
Conservative and Adaptive Penalty for Model-Based
Safe Reinforcement Learning

Yecheng Jason Ma∗,1 Andrew Shen∗,2
Osbert Bastani1 Dinesh Jayaraman1

1 University of Pennsylvania 2 University of Melbourne

Abstract

Reinforcement Learning (RL) agents in the real world must satisfy safety con-
straints in addition to maximizing a reward objective. Model-based RL algorithms
hold promise for reducing unsafe real-world actions: they may synthesize policies
that obey all constraints using simulated samples from a learned model. However,
imperfect models can result in real-world constraint violations even for actions
that are predicted to satisfy all constraints. We propose CAP, a model-based safe
RL framework that accounts for potential modeling errors by capturing model
uncertainty and adaptively exploiting it to balance the reward and the cost ob-
jectives. First, CAP inflates predicted costs using an uncertainty-based penalty.
Theoretically, we show that policies that satisfy this conservative cost constraint
are guaranteed to also be feasible in the true environment. We further show that
this guarantees the safety of all intermediate solutions during RL training. Further,
CAP adaptively tunes this penalty during training using true cost feedback from the
environment. We evaluate this conservative and adaptive penalty-based approach
for model-based safe RL extensively on state and image-based environments. Our
results demonstrate substantial gains in sample-efficiency while incurring fewer
violations than prior safe RL algorithms.

1 Introduction

Many applications of reinforcement learning (RL) require the agent to satisfy safety constraints in
addition to the standard goal of maximizing the expected reward. For example, in robot locomotion,
we may want to impose speed or torque constraints to prevent the robot from damaging itself. Since
the set of states that violates the imposed constraints is often a priori unknown, a central goal of safe
reinforcement learning [1, 2] is to learn a reward-maximizing policy that satisfies constraints, while
incurring as few constraint violations as possible during the agent’s training process.

To reduce the cumulative number of constraint violations during training, a promising approach
is to incorporate safety considerations into sample-efficient RL algorithms, such as model-based
reinforcement learning (MBRL) [3, 4]. MBRL refers to RL algorithms that use learned transition
models to directly synthesize policies using simulated samples, thereby reducing the number of real
samples needed to train the policy. Given the true environment transition model, it would be trivial
to synthesize safe policies without any violations, since we could simply simulate a sequence of
actions to evaluate its safety. However, MBRL agents must learn this transition model from finite
experience, which induces approximation errors. In this paper, we ask: can safety be guaranteed
during model-based reinforcement learning, despite these model errors? We prove that this is indeed
possible, and design a practical algorithm that permits model-based safe RL even in high-dimensional
problem settings.

Specifically, we propose a model-based safe RL framework involving a conservative and adaptive
cost penalty (CAP). We build on a basic model-based safe RL framework, which simply executes a

Deep RL Workshop, NeurIPS 2021.

model-free safe RL algorithm inside a learned transition model. We make two important conceptual
contributions to improve this basic approach. First, we derive a conservative upper bound on the
error in the policy cost computed according to the learned model. In particular, we show that this
error is bounded above by a constant factor of an integral probability metric (IPM) [5] computed
over the true and learned transition models. Based on this bound, we propose to inflate the cost
function with an uncertainty-aware penalty function. We prove that all feasible policies with respect
to this conservative cost function, including the optimal feasible policy (with highest task reward),
are guaranteed to be safe in the true environment. A direct consequence is that we can ensure that all
intermediate policies are safe and incur zero safety violations during training.

Second, this penalty function, though theoretically optimal, is often too conservative or cannot be
computed for high-dimensional tasks. Therefore, in practice, we propose a heuristic penalty term that
includes a scale hyperparameter to modulate the degree of conservativeness: higher scales produce
behavior that is more averse to risks arising from modeling errors. Thus, different scales may be
appropriate for use with different environments, tasks, and model fidelities. We observe that this
crucial scale hyperparameter need not be manually set and frozen throughout training. Instead, we
can exploit the fact that the policy receives feedback on its true cost value from the environment, to
formulate the entire inflated cost function as a control plant. In this view, the scale hyparparameter is
the control input. Then, we can readily apply existing update rules from the control literature to tune
the scale. In particular, we use the proportional-integral (PI) controller [6], a simple variant of the
PID controller, to adaptively update the scale using cost feedback from the environment.

Our overall CAP framework incorporates a conservative penalty term into predicted costs in the basic
model-based safe RL framework, and adapts its scale to ensure the penalty is neither too aggressive
nor too modest. To evaluate CAP, we first illustrate its proposed benefits in simple tabular gridworld
environments using a linear programming-based instantiation of CAP; there, we show that CAP
indeed achieves zero training violations and exhibits effective adaptive behavior . For state and
image-based control environments, we evaluate a second instantiation of CAP, using a cost constraint-
aware variant [7] of cross entropy method (CEM) [8] coupled with state-of-art dynamics models
[9, 10] to optimize action sequences. Through extensive experiments, we show that our practical
algorithms substantially reduce the number of real environment samples and unsafe episodes required
to learn feasible, high-reward policies compared to model-free baselines as well as ablations of CAP.
In summary, our main contributions are:

• an uncertainty-aware cost penalty function that can guarantee the safety of all training policy
iterates

• an automatic update rule for dynamically tuning the degree of conservativeness during training.
• a linear program formulation of CAP that achieves near-optimal policies in tabular gridworlds

while incurring zero training violation
• and finally, scalable implementations of CAP that learn safe, high-reward actions in continuous

control environments with high-dimensional states, including images.

2 Related Work

Safe RL Our work is broadly related to the safe reinforcement learning and control literature;
we refer interested readers to [2, 11] for surveys on this topic. A popular class of approaches
incorporates Lagrangian constraint regularization into the policy updates in policy-gradient algorithms
[12, 13, 14, 15, 16, 17, 18]. These methods build on model-free deep RL algorithms [19, 20], which
are often sample-inefficient, and do not guarantee that intermediate policies during training are safe.
These safe RL algorithms are therefore liable to perform large numbers of unsafe maneuvers during
training.

Model-Based Safe RL Model-based safe RL approaches, instead, learn to synthesize a policy
through the use of a transition model learned through data. A distinguishing factor among model-
based approaches is their assumption on what is known or safe in the environment. Most works
assume partially known dynamics [21, 22] or safe regions [23, 24, 25, 26], and come with safety
guarantees that are tied to these assumptions. In comparison, our work targets the more general
setting, involving no such prior knowledge. In tabular MDP settings, we prove a high probability
guarantee on the safety of any feasible solution under the conservative objective; we subsequently

2

extend this result to ensure the safety of all training episodes. On more complex domains, we provide
approximate and practically effective implementations for high-dimensional inputs, such as images.

Our core idea of using uncertainty estimates as penalty terms to avoid unsafe regions has been
explored in several prior works [27, 21, 28]. However, our work provides the first theoretical
treatment of the uncertainty-based cost penalty that is independent of the type of the cost (e.g., binary
cost) and the parametric choice of the transition model. Our theoretical analysis is similar to that
of [29], though we extend their results, originally in the offline constraint-free setting, to the online
constrained MDP setting, and introduce a new result guaranteeing safety for all training episodes.
Furthermore, our framework permits the cost penalty weight to automatically adjust to transition
model updates, using environment cost feedback during MBRL training.

3 Preliminaries

In safe reinforcement learning, one common problem formulation is to consider an infinite-horizon
constrained Markov Decision Process (CMDP) [30]M = (S,A, T, r, c, γ, µ0). Here, S,A are the
state and action spaces, T (s′ | s, a) is the transition distribution, r(s, a) is the reward function, c(s, a)
is the cost function, γ ∈ (0, 1) is the discount factor, and s0 ∼ µ0(s0) is the initial state distribution;
we assume that both r(s, a) and c(s, a) are bounded. A policy π : S → ∆(A) is a mapping from
state to distribution over actions. Given a fixed policy π, its state-action occupancy distribution
is defined to be ρπT (s, a) := (1 − γ)

∑∞
t=0 γ

tPrπ(st = s, at = a), where Prπ(st = s, at = a) is
the probability of visiting (s, a) at timestep t when executing π in M starting at s0 ∼ µ0. The
objective in this safe RL formulation is to find the optimal feasible policy π∗ that solves the following
constrained optimization problem:

max
π

J(π) := E
[∑
t=0

γtr(st, at)
]

s.t. Jc(π) := E
[∑
t=0

γtc(st, at)
]
≤ C (1)

where the expectation is over s0 ∼ µ0(·), st ∼ T (st | st−1, at−1), at ∼ π(· | st), and C is a
cumulative constraint threshold that should not be exceeded. We say that a policy π is feasible if it
does not violate the constraint, and the optimization problem is feasible if there exists at least one
feasible solution (i.e., policy).

Unlike unconstrained MDPs, constrained MDPs cannot be solved by dynamic programming [31].
Instead, a common approach is to consider the dual of Eq (1) [30]:

max
ρ(s,a)≥0

1

1− γ
∑
s,a

ρ(s, a)r(s, a)

s.t.
1

1− γ
∑
s,a

ρ(s, a)c(s, a) ≤ C, ρ(s) = (1− γ)µ0(s) + γ
∑
s′,a′

T (s | s′, a′)ρ(s′, a′),∀s

(2)

where ρ(s) =
∑
a ρ(s, a). The dual problem Eq (2) is a linear program over occupancy distributions,

and can be solved using standard LP algorithms; the second constraint defines the space of valid
occupancy distributions by ensuring a “conservation of flow" property among the distributions. Given
its solution ρ∗, the optimal policy can be defined as π∗(a | s) = arg max ρ∗(s, a), or equivalently,
π∗(a | s) = ρ∗(s, a)/

∑
a ρ
∗(s, a) (if the optimal policy is unique).

Typically, the transition function T is not known to the agent; thus, the optimal policy π∗ cannot be
directly computed through LP. In model-based reinforcement learning (MBRL), the lack of known T
is directly addressed by learning an estimated transition function T̂ through dataD := {(s, a, r, c, s′)}.
Then, we can define a surrogate objective to Eq (2) by simply replacing T with T̂ and solving Eq (2)
as before. Likewise, we can replace J(π) with Ĵ(π), and Jc(π) with Ĵc(π), to obtained model-
based objectives in Eq (1). Putting all this together, we may define a basic model-based safe RL
framework [21, 11] that iterates among three steps: (1) solving for π̂∗ approximately, (2) collecting
data (s, a, r, c, s′) from π̂∗, and (3) updating T̂ using all collected data so far. However, at any
fixed training iteration, the modeling error may lead to sub-optimal, potentially infeasible π̂∗. This
motivates our approach, described in the following sections.

3

4 CAP: Conservative and Adaptive Penalty

Next, we introduce conservative and adaptive cost-penalty (CAP), our proposed uncertainty and
feedback-aware model-based safe RL framework. First, we precisely characterize the downstream
effect of the model prediction error on the cost estimate Ĵc(π) by providing an upper bound on the
true cost J∗c (π), which allows us to derive a penalty function based on the epistemic uncertainty of
the model. To this end, we adapt the return simulation lemma results in [32, 29] to the cost setting
and derive the following upper bound on the true policy cost 1

1−γ
∑
s,a ρ

π
T (s, a)c(s, a) with respect

to the estimated policy cost 1
1−γ

∑
s,a ρ

π
T̂

(s, a)c(s, a).

4.1 Cost Penalty

First, given a policy mapping π, we define V πc : S → R such that V πc (s) := Eπ,T [
∑∞
t=0 γ

tc(st, at) |
s0 = s]. We make the following assumption on the realizability of V πc .
Assumption 4.1. There exists a β > 0 and a function class F such that V πc ∈ βF for all π.

With this assumption, we show that the difference between the estimated and true costs can be
bounded by the integral probability metric (IPM) defined by F computed between the true and the
learned transition models.
Lemma 4.2 (Cost Simulation Lemma and Upper Bound). Let the F-induced IPM be defined as

dF (T̂ (s, a), T (s, a)) := sup
f∈F
|Es′∼T̂ (s,a)[f(s′)]− Es′∼T (s,a)[f(s′)]| (3)

Then, the difference between the expected policy cost computed using T and T̂ is bounded above:∑
s,a

(ρπT (s, a)− ρπ
T̂

(s, a))c(s, a) ≤ γβ
∑
s,a

ρπ
T̂

(s, a)dF (T̂ (s, a), T (s, a)) (4)

We provide a proof in Appendix A. This upper bound illustrates the risk of applying MBRL without
modification in safety-critical settings. Attaining 1

1−γ
∑
s,a ρ

π
T̂

(s, a)c(s, a) ≤ C does not guarantee
that π will be feasible in the real MDP (i.e., 1

1−γ
∑
s,a ρ

π
T (s, a)c(s, a) ≤ C) because the vanilla

model-based optimization does not account for the model error’s impact on the policy cost estimation,
βdF (T̂ (s, a), T (s, a)).

To enable model-based safe RL that can transfer feasibility from the model to the real world, for
a fixed learned transition model T̂ , we seek a cost penalty function uT̂ : S × A → R such that
dF (T̂ (s, a), T (s, a)) ≤ uT̂ (s, a),∀s, a. If such a function exists, then we can solve the following
LP:

max
ρ(s,a)≥0

1

1− γ
∑
s,a

ρ(s, a)r(s, a)

s.t.
1

1− γ
∑
s,a

ρ(s, a)(c(s, a) + γβuT̂ (s, a)) ≤ C, ρ(s) = (1− γ)µ0(s) + γ
∑
s′,a′

T̂ (s | s′, a′)ρ(s′, a′),∀s

(5)
We can guarantee that the solution policy π of Eq (5) is feasible for T—in particular, note that

1

1− γ
∑
s,a

ρπT (s, a)c(s, a) ≤ 1

1− γ
∑
s,a

ρπ
T̂

(s, a)(c(s, a) + γβu(s, a)) ≤ C

However, this result is not useful if we cannot compute dF (T̂ (s, a), T (s, a)). A suitable function
class for analysis is F = {f : ‖f‖∞ ≤ 1}, which typically can be satisfied with Assumption 4.1
since the per-step cost is bounded. Then, for the tabular-MDP setting (i.e., finite state and action
space), we can in fact obtain a strong probabilistic guarantee on feasibility.
Theorem 4.3 (Tabular Case High-Probability Feasibility Guarantee). Assume F = {f : ‖f‖∞ ≤ 1}
and that Assumption 4.1 holds. Define u(s, a) :=

√
|S|

8n(s,a) ln 4|S||A|
δ , where n(s, a) is the count of

(s, a) in D and δ ∈ (0, 1]. Then, with probability 1 − δ, a policy that is feasible for Eq (5) is also
feasible for Eq (2).

4

Furthermore, we can extend this result to guarantee that all intermediate solutions during training are
safe.
Corollary 4.4 (High-Probability Zero-Training-Violations Guarantee). Assume the same set of
assumptions as Theorem 4.3 and that the training lasts for K episodes. Then, for any δ ∈ (0, 1],

define u(s, a) :=
√

|S|
8n(s,a) ln 4K|S||A|

δ . Then, with probability 1− δ, all intermediate solutions to
Eq (5) are feasible for Eq (2).

Proofs are given in Appendix A. At a high level, Theorem 4.3 follows from observing that dF is the
total variation distance for the chosen F and applying concentration bound on the estimation error of
T̂ . Then, Corollary 4.4 can be shown by a union-bound argument.

Together, these results suggest that a principled way of incorporating a conservative penalty function
into the 3-step basic model-based safe RL framework described at the end of Sec. 3 is to replace the
original constrained MDP objective (i.e., Eq (2)) with its conservative variant (i.e., Eq (5)).

4.2 Adaptive Cost Penalty

The upper bound derived in the previous section can be overly conservative in practice. Thus,
we derive an adaptive penalty function based on environment feedback to make it more practical.
First, we observe that the conservative penalty modification described above is not yet enough for a
practical algorithm, because the proposed penalty function as in the theorem or the corollary is too
conservative, to the extent that Eq (5) might admit no solutions. In practice, it is often estimated as
u(s, a) := κ/

√
n(s, a), where κ ∈ R is some scaling parameter.

Algorithm 1: Safe MBRL with Conservative
and Adaptive Penalty (CAP)

1: Inputs: Transition model T̂θ, experience
buffer D, cost limit C, initial κ value, κ
learning rate α

2: Initialize D with random policy
3: for Episode = 1, 2, . . . do
4: # Conservative penalty
5: Train T̂θ using D
6: Optimize π using Eq (5) (LP) or Eq (7)

(CCEM)
7: Collect trajectory

τ := {(st, at, rt, ct, st+1)} and store to
buffer D = D ∪ {τ}

8: # Adaptive penalty
9: Compute Jc(πt) =

∑
t=0 γ

tct
10: Update κ← κ+ α(Jc(πt)− C)
11: end for

We observe that setting κ to a fixed value
throughout training can lead to poor perfor-
mance. Different scales may be appropriate
for use with different environments, tasks, and
stages of training. If it is set too low, then the
cost penalty may not be large enough to ensure
safety. On the other hand, if it is set too large,
then the model may be overly conservative, dis-
couraging exploration and leading to training
instability.

To avoid these issues, we propose to adaptively
update κ during training. A key observation we
make is that the effect of a particular κ value has
on a policy’s true cost in the environment can be
measured from executing this policy in the real
environment. Leveraging this insight, we can in
fact view the co-evolution of the policy and the
learned transition model as a control plant, for
which the policy cost is the control output; then,
κ can be viewed as its control input. Now, to set
κ, we employ a PI controller, a simple variant of the widely used PID controller [6] from classic
control, to incrementally update κ based on the current gap between the policy’s true cost and the
cost threshold. More precisely, we propose the following PI control update rule:

κt+1 = κt + α(Jc(πt)− C) (6)

where α is the learning rate. This update rule is intuitive. Consider the direction of the κ update
when Jc(πt) < C. In this case, the update will be negative, which matches our intuition that the
cost penalty can be applied less conservatively due to the positive margin to the cost limit C. The
argument for the case Jc(πt) > C is analogous. In high-dimensional environments, as the full
expected cost cannot be computed exactly, and we instead approximate it using a single episode (i.e.,
the current policy πt rollout in the environment).

Now, the full CAP approach is described in Algorithm 1. At a high level, CAP extends upon the
basic model-based safe RL framework by (1) solving the conservative LP (Line 7, Eq (5)), and (2)
adapting κ using PI control (Lines 10 & 11). We set the initial value for κ using an exponential search

5

mechanism, which we describe in the Appendix. We validate this LP formulation of CAP using a
gridworld environment in our experiments.

4.3 CAP for high-dimensional states

Note that this tabular LP variant of CAP cannot extend to environments with continuous state and
action spaces, representative of many high-dimensional RL problems of interest (e.g., robotics); their
continuous nature precludes enumerating all state-action pairs, which is needed to express the linear
program. Therefore, we propose a scalable implementation of CAP amenable to continuous control
problems. First, we revert back to the policy-based formulation in Eq (1), and define the following
equivalent objective:

max
π

E
[∑
t=0

γtr(st, at)
]

s.t. E
[∑
t=0

γt · (c(st, at) + κuT̂ (st, at))
]
≤ C (7)

where u(st, at) is a heuristic penalty function based on statistics of the learned transition model.

To optimize Eq (7), we employ the constrained cross entropy method (CCEM) [7, 33] as our trajectory
optimizer; the procedure is summarized in Algorithm 2 in the Appendix. At a high level, CCEM first
samples N action sequences (Line 4) and computes their values and costs (Line 5). Then, if there
were more than E samples that satisfy the constraint, then the E samples with highest rewards are
selected (Line 10); otherwise, the E samples with lowest costs are selected (Line 8). These selected
elite samples are used to update the sampling distribution (Line 12). This process continues for I
iterations, and the eventual distribution mean is selected as the optimal action sequence (Line 14).

Next, we specify the choice of transition model and penalty function u(s, a) for state-based and
visual observation-based implementations, respectively. For the former, we model the environment
transition function using an ensemble of size N , {T̂ iθ = N (µiθ,Σ

i
θ)}Ni=1 [9] and set u(s, a) =

maxNi=1

∥∥Σiθ(s, a)
∥∥

F to be the maximum Frobenius norm of the ensemble standard deviation outputs,
as done for offline RL in [29]. Our visual-based implementation builds on top of PlaNet [10], a
state-of-art visual model-based transition model; here, we set u(s, a) to be the ensemble disagreement
of one-step hidden state prediction models [34]. See the Appendix for details.

5 Experiments

CAP provides a general, principled, and practical framework for applying MBRL to safe RL. To
support this claim, we comprehensively evaluate CAP against its ablations as well as model-free
baselines in various environments. More specifically, we investigate the following questions:

(Q1) Does CAP’s theoretical guarantees approximately hold in tabular environments?
(Q2) Does CAP improve reward and safety upon its ablations (i.e., fixed κ values)?
(Q3) Is CAP more sample and cost efficient than state-of-art model-free baselines?
(Q4) Can CAP learn safe policies even with high-dimensional inputs, such as images?

We investigate Q1-2 using a gridworld environment, and Q2-4 on two high-dimensional deep RL
benchmarks. Our code is included in the supplementary materials.

5.1 Gridworld

We begin by validating our theoretical findings in tabular gridworld, where we can solve the con-
strained optimization problem (Eq (5)) exactly using standard LP algorithms.

5.1.1 Environment, Methods, Training Details

We consider a 8 × 8 gridworld with stochastic transitions; the reward and the cost functions are
randomly generated Bernoulli distributions drawn according to a Beta prior. In addition to CAP, we
compare against CAP ablations with fixed κ values of 0, 0.01, 0.05, and 0.1; κ = 0 corresponds to
the basic MBRL approach without penalty. We also include the oracle LP solution computed using
the true environment dynamics. For each method (except the oracle), the training procedure lasts 30

6

Gridworld

Figure 1: Tabular gridworld results. CAP achieves near-optimal policy with zero constraint
violations during training, while all ablations either converge to sub-optimal solutions or incur a high
number of training violations.

iterations, in which each iterate includes (1) collecting 500 samples using the current LP solution, (2)
updating T̂ , and (3) solving the new conservative LP objective. See Appendix for more environment
and training details.

5.1.2 Metrics & Results

In Figure 1, we illustrate the training curves for the return, cost, the cumulative number of intermediate
policy solutions that violate the cost threshold. The first two metrics are standard, and the violation
metric measures how safely a method explores. We additionally illustrate the training evolution of κ.
These curves are the averages taken over the 100 gridworld simulations; we defer standard deviation
error bar to the Appendix for better visualizations except for the kappa curve.

As expected, CAP (κ = 0), due to its asymptotically consistent nature, converges to the oracle as
training continues; however, this comes at the cost of the highest number of training violations,
precisely due to the lack of an uncertainty-aware penalty function. In sharp contrast, CAP is very
close to the oracle in both reward and cost, and does so without incurring a single violation in all 100
trials, as indicated by its flat horizontal line at 0 in the violation plot. These results validate our key
theoretical claims that when the cost penalty is applied properly, the resulting policy is guaranteed to
be safe (Theorem 4.3); furthermore, it applies to all intermediate policies during training (Corollary
4.4), answering Q1 above.

On the other hand, CAP ablations with fixed κ values, though constraint-satisfying at the end, incur
higher number of violations and achieve sub-optimal solutions, validated by their lower returns and
conservative costs. Interestingly, while all these variants on average satisfy the constraint from
Episode 2 and on (i.e., their average costs are below the threshold of 0.1 in the cost plot), their average
numbers of violations uniformly increase throughout training. This suggests that fixed κ values are
not robust to random gridworld simulations, as the same value may be too modest for some random
draws and hence incur violations, and too aggressive for some other draws and lead to suboptimal
solutions. Indeed, we observe greater variance in the performance of fixed κ ablations than CAP (see
Appendix).

In contrast, CAP automatically finds suitable sequences of κs for each simulation, evidenced by the
large variance the κ sequences exhibit over the simulations. Its zero-violation and lower variance
in all metrics suggest that the adaptive penalty mechanism has the additional benefit of being
distributionally robust to the randomness in the environment distribution. Finally, the overall
downward oscillating trend indeed reflects CAP’s effectiveness at using feedback to optimize reward
and cost simultaneously. Together, these ablations answer Q2 affirmatively.

5.2 High-Dimensional Environments

Next, we evaluate CAP’s generality and effectiveness in high-dimensional environments. We begin
by summarizing our experimental setup; details are in the Appendix.

7

5.2.1 Environments

We consider two deep RL environments, spanning different input modalities, constraint types, and
associated cost types. We describe these environments here; see Figure 2 for illustrations. We use
HalfCheetah [35] as our state-based environment; here, the cost function is the agent’s horizontal
velocity, and we set the cost constraint to be the 50% of the average velocity of an unconstrained
expert PPO agent, 152. For the image-based environment, we use Car-Racing [36]. The tracks are
randomized every episode. The state space is a 64 × 64 × 3 top-down view of the car; the action
space is continuous and 3-dimensional (steering, acceleration, and braking). A per-step cost of 1 is
incurred if any wheels skid from excessive force; the cost limit is 0, indicating that the car should
never skid.

5.2.2 Baselines

Figure 2: High Dimensional Environments.

In these high-dimensional settings, we compare
against both deep model-free safe RL baselines
as well as CAP ablations. To this end, we in-
clude PPO-Lagrangian (PPO-LAG), which it-
erates between PPO policy update and cost la-
grangian parameter update to simultaneously
optimize return and constraint satisfaction; de-
spite its simplicity, PPO-LAG has been shown
to be a strong safe RL baseline [13]. Addition-
ally, we include FOCOPS [28], a state-of-art
model-free algorithm which uses first-order pro-
jection methods to ensure that constraint satisfaction minimally deteriorates policy return. Finally,
we include PPO [19] in order to provide comparison to an unconstrained method. Finally, as in the
gridworld experiment, we consider CAP ablations with fixed κ values and separately visualize the
training curves. We use κ = 0, 0.1, 1, 10 for both HalfCheetah and Car-Racing to include a wide
range of magnitudes; in particular, κ = 0 corresponds to the basic model-based safe RL approach
without the conservative penalty.

5.2.3 Training Details & Evaluation Metrics

Method HalfCheetah
Steps Return (↑) Cost (Limit 152) (↓) Violation (↓)

PPO 1M 2791.3 296.9 378.0
100K 670.2 97.6 0

PPO-Lag 1M 1436.8 150.7 108.0
100K 670.2 97.6 0

FOCOPS 1M 1591.4 160.2 202.8
100K 456.0 84.6 0

Random NA -29.3 52.7 NA
CAP (Ours) 100K 1456.3 144.3 1.7

Method Car-Racing
Steps Return (↑) Cost (Limit 0) (↓) Violation (↓)

PPO 1M 32.7 52.0 975.0
200K 48.8 224.8 196.0

PPO-Lag 1M -3.2 0.0 101.3
200K -3.2 0.3 101.3

FOCOPS 1M 23.4 0.8 581.0
200K 16.2 3.9 172.0

Random NA 3.9 159.3 NA
CAP 200K 21.7 0.4 93.3

Table 1: Baseline comparison results. CAP is
substantially more sample-efficient with respect
to both return and cost. In addition, it is much
safer during training, as demonstrated by the sig-
nificantly fewer violations.

For model-free algorithms, we train using 1M
environment steps, and for our model-based
algorithms, we train using 100K steps for
HalfCheetah and 200K steps for Car-Racing.
An episode in both environments is 1000 steps.
We report results on Car-Racing at 200k since
it is more challenging to learn the dynamics
of a visual environment; both model-free and
model-based methods take more steps to con-
verge in Car-Racing. As in gridworld, we report
the training curves of the return, cost, and cumu-
lative episodic violations; they are included in
the Appendix. In the main text, we report a nu-
merical “snapshot" version of these curves at the
end of training (average over last 10 episodes);
for model-free baselines, we also report these
metrics after 100K/200K steps to have a head-to-
head comparison against CAP. For all methods,
we report their hyperparameters as well as im-
plementation details in the Appendix. In Appendix, we also supply videos of trained CAP agents in
Car-Racing.

5.2.4 Baseline Comparisons Results

The results are shown in Table 1. While the most competitive algorithm FOCOPS matches CAP’s
return and cost with 1 million environmental steps in both environments, CAP requires about 5-10×

8

Figure 3: CAP Ablations on HalfCheetah (top) and Car-Racing (bottom). The adaptive κ
achieves better balance than all fixed κ values and incurs much fewer violations during training.

fewer steps, demonstrating its sample efficiency. Furthermore, the relative performance of CAP at
100K/200K steps is significantly better than all model-free algorithms, which have not learned a
good policy by that point. This has direct implication for safety. On the Car-Racing environment,
because model-free methods learn much slower, they also spend more training episodes violating
the constraint. On HalfCheetah, all methods achieve 0 cumulative episodic violations with 100K
steps (i.e., 100 episodes), but this is because in HalfCheetah the algorithm will not violate the speed
constraint initially because it has not learned the running behavior yet.

It is particularly illuminating to observe the cumulative episodic violations at the end of each method’s
training: we see that CAP violates the speed constraint in HalfCheetah for fewer than 2 episodes out of
its 100 training episodes, while all baselines violate this constraint at much higher rates and volumes.
This confirms that these model-free methods struggle to ensure safety during training regardless of
the safety of their final policy, while CAP is able to minimize violations throughout training. On
the more challenging image-based Car-Racing environment, CAP cannot avoid training violations
entirely, but manages to significantly reduce them compared to the baselines. These comparisons
provide strong evidence for Q3 and Q4.

5.2.5 CAP Ablations Results

The training curves of CAP as well as its ablations are illustrated in Figure 3. Consistent with our
findings in gridworld, setting κ to a fixed value is rarely desirable. Setting it too low often leads to
solutions that fail to satisfy constraint, suggested by the high training cost and violations of CAP
(κ = 0.0, 0.1) in both environments; setting it too high often precludes reward learning in the first
place, evidenced by the training curves of CAP (κ = 10.0) in both environments. Furthermore, since
the cost limit is 0 on Car-Racing, exploration will always violate the constraint initially. Hence, we
can additionally measure the safe exploration of a method by its slope on the violation curve: the
lower the slope, the fewer violations a method incurs as training goes on. There, we see that CAP
has the flattest violation slope out of all variants that learn policies with non-trivial driving behavior.
These results once again show that CAP is preferrable to its fixed-κ variants, providing a positive
answer to Q2.

6 Conclusion
We have presented CAP, a general model-based safe reinforcement learning framework. We have
derived a linear programming formulation and proven that we can guarantee safety by using a
conservative penalty; this penalty is then made adaptive based on environmental feedback to make it
practically useful. We have validated our theoretical results in a tabular gridworld environment and
demonstrated that CAP can be easily extended to high-dimensional environments through appropriate
choices of optimizer and transition models. In future work, we aim to implement CAP using model-
based policy optimization [37, 38] methods, which have shown to attain better performance in
practice. Additionally, we believe that using a full PID controller will further improve safety of CAP,
especially on problems where incremental update is not aggressive enough for safety. Overall, we
believe that CAP opens many future directions in making MBRL practically useful for safe RL.

9

References
[1] Martin Pecka and Tomas Svoboda. Safe exploration techniques for reinforcement learning–an

overview. In International Workshop on Modelling and Simulation for Autonomous Systems,
pages 357–375. Springer, 2014.

[2] Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

[3] Richard S Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Machine learning proceedings 1990, pages 216–224.
Elsevier, 1990.

[4] Richard S Sutton. Planning by incremental dynamic programming. In Machine Learning
Proceedings 1991, pages 353–357. Elsevier, 1991.

[5] Alfred Müller. Integral probability metrics and their generating classes of functions. Advances
in Applied Probability, 29(2):429–443, 1997.

[6] Karl J Åström and Tore Hägglund. Pid control. IEEE Control Systems Magazine, 1066, 2006.

[7] Min Wen and Ufuk Topcu. Constrained cross-entropy method for safe reinforcement learning.
IEEE Transactions on Automatic Control, 2020.

[8] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

[9] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models, 2018.

[10] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels, 2019.

[11] Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
Angela P. Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
learning, 2021.

[12] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization.
In International Conference on Machine Learning, pages 22–31. PMLR, 2017.

[13] Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep rein-
forcement learning. 2019.

[14] Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization.
arXiv preprint arXiv:1805.11074, 2018.

[15] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

[16] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Burdick. End-to-end safe
reinforcement learning through barrier functions for safety-critical continuous control tasks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3387–3395,
2019.

[17] Yiming Zhang, Quan Vuong, and Keith W Ross. First order constrained optimization in policy
space. arXiv preprint arXiv:2002.06506, 2020.

[18] Yinlam Chow, Ofir Nachum, Aleksandra Faust, Edgar Duenez-Guzman, and Mohammad
Ghavamzadeh. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

10

[20] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization, 2017.

[21] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause. Safe model-
based reinforcement learning with stability guarantees, 2017.

[22] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, Joschka Boedecker, and Andreas Krause.
Learning-based model predictive control for safe exploration and reinforcement learning, 2019.

[23] Osbert Bastani. Safe reinforcement learning with nonlinear dynamics via model predictive
shielding. In 2021 American Control Conference (ACC), pages 3488–3494. IEEE, 2021.

[24] Shuo Li and Osbert Bastani. Robust model predictive shielding for safe reinforcement learning
with stochastic dynamics. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 7166–7172. IEEE, 2020.

[25] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A
brief overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and
Control (CDC), pages 2242–2253. IEEE, 2017.

[26] Anayo K Akametalu, Jaime F Fisac, Jeremy H Gillula, Shahab Kaynama, Melanie N Zeilinger,
and Claire J Tomlin. Reachability-based safe learning with gaussian processes. In 53rd IEEE
Conference on Decision and Control, pages 1424–1431. IEEE, 2014.

[27] Gregory Kahn, Adam Villaflor, Vitchyr Pong, Pieter Abbeel, and Sergey Levine. Uncertainty-
aware reinforcement learning for collision avoidance, 2017.

[28] Jesse Zhang, Brian Cheung, Chelsea Finn, Sergey Levine, and Dinesh Jayaraman. Cautious
adaptation for reinforcement learning in safety-critical settings, 2020.

[29] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

[30] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

[31] Dimitri P Bertsekas et al. Dynamic programming and optimal control: Vol. 1.

[32] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algo-
rithmic framework for model-based deep reinforcement learning with theoretical guarantees,
2021.

[33] Zuxin Liu, Hongyi Zhou, Baiming Chen, Sicheng Zhong, Martial Hebert, and Ding Zhao.
Constrained model-based reinforcement learning with robust cross-entropy method, 2021.

[34] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models, 2020.

[35] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012.

[36] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[37] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. arXiv preprint arXiv:1906.08253, 2019.

[38] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination, 2020.

[39] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

11

A Proofs

In this section, we provide proofs for the theoretical results appeared in Section 4. We will restate
each of the results and then append their corresponding proof.
Lemma A.1 (Cost Simulation Lemma and Upper Bound). Let the F-induced IPM be defined as

dF (T̂ (s, a), T (s, a)) := sup
f∈F
|Es′∼T̂ (s,a)[f(s′)]− Es′∼T (s,a)[f(s′)]| (8)

Then, the difference between the expected policy cost computed using T and T̂ is bounded above:∑
s,a

(ρπT (s, a)− ρπ
T̂

(s, a))c(s, a) ≤ γβ
∑
s,a

ρπ
T̂

(s, a)dF (T̂ (s, a), T (s, a)) (9)

Proof. Using the telescoping lemma [29, 32], we have that
1

1− γ
∑
s,a

(ρπT (s, a)− ρπ
T̂

(s, a))c(s, a)

=γ
∑
s,a

ρπ
T̂

(s, a)
[
Es′∼T (s,a)V

π
T (s′)− Es′∼T̂ (s,a)V

π
T̂

(s′)
]

Then, by Assumption 4.1, we have that

γ
∑
s,a

ρπ
T̂

(s, a)
[
Es′∼T (s,a)V

π
T (s′)− Es′∼T̂ (s,a)V

π
T̂

(s′)
]

≤γ
∑
s,a

ρπ
T̂

(s, a) sup
f∈βF

∣∣∣Es′∼T̂ (s,a)[f(s′)]− Es′∼T (s,a)[f(s′)]
∣∣∣

≤γ
∑
s,a

ρπ
T̂

(s, a)βdF (T̂ (s, a), T (s, a))

Putting everything together, we have that∑
s,a

(ρπT (s, a)− ρπ
T̂

(s, a))c(s, a)

≤γβ
∑
s,a

ρπ
T̂

(s, a)dF (T̂ (s, a), T (s, a))

Theorem A.2 (Tabular Case High-Probability Feasibility Guarantee). Assume F = {f : ‖f‖∞ ≤ 1}
and that Assumption 4.1 holds. Define u(s, a) :=

√
|S|

8n(s,a) ln 4|S||A|
δ , where n(s, a) is the count of

(s, a) in D and δ ∈ (0, 1]. Then, with probability 1 − δ, a policy that is feasible for Eq (5) is also
feasible for Eq (2).

Proof. In order for a policy that is feasible for Eq (5) is also feasible for Eq (2), we need to have
1

1− γ
∑
s,a

ρπT (s, a)c(s, a)

≤ 1

1− γ
∑
s,a

ρπ
T̂

(s, a)(c(s, a) + γβu(s, a)) ≤ C.

By the lemma above, this is equivalent to having u(s, a) ≥ dF (T̂ (s, a), T (s, a)),∀s, a. Since, we
assume F = {f : ‖f‖∞ ≤ 1}, this implies

dF (T̂ (s, a), T (s, a))

=dTV(T̂ (s, a), T (s, a))

=
1

2

∥∥∥T̂ (s, a), T (s, a)
∥∥∥
1

12

where the last step follows because T̂ (s, a) and T (s, a) are multinomial distributions, which are
countable. Then, we need

u(s, a) ≥ 1

2
max
s,a

∥∥∥T̂ (s, a), T (s, a)
∥∥∥
1

(10)

By Hoeffding’s inequality and the l1 concentration bound for multinomial distribution, we have that,

for any δ > 0, we can set u(s, a) :=
√

|S|
8n(s,a) ln 4|S||A|

δ , then Eq (10) will hold with probability
1− δ, completing the proof.

Corollary A.3 (High-Probability Zero-Training-Violations Guarantee). Assume the same set of
assumptions as Theorem A.2 and that the training lasts for K episodes. Then, for any δ ∈ (0, 1],

define u(s, a) :=
√

|S|
8n(s,a) ln 4K|S||A|

δ . Then, with probability 1− δ, all intermediate solutions to
Eq (5) are feasible for Eq (2).

Proof. Since we want all K intermediate solutions to be feasible with probability 1 − δ, the fault
tolerance for any individual intermediate solution is δ/K; this follows from an union bound argument.
Therefore, we can adjust the concentration bound from Hoeffding’s inequality by a factor of K and

obtain that by setting u(s, a) :=
√

|S|
8n(s,a) ln 4K|S||A|

δ , with probability 1− δ, we can guarantee all
intermediate solutions to Eq (5) are feasible for Eq (2).

B CAP with Linear Programming

This implementation of CAP is described in detail in the main text. Here, we describe the exponential
search mechanism we use to initialize κ for the very first training episode. Starting with a high
value for κ (e.g., 10), we use it to construct a new constrained optimization problem of form Eq (5)
and attempt to solve it. If the problem is infeasible, then we halve the value of κ and repeat the
process. We stop at the first value of κ for which the problem is feasible, and this value is taken as
the initialized κ value.

C CAP with Constrained Cross Entropy Method

In Algorithm 2, we provide the pseudocode for CAP implemented using constrained cross entropy
method. Here, we reiterate the algorithm description from the main text for completeness. At a
high level, CCEM first samples N action sequences (Line 4) and computes their values and costs
(Line 5). Then, if there were more than E samples that satisfy the constraint, then the E samples
with highest rewards are selected (Line 10); otherwise, the E samples with lowest costs are selected
(Line 8). These selected elite samples are used to update the sampling distribution (Line 12). This
process continues for I iterations, and the eventual distribution mean is selected as the optimal action
sequence (Line 14).

D Gridworld Experimental Detail

The gridworld environment is of size 8×8. The action space consists of the four directional primitives:
Up, Down, Left, Right. For each action, there is a 20% chance that slippage occurs and the agent
moves in a random direction, introducing stochastic transitions to the environment. The reward and
the cost functions are randomly generated Bernoulli distributions drawn according to a Beta(1,3)
prior. Each state has uniform probability of being selected as the initial state for each episode. The
discount rate is 0.99. The cost threshold is kept at 0.1 for all trials. Training lasts 30 episodes, and
we use Gurobi [39] as the LP solver in our implementation.

For the gridworld experiments, we also pursue a more aggressive way of updating κ. After observing
Jc(πt) for episode t, we set κ := (Jc(πt)−C)+∑

s,a ρ
πt
T̂ (s,a)

n(s,a)
; this amounts to a proportional PID controller.

13

Algorithm 2: CAP with Constrained Cross Entropy Method

1: Inputs: Transition model estimate T̂θ, experience buffer D, cost limit C
2: CCEM Hyperparameters: Population size N , elite population size E, max iteration I ,

planning horizon H , initial sampling distribution N (µ0,Σ0)
3: for i = 1, . . . , I do
4: Sample N action sequences A1 := {a1t}Ht=1, . . . , A

N := {aNt }Ht=1 ∼ N (µi−1,Σi−1)

5: Evaluate the action sequences using Eq (7) by simulating trajectories in T̂θ
6: Construct feasible set X := {An|J̃c(An) ≤ C, n ∈ [N]}
7: if |X | < E then
8: Construct elite set E := { The E sequences out of all {An}Nn=1 with lowest costs }
9: else

10: Construct elite set E := {The E sequences in X with highest rewards }
11: end if
12: Compute µi,Σi using Maximum Likelihood over E
13: end for
14: Outputs: Optimal action sequence {a∗1, ..., a∗H} := µI

Gridworld

Figure 4: Tabular gridworld results with standard deviations.

D.1 Additional results

In Figure 4, we illustrate the full version of Figure 1 with one standard deviation error bars added in.
In Table 2, we also show these results in table format. As shown, CAP ablations with fixed κ values
exhibit greater variance in their performances over 100 random seeds; this supports the claim in the
main text that fixed κ values are more sensitive to the randomness in the environment distribution.

E High-Dimensional Environments Experimental Detail

E.1 Environments

• Velocity Constrained HalfCheetah: The state space is 17-dimensional and the action
space is 6-dimensional. We use the original environment reward, v − 1

10a
Ta, v is the

forward velocity. The cost is |v| [28], meaning that there is a direct trade-off between cost
and reward. The cost limit is set to 152, half of the average speed of an unconstrained PPO
expert agent [28].

Method Gridworld
Kappa κ Return Cost (Limit 0.1) Violations

CAP Adaptive 0.49 ± 0.06 0.10 ± 0.01 0.00 ± 0.00
CAP 0.1 0.45 ± 0.07 0.09 ± 0.01 0.70 ± 2.48
CAP 0.05 0.47 ± 0.07 0.09 ± 0.01 2.22 ± 5.05
CAP 0.01 0.47 ± 0.07 0.09 ± 0.01 6.00 ± 8.01
CAP 0.0 0.50 ± 0.06 0.10 ± 0.01 10.23 ± 10.08

Table 2: CAP ablations results on Gridworld.

14

Figure 5: Step 100k/200k CAP and model-free baselines results on HalfCheetah (top) and Car-
Racing (bottom).

HalfCheetah Car-Racing
Method Kappa κ Return Cost (Limit 152) Cost Violation Return Cost (Limit 0) Cost Violation
CAP Adaptive 1456.3 144.3 1.7 21.7 0.4 93.3
CAP 10.0 -36.5 5.4 0.0 1.0 0.4 52.0
CAP 1.0 1092.9 111.5 0.0 6.2 0.4 30.3
CAP 0.1 1774.4 179.9 70.0 35.4 2.3 149.0
CAP 0.0 1588.0 198.1 80.0 26.9 9.3 184.0
CEM N/A 2330.7 344.0 78.7 40.3 202.1 194.3

Table 3: CAP ablations results on HalfCheetah and Car-Racing.

• Constrained Car-Racing: The state space is a top down image of the car and the surround-
ing track. We downscale the image to 64 by 64 by 3. For model-free baselines, we also
stack the last 4 frames, as common in reinforcement learning on image based environments.
The action space is three dimensional, controlling steering, acceleration and braking. Each
value is continuous and bounded. We use an action repeat of 2 to produce a better signal to
the model [10]. We keep the original reward, which incentivizes the agent to drive through
as many tiles as possible. We use a binary cost that is 1 if the car skids. Skidding is a part
of the original environment; a wheel skids if it’s force exceeds the friction limit, which is
different on grass and road surfaces.

E.2 Uncertainty Estimators

State-based environments: We model the environment transition function using an neural en-
semble of size N , where network’s output neurons parameterize a Gaussian distribution T̂ =
N (µ(st, at),Σ(st, at) [9]. We set u(s, a) = maxNi=1

∥∥Σiθ(s, a)
∥∥

F to be the maximum Frobenius
norm of the ensemble standard deviation outputs, as done for offline RL in [29].

Image-based environments: We implement PlaNet [10], which models the environment transition
function using a latent dynamics model with deterministic and stochastic transition states; we refer
interested readers to the original paper for details. PlaNet does not provide an uncertainty estimate
because it only utilizes a single transition model. To obtain an uncertainty estimate, we train a
bootstrap ensemble of one-step hidden-state dynamics model as in [34]. Each one-step model in
the ensemble predicts, from each deterministic state h, the next stochastic state. We formulate our
uncertainty estimator as u(h, a) = V ar(µi(h, a)|i = [1..K]), the variance of ensemble predictions
{µi}Ki=1. As in [34], to keep the scale of this uncertainty estimator similar to that of state-based
uncertainty estimator, we multiply it by 10000.

E.3 Network Architecture

We use a neural network C to approximate the environment’s true cost function. When the cost is
continuous, the network’s output neurons parameterize a Gaussian distribution and we construct our

15

conservative cost function as C(s, a) + κu(s, a). When the cost is binary, the network outputs a logit
and we construct our conservative cost function as 1[C(s, a) + u(s, a) > 0].

To apply model free algorithms on imaged-based environments, we used a shared CNN module
to encode the image input. The network consists of 5 convolutional layers followed by a ReLU
non-linearity.

4x4 conv, 8, stride 2
3x3 conv, 16, stride 2
3x3 conv, 32, stride 2
3x3 conv, 64, stride 2
3x3 conv, 128, stride 1

E.4 Hyperparameters

In Table 4, we include the hyperparameters we used for state-based and image-based experiments,
respectively.

Hyperparameter State-based Image-based
Ensemble size K 5 5
Optimizer Adam Adam
Optimizer κ Adam Adam
Learning rate 0.001 0.001
Learning rate κ 0.1 0.01
Initial κ 1.0 0.1
Reward discount factor γ 0.99 0.99
Cost discount factor γcost *0.99 *0.99
Batch size 256 50
Exploration steps 1000 5000
Experience buffer size 1000000 1000000
Uncertainty multiplier 1 100000
CEM Hyperparameters
Planning horizon H 30 12
Max iteration I 5 10
Population size N 500 1000
Elite population size E 50 100

Table 4: CAP hyperparameters

* We set cost discount factor to 1.0 when the cost is binary, so total cost per episode is directly
interpretable.

E.5 Additional results

In Figure 5, we illustrate the training curves of CAP and model free baselines in HalfCheetah and
Car-Racing. For clarity, we focus on the first 100K/200K steps. The results are also presented in
Table 1. In HalfCheetah, all model free methods have 0 cost violations in the first 100K steps, this
is because they have not learnt a running gait that can violate the speed costraint. On the other
hand, CAP is able to quickly a gait and keep cost below the limit, with less than two violations
per 100 episodes. In CarRacing, all methods have high cost violations because the cost limit is 0.
An initial random policy will violate the cost constraint and exploration will always risk violation.
Even still, we see that CAP dominates FOCOPS, obtaining better episode return with lower cost and
total violations. CAP has more cost violations than PPO-Lagrangian, but we see that this is because
PPO-Lagrangian degrades to a trivial policy that maintains a stationary position, obtaining negative
return with minimal risk of cost violations.

E.6 Compute resources

We use a single GTX 2080 Ti with 32 cores to run our experiments, each run takes about 10 hours in
clock time.

16

	Introduction
	Related Work
	Preliminaries
	CAP: Conservative and Adaptive Penalty
	black Cost Penalty
	Adaptive Cost Penalty
	CAP for high-dimensional states

	Experiments
	Gridworld
	Environment, Methods, Training Details
	Metrics & Results

	High-Dimensional Environments
	Environments
	Baselines
	Training Details & Evaluation Metrics
	Baseline Comparisons Results
	CAP Ablations Results

	Conclusion
	Proofs
	CAP with Linear Programming
	CAP with Constrained Cross Entropy Method
	Gridworld Experimental Detail
	Additional results

	High-Dimensional Environments Experimental Detail
	Environments
	Uncertainty Estimators
	Network Architecture
	Hyperparameters
	Additional results
	Compute resources

