Under review as a conference paper at ICLR 2025

DIRECTED STRUCTURAL ADAPTATION TO OVERCOME
STATISTICAL CONFLICTS AND ENABLE CONTINUAL
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Adaptive networks today rely on overparameterized fixed topologies that cannot
break through the statistical conflicts they encounter in the data they are exposed
to, and are prone to “catastrophic forgetting” as the network attempts to reuse the
existing structures to learn new task. We propose a structural adaptation method,
DIRAD, that can complexify as needed and in a directed manner without being
limited by statistical conflicts within a dataset. We then extend this method and
present the PREVAL framework, designed to prevent “catastrophic forgetting” in
continual learning by detection of new data and assigning encountered data to
suitable models adapted to process them, without needing task labels anywhere in
the workflow. We show the reliability of the DIRAD in growing a network with
high performance and orders-of-magnitude simpler than fixed topology networks;
and demonstrate the proof-of-concept operation of PREVAL, in which contin-
ual adaptation to new tasks is observed while being able to detect and discern
previously-encountered tasks.

1 INTRODUCTION

Past decade has shown that complex networks should be at the core of any Al system that needs to
be of robust use in any task of reasonable complexity. It has, however, been unfortunate that over
the same period, the field of machine learning (ML) has been stuck in the twin limiting paradigms
of static topologies and statistical fine-tuning, attempting to make up for the limitations of both of
these by using brute force, in form of overparameterization and computational requirements accom-
panying it. Limitations imposed by these paradigms also prevent solving the crucial problem of
“catastrophic forgetting” in continual learning, which becomes especially important in systems that
need to learn continually without explicit storage and replay of past data. In this work, we first
propose a novel method of structural adaptation, operating with gradient descent, with a strong bias
towards minimal network complexity (i.e. size). Our framework, first of its kind to the best of our
knowledge, is neither limited by statistical conflicts between samples (a term, detailed in the text, we
use to refer to conflicting requirements within a dataset that result in net zero adaptive pressure on
parameters, despite nonzero change requirements for any individual sample) nor reliant on excess
network complexity to find a solution with strong guarantees. We apply this method to construct a
system to prevent “catastrophic forgetting” by recognizing unexpected data, constructing new com-
ponents (models) to process such new data without affecting past responses, and then selecting the
suitable one over an existing array of such models when data from a past task is provided - a uni-
fied continual learning framework that does not require task labels or switching signals anywhere,
neither during adaptation nor deployment; all while not relying on storage and replay of past sam-
ples. Finally, we provide positive results on both of these frameworks in our initial experiments on
MNIST and FashionMNIST datasets.

Note on terminology The mechanisms we propose in this paper are not biologically plausible at
neuronal level, and sharing a nonlinear weighted-sum paradigm is not enough to justify an analogy
with neural systems given the additional mechanisms we introduce. To avoid implying such an
analogy and to accurately describe these mechanisms, we use the terms node and edge instead of

Under review as a conference paper at ICLR 2025

“neuron” and “synapse”. We also refrain from using the term “neural network (NN)” and simply
use network when referring to our design.

2 BACKGROUND AND RELATED WORK

Structural adaptation Structural adaptation in NNs hasn’t gained as much attention as other as-
pects of this technology, as many of these methods involve an additional step and often don’t provide
a significant benefit compared to the added network complexity (i.e. number of nodes/edges). One
subfield in literature, called “neural architecture search,” focuses on optimizing the architecture it-
self explicitly (Liu et al.[|(2018)); Shin et al. (2018)); |Baker et al.| (2016); [Stanley et al.| (2019); |[Liu
et al.|(2017); Miikkulainen et al.|(2019)). Some other works view “’structural adaptation™ as starting
from scratch or growth, sometimes referred to as Artificial Embryogenesis (Kowaliw et al.[(2014)),
often using evolutionary algorithms. Recent methods for expanding neural networks, similar to our
design choices, can also be found in the literature (Dai et al.|(2019); Evci et al.{(2022); Mitchell et al.
(2023))). Our approach aligns more with the group that designs developmental methods rather than
relying on external loops or added pressures for architecture optimization. We use structural adapta-
tion not for topology optimization but to drive further response adaptation. However, our approach
differs from this group in that we prioritize minimal network complexity and address statistical
conflicts while operating outside the conventional NN paradigm.

Continual adaptation A significant issue with continual learning or adaptation is “catastrophic
forgetting” or, as we call it, ’destructive adaptation’ﬂ (DA) - when the new instances differ signifi-
cantly from previously observed examples, they cause the new information to overwrite previously
learned knowledge in the network, a problem until today remains without a reliable solution (Hadsell
et al.[(2020); |Parisi et al.[(2019)). Systems with fixed capacity cannot deal with the problem ade-
quately: An existing capacity is always used completely for the previous tasks (since information
is engrained in a neural network in a distributed manner), and existing information will be eventu-
ally (often immediately) lost as new tasks differing significantly from the previous ones arrive. The
methods that work by the addition of capacity, on the other hand, cannot autonomously decide when
to add capacity, how to assign different added components to different tasks, and how to choose
among components when presented with one of the past tasks (e.g. in (Rusu et al.| (2016)) it must
be externally signalled to the system both when a new task is observed, and for recall, it must be
specified which of the past tasks is being seen) - the same limitation also applies to methods that ex-
plicitly store information about the solutions of past tasks as well (e.g. (Kirkpatrick et al.| (2017))).
Some extensions of such methods that partially try to address these questions require task labels
during adaptation phase and have no mechanism that can detect new tasks (e.g. (Jacobson et al.
(2022))), hence cannot constitute systems with autonomous continual adaptation capability. Other
methods claim to operate without such task boundaries”, yet they all rely on explicitly storing and
then replaying past data (Aljundi et al.[(2019)), Table 1 of|Buzzega et al.|(2020)) - this is infeasible in
many real-world scenarios due to the lifelong memory requirements of the systems, confidentiality
or data protection considerations; and obviously do away with one of the primary motivators for
continual learning. We are unaware of a framework proposed against DA that does not store and
replay of past data, operate without external signalling of task change, is able to recognize a new
task, and add new system components as needed - in other words, a full continual learning setup
without any simplifying assumptions. Designing such a method is what we do in this work.

Novelty/anomaly detection Methods of novelty/anomaly detection are those that are interested in
classifying certain encounters as novel or not. Detailed survey of such methods is beyond our scope,
interested readers can find a review in (Pimentel et al.| (2014)). The field itself is not of primary
interest to us except as a sub-goal, since it concerns itself with systems designed to classify samples
as novel or not, while we want to both quantify and localize this novelty, doing that within a system
that is actually used for the performation of a particular task. Furthermore, as methods susceptible
to statistical conflicts, they are not suitable for our purposes (as will be discussed in the following
sections).

"We think “catastrophic forgetting” is unnecessarily anthropomorphized (the phenomenon is a challenge to
all adaptive systems) and does not correspond to the gradual process of “forgetting” as commonly understood
but to active destruction of past information.

Under review as a conference paper at ICLR 2025

3 MECHANISMS OF STRUCTURAL ADAPTATION

In this section, we describe our structural adaptation and network growth mechanism. The mech-
anisms described here are not directly aimed at the prevention of destructive adaptation (DA), but
are general adaptive processes that can be used in any ML problem. Throughout the section, we
discuss a single task. Here we only provide a summary of the method and its core points. The full
theoretical development, with justifications of design choices and practical considerations, can be
found in the Appendix. To illustrate the process in action, we provide an example path of adaptation
in Figure[I] to which we refer throughout our narrative below.

We always assume a network starting with only the input and output nodes, and no hidden nodes
(neither input nor output - Figure - however the mechanisms we designed can operate locally
within networks of arbitrary standing complexity. Our aim is to develop a network that can com-
plexify as needed, but not more (prioritizing parameter adaptation where possible); and that is not
limited by statistical trade-offs between different samples in a batch. We call the processes that
grow the network by introducing new components as generative processes (GPs), each of which is
neutral: No node’s response is changed due to a GP; and all changes in net response occur under the
influence of gradients to ensure no harm to performance. Parameter adaptation within network (edge
weights and node biases) are done by standard gradient descent via backpropagation algorithm.

Adaptive potentials (APs) The immediate AP of an edge (i, 7) is defined as the net gradient that
this edge’s weight gets over a given batch, i.e. 0C/dw;; where C is total (summed across samples)
cost/error for that batch. We say that the immediate AP of edge is exhausted if 0C/0w;; ~ 0.
Analogously, we say that the immediate AP of a node j is exhausted if 0C'/0z; = &; ~ 0 (where z;
is the activation) and the immediate AP of all its in-edges is exhausted as well. We define the rotal
APofanodeas) |5;”| (m is the sample index), as a measure of the total adaptive gain that can
be obtained by a change in the activation of that node z;, if it can be exploited. Analogously, we
define the rotal AP of an edge (i,j) as), |0C™ /Ow;|.

Edge generation The first GP, edge generation, generates an in-edge with an initial weight of 0
to a node j. The source of the edge is chosen among the candidates to be the one that maximizes
the magnitude of the expected immediate gradient update on the edge, i.e. the value |0C/0w;;|
]Zm a§”’6}-”| where a" is the state (response) of node 7. We generate an edge for a node if the
immediate AP of the node is exhausted, but its total AP is not (i.e. is nonzero), see Figure @
Intuitively, this operation allows us to take a node with a nonzero total AP out of the exhaustion of
its immediate AP provided that there are sources that can be a good match with the change directions

requested by the gradients.

Edge-node conversion (ENC) and resolving statistical conflicts The ENC mechanism is de-
signed to operate where the immediate AP of an edge is exhausted while its total AP is not. Recall
that total AP quantifies the total adaptive gain that can be obtained from a given edge. This potential,
no matter how large, cannot be utilized in NN if the immediate AP of the edge is exhausted (net
gradient 0). ENC mechanism provides a solution to that by modulating the gradients of the original
edge (upon the progression of adaptation) so that they become aligned instead of opposing. Here we
only describe the final design of the ENC operation with brief intuition on their justifications where
applicable - for detailed reasoning, the reader is referred to the Appendix.

When an edge (4, j) undergoes ENC, it is replaced with a new node k and two edges (i, k) and (k, j)
that become the new path connecting 7 to j. The new node is modulatory, whose state is computed
by the multiplication of two terms:

al’ = H ai(Z Wyzay' + ba;) @

1€{0,1} yEing(x)

where subscripts x, ¢ refer to node x, term i. We also assume two distinct transfer functions o and
o1, where 0 (2) = z in our design and o is given as o1 (z) = 4/(1+e~5%) — 1, where K = 1/w;;
is a node-specific property. This function can take values in the range (—1, 3), and hence is able to
invert the sign of the previously opposing gradients. Nonlinearity in network is realized by the

Under review as a conference paper at ICLR 2025

o= (= 4,=4) = (mmh)

& @

©

a,= (000.0) ay=(0000)
&= ;

(a) (b) (© (d) (e

a, = (000,0)

Figure 1: A simplified illustrative case of the path of adaptation for signed XOR (”False” represented
by —1 instead of 0). Inputs: xg, 21. Output: y. In the figures, G represent dC'/dwe, a; state of
node 7, and the four values in parentheses represent the signs that a variable takes for the four
samples, respectively. We simplify by assuming no bias and that the adaptation process of different
components happen in sequence instead of simultaneously. (a) Initial state. y has immediate AP
exhausted but total AP nonzero, hence will form an edge. Neither input is an immediately-useful
source, since neither matches with deltas of y. (b) y forms an in-edge, source chosen randomly. The
generated edge has a net gradient of 0 and hence cannot proceed with adaptation. This is a ”local
optimum” in a static network. (c) The new edge undergoes ENC from exhaustion, and its gradient
is transferred to the Term 1 deltas of the new node h. h, under immediate AP exhaustion, gets an
edge from x(that can provide perfect match with the sign of its deltas and creates a large positive
net gradient for the new edge. (d) Modulatory edge to term 1 of the converted node h stabilized in a
negative value following adaptation. The net modulatory effect of xy on the x; — y pathway inverts
the sign of gradients when x is positive. The net gradient of wy,,, previously 0, goes net positive as
a result of the modulation. (e) Final stable state with correct response in y.

multiplication operation and the nonlinear o;. The two terms in modulatory nodes will have distinct
delta values, d, ;; and they will form in-edges distinctly for these two terms. We assume that at the
time of ENC, the original source ¢ connects to term O of the new node k and no node is connected
to term 1. We further set the bias of the first term to a fixed 0, and we set the weights of new edges
as w;r = 1 and Wgj = Wsj.

It is shown in the appendix that this design of a modulatory node satisfies our neutrality criterion. It
can also be shown that immediately after this conversion, the deltas for term 1 of the new node are
equal to the gradients of the original edge, ¢;"; = 9C /Ow;;. By ENC, we effectively transferred
the weight gradients of the original edge (which cannot be treated as a vector for adaptive purposes,
but only in terms of their average effect) to the deltas of a node (which can be treated as a vector
that can create an adaptive change even if their average is 0). If a proper source ! can be found for
term 1 of node k that yields a nonzero 0C'/Owyy,, then the net gradient of the new edge (k, 7) will
start going nonzero as state of term 1 of node k is adapted under the influence of the gradients which
are proportional to that of gradients of the original edge, hence getting out of what would be a local
optimum had we have a static network (Figures [Ic|and [Td).

In the appendix, we show that the chain of ENC operations will continue, resulting eventually in
nonzero net gradients, and hence adaptation will proceed across the network, as long as the following
condition does rnot hold:

oc™
—)=0,VAe P(N 2
) (N) @

i

COU(H ay’,

z€A

where NV is the set of all available candidate sources (at the very least, covering all input nodes) and
P(N) its power set. In the most relaxed case, this condition states that adaptation will proceed as
long as there is any nonzero correlation between the gradient vector of the edge that we are trying
to get out of adaptive exhaustion and any of the potential multiplicative combinations of the input
nodes of the network. This is a condition much more strict than simply having a mean g%: as 0, as
static networks would have; and we intuitively suspect, but did not verify mathematically, that it may
correspond to a global optimum. The theoretical nature of this condition should not be forgotten,

however, limited by finite step sizes and practical considerations.

Under review as a conference paper at ICLR 2025

To limit the number of GPs executed and limit network complexity increase to when it would be
absolutely necessary, we can introduce a priority ordering mechanism, which chooses a limited
number of GPs among all that are possible at a particular instant, preferring some over the others.
The choice of such a priority ordering scheme can be made in many ways depending on designer
priorities. For our implementation, we prioritize low complexity and hence introduce a quite re-
strictive scheme; in which we perform a single generative process per step among the whole input
pathway of an output node, if and only if all the components on this pathway have their immediate
AP exhausted. Detailed description of this algorithm can be found in the Appendix.

We refer to the method of structural adaptation in this section as DIRAD (from directed adaptation).

4 NOVELTY DETECTION VIA PREDICTION VALIDATIONS

Our aim now is to create a network that can detect whether the samples observed currently by
the network are actually among the same type that it had adapted to or if they are new, causing
unexpected responses by the network. For that, we present the PREVAL (from prediction validation)
method that can predict the states of the nodes in the network using information from higher levels of
computation, and then uses mismatches in these predictions to detect novel encounters, and finally
use this information to realize continual adaptation in a system with multiple modelsE] Below, we
describe of components of PREVAL.

L0 and L1 networks In a supervised learning task, let LO network be our task network. Suppose
that upon accomplishment of a designer-specified condition (e.g. errors no longer decreasing), LO
is stabilized - i.e. no more parameter updates or generative processes, the response of every node to
a given input is fixed. In PREVAL framework, we create a new network, a directed acyclic graph
(DAG) within itself, the L1 network, following the stabilization of L0O. Target nodes of L1 are all the
nodes (including inputs) in LO except output nodes, and its task is to predict the states of these target
nodes as computed by LO in response to a given input. L1 can use as inputs any of the nodes in L0,
potentially including output nodes, as long as the following condition is not violated: For any node
ng € L0, no node n1 € L0 can have a path to ng via L1 if it also has a path to ng via LO - making
sure that only the nodes at a higher level of computation predict the states of those in the lower levels
of computation, i.e. abstract information predicts the concrete observation, not vice-versa. Hence
in L1, we prevent simply performing the trivial replication of the pathways in LO. Given this new
description of inputs, outputs, targets, and the additional constraint regarding connectivity; L1 can
be adapted as usual with DIRAD and stabilized in the same manner as LO.

Multiple models We define a model as any system within our framework that has a particular
response pattern to the input. In our implementation, we interpret models as distinct, unrelated
networks; though alternative conceptualizations, such as a subset of connections or subnetworks
expressed within one network, or networks that are duplicated and differentiated from one another,
are also possible and everything in this section applies to them as well In our conceptualization,
the system consists of a dynamic number of models. Below, we present a method using the outputs
of L1 networks that is able to (i) detect new tasks that show deviation from the structure of previous
data, on which existing models were adapted, and create new models for these new tasks; and (ii)
in the observation of new data, can choose among the existing models the one that is best-matching
for processing that data, without needing to observe the target outputs. Irrespective of the definition
of a “model”, when a system can create new models to process automatically-detected new data
belonging to different tasks, one can said to have prevented DA in the system since there is no more
overwriting or loss of information. If the system can, furthermore, assign newly-encountered data
to proper model among the set of models (for different tasks) it has available, then we can say that it
is able to retrieve this information which was protected, and hence (in sum) is capable of continual
learning.

2PREVAL can possibly be interpreted within the predictive coding framework (Millidge et al| (2021);
Spratling|(2017)).

*We experimentally saw that while adaptation was faster when adapting via the addition of connections to
a single network; the final performance was better with new networks per detected task.

Under review as a conference paper at ICLR 2025

Validation of models An adapted L1 network can provide us with the mismatch information be-
tween the actual state of an input or internal node and its predicted state based on the state of the
network at higher levels of computation; which can in turn be used to validate whether a new sample
(during deployment) or batch (during ongoing adaptation) is consistent with what is expected based
on the data that the current model was adapted to. Notice that this pertains to the conversion of a
continuous metric (amount of mismatch in L1 nodes) to a discrete one (model validated/invalidated
on a sample). Furthermore, when one is comparing multiple models in this regard (finding the model
that ’best matches” to the sample), there is no one-to-one correspondence between different models
since they will have distinct L1 networks, with different targets possibly differing even in the order
of magnitude of their numbers. Hence, there is no single best way to perform this validation. Here,
we describe (and use in our experiments) one particular framework, recursive processes of validation
across the hierarchy starting from node responses to whole batches.

At time of stabilization, we classify a target node n of the L1 network as confidently predicted (CP)
if the mean prediction error (PE) of this node across the last batch is lower than a threshold T p;
and record the mean p,, and standard deviation o,, of observed PE that node across the last batch.
When processing a new sample, the response of the model (and hence retrospective predictions of
L1 target nodes) are obtained. We classify the CP node n in a model as conflicted if the observed
PE in that node for that sample is larger than (i, + T¢opn roy, for a preset multiplier Tty . A model
is said to be validated on a sample if, in its response to that sample, the ratio of conflicted nodes to
total number of CP nodes Ny, s /Ncp < Tsy for a preset threshold Tsy .

During stabilization of a model M, we record the number of invalidated samples in the last batch that
the model observed, R%. During adaptation, model validation is performed over whole batches. A
model is said to be validated on a batch if the total ratio of samples invalidated within the batch for
this model do not exceed (1 + € IS)R% where €75 is a small margin allowed on top of estimated
ratio.

Recall and new task detection During adaptation, if we have a still-adapting (non-stabilized)
model, we always process new batches with that model. If all models are stabilized, then we perform
the validation of the batch across all models. If there is a model for which batch is validated, that
model (or the one with least ratio of invalid samples if there are multiple) is chosen to process it. If
there is no such model, we create a new model starting from L0 adaptation stage, corresponding to
the detection of a new taskE] During deployment/test, we process data on a per-sample basis. For
each sample, all models are checked and the sample is processed by the model that is validated on it
(or the one with least ratio of CP nodes if multiple there are multiple), without new model creation.

This process is simplified and illustrated on Figure 2} With PREVAL, the capability for continual
adaptation (without storage and replay of past data) is decomposed into the capabilities of detection
of new tasks and of creating new network components (either on top of existing, without affecting
pre-existing pathways’ functionalities; or from scratch) and being able to deduce by which of those
components an observed instance should be processed. Although other solutions proposed against
DA, including those that work on fixed topologies, can alleviate it to a degree in certain tasks; we
think that any definitive solution that can solve the problem at its root should be operating within
this decomposition made with PREVAL.

DIRAD makes possible the implementation of PREVAL framework, which wouldn’t be practical
to construct using fixed topology layered networks (FTLNs) like fully connected NNs. The reason
for that is twofold: One, we want to predict not just input nodes, but also internal nodes - which is
not possible with FTLNs except by creating separate multi-layered overparameterized networks for
each layer of the original already-overparameterized network - highly unscalable. With DIRAD, we
promote minimal network complexity by design in all networks. Two, architectural limitations: If
we use information bottlenecks, e.g. autoencoders, we have compression that can limit prediction,
which we do not want since our requirement is as accurate prediction as possible without concern
about compression. With no bottleneck, however, there is a risk of decaying into triviality (e.g. each
input determining its prediction directly via a network transformation that is equivalent to identity;
plausibly among the probable solutions in high-dimensional, difficult prediction tasks). PREVAL

*We assume that a batch for one task is available to the system until the end of its adaptation, and no new
task is provided until system is stabilized for current one. This can easily be realized if computation power and
temporary storage cost of a batch are not limiting factors, which is seldom the case in today’s systems.

Under review as a conference paper at ICLR 2025

DEPLOYMENT/TEST

®e %e
|
)@) Each sample processed by the

ADAPTATION

* Model invalidated on

batch if invalid .
- '3 CP Nod samples ratio = 2/4 > bes_t matching model (lowest
1 conflict doCle)s d (1+€5)RM ratio of CP nodes), regardless
contlicte node
Ratio=1/3 * New model creation if

no validated models
on batch

Invalidated samples Validated samples

(a) For each sample, the

.. .. of validation or invalidation.
[S ! ? @
‘o ®

responses of networks are

obtained. Among the CP (b) During adaptation, if there is a standing adapting model, we process the batch
nodes (outlined in black), by that model. If not (the case shown on figure), we process the batch by a model
we take the ratio of those that is validated on a batch, which is the case if the ratio of invalidated samples
that are invalidated (red) (outlined red) to the total number of samples is greater than a threshold. If no
as a measure of mismatch model is validated, a new adapting model is created for the task. During deploy-
for the sample for a given ment/test, each sample is processed by the best-matching model regardless of val-
model. idation.

Figure 2: Simplified representation of PREVAL flow.

with DIRAD prevents unnecessary bottlenecks while giving the prediction of a node access to any
info it can need without limitation, except for explicitly excluding those that would result in trivial
predictions - this overcomes both limitations with FTLNs discussed. Furthermore, while the de-
signer can choose the target dataset to yield an even distribution among different classes; this cannot
be satisfied with the state of the internal nodes predicted back by L1 - the discerning among differ-
ent states of a node may be reliant upon recognition of a small number of outliers for that particular
node. An adaptation method based on statistical fine-tuning would have difficulty capturing these
nuances as conditioned on the states of other variables in the network, which is not the case with
DIRAD.

5 EXPERIMENTS AND RESULTS

Setup In this section, we present experimental results with DIRAD and PREVAL. We use a digit
classification problem with task change on MNIST and Fashion MNIST (F—MNISTf], where differ-
ent tasks are defined as different classes (digits) enabled. For each experiment run, the process is as
follows: Two classes are chosen randomly among the 10 classes in the dataset. We call this choice
of a subset of classes from the whole dataset a task. The system adapts to the task at hand, first of
its LO network and then of its L1 network, until it reaches the stabilization of L1 network (detected
via non-decreasing errors in all target nodes). After L1 stabilization, the task changes by choosing
two new digits at random that were not among the previous tasks, and the new task is adapted to in
the same manner, with potential model changes and additions as they are executed by the PREVAL
flow. This process happens for 3 tasks (2 changes). We choose Tcp = 0.05, but provide additional
results with different values on Appendix Detailed choice of other parameters is provided in
Appendix [A.5] We don’t perform any ablation analysis (except the basic distinction of DIRAD and
its augmentation with PREVAL) since all components of the algorithms are required for their basic
operation.

Metrics For DIRAD, we present the progression of mean squared error throughout training, first
for LO then for L1 networks. For PREVAL and continual learning baselines; at the end of each task,
we test the retrospective prediction performance of the system on a test set formed of all the classes
that belong to all the previous tasks that the system was exposed to. In other words; samples from
only one task is shown to the network at a time during training, but samples from all the preceding
tasks are tested on during testing.

>We downscale images to 14x14 pixels for computational purposes. Notice that this makes the classification
task more difficult, not easier (and is partially responsible for a somewhat lower single-task accuracy compared
to NNs); but limits number of L1 targets.

Under review as a conference paper at ICLR 2025

Baselines We compare our method with three baselines: (1) Elastic Weight Consolidation (Kirk-
patrick et al. (2017)) (EWC), (2) Progressive Neural Networks (Rusu et al.|(2016))) coupled with Fa-
miliarity Autoencoders (Hadsell et al.|(2020))) (PNN-FAE) for task assignment, (3) Memory Aware
Synapses (MAS) for continual learning (Aljundi et al.|(2019) - we used the variant in paper without
replay buffer as is assumed in our problem setup, which cannot operate without task boundaries).
Details and parameters for these implementation are in Appendix[A.5] Note that while these methods
were developed for information retention, neither is capable of detecting new tasks autonomously.
Instead, they rely on external signals to indicate when a task change occurs. In contrast, PREVAL is
designed to independently recognize and adapt to new tasks without external specification. As a re-
sult, PREVAL’s capabilities are inherently superior, and in performance comparisons, these methods
should be seen as upper limits. They provide an idea of what can be achieved by existing methods
that lack the ability to recognize task changes or detect new tasks. As mentioned earlier, no com-
parable baseline in the literature that we know of demonstrates recall, task change recognition, and
new task detection without external intervention or the use of stored past samples (i.e., replay).

A note on higher dimensional tasks MNIST and Fashion MNIST are standard benchmarks for
ML methods, though it is known that current NNs can handle more complex datasets in non-
continual settings. Our methods, however, are more complex to implement, and experiment runtimes
increased significantly with higher-dimensional tasks. As such, these results should not be seen as a
direct comparison of DIRAD/PREVAL to the full non-continual capabilities of NNs. Instead, they
demonstrate the core operational features (which are qualitatively more comprehensive than those
available in existing methods, due to the possibility of recall and new task detection without exter-
nal input) on recognized but simple benchmarks. The discussion on computational complexity and
future directions is in the next section.

5.1 REesuLts

Single-task adaptive performance Figure 3| shows a typical progress of adaptation on a single
task, over course of both LO and L1 adaptations, for MNIST. Across trials, it is consistently seen
that errors for output nodes decrease to near-zero values during LO adaptation; and to a non-zero
value of ~ 0.05 per node during L1 adaptation - showing that, as expected, not every L1 target can
be predicted reliably and a distinction of those that can be predicted confidently is needed.

Figure [3| also demonstrates the progression of network complexity for a single task. LO adaptation
can solve the task, in this run, with only 6 (hidden) nodes and 15 edges. This order of network
size (j20 nodes and ;50 edges; and usually towards the lower end of this range) is observed in
all our experiments with 2-class classification. This corresponds to a number of edges at least
two orders of magnitude lower than those of a fully connected NN - a NN with a single hidden
layer of 16 neurons (an optimistic minimum size estimate for a task like MNIST) would need 3296
edges, more than 100 times the typical network complexity of DIRAD. The ratio of complexities
between an NN and a solution found by DIRAD can be expected to hold for tasks of any complexity,
due to DIRAD’s guarantees of finding a good solution with minimum size and NNs’ reliance on
overparameterization, as discussed in the preceding sections. However, note that L1 adaptation
requires a much greater complexity of the network, more than 10-fold increase in edges, fueled by
both the increased number of target nodes (= 200 nodes vs. 10 output nodes of which only 2 can
be active) and the fact that the targets themselves are more difficult to predict (each target can take
arbitrary values in (0, 1) vs. one-hot vectors in classification). This suggests that doing the task of
L1 network with a NN (setting aside functional difficulties of defining this task with them in the
first place) would require a vast number of parameters to have a shot in demonstrating a reasonable
performance.

Continual adaptation To demonstrate the continual adaptation performance, we provide the av-
erage net retrospective prediction performances (across 8 runs and across all classes) of the systems
with different settings on Table [T] (values outside parentheses). Recall that these are test perfor-
mances including the classes enabled in both the current and earlier tasks. To provide a lower bound
on performance; in task index X one would expect an accuracy of 1/2X for completely random
classification, and of 1/X in a network which can accomplish the latest task perfectly but has “for-

SFull results, decomposed by individual class accuracies in individual runs, can be found in the Appendix.

Under review as a conference paper at ICLR 2025

0.20 #Nodes
| — #Edges
0.15 200

g(] 10

S
S

0.05 -

Number of nodes/edges

< Average error
0.00

=3

0 50 100 150 200
Iterations

Figure 3: Sample progress of adaptation and network size on a single task on MNIST (2-class
classification, 6 & 7). The average (mean squared) error is across all target nodes, i.e. output nodes
during LO adaptation and become (transition marked) the L1 target nodes during L1 adaptation.

gotten” (as is typically the case without measures against DA) the others. On the upper bound, we
have a case in which all the tasks would be discerned perfectly, yielding approximately the accuracy
it yields after only Task 1. We see that with PREVAL, the first task can be performed with a high
accuracy of &~ 96% for both MNIST and F-MNIST, while each additional task causes a reduction
in accuracy. Still, respectively for MNIST and F-MNIST, we see an accuracy of 79% & 84% after
second task and 73% after third task, considerably higher than random (25%-17% resp.) and what
one would expect for a perfect response only for the latest (50%-33% resp.). For MNIST, PREVAL
is able to detect all task changes, while for F-MNIST, one change was missed in one run. There
is no large performance difference between MNIST and Fashion MNIST for PREVAL on average,
suggesting that datasets of varying complexities can be handled both.

In comparison with baselines, we see that EWC fails in continual learning as provided by incre-
mental classes as the previously-learned task is eventually completely forgotten with the new task.
PNN-FAE can retain the same performance across all tasks for MNIST, and to some degree in Fash-
ion MNIST, close to PREVAL’s performanc MAS without replay buffer succeeds in retention for
MNIST but fails in most trials in Fashion MNIST, giving a net accuracy lower than that of PREVAL.
In short; is seen that PREVAL can operate on par with or surpassing existing methods (in all cases
except PNN+FAE and MAS on MNIST, which show near-perfect retention), on top of the qualita-
tively superior capability of being able to detect task changes and recognize new tasks (which is not
done by baselines).

Table 1: Average test accuracies (8 runs) for each T¢p value. Entries under TX represent the
network’s net accuracy in classifying all classes that belonged to the tasks including and before index
X (e.g. T2 is the accuracy on four classes, two from task 1 and 2 each); hence values under T1 can
be also interpreted as single-task performance. Values inside parentheses are standard deviations.
Number of runs with non-detected tasks is provided under entry "ND” (only for PREVAL), also
included in the averages. Inside the parentheses are standard deviations. Recall that PREVAL’s
performance includes both task change detection and new task recognition, whereas these aspects
are externally provided to the baseline methods.

Task Tor Ti T2 T3 ND
MNIST PREVAL 0.96 (0.026) 0.79 (0.056) 0.73 (0.061) 073
Baseline: EWC 1.00 (0.001) 0.50 (0.010) 0.33 (0.041) NA

Baseline: PNN+FAE 0.98 (0.005) 0.98 (0.003) 0.98 (0.006) NA

Baseline: MAS 0.99 (0.01) 0.99(0.01) 099 (0.01) NA

Fashion MNIST PREVAL 0.96 (0.058) 0.84 (0.055) 0.73(0.077) 178
Baseline: EWC 0.96 (0.061) 0.50 (0.016) 0.34 (0.061) NA

Baseline: PNN+FAE 0.90 (0.054) 0.82 (0.098) 0.79 (0.097) NA

Baseline: MAS 0.87 (0.21) 0.56(0.38) 0.49 (0.42) NA

"Note also that the autoencoders used to obtain PNN-FAE results are very complex compared to the L1

networks of PREVAL, with 7 layers and more than 40,000 parameters.

Under review as a conference paper at ICLR 2025

6 DISCUSSION AND CONCLUSIONS

DIRAD A notable limitation of DIRAD lies in its computational complexity, which is not en-
tirely mitigated by the architectural simplicity of the resulting networks. As previously mentioned,
datasets with higher dimensions than MNIST and Fashion MNIST exhibited a marked increase in
computation time. This heightened processing time is attributed to the current implementation of
DIRAD, which handles all network components and samples sequentially, even though both aspects
are well-suited to parallel processing. To scale DIRAD to higher-dimensional tasks—similar to the
advancements made in neural networks since 2010—a more efficient, parallelized approach is nec-
essary. However, such an implementation is beyond the scope of this paper and outside the expertise
of the authors. It is likely that a method like DIRAD/PREVAL will always remain somewhat more
computationally intensive than fixed neural networks. We see this as a trade-off for the distinct ad-
vantages these methods offer, such as unsupervised continual learning and the potential reduction in
future learning processes enabled by systems with such capabilities.

Moreover, network growth methods do not yet fully benefit from hardware acceleration techniques
(such as GPUs) that are effective for fixed, overparameterized NNs. We see this not as an inherent
limitation but as a temporary and necessary challenge. Fixed and static network architectures have
fundamental constraints, as detailed in the paper, and future Al hardware” will need to adapt to
support growing or dynamic networks. We view methods like DIRAD as innovations that will shape
the development of future hardware. In cases like this, software should not be restricted by current
hardware capabilities but should instead drive advancements in hardware, especially in evolving
fields like AL

PREVAL To the best of our knowledge, PREVAL is the first framework that can handle continual
adaptation with high accuracy & retention of past information, while doing both new task detection
& discernment among past tasks within a unified framework that does not require task labels any-
where in the flow. The degree to which this happens with PREVAL, however, is dependent upon
the discernability of different tasks within the system; and is currently still lower compared to what
would be in case of a perfect discernability. Further analysis and improvements (including those
pertaining to computational efficiency, as we had to train PREVAL with high learning rates for rea-
sonable experimental duration, which may have caused destabilizations) are required to identify how
the remaining performance gaps can be closed as well.

We saw that using familiarity autoencoders for assignment of a newcoming sample to its task can
result in better task discernment than PREVAL (specifically in MNIST in our experiments) together
with another growing architecture like Progressive NNs. It may be possible to use a hybrid system,
in which PREVAL is be used mainly for new task detection (which it is shown to be able to do
reliably) and an autoencoder is used for assignment of samples to known tasks may use the best of
both worlds and result in higher net performance of the combined system.

We used PREVAL with an interface in which different models were represented with different net-
works. This prevents destructive adaptation (DA), but does not harness the potential of transfer
learning (Zhuang et al.|(2020)) since networks are all created from scratch. As discussed; in case of
need, the definition of a "model” can be modified to allow for this. Alternatives include adding ca-
pacity to a shared network while selectively stabilizing the previous pathways so that past responses
won’t be affected (possible without loss of expressivity potential with DIRAD), modifying existing
components while storing alternatives in different models, and many others. There already exist
methods that work via the addition of capacity to alleviate DA in continual learning scenarios (Rusu
et al.| (2016); [Yoon et al.| (2017); [Terekhov et al.| (2015)) - approaches like that can be applied to
PREVAL without changes in basic system conceptualization in either side. PREVAL can also be
used with methods are reliant on storing past structure (like (Kirkpatrick et al.[(2017))), to give them
a means of detecting new tasks. PREVAL has been designed to operate as a mechanism at a level
above the network adaptation process. Hence, it can work in tandem with any method modifying
network adaptation dynamics that also aim to reduce the effect of DA, or is geared towards any other
purpose.

REFERENCES

Doric. https://github.com/arcosin/Doric. Accessed: 2022-05-22.

10

https://github.com/arcosin/Doric

Under review as a conference paper at ICLR 2025

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11254-11263,
2019.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920-15930, 2020.

Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural network synthesis tool based on a
grow-and-prune paradigm. IEEE Transactions on Computers, 68(10):1487-1497, 2019.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Max Vladymyrov, and Fabian Pe-
dregosa. Gradmax: Growing neural networks using gradient information. arXiv preprint
arXiv:2201.05125, 2022.

Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in cognitive sciences, 24(12):1028-1040, 2020.

Maxwell J Jacobson, Case Q Wright, Nan Jiang, Gustavo Rodriguez-Rivera, and Yexiang Xue.
Task detection in continual learning via familiarity autoencoders. In 2022 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 1-8. IEEE, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521-3526, 2017.

Taras Kowaliw, Nicolas Bredeche, Sylvain Chevallier, and René Doursat. Artificial neurogenesis:
An introduction and selective review. Growing Adaptive Machines: Combining Development and
Learning in Artificial Neural Networks, pp. 1-60, 2014.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon,
Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural net-
works. In Artificial intelligence in the age of neural networks and brain computing, pp. 293-312.
Elsevier, 2019.

Beren Millidge, Anil Seth, and Christopher L Buckley. Predictive coding: a theoretical and experi-
mental review. arXiv preprint arXiv:2107.12979, 2021.

Rupert Mitchell, Martin Mundt, and Kristian Kersting. Self expanding neural networks. arXiv
preprint arXiv:2307.04526, 2023.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural networks, 113:54-71, 2019.

Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko. A review of novelty
detection. Signal processing, 99:215-249, 2014.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Richard Shin, Charles Packer, and Dawn Song. Differentiable neural network architecture search.
2018.

11

Under review as a conference paper at ICLR 2025

Michael W Spratling. A review of predictive coding algorithms. Brain and cognition, 112:92-97,
2017.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 1(1):24-35, 2019.

Alexander V Terekhov, Guglielmo Montone, and J Kevin O’Regan. Knowledge transfer in deep
block-modular neural networks. In Biomimetic and Biohybrid Systems: 4th International Con-
ference, Living Machines 2015, Barcelona, Spain, July 28-31, 2015, Proceedings 4, pp. 268-279.
Springer, 2015.

Andreas Wagner. The origins of evolutionary innovations: a theory of transformative change in
living systems. OUP Oxford, 2011.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43-76, 2020.

12

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 FULL THEORETICAL DESCRIPTION OF DIRAD

This section presents the full theoretical description and development of DIRAD. Note that the
related part in the main text is a shortened version of this discussion, stripped to its main points.

A.1.1 STARTING POINT FOR DEVELOPMENT

We start with the assumption of a network with the specified input and output nodes, as they are
defined by the task, and no hidden nodes. From that, we want to develop a network that (1) can
complexify as needed, but no more than needed, to solve the task at hand; and (2) is not limited
by statistical conflicts between different samples in a given batch in doing so. Note that the pro-
cess described in this section is based on mechanisms that operate locally in individual component
basis, and hence their operation does not depend on the existing network complexity (even if their
outcomes do).

We call the processes that grow the network by introducing new components (nodes or edges) as
generative processes. In designing our generative processes, we prioritized the principle of neu-
tralinff] of structural modification: For all existing nodes in the network, neither their responses nor
the adaptive signals (gradients/deltas) they receive should change by a generative process in the
network - all changes should occur under the influence of gradients, to make sure that they are not
detrimental to the performance. This principle corresponds to different criteria for different genera-
tive processes. Below, we describe the two main generative processes in our design: Edge generation
and edge-to-node conversion.

A.1.2 EDGE GENERATION

The first mechanism that we have to account for in our system is the edge generation mechanism.
An edge (4, j) with weight w;; from node i to j is a potential point of modification for a change in
the activation value of its target node, affecting its state by multiplying the weight of its input:

a;=0(z)=0(Y wiai+b)) 3)

i€sre(y)

where a; is the state of node j, z; is the activation, sigma is a nonlinear function, and b; is the
bias. Recognize that the contribution of a single edge to the activation of node j is +wj;;a;. For
the principle of neutrality to hold, we want to make sure that a new edge (¢, j) does not change the
value of z; before and after this operation, and hence during edge generation, we always initialize
the weight of the edge as 0.

Recall that in NNs adapted with standard gradient descent, we have the gradient of a weight with
respect to the cost associated with sample m from a batch as follows:

oc™ m

3wij v
o = %S—,ZL are the gradients of cost terms with respect to activation 27" of node j, a value that
: T .

can be computed via applying multivariable chain rule starting from the output nodes and traversing
the network backwards until the input nodes, forming what is called the backpropagation algorithm.
Notice that the process for an NN with a layered & fully-connected (or any other mainstream fixed)
topology is the same as the process for an arbitrary-topology networkﬂ like the one we assume

8Neutrality of individual changes, which open up the potential of an genome for further adaptive changes,
are believed to be a core point in the evolvability of organisms. Interested readers are referred to/Wagner|(2011)
for a organized overview.

°Given it is a directed acyclic graph (DAG), a condition that we assume in our description and enforce on
generative processes in our implementation.

13

Under review as a conference paper at ICLR 2025

here: The § values for a node can be computed only if the § values for all its successors have been
computed already, which gives us the needed order of traversal.

The gradient of a weight is then used to update the current edge weight:

oC

wij[t—t- 1} = wij[t] - ’yaw“
v

&)

where v determines the magnitude/rate of adaptation per step, and total gradient for a given sample
set of size IV,, is given by

oc 1 ocm,
= (— Z al*sy") (6)

Oow;; N, ow; ;
v M omeM U meM

The magnitude of the value 77, which can be computed with the knowledge of source states and

target deltas even without the ex1stence of an edge between them, can be interpreted as the immediate
adaptive potential (AP) of a given edge: It represents how much cost is expected to decrease after a
single update step of that edge.

We can condition the formation of an in-edge to a target node upon a quantified need for it. Verbally
speaking, an edge would be required when a node’s activation requires a change for proper adap-
tation in different samples, yet the net pressures from the aggregate samples do not result in a net
gradient in either the node’s bias or the in-edges of the node.

More precisely, we define the immediate AP of an edge as the net gradient that this edge’s weight
gets over a given batch, i.e. 83 as defined above. We say that the immediate AP of an edge (i, j)

is exhausted if ‘90 ~ 0. Analogously, we say that the immediate AP of a node j is exhausted if

oCc _ oC _
ab; 5

9z, 0 and the immediate AP of all its in-edges is exhausted as well. Furthermore,

we can define the foral AP of a node as the sum of the magnitudes of its delta terms (the adaptive
pressures for each sample), > |6§”|, which gives a measure of the total adaptive gain that can be
obtained by a change in the activation of that node z;, if it can be exploited. With these definitions,
we generate an edge for a node j if the two following conditions hold at the same time:

1. The immediate AP of j is exhausted.
2. The total AP of j is not exhausted.

Notice that this edge generation condition ensures that a new edge will be generated (i.e. the network
will complexify) only when the required change cannot be realized with adaptation of the existing
components, preventing unnecessary complexification.

After defining the formation criterion, we need a means to choose the source of the edge. For that,
Eq. [6] gives us a means to quantify the AP of an edge. Following that, when we generate an in-edge
for a node j, we choose the source of the edge to be the one that maximizes the value |) -, (a;"6}")|
among the candidates (which are, in our implementation, all nodes that do not create cycles; but it
can equally well be chosen to be a subset of nodes). One way to interpret this is that we are trying
to maximize the magnitude of the vector a; - §; where a; = (a?,al,...) and & = (69,6}, ...) are
vectors of states and deltas of the corresponding nodes over the whole batch. Hence when an edge
is being formed, it can be thought of being formed with source as the node whose states/responses
are best aligned with the change required by the target of the connection.

A.1.3 EDGE-NODE CONVERSION AND RESOLVING STATISTICAL CONFLICTS

Adaptive potential exhaustion is not a problem for nodes only, but for edges as well. The edge-
to-node conversion (ENC) mechanism we develop addresses this problem, while also giving us a
means of generating the second class of components for our network, i.e. the (hidden) nodes.

Analogous to the total AP of a node as defined in the previous section, we define the total AP of
an edge (i,j) as the sum of magnitudes of gradients for this edge’s weight: " | Again,
this quantifies the total adaptive gain that can be obtained from a given edge if its Welght could

14

Under review as a conference paper at ICLR 2025

be properly modified for each of the samples in the batch. With a classical edge such as those in
neural networks, for example, this is not possible: Optimization of neural networks is fundamentally
based on finding a statistical trade-off between the samples and stabilizing the weights of the edges
in a point where the net gradient adTC;j ~ 0 (i.e. the immediate AP of edge is exhausted) despite

potentially high total AP. ENC mechanism, described in this section, specifically addresses these
situations. More precisely, we perform the ENC operation on edge (7, j) when the following two
conditions hold:

1. The immediate AP of (i, j) is exhausted.
2. The total AP of (4, j) is not exhausted.

Like edge generation conditions, the ENC conditions make sure that we complexify only when the
adaptation of existing components are insufficient to exploit the adaptive potential in the network
and current samples.

When these conditions are satisfied, we convert the original edge (7, j) into a path formed of a new
node k and edges (i, k) and (k, j) - in other words, we introduce a point of modulation to where
the edge previously stood. Our goal with this point of modulation is to modulate the opposing yet
nonzero gradients that the original edge was once under the influence of, in a manner that aligns
them so that their adaptive potential, as quantified by their total magnitude, can be fully utilized
without falling for statistical stable points.

To be able to realize this modulation, we design our node % (and hence, any node created via the ENC
mechanism - therefore, any node that is neither input nor output in our method) slightly differently
from what would be a node in a neural network. In particular, we call these nodes modulatory,
formed of terms O and 1, with distinct biases, sources, activations and states; and whose states are
multiplied to result in the final state. The functionality of any modulatory node x as such is described
by the following equations:

ay' = gy = 00(250)01(251) (7
A=Y Wty F e ®)
yesrei(y)

All the terms here are analogous to those in Eq. [3] but those with subscripts , 7 instead of x refer to
node x, term 1, instead of just node x. We also assume two transfer functions o and ;. Likewise,
the two terms will have distinct delta values, ¢, ;; and modulatory nodes will form edges separately
for these two terms based on their corresponding term deltas.

We assume that at the time of ENC, the original source ¢ connects to term 0 of the new converted
node k, and at first no node is connected to term 1 of k. As a simplifying design choice, we also let
0o to be linear for modulatory nodes, o((z) = z. Hence, at the time of conversion, the actual value
of the source (¢ in our example) of a modulatory node (k in our example) can be reliably transmitted
to the state of the new converted node, without losing the nonlinearity known to be required in
complex adaptive networks since we have both the multiplication operation and also o, which we
leave as nonlinear.

The rest of the properties of a modulatory node will be defined by the condition of neutrality. (In
what follows, for better clarity, we omit from a, z and Js the superscript m denoting a specific
sample in a batch. All of the discussion below is concerned with the states of the nodes for a single
particular sample. We also consider a single activation term in target node, but all the derivations
remain the same if we assume that we are concerned with activation of term O or 1 of the target
instead.) Before ENC, the contribution of node i to the state of node j is:

2t =

5 = Wijaq)

After ENC, it is mediated by &k (which initially has no connection other than node ¢ connecting to its
term 0):

15

Under review as a conference paper at ICLR 2025

Zp = WhjQg = Wkjk,00k1 = Whj2k,001(2k,1)

(10
= Wi Wika;01(br,1)
For neutrality, we want these two values to be the same. Therefore,
Wij = W Wiko1 (bg,1) (11)

Among the many ways to realize this condition, we choose to let o1 (by,1) = 1 and w;; = wg;jwis.
For the latter, we let the weight of the in-edge of ENC be w;;, = 1 and of the out-edge be wy; = w;,
the original weighm For the former, we need to choose a suitable transfer function o; and a
suitable initial bias by, ; that makes o1 (br1) = 1. Again, among infinite alternatives, we decide to
set by,1 = 0 and o to be a scaled and shifted logistic function:

1

_ 12
1+ e Kz (12)

o1(x) =4

Besides yielding o1 (0) = 1 and hence realizing our neutrality condition, this function has the desir-
able property of taking values in the range (—1, 3) - being able to take negative values means that
in multiplication, it is able to invert the sign of the previously-opposing gradients. (In what follows,
we reintroduce the superscript m denoting individual samples from a batch.)

Note that before conversion, the edge had gradlents = a;"0;". After conversion, the out-edge,

J
o1 (z?l) a;" oy - i e. the original gradients multiplied by the modulatory term. (Similar derivation

which was initialized to the weight of the original edge, will have gradients 2 W = a0t =
kj

will show that o = wijoi(z)aj" 07" - the same value multiplied with the original weight.
We keep our focus on the out- edge in the narrative, but all apply to the in-edge as well.) Hence,
provided that we can adapt the response of term 1 of node k properly, we can cancel or even invert

the opposing terms that once made dC/dw;; ~ 0 and hence get a net positive or negative G?UC

This is to be done by generating edges for term 1 of node £ that can selectively modulate the node
to be positive or negative depending on the sign of the gradients. To see if this will be the case, we
check the adaptive signals that term 1 of k receives. Applying chain rule to Eq. [8| and substituting
the values we chose will show us that, at time of ENC:

30’"
5k1 =o01(z kl)ww m5 —sz'jam}n (13)
2

In the last step, we replaced z;"; = 0 (its initial value), which can be shown to yield o/ (0) = K.
The initial deltas for term 1 are indeed proportional to the original weight gradients. Hence, we have
effectively transferred the weight gradients of the original edge (which cannot be treated as a vector
for adaptive purposes, but only in terms of their net/average effect) to the deltas of a node (which can
be treated as a vector that can create an adaptive change even if their average is 0, as discussed in the
previous section). We, furthermore, choose our free parameter X = 1/w;; for each newly-created

node to make sure that 6;"; = % under all circumstances, to avoid issues of diminished deltas
) ij

with high gradients for low original weight magnitudes. If a proper source [can be found for term 1
of node k (by the edge generation mechanisms in the preceding section) that yields a nonzero %,
then the net gradient of the new edge (k, j) will start going nonzero as the state of term 1 of node & is
adapted under the influence of the gradients which are proportional to that of gradients of the original
edge, hence getting out of what would be a local optimum had we have a static network. Note that
this perfect correspondence between original gradients and the deltas of the new node only hold for
immediately after ENC - as adaptation progresses, both the gradients of the new edge as well as

"In theory, any pair of k,,w;; and 1/k,, can be chosen here. In practice, however, we saw that choosing
a k,, different from 1 results in an uncontrollably decaying or exploding weights in the presence of multiple
consecutive ENC operations with little adaptive change via gradients in between. Choosing k., = 1 as we do
better stabilizes observed weight values in the network.

16

Under review as a conference paper at ICLR 2025

dys will take new values, the latter because o} (z) will get different, potentially sample-dependent
values. However, this breakdown of alignment will happen gradually as the network components
adapt, and the net gradients for the edges will initially increase in magnitude and get out of their
exhaustion at the first steps (and later re-exhaustions will simply trigger new ENC processes, as this
process proceeds locally where needed over the course of network adaptation).

What happens if we cannot find a source [for k term 1 that yields a nonzero %, anywhere in the
network? Edge generation process, by our design, will nevertheless form the edge (I, k) but with a
zero-gradient (exhausted immediate AP). If, however, the total adaptive potential of new edge (I, k)
is nonzero, then this new edge itself will undergo the ENC operation described here, creating some
other node k1 and edges (I, k1) and (k1, k). We will then look for a source [y for term 1 of k; in
a similar manner, and with the criteria that we defined in the beginning of this section, this process
will go on recursively, until we find some source at an arbitrary depth of recursion that yields a
nonzero net gradient for its edge - whose adaptation will start a chain process that will start aligning
the gradients for all the edges formed before it as a part of this recursive ENC chain, getting their

immediate APs out of exhaustion and proceeding with adaptation.

In fact, we can semi-formally define a minimum condition that guarantees that adaptation will even-
tually proceed under influence of nonzero adaptive gradients after a chain of ENC operations. Notice
that if an edge (I, k) has a zero net gradient, we have:

90 1 = O 1~
owie Nimzm: owie m;al k1

1 _acm
_m;al WZ]—O

(14)

Since 2¢- = L S~ 9C™ _ () (condition for ENC), it will also hold that M 3", 9€™ — (for

Ow;j N, m Ow;j m Qw;j
any scalar multiplier M. Hence:

ocm ocm
m — — M 1
é;alaww ' 2; O o
ocm
2" = M)5e— =0 (16)
m v

. acm B
%}al *‘”)(awij ~0)=0 (17)

Since the mean of g%ﬂ is 0, the condition for immediate exhaustion of the first formed edge (I, k)
ij
is:

oc™
6wij

Cov(a)”,

)=0 (18)

But this won’t be just the first formed edge. For a subsequent ENC operation on (I, k), with gener-
ated node k; and some other edge from another node /1, we’ll analogously have:

m

oC oc™ oC
_ m _ m_m _ 19
ow 1k1 ;all 8wlk Zall “ Ow;; 0 ()

! m v

Similarly, this condition will require for immediate AP exhaustion:

17

Under review as a conference paper at ICLR 2025

acm)
611)1‘]‘

Cov(ay"ai", =0 (20)

We can extend this process to the multiplication of all the nodes (I, 3, ...) that we’ll take as source
in this chain of ENC, which will be a subset of all nodes in our network that are available as source
candidates. Hence, if we let N be the set of all available candidate sources (which, at the very least,
always covers all input nodes available), and if P(IV) is its power set, then the chains of ENC op-
erations will result in a nonzero net gradient (and then getting the other gradients they modulate out
of their zero-values and kickstarting the adaptive process again) as long as the following condition
does not hold:

Cov(] i, ng -) =0, VA € P(N) (21)
T€EA *J

In the most relaxed case (/N only includes the input nodes), this condition states that adaptation will
proceed as long as there is any nonzero correlation between the gradient vector of the edge that we
are trying to get out of adaptive exhaustion and any of the potential multiplicative combinations of
the input nodes of the network. This is a condition much more strict than simply having a mean

% as 0, as static networks would have. We did not check whether this condition would guarantee
i

a global optimum theoretically, and it is an open question for the researchers who would like to
see if this is the case. It should be noted, however, that this condition only holds in the context of
the theoretical analysis of this section - in practice, other factors such as acceptable complexity and
error limits or discrete gradient updates can result in not being able to actually realize this potential
within reasonable limits, if the problem is sufficiently difficult for that.

A.2 SUPPLEMENTARY MECHANISMS AND PRACTICAL MODIFICATIONS FOR DIRAD

In this section, we describe some practical design choices we made for the implementation of the
mechanisms of DIRAD described in the previous section.

A.2.1 DESTRUCTIVE PROCESSES

In practice, due to the strictness of removal conditions and the extremely targeted nature of gen-
erative processes, we almost never see a component removed from the network in DIRAD. We
nonetheless describe our destructive processes here for completeness purposes.

We remove an edge if its weight is 0 and we remove a node with a probability of 0.3 if it has no

. . 11 . . .
remaining out-edges Edges are protected against removal for 5 steps after their first creation. The
probabilistic nature of node removal is to prevent the immediate destruction of complete pathways
of interconnected nodes via recursive removal of them from their end-points, and instead to give
the nodes within this pathway a chance to be able to participate in the responses of other nodes by
acting as sources of in-edges generated by them. These two destructive processes of DIRAD are
both neutral.

We have an additional destructive process specific to PREVAL and only during L1 adaptation: At
time of stabilization of an L1 target node, we remove the predictive pathway of the node if it is not
confidently predicted. This is simply because prediction of non-CP nodes have no further use for
the system, and we remove them to cap the complexity increase, hence make it more scalable. The
fluctuations in complexity on Figure 3| are due to this mechanism and not to DIRAD’s destructive
processes.

A.2.2 ACCEPTABLE MISMATCH

DIRAD mechanisms as defined above will keep complexifying as long as there is nonzero mismatch
in the network. To avoid overcomplexification after obtaining reasonable performance, it is desirable

"Notice that in our implementation, we do not have parameter decay (i.e. L2 regularization) which would
drive edge weights to 0 and probably result in more frequent removals.

18

Under review as a conference paper at ICLR 2025

to define a lower cut-off limit, below which any mismatch in the output nodes will be regarded as
0. For this purpose, we chose to regard an mismatch in magnitude at the outputs below 0.01 (in a
possible scale of 0 to 1 - i.e. 99%) in an individual sample as 0.

oC _0

-9 <0.01 =
|ay yl da;}l

(22)

A.2.3 GRADIENTS

Since the gradients and deltas of a real, discrete-update network will never be exactly 0, we need
criteria for lower-limiting them and treating as 0. Notice that this is only required for generative
processes to be able to occur (i.e. when checking exhaustion conditions), and does not need to be
applied to other uses of gradients or deltas in the system.

For that, we use the following measures:

1. We define a d,,,;,,. The deltas below this value will be considered as 0 when checking
exhaustion conditions and computing AP values. In our implementation, we choose d,,,;,, =
0.01.

2. We condition the immediate AP exhaustion of an edge on the ratio of total net gradient
magnitude and the mean magnitude of the gradients in the two individual directions. Let
M be the set {m : % > 0} and vice versa for M. Then, ENC will occur if, for a

ij

chosen ratio parameter R;:

oC

8wij

1 oc™

N, Ow; ;
mo M ij

IM e {M*, M~ }: Ry

(23)

We chose R; = 5 in our implementation.

3. Furthermore, to speed up adaptation, we found it useful to always regard an edge as having

exhausted immediate AP if ‘;TC‘ < Ral|w;j] - i.e. if it falls below a ratio of the standing

ij

weight magnitude. We chose Re = 0.1.

The operation of DIRAD is robust to the particular choice of these parameters. The values they take
mainly serve to control the speed of adaptation by modulating the degree of exhaustion required to
initiate generative processes.

A.2.4 FREE PARAMETER IN TERM 1 TRANSFER FUNCTION

Recall that we chose the free parameter K of 01(.) as K = 1/w;; following an ENC operation.
Since this value is not defined if w;; = 0, we do not allow ENC to the edges with weights 0. To

facilitate the edges from getting out of zero-weight situations, we add a small perturbation to g%m
ij

terms of the edges with weights O when computing the final %, where the perturbation is of the
ij

form of a random noise with mean 0 and standard deviation 0.05 ‘% for each m.

With this framework, it is expected that the K values (which control the steepness of the function)
will initially be very large for small-weight edges. Very large K values will result in rapid saturation
of the created node, since the sigmoidal function response will saturate for all samples upon even
the slightest change, and hence propagate back no gradients. To avoid that, after we initialize an
initial K = 1/w;; upon ENC, we decay that value each iteration with a decay rate of 0.1 towards
a stable point of Kyine = 1, 1e. K(t+ 1) < K(t) % 0.9 4+ 0.1. With that, we can transfer the
gradients of an edge to the deltas of the converted node at the time of ENC, while still preventing
premature saturation of the node. Notice that this decay of K values, however, has the drawback of
not being totally neutral and potentially resulting in a slow non-adaptive change in the network states
as long as it continues. In practice, we did not observe that this creates a major issue in long-term
performance; but if it does, choice of slower decay rates should alleviate it.

19

Under review as a conference paper at ICLR 2025

Algorithm 1 V1 Priority ordering algorithm. Internal functions are not written in detail to prevent
overcrowding, their mechanisms are as explained in the main text. Among those; functions Satis-
fiesENCCondition and SatisfiesEdgeGenCondition check whether their arguments satisfy the ENC
and edge generation conditions, respectively; and functions PerformENC and PerformEdgeGen per-
form ENC and edge generation operations respectively. PathwayAPExhausted checks if the pathway
starting from the argument node is exhausted, and TotalAP returns the total AP of the argument.

Parameter: NV Set of all target nodes

Function VI/PO()
I: N« {n:n € N A PathwayAPFExhausted(n)}

: N < OrderByTotal AP(N)

: forn € Ndo

GPFor(n)

N+ {n:n € N A PathwayAPEzhausted(n)}
6: end for

Function: GPFor(n)

1: while True do
2: e« HighestAPInEdge(currNode)

3 ifTotal AP(e) > 0 then
4: if Total AP(source(e)) > 0 then
5: currNode < source(e)
6: else
7: if SatisfiesENCCondition(e) then
8: PerformENC(e)
9: return
10: end if
11: end if
12: else
13: if Satis fiesEdgeGenCondition(currNode) then
14: Per formEdgeGen(currNode)
15: return
16: end if
17: end if

18: end while

A.3 DETAILED DESCRIPTION OF PRIORITY-ORDERING ALGORITHM

The detailed description of our priority ordering algorithm (Algorithm 1) is as follows: We take all
of the target nodes (the ultimate sources of adaptive pressures from mismatches with their targets -
e.g. output nodes in a classification task) whose immediate AP is exhausted for the whole of their
response pathway (i.e. all nodes that have a path to that node and all the edges in these paths), and
order them by decreasing total AP. As long as their immediate AP is exhausted (since a given node
elsewhere in the network may be participating in the response pathways for multiple target nodes),
we perform one and only one generative process (either an edge generation or an ENC) within the
pathways for each of the target nodes. For each node, we start from the target node as our current
node, and search over all its edges in the order of decreasing total AP. At an edge, if we find one
whose source has nonzero total AP, we take that source node as our current node and restart the
search from there. If there is no such node, we check whether the edge satisfies ENC condition. If
it does, we perform ENC. If it does not, we move onto the next edge. If no edge neither satisfies
ENC nor has a source that has nonzero total AP, then we return to our current node and generate an
edge for it if it satisfies edge generation conditions. If it doesn’t satisfy edge generation conditions
as well, we return for this node without performing a generative process (since none suitable has
been found).

As mentioned in the main text, the presence of a priority ordering mechanism is not indispensable
for the operation of DIRAD processes. It is likely that adaptation will proceed faster without these
restrictions imposed on generative processes, at the cost of increased complexity. If, furthermore,
a priority ordering over GPs is going to be used, the exact form it takes can change depending

20

Under review as a conference paper at ICLR 2025

on the requirements of the system - our framework is very restrictive since we prioritize minimal
complexity (due to the fact that we will predict the states of generated nodes after stabilization),
but in an application where complexity requirements are more relaxed, one can use a less restrictive
scheme.

A.4 DETAILED EXPERIMENTAL SETTINGS

We use a version of MNIST resized to 14 x 14 pixels instead of the original 28 x 28 (except for one
set, see below) in order to speed up our experiments. Notice that this makes the classification more
difficult, not easier; yet makes LO-prediction with PREVAL operate on a more reasonable scale.

Throughout our experiments, we use a learning rate v =]E] for both DIRAD/PREVAL and the
baselines. For DIRAD, we also incorporate a refraction period (a period, initiated after the execution
of a generative process, during which no other GP can take place) of 5 steps for each node and edge,
in order to limit the speed of complexity increase. We stabilize the L0 and L1 networks automatically
upon observation of no total prediction error decrease for 50 steps. We perform adaptation with
batches of size 100 (2 classes), changing every step. Our test batch sizes were 300 (since at most,
we can have 6=3x2 classes).

For the PREVAL threshold parameters, we use Tty = 1.5, Tsy = 0.01, and ¢, = 0.2. Top =
0.5 except for results in section[A.6]

For EWC and PNN-FAEs, we used a learning rate of 1 (same as we use for DIRAD), a training
batch size of 32. Lambda parameter for EWC loss was chosen as 50 and 200 samples were used
to compute Fisher information. For EWC training continued for 20 epochs while for PNN-FAE,
50 epochs. For both methods, the task network consisted of one hidden layer with 32 neurons (for
PNNs, this corresponds to the size of a single new column). For FAE, we used an autoencoder
of 7 layers with 120-100-64-32-64-100-120 neurons respectively. We used Doric library |dor| for
implementation of PNNs, and the authors’ own implementation for MAS. For MAS, we used a
learning rate of 0.1 since the method failed completely with learning rate 1.

Computation resources: All experiments were run on a 2.4GHz 8-Core Intel Core 19 processor with
32 GB 2667MHz DDR4 memory. No GPU was used. Giving an accurate estimate for computa-
tion time is impossible since experiments were run in parallel to unevenly-distributed independent
workloads; though a single independent run of PREVAL on three tasks (including growth of L1
networks) can be estimated to take in the range of a few hours.

A.5 DETAILED EXPERIMENT RESULTS

On Table 2]to[3] we provide the results with different CP thresholds decomposed by runs and indi-
vidual class accuracies. The individual class accuracies show the ratio of true positives for that class
in the corresponding run. We note that in most of the runs we executed, the discernability of a small
number of tasks was observed to be the primary factor contributing to reduction of accuracies (e.g.
Table[2)in Appendix, run 2, class 5) while the other classes kept being recognized by a high accuracy.
This suggests a degree of difference between different classes with respect to their discerneability.
We provide on Table E] the accuracies for individual classes, to see if there are those that are more
difficult to discern. Indeed, we see that some classes (like 0, 6) are easier to discern compared to the
others (like 8 or 3). This may correspond to digits of similar structural elements, which could result
in PREVAL validating a sample belonging to one of them on the model for the other.

In addition to the results displayed on tables, we experimented with two supplementary deviations
from the above-mentioned settings: With full MNIST (28 x 28 instead of 14 x 14) and a larger
batch size (300 instead of 100). The results with both were similar to those with our current settings,
the only notable difference was ~ 5% higher single-task accuracy (i.e. after only the first task, and
without additional tasks presented) with full MNIST. We do not include these results in detail to
prevent overcrowding.

1ZExcept for our results comparing different Top values, see

21

Under review as a conference paper at ICLR 2025

Table 2: Full results on MNIST. Entries are formatted as “class index: accuracy”, and are separated

by commas for different classes.

Run T1 T2 T3
1 4:0.953, 8: 0.96 4:0.947,8: 092, 1: 0.613, 6: 0.76 4:0.8,8:0.78, 1: 0.6, 6: 0.66, 3: 0.68, 2: 0.82
2 2:0.953,8: 0927 2:0.827,8: 0.693, 6: 0.613,7: 0.773 2: 0.66, 8: 0.66, 6: 0.62, 7: 0.74, 3: 0.5, 0: 0.72
3 0: 0.987, 4: 0.993 0: 0.96, 4: 0.613, 7: 0.813, 5: 0.76 0: 0.9, 4: 0.66,7: 0.92, 5: 0.84, 1: 0.76, 9: 0.44
4 3:0.98, 1: 0.96 3:0.44,1: 0.76, 2: 0.72, 5: 0.867 3:0.44,1: 0.62,2:0.82,5:0.72,4: 0.7, 7: 0.8
5 9:0.973,1: 0993 9:0.613, 1: 0.893, 5: 0.867, 4: 0.787 9:04,1:0.8,5:0.6,4: 0.72, 8: 0.84, 2: 0.86
6 7:0.967,5: 098 7:0.813,5:0.893,4: 0.773,6: 0.787 7: 0.82,5: 0.84, 4: 0.74, 6: 0.9, 1: 0.88, 0: 0.82
7 3:0.913,8: 0933 3:0.853,8:0.827,7: 0.813,9: 0.613 3:0.74,8: 0.7, 7: 0.74,9: 0.54, 5: 0.64, 2: 0.84
8 7:0.84,9: 0987 7:0.747,9: 0.947, 6: 0.907,0: 0.987 7:0.64,9: 0.84, 6: 0.9, 0: 0.9, 2: 0.76, 3: 0.88
Table 3: Full results on Fashion MNIST. Entry formatting same as Table
Run T1 T2 T3
1 6:0.77,4: 0.85 6:0.72,4: 0.77, 8: 0.93, 5: 0.92 6:0.6,4:0.8,8: 0.9, 5: 094, 0: 0.0,7: 0.0
2 3:0.99,8: 097 3:0.83,8:0.95,7: 0.93,6: 0.69 3:0.88, 8: 0.84, 7: 0.86, 6: 0.32, 2: 0.74, 5: 0.82
3 1: 0.96,4: 098 1:0.83,4:0.64,2: 0.67,3:0.75 1:0.78, 4: 0.66, 2: 0.66, 3: 0.56, 7: 0.94, 8: 0.92
4 9:1.0,2: 1.0 9: 0.89, 2: 0.93, 8: 0.87, 7: 0.89 9:0.9,2: 0.7, 8: 0.82,7: 0.8, 6: 0.32, 0: 0.86
5 7:1.0,6: 1.0 7:0.92,6:0.92,3:0.71,9: 0.93 7:0.72,6: 0.7, 3: 0.68,9: 0.9, 1: 0.82, 5: 0.66
6 0:0.93,8:095 0:091,8:0.96,4:0.77,2: 0.6 0: 0.84, 8: 0.94, 4: 0.78, 2: 0.48, 5: 0.84, 9: 0.92
7 8:0.99,4: 098 8:0.91,4:0.79,6: 0.55,1: 095 8:0.92,4:0.76, 6: 0.42,1: 0.9, 7: 0.74, 0: 0.68
8 8:0.97,0: 095 8:0.92,0:0.99,7:092,9:0.73 8:0.9,0: 0.64,7:0.9,9: 0.88, 6: 0.66, 1: 0.82
[1ex] height

Table 4: Mean class accuracies on different T p values on MNIST. CX represents digit/class X. For

there experiments, LR=2.

Tep

Co

Cl

C2

C3

C4

C5

Co6

C7

C8

C9

0.05
0.10
0.15
0.20
Avg.

0.81
0.89
0.68
0.78
0.79

0.53
0.91
0.62
0.76
0.73

0.79
0.76
0.57
0.74
0.73

0.54
0.6

0.74
0.65
0.62

0.93
0.65
0.54
0.66
0.65

0.52
0.67
0.61
0.78
0.65

0.69
0.78
0.87
0.64
0.75

0.75
0.72
0.69
0.82
0.73

0.59
0.39
0.54
0.49
0.5

0.73
0.67
0.77
0.55
0.67

A.6 INFLUENCE OF Tcp PARAMETER

Table [5] show how the performance changes with Tcp value. We see that there is considerable
increase in number of non-detected tasks as T p is increased, but the net performance after three
tasks is around the same range

3Note that in comparison to experiments in the rest of the paper, these runs were conducted with a learning
rate of 2, which is the main reason why performance falls short compared to what is observed in the main text.

22

Under review as a conference paper at ICLR 2025

Table 5: Average test accuracies (8 runs) for each T p value. Entries under TX represent the net
accuracy of the network in the classification of all classes that belonged to the tasks including and
before index X (e.g. T2 is the accuracy on four classes, two from task 1 and 2 each). Number of
runs with non-detected tasks is provided under entry "ND”. All experiments are on MNIST.

Task Tcp T1 T2 T3
ND

Tcp=0.06 092 080 0.67 1/8
Tcp =010 091 0.72 071 2/8
Tcp=0.15 089 0.72 067 3/8
Tecp =020 085 077 0.69 3/8
[1ex] height

23

	Introduction
	Background and Related Work
	Mechanisms of Structural Adaptation
	Novelty Detection via Prediction Validations
	Experiments and Results
	ResultsFull results, decomposed by individual class accuracies in individual runs, can be found in the Appendix.

	Discussion and Conclusions
	Appendix
	Full Theoretical Description of DIRAD
	Starting point for development
	Edge generation
	Edge-node conversion and resolving statistical conflicts

	Supplementary Mechanisms and Practical Modifications for DIRAD
	Destructive processes
	Acceptable mismatch
	Gradients
	Free parameter in Term 1 transfer function

	Detailed Description of Priority-Ordering Algorithm
	Detailed Experimental Settings
	Detailed Experiment Results
	Influence of TCP parameter

