2a). We then train a model
with these datasets and evaluate the generalization ability as a function of label
granularity. For instance, for the coarsest root level, we assign all the bounding
boxes the same “object” label and train a detector to distinguish objects from
all non-objects. This pertains to the idea of objectness used in weakly supervised
algorithms [36] and super-class in [30]. For an intermediate level, we collapse all
leaf-labels to their corresponding parent labels at that level to train the model.
While a fine-grained label space provides more information, a model trained at
this level also attempts to distinguish object classes with similar structure and
this could affect generalization. We quantify this trade-off in Sec. 4.3.

Prototypical classes to capture visual diversity One of the main aims of
our work is to see if we can identify a significantly smaller number of classes
than the full object-label space, so that bounding boxes from this set of classes
are sufficient to train a generalized proposal model. Note that in Sec. 3.1, we
wanted to study if a small set of coarse labels are sufficient to train a general-
ized proposal model. However, this does not answer anything about the visual
diversity of objects within each sub-category that is required for generalization.
As an example (shown in Fig. 2), in order to localize different types of vehicles
like “car” or “airplane” it might be sufficient to collapse the label for all these
objects into a single label named “vehicle”, however dropping all instances of
airplane during training will lead to a drop in performance for this class.

To quantitatively study this effect, we introduce the notion of “prototypical”
classes. Given a large set of leaf classes, these are the smallest subset such that a
model trained only with instances from them is sufficient to localize objects from
the remaining classes. Note that due to the long-tail distribution of real-world
data, obtaining images for large number of semantic classes is a tedious task.
If a small set of prototypical classes does exist, this makes the data collection
process much easier when scaling detection to large number of classes.
Properties: We identify the two properties that are required to quantify the
prototypicality of a set of classes :

Sufficient set : is a set of classes such that training a model only with examples
from them should be sufficient to localize objects from all other classes. The most
superfluous sufficient set would be the entire set of leaf classes themselves.

Necessary set : is a set of classes such that dropping any class from this set
will lead to a significant drop in generalization. A simple example would be a
very coarse vertical like “vehicle”. Intuitively dropping all vehicles would affect
their localization as they do not share localization properties with other classes.

We provide concrete ways to measure both these properties in Sec. 4.3.
Identifying prototypical classes: Given a set of N leaf classes C, we wish
to identify a set of P prototypical classes P ⊂ C. Intuitively, this is similar to
clustering the classes that have the same localization structure and then choosing
a representative class from each cluster. Below, we discuss three approaches:
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(a) Oracle visual clustering: To get an upper bound for choosing the best
P prototypical classes, we assume that bounding box annotations for all the N
leaf classes are available. We then use these bounding boxes to compute visual
similarity between classes. We note that this is not a practical approach, but is
crucial to evaluate the effectiveness of proxies we introduce later.

We first train a detection model using the annotations of all the leaf classes.
We then measure the visual similarity between two classes i, j as

Sij = max

(
APi(j)

APj(j)
,

APj(i)

APi(i)

)
, (1)

where AP i(j) is the detection average precision (AP) for the jth class when we
use the detections corresponding to the ith class as detections of class j. Sij is a
measure of how well one class can replace another class in localizing it. We then
use the resulting similarity measure to hierarchically cluster the classes into P
clusters using agglomerative clustering. We then pick the class with the highest
number of examples in each cluster to construct the set of prototypical classes.
For practical reasons, we use frequency to choose the representative class, since
this results in the construction of the largest dataset.
(b) Semantic clustering based on frequency: Semantic similarity is often
viewed as a good proxy for visual similarity as shown through datasets like
Imagenet [4] and OIV4. Hence, we use the semantic tree to cluster the classes
in an hierarchical fashion starting from the leaves. At any given step, we cluster
together two leaf classes that share a common parent if they jointly have the
lowest number of examples. The algorithm stops when P clusters are left. We
then select the most frequent class from each cluster as a prototypical class. Here
we assume that apriori we know the frequency of each class in a dataset. This is
a very weak assumption, since a rough estimate of class distribution in a dataset
can often be obtained even from weak labels like hashtags. This doesn’t require
any image-level label or bounding boxes and is easy to implement in practice.
(c) Most frequent prototypical subset: For this baseline, we choose the top
P most frequently occurring classes in the dataset as the prototypical classes.
Note that unlike the previous approaches, this does not require any knowledge
of the semantic hierarchy.

3.2 Modeling Choice

Once the dataset is fixed, the next step is to train a detection model. In our
work, we explore the use of two models: Faster R-CNN and RetinaNet. The
observations made in our work should nevertheless generalize to other two-stage
and single-stage detection models as well.

In the case of a single-stage network, the detections from a model trained
on a source dataset with seen classes can directly be treated as proposals. Their
ability to localize novel classes in a target dataset can be evaluated to test
generalization. However, for a two-stage network, another natural choice would
be to use the Region Proposal Network (RPN) of the model, since it is trained in
a class-agnostic fashion and aims to localize all objects in the image. However, as
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noted by He et al. [10], the detection part of the model is better at localizing the
object due to more fine-tuned bounding box regression and better background
classification. We study this more rigorously, by comparing the generalization of
proposals obtained from the detection head as well as RPN. We vary different
model parameters to obtain the optimal setting for proposal generalization.

4 Experiments

We evaluate the ability of the object proposal obtained from detection models
learned with different settings in Section 3.2 to generalize to new unseen classes.
We also explore the effects of label-space granularity and the need for semantic
and visual diversity. Finally, we show that a small set of prototypical classes
could be used to train an effective proposal model for all classes in the dataset.

4.1 Experimental Setup

Source and target splits: We split each dataset into two parts: (a) Source
dataset consisting of a set of seen classes called source classes and (b) Target
dataset consisting of a set of unseen classes called target classes. Target dataset
is used to evaluate the generalization of proposal models trained with the Source
dataset. Since an image can contain both source and target classes, we ensure
that such images are not present in the source class dataset. However, there may
be a small number of images in the target dataset that contain source classes.
We use the following two datasets for our experiments:

(1) Open Images V4 (OIV4) [16] consists of 600 classes. We retain only object
classes which have more than 100 training images. This results in a total of 482
leaf classes. We randomly split all the leaf classes into 432 source (OIV4-source
dataset) and 50 target (OIV4-target dataset) classes. There are also annota-
tions associated only with internal nodes (for example, ”animal”) and without
a specific leaf label (like the type of animal). We remove such annotations and
all associated images, since such images cannot be unambiguously assigned to
a source or target split. This leaves us with 1.2M images with 7.96M boxes in
the train split and 73k images with 361K boxes in the test split. For training
proposal models, we always use the train split and for evaluation we use the test
split. Wherever needed, we explicitly suffix the dataset with ”train” and ”test”
(for example, OIV4-source-train and OIV4-source-test).

(2) COCO [19]: We use the 2017 version of the COCO dataset and randomly
split the classes in to 70 source (COCO-source dataset) and 10 target (COCO-
target dataset) classes. For training, we use the train split and for evaluation,
we use the 5000 images from the validation set. Wherever needed, we explicitly
suffix the dataset with “train” and “test”.

Target classes list is provided in the supplementary.
Evaluation metrics: We report the standard average recall (AR@k) [13] met-
ric to evaluate the quality of proposals. One of the main motivations for building
a generalized proposal model is to use the resulting proposals to train detection
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models for unseen classes with limited or no bounding box annotation. A typical
proposal-based supervised detection model RCNN could also be used to evaluate
the quality of proposals. However, the application to weakly supervised detec-
tion is more compelling since their performance is closely tied to proposals than
supervised models which can correct the inaccuracies in proposals due to avail-
ability of labelled bounding boxes. Hence, we implement a weakly supervised
detector with the approach used in YOLO9000 [26]1. We report the detection
AP (averaged over IoU thresholds ranging from 0.5 to 0.95) on the test set of
the target dataset. Please see the supplementary material for more details.
Implementation details: We fix Imagenet pre-trained ResNet-50 with Feature
Pyramid Networks [17] as the backbone for all models. We use the Detectron
codebase [8]. For COCO, we train the models for 90k iterations with an initial
learning rate and the decay suggested in [27]. For OIV4, we train the models for
800k iterations with an initial learning rate of 0.01 and cosine learning rate decay.
When training the weakly supervised model ([26]), we use the top 100 proposals
in each image to choose pseudo ground truth at every training iteration.

4.2 Modeling Choices

We first identify the best detection model and setting to extract proposals that
generalize to new unseen classes. We then analyze generalization ability under
different settings from this model. We reiterate that in order to test general-
ization, evaluation is done on target classes that have no intersection with the
source classes used during training.
Choice of detection model: We compare the generalization ability of a two-
stage network (Faster R-CNN) and a single-stage network (RetinaNet) in Fig. 3a.
Since, in a two-stage model like Faster R-CNN, the output from the RPN is
class-agnostic and can be used as proposals too, we compare the performance
of the RPN as well. The models are trained on COCO-source-train dataset.
We report AR@100 on seen classes in the COCO-source-test dataset, as well as
unseen classes in the COCO-target-test. The difference in performance between
seen and unseen classes reflects the generalization gap. We also show an upper-
bound performance on COCO-target-test obtained by models trained on the full
training dataset containing both COCO-source-train and COCO-target-train.

We notice that on seen classes, RetinaNet achieves a lower performance com-
pared to Faster R-CNN (drop of 2.4%). However, the drop is larger for unseen
target classes (3.5%), indicating a larger generalization gap for RetinaNet. One
reason for this is that RetinaNet is more sensitive to missing bounding boxes
corresponding to unlabelled unseen classes in the source dataset. Proposals cor-
responding to unseen object classes that are not annotated in the training data
are treated as hard-negatives, due to the use of focal-loss. Hence, the model
heavily penalizes proposals corresponding to unannotated bounding boxes, lead-
ing to overall drop in AR. Since some seen classes share visual similarity with

1 We chose [26] due to its simplicity. In practice, we can use other weakly supervised
approaches too.
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Fig. 3: (a) AR@100 corresponding to different models trained on COCO-source-
train and evaluated on different test splits. Upper-bound corresponds to model
trained on full COCO dataset and evaluated on COCO-target-test. (b) Average
recall of RPN and detection head at different IoU thresholds, for model trained
on COCO-source-train and evaluated on COCO-target-test

unseen classes, this sensitivity to missing annotations affects AR for seen classes
too. However, this effect is more magnified for unseen target classes. On the
other hand, in Faster R-CNN, only a small number of proposals (less than 512)
which do not intersect with annotated bounding boxes are sampled at random
as negatives. The probability that a proposal corresponding to an unseen object
class is chosen as a negative is lower, leading to better generalization. Hence, for
the rest of the paper, we use Faster R-CNN as the detection model.

We also notice that the detection head of Faster R-CNN provides better
overall performance without sacrificing generalization. This can be attributed to
better bounding box regression from the detection head which has additional
layers, following the RPN in the model. To investigate this effect, we measure
AR at different IoU thresholds for both sets of proposals for the model trained
on COCO-source and evaluated on COCO-target in Fig. 3b. We see that the
difference in AR@1000 increases drastically at higher values of IoU threshold,
and is negligible at a threshold of 0.5. This implies that the boxes from the
detection head are more fine-tuned to exactly localize objects, unlike the RPN.

Choice of Faster R-CNN settings: The results so far were obtained using
class-specific bounding box regression (which is the standard setting in Faster R-
CNN) for the detection head. Since we want the bounding boxes to generalize to
unseen classes, class agnostic regression could be a valid choice too. We study this
in Fig. 4 for OIV4 and COCO. We see that class agnostic regression is better for
small number of proposals as seen by AR@10,20,50. However, when we consider
more proposals (AR@1000), class specific regression provides a significant gain
(4.5% for OIV4 and 7.5% for COCO). It results in multiple regressed versions
(one corresponding to each class) of the same proposal generated from the RPN.
This helps in improving recall at higher number of proposals.
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Fig. 5: Effect of NMS threshold on
performance of proposals

Previously, we fixed the NMS threshold to 0.5. We study the effect of this
threshold in Fig. 5. We train on OIV4-source, COCO-source and test on OIV4-
target, COCO-target respectively. Intuitively, a low threshold can improve spa-
tial coverage of objects by ensuring proposals are spatially well spread out. When
considering a larger number of proposals, there are sufficient boxes to ensure spa-
tial coverage, and having some redundancy is helpful. This is witnessed by the
steeper drop in AR@1000 at low NMS thresholds, unlike AR@100.

Based on these observations, we use class-specific bounding box regression
with an NMS threshold of 0.5 for rest of the experiments.

Table 1: Comparing performance of proposals generated by RPN head and detec-
tion head for weakly supervised detection. We also show the AR@100 numbers
which are seen to be correlated with detection AP

Target Dataset - OIV4-target

Source: OIV4-source Source: OIV4-all
Det. AP AR@100 Det. AP AR@100

Faster R-CNN RPN 8.7 55.0 9.6 60.4
Faster R-CNN Detection 24.0 69.4 30.8 76.9

Weakly supervised detection: A strong practical utility for generalized pro-
posals that localize all objects is that, no bounding box annotations should be
needed to train a detection model for new object classes. Hence, we measure the
effect of better generalized proposals on the performance of a weakly supervised
detection model, trained without bounding box annotations. We show results
corresponding to the RPN head and detection head of Faster R-CNN in Tab. 1.
The weakly supervised model is trained on OIV4-target-train and evaluated on
OIV4-target-test. We also show results for proposals obtained from training with
OIV4-source as well as OIV4-all (upper-bound). We see that the performance of
the weakly supervised detection model is directly correlated with the quality of
the proposals being used, showing the need for good generalized proposals.
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4.3 Dataset Properties

Effect of label space granularity: OIV4 organizes object classes in a semantic
hierarchy with 5 levels. We directly leverage this hierarchy to measure the effect
of label granularity (Fig. 2a). We construct a dataset at each level Li (OIV4-
source-Li) by retaining all the images in OIV4-source, but relabeling bounding
boxes corresponding to leaf labels with their ancestor at Li. We construct 5
datasets, one for each level with the same set of images and bounding boxes.

We report the performance of these models on OIV4-target in Tab. 2. Along
with AR@100/1000, we also report the detection AP of the weakly supervised
detection models trained with the proposals obtained from the corresponding
levels. The weakly supervised models are trained on OIV4-target-train and eval-
uated on OIV4-target-test.

Table 2: Effect of different label space granularities on the quality of proposal
for OIV4 dataset. The number of classes at each level is shown in brackets.
Evaluation is done on OIV4-target-eval dataset. Both AR and weakly supervised
detection AP are reported

Source Dataset AR@100 AR@1000 AP (weak)

OIV4-source-L0(1) 61.7 72.0 19.5

OIV4-source-L1(86) 63.4 73.0 22.6

OIV4-source-L2(270) 63.7 75.2 23.1

OIV4-source-L3(398) 65.2 77.2 24.3

OIV4-source-L4(432) 64.2 76.1 24.0

Some past works like [30] postulated that one super-class (similar to L0) could
be sufficient. However, we observe that both AR@100 and AR@1000 increase as
we move from L0 to L1 along with a significant gain (3.1%) in AP. This indicates
that training with just a binary label yields lower quality proposals compared to
training with at least a coarse set of labels at L1. While both AP and AR@100
increase as the granularity increases from L1 to L3, the difference is fairly small
for both metrics (< 2% change). However, annotating bounding boxes with labels
at L1 (86 labels) is significantly cheaper than L3 (398 labels). Hence, L1 can be
seen as a good trade-off in terms of labelling cost, and training a good model.

Need for visual and semantic diversity: We noticed that training with
coarse labels can yield good proposals. It would be interesting to observe if all or
only some of these coarse classes are crucial to build a good proposal model. To
study this, we conduct ablation experiments where we train a model with OIV4-
source-train after dropping all images having a specific L1 label and evaluate the
proposals on the OIV4-source-test images belonging to this label in Fig. 6a. We
repeat this experiment for a few fine-grained classes at L4 in Fig. 6b.

We notice that certain coarse classes (like “clothing” and “vehicle”) expe-
rience a huge drop in performance. On the other hand, “animal” and “food”
are less affected. This can be explained from the fact that, there are many toy-
animal images within the coarse label “toy”, similarly “containers” is a coarse
class in OIV4 which is often depicted with food in it. These classes can act as
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Fig. 6: Effect of Semantic Diversity, measured by dropping an object class during
training and measuring the resulting change in AR for that class: (a) dropping
L1 classes and (b) dropping L4 classes

proxies for “animal” and “food” respectively. However, “clothing” and “vehicle”
do not have good proxies. More interestingly, we make a similar observation for
finer classes at L4 like airplanes and helicopters. This suggests that there is a
smaller set of objects that have unique localization properties in OIV4.
Prototypical classes: Some object classes are similar to others in terms of
localization, while there are classes that are unique and need to be included in
training. Motivated by this observation, we try to identify a small set of classes
called “prototypical” classes which are both necessary and sufficient to train a
generalizable proposal model.

We use the OIV4-source dataset as before with 432 leaf classes. We use the
different approaches outlined in Sec. 3.1 to identify a subset of “prototypical”
classes. Note that among these methods, oracle visual clustering assumes avail-
ability of bounding boxes for all classes and serves as an upper bound on how to
identify a really good prototypical set. Some sample clusters of classes obtained
by this method are shown in Tab. 3. The remaining methods make weaker as-
sumptions and are more useful in practice. In addition to these methods,we also
train models with a set of randomly chosen prototypical classes.

Table 3: Sample clusters obtained by oracle visual clustering for P = 50. The
most frequent class in each cluster chosen as a prototypical class is highlighted

Woman, Girl, Doll Wheel, Tire, Bicyclewheel Lobster, Scorpion, Centipede

Glasses, Goggles Jeans, Shorts, Miniskirt Goose, Ostrich, Turkey

Book, Shelf, Bookcase Musicalkeyboard, Piano Swimmingpool, Bathtub, Jacuzzi

Man, Boy, Shirt Apple, Pomegranate, Peach Raven, Woodpecker, Bluejay

We introduce two ways to measure sufficiency and necessity. From the 432
classes, once we pick a subset of P prototypical classes, we train a proposal
model and evaluate the resulting model on the 50 target classes in OIV4-target,
to measure sufficiency and necessity.
Dataset construction for fair comparison We ensure that the total number
of images as well as bounding box annotations are kept fixed when we construct
datasets for different prototypical subsets. This is important to ensure that pro-
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posals trained with different subsets are comparable. Once we chose a set of P
prototypical classes, we uniformly sub-sample OIV4-source images having any
of these prototypical classes to get a subset of 920K images. And within each
subset, we uniformly sub-sample the bounding boxes corresponding to the pro-
totypical classes to retain 5.2M bounding boxes. We do not retain any bounding
boxes outside the chosen prototypical classes.

Training with prototypical subsets For a set of prototypical classes and the
corresponding dataset, we train a Faster R-CNN with those classes as labels. We
combine the detections as described in Sec. 3.2 to obtain proposals.

Measuring sufficiency of prototypical classes A subset of classes are suffi-
cient, if a proposal model trained with them generalizes as well as a model trained
with all classes. We follow this notion and evaluate the proposals obtained from
the models trained with different prototypical subsets on OIV4-target and re-
port the average recall (AR@100) in Fig. 7a. Similar trends are observed with
AR@1000 as well (shown in supplementary).

Looking at the proposals obtained from oracle visual clustering, training with
less than 25% of the classes (100) leads to only a drop of 4.8% in AR@100, com-
pared to training with images belonging to all object classes. This gap reduces
to 0.4% if we train with 50% (200) of all the classes. This provides an empirical
proof for the existence of a significantly smaller number of object classes that
are sufficient to train a generalizable proposal model.

Next, we look at the prototypical classes obtained from a more practical
approach: semantic clustering. We notice that the proposal model trained with
these prototypical classes always outperform other approaches such as choosing
a random set of classes or the most frequent set of classes. Further, the perfor-
mance of this method is only lower by a margin of 3% compared to oracle visual
clustering for different value of P . Selecting most frequent set of classes as the
prototypical subset performs slightly worse than semantic clustering. This shows
that semantic clustering can serve as a good way to identify prototypical classes
for large taxonomies when the semantic hierarchy is available for the dataset,
else the most frequent subset is a weaker alternative.

Measuring necessity of prototypical classes A set of classes are considered
necessary, if there is no redundancy among the classes in terms of localization
properties. For a given class in the set, there should be no equivalent class which
can provide similar bounding boxes. We measure this property for a prototypical
subset by evaluating the corresponding proposal model on OIV4-target dataset
using the following method. For every target class in OIV4-target, we measure
the relative change in AR@100 and AR@1000 by removing proposals correspond-
ing to the most similar class in the prototypical subset (similarity measured by
Eq. 1). The change in AR would be minimal if there is another class in the pro-
totypical subset which can localize the target class. This measure, averaged over
all target classes provides a good estimate of necessity. A high value symbolizes
a high degree of necessity, while a low value corresponds to redundancy among
the prototypical classes. We plot this for different number of prototypical classes
for oracle visual clustering and semantic clustering in Fig. 7b.
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Fig. 7: (a) Average recall AR@100 for proposals obtained from models trained
with varying number of prototypical classes chosen by different methods. We
show the average recall on the OIV4-target dataset with 50 unseen classes. P
denotes the number of prototypical classes. Higher value indicates higher suffi-
ciency. (b) The relative change in AR for target classes by dropping proposals
corresponding to the most similar class in the prototypical subset. Higher value
indicates lower redundancy in prototypical subset and higher necessity

We notice that at any given number of prototypical classes, the change in av-
erage recall is higher for oracle visual clustering compared to semantic clustering.
This demonstrates that visual clustering leads to prototypical classes which are
less redundant (and more necessary). As expected, we see the necessity drops,
as we increase the number of prototypical classes for both methods. Again, this
is expected since redundancy between classes increases with more number of
classes. The relative change in AR@1000 is also seen to be lower than AR@100,
since when considering a larger number of proposals, we expect more redundancy
among the proposals. Finally, for oracle visual clustering as we move from 200 to
300 classes, sufficiency changes by a small amount from 73.2 to 75.9 ( Fig. 7a),
while the necessity drops steeply in Fig. 7b. This suggests that the ideal number
of prototypical classes for OIV4 could be around 200.

5 Conclusion

We studied the ability of detection models trained on a set of seen classes to
localize unseen classes. We showed that Faster R-CNN can be used to obtain
better proposals for unseen classes than RetinaNet, and studied the effect of
model choices on generalization of proposals, like class-agnostic bounding box
regression and NMS threshold. We quantitatively measured the importance of
visual diversity and showed that using a very fine-grained or very coarse label-
space can both affect generalization, while a middle-ground approach is best
suited. We introduced the idea of prototypical classes that are sufficient and
necessary to obtain generalized proposals. We demonstrated different approaches
to determine small prototypical subsets for a given dataset. We believe that our
work is a step forward towards learning proposals that generalize to a large
number of classes and scaling up detection in a more data-efficient way.
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