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ABSTRACT

Explaining online time series monitoring models is crucial across sensitive do-
mains such as healthcare and finance, where temporal and contextual predic-
tion dynamics underpin critical decisions. While recent XAI methods have im-
proved the explainability of time series models, they mostly analyze each time
step independently, overlooking temporal dependencies. This results in further
challenges: explaining prediction changes is non-trivial, methods fail to leverage
online dynamics, and evaluation remains difficult. To address these challenges,
we propose Delta-XAl, which adapts 14 existing XAl methods through a wrap-
per function and introduces a principled evaluation suite for the online setting,
assessing diverse aspects, such as faithfulness, sufficiency, and coherence. Ex-
periments reveal that classical gradient-based methods, such as Integrated Gradi-
ents (IG), can outperform recent approaches when adapted for temporal analysis.
Building on this, we propose Shifted Window Integrated Gradients (SWING),
which incorporates past observations in the integration path to systematically
capture temporal dependencies and mitigate out-of-distribution effects. Exten-
sive experiments consistently demonstrate the effectiveness of SWING across
diverse settings with respect to diverse metrics. Our code is publicly available at
https://anonymous.4open.science/r/Delta—XATl

1 INTRODUCTION

Time series data, inherently gleaned online, span safety- and mission-critical domains such as
healthcare (Johnson et al.,|2016; [Reyna et al., 2020b), transportation (Polson & Sokolov, [2017;|Zheng
& Huangl [2020), finance (Sezer et al., 2020; Xu et al., |2024), and climate monitoring (Camps- Valls
et al., 2021} Reichstein et al.| 2019). Despite their success in time series prediction (Mahmoud &
Mohammed, 2021} [Wang et al., [2024), the black-box nature of deep neural networks (Zhao et al.,
2023)) and their use in sensitive domains (Wang & Chung, |2022)) make explainability essential. When
it comes to online time series, practitioners often place greater emphasis on prediction differences
between adjacent time steps rather than isolated predictions, as identical predictions can signify
different contextual meanings. For instance, in clinical settings, a decrease in the probability of
sepsis from 90% to 50% indicates patient improvement, while an increase from 10% to 50% signals
potentially severe deterioration (Boussina et al.} 2024} Shashikumar et al., 2017). These epitomize the
necessity to contextualize prediction changes in online time series and attribute them to the features
driving such transitions.

Albeit diverse explainable artificial intelligence (XAI) methods for time series (Ribeiro et al.,|[2016;
Lundbergl 2017; Sundararajan et al., 2017; Shrikumar et al., 2017} [Suresh et al.| 2017; Tonekaboni
et al.l 2020; Leung et al.l 2021} [Crabbé & Van Der Schaar, 2021; [Enguehard, 2023} [Liu et al.,
2024bj (Queen et al., [2024; |Liu et al., 20244 Jang et al.l |2025) have been suggested, existing
approaches mostly explain predictions at isolated time steps, neglecting how predictions have evolved.
In this regard, directly applying single-time attribution methods to explain prediction changes poses
significant challenges. First, these methods overlook the contextual dynamics of attributions. For
instance, this frequently leads to practically irrelevant explanations (see Section [3]for more details).
Second, it is in general impossible to explain prediction differences using isolated attributions from
individual time steps, which are irrelevant to prediction changes. For example, Table [5|reveals that
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the existing XAl approach (Crabbé & Van Der Schaar, |2021) produces implausible attributions when
subtracting across two time steps. Last, appropriate evaluation metrics for attribution in explaining
prediction changes remain largely unexplored. Common evaluation metrics, such as performance
degradation after removing salient features, often exhibit limited correlation with attribution quality
in evolving prediction settings.

To bridge this gap, we introduce Delta-XAl, a unified framework for explaining prediction changes
in online time series monitoring. We begin with a problem setup of explaining prediction changes in
online time series, attributing features to differences between adjacent steps rather than single-step
predictions. Within this framework, we successfully adapt 14 mainstream XAI methods—including
general approaches (Ribeiro et al., 2016; [Lundberg| [2017} |Sundararajan et al.,2017; Shrikumar et al.|
2017;Suresh et al., 2017) and time series-specific ones (Tonekaboni et al., [2020; Leung et al., 2021}
Crabbé & Van Der Schaar, 2021} |[Enguehard, 2023} |Liu et al.| 2024b; |Queen et al., 2024; Liu et al.,
2024a; Jang et al.,|2025)—via a wrapper function that transforms single-time explanations to directly
quantify prediction changes. We also propose a unified evaluation suite for online time series XAl,
assessing attributions for faithfulness, sufficiency, completeness, coherence, and efficiency, providing
a holistic standard over fragmented practices. Within this framework, we uncover that conventional
gradient-based methods like Integrated Gradients (IG) (Sundararajan et al.,2017) typically outperform
recent alternatives, consistent with offline setting (Jang et al., [2025).

Motivated by these observations, we introduce Shifted Window Integrated Gradients (SWING), a
novel XAI method for explaining prediction changes in online time series. IG typically exploits
integration along a straight path from a zero baseline to the input, failing to capture temporal
dynamics and inducing an out-of-distribution (OOD) problem. SWING addresses these issues by
generalizing the integration path with the retrospective prediction window as baseline and performing
piecewise line integrals through intermediate windows between two time steps. This yields faithful and
interpretable attributions that capture temporal dynamics and mitigate OOD issues, while satisfying
desirable theoretical properties for online time series monitoring—completeness, implementation
invariance, and skew-symmetry. Extensive experiments under a wide range of settings, spanning
diverse datasets and model architectures, verify that SWING outperforms existing baselines.

Our contribution can be summarized as follows:

* We formulate a problem of explaining prediction changes in online time series monitoring
and propose a unified framework that adapts 14 existing XAl methods via a prediction
wrapper, alongside comprehensive evaluation metrics tailored to this setup.

* We propose SWING, an XAI method for online time series that extends IG by incorporating
past observations into the integration path, enabling temporal dynamics to be captured while
mitigating OOD effects, while satisfying key theoretical properties.

» Through extensive experiments across diverse benchmarks and backbone architectures, we
systematically analyze existing time series attribution methods and demonstrate that SWING
surpasses state-of-the-art alternatives under diverse evaluation metrics.

2 PROBLEM SETUP

Let f : RW>*DP — [0,1]¢ be an online time series classifier where W is the fixed lookback window
size, D is the number of features, and C is the number of output classes, which can be either
binary or multiclass. Given an online time series X € RZ*P of length L, the model receives at
each time step 7' the input window X7 _y4 1.7 € R" P and outputs predicted class probabilities
fXr_wirr) € AT = {p € [0,1]9 | Zle pe = 1}. In a conventional time series XAI
setup, the goal is to explain the model’s prediction at time 7" by estimating the contribution of each
input feature within the window: foreacht € {T' — W +1,..., T} and d € {1, ..., D}, existing
approaches calculate the attribution ¢(f,X; 4 | T'), which quantifies the contribution of feature d at
time ¢ to the model output f (X7 _w1.7)e, Where é = argmax, f(X7—w11.7)ec-

In contrast, our goal is to explain prediction changes between two time steps 17 < T>. We define
the target class as the one with the largest probability increase: ¢ = argmax, f(Xr,—w+1.73)c —

F (X1, —w+1.1y )e» With the corresponding change A = f(X7,—w+1.15)e — (X1 —w1.1, )e- TO
explain this change A, we compute attributions over d € [1,D],t € [Ty — W + 1, T3], where
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Figure 1: Motivation for explaining prediction changes through illustrative scenarios that are not
generated by actual XAl outputs. (above) Vital signs across 11, Ts, T3: risk rises from 10% to 90%
then partially recovers (70%). Conventional attribution at 75 misleads, while our method highlights
features driving recovery. (below) Risk evolves from 10% at T to 80% at T5 and slightly increases
(85%) at T due to delayed effects. Our method attributes prediction changes between 77 — T5 and
Ty — T3, resolving these issues.

each ¢(f,X; 4 | T1 — T2) quantifies the contribution of feature d at time ¢ to A. By default, we
take ¢ to be the class with the largest probability increase, motivated by the fact that increasing-
probability classes are often the most practically relevant. For instance, in disease risk prediction,
even if normal remains the top class, a sharp rise in respiratory failure probability from 7} to 15
is clinically significant and merits explanation. However, Delta-XAI also supports flexible setups
such as attributing the difference between the predicted classes, i.e., A = f(Xr,—w+1.1,)e, —
J(X7,—w1:, e, » Where ¢ = argmax, f(X7, —wi1.1, ) and ¢ = argmax, f( Xz, w4113 )es
though this is not our primary concern. We further restrict to 75 — 77 < W, as larger gaps yield
non-overlapping windows and no common temporal context for attribution.

3 MOTIVATION: CHALLENGES IN ONLINE TIME SERIES EXPLANATION

In time series applications, stakeholders often care less about static predictions and more about
why they change. Standard XAl methods attribute importance to a single prediction, but clinicians,
financiers, or engineers instead want to know which features caused risk to rise, fall, or remain stable.
For instance, a doctor may ask which signals explain a patient’s sudden recovery, or an analyst may
seek factors driving a credit score drop. Explaining such changes requires attribution methods tailored
to highlight features responsible for prediction differences over time.

With regard to this, existing XAI methods explain single-time predictions without historical context,
making it hard to tell whether a feature caused risk to rise, fall, or stay stable. The top of Figurel]]
shows a sepsis model over three steps 77 < T5 < T3: risk rises from 10% at T} to 90% at 15, then
drops to 70% at T3 (b). Clinicians want explanations for the recovery between T, and T35, but standard
methods (c) still highlight T5’s features, linking them to high risk. Explaining this 20% reduction
instead requires attribution methods explicitly designed for prediction changes (d).

Real-world time series further suffer from irregular sampling and imputation, e.g., by forward filling.
As shown in the bottom part of Figurem when all values at T35 are imputed (a), standard methods (c)
wrongly assign high attribution to them because models emphasize recent inputs, whereas clinicians
require attribution for actual observations. Our setup (d) instead supports time-wise attribution,
computing 75’s attributions from the change 77 — 75 and 73’s from 75 — T3, thereby highlighting
genuine observations while de-emphasizing imputed ones.

4 DELTA-XAI: A FRAMEWORK FOR EXPLAINING PREDICTION CHANGES

In this section, we elaborate on our approach for attributing prediction changes in online time series
monitoring. To achieve this, we first introduce a generic wrapper function that seamlessly adapts
existing single-prediction time series explainers to explain prediction changes; we also highlight the
special cases where the wrapper function simplifies to differences of attributions due to linearity
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properties (Section . I)). Second, motivated by empirical findings that classical Integrated Gradients
(IG) outperform recent alternatives, we propose Shifted Window Integrated Gradients (SWING),
specifically designed to explain prediction differences, incorporating historical contexts and thereby
addressing the limitations of IG in explaining prediction changes for online time series (Section .2)).

4.1 FROM STATIC TO DYNAMIC: EXTENDING XAI TO PREDICTION CHANGES

Given an online time series classifier f : R *P — [0, 1], our goal is to attribute prediction change
JXr,—wirt)e — f(Xm—wirm e with ¢ = argmax, f(X7,—wi1m)e — (X7 —wirm)e
between two time steps 77 < T5. However, in general, it is impossible to explain prediction differences
using isolated attributions from individual time steps, since they are irrelevant to such change. Indeed,
neither computing attributions on differenced inputs (as f is generally nonlinear), nor subtracting
attributions across outputs (as attribution algorithms are also nonlinear), provides valid explanations,
often yielding implausible results; for example, Table [5] shows that Dynamask (Crabbé & Van
Der Schaar;, [2021) produces misleading explanations when subtracting attributions across two time
steps. To address this, we devise a generic wrapper function g:

g : REZTAWXD 10119, g(Xyy —wirmy) = f(Xrywirn) — fF (X —wirm),
which allows any single-prediction XAl method ¢ to be directly applied to explain prediction changes:
(p(f7Xt,d ‘ Tl — TQ) = 90(97Xt,d | T2)5 vt € {Tl - W+ 17"'7T2}7d € {177D}

This wrapper reformulates attribution of prediction differences as a single-prediction explanation,
making it broadly applicable across existing methods. It further enables single-time XAI approaches
to be adapted with little or no modification, as detailed in Section D}

Special case: linear and complete XAI methods. While the generic wrapper is broadly applicable,
it requires recomputing attributions for each time pair (77, 7%). When ¢ satisfies linearity in the
attribution space, prediction changes reduce to the difference of single-time attributions, allowing
those from one step to be reused across any pair that includes it, without computing them through g:

o(f, Xpa | T1 = 1) = o(f, Xpa | T2) — o(f, Xpa | T1).

If ¢ also satisfies completeness in the attribution space, e.g., SHAP variants (Lundberg| [2017)),
IG (Sundararajan et al., 2017), DeepLIFT (Shrikumar et al., 2017), this formulation guarantees online
completeness, ensuring that summed attributions exactly match the prediction change:

Theorem 1 (Attribution Decomposition Theorem for Online Completeness). Given a linear and
complete attribution method ¢ with a fixed baseline, the following decomposition holds:

7, D
fXr—wiim)e — f(Xr—wirm )e = Z Z o(f Xt,a | T2)

t=T1+1d=1

Addition of newest features

T D T —W D
Y D el Xea | To) —o(f Xea | T = Y Y o(f Xea | Th).
t=To—W+1d=1 t=T1—W+1d=1
Delayed effect of intermediate features Removal of oldest features

This theorem indicates that summed attributions across all features and time points exactly equal the
prediction change, providing clear interpretability. The proof is in Section [F}

4.2 SWING: SHIFTED WINDOW INTEGRATED GRADIENTS

Standard Integrated Gradients (IG) remains competitive for explaining prediction changes but suffers
from OOD artifacts and ignores temporal dynamics. We propose SWING, extending IG with i)
retrospective baseline selection (RBS), ii) dual-path integration (DPI) ensuring online completeness,
and iii) piecewise-linear historical integration (PHI), yielding reliable explanations while preserving
key theoretical properties. The overall pipeline is shown in Figure 2] with the detailed procedure
outlined in Algorithm
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Figure 2: Overview of the proposed SWING framework for explaining prediction changes in online
patient monitoring. SWING extends conventional Integrated Gradients (IG) by replacing zero-baseline
straight paths with line integrals over shifted historical windows and piecewise-linear paths, capturing
temporal dynamics and mitigating out-of-distribution effects.

Extending IG to line integrals over parameterized curves. We generalize IG as a line integral
over a parameterized curve v : [0, 1] — R" P connecting a baseline X' to the input X714 1.7:

LS (v(a))e ve,a(e)
0 aXt,d O
Here, standard IG appears as the special case of a straight-line path y(a) = (1—a)X'+aX7_w 1.7,

. . 1 ¢ ’ —~X))
where 9y 4(a) /0 = Xt}d—X;}d,yleldmg oi(f, Xea | T) = (Xt,d—X;,d) 0 df(xg;‘(—iix))” do.

o, Xea | T) = dao.

Retrospective baseline selection. Motivated by the intuition that the most realistic baseline is the
immediate past observation, we set the baseline to X7 _yy.7—1 for X7y 4+1.7. Formally, we denote
by i : [0,1] — RWXP the straight-line path from baseline Xr, 1.7, 1 to input X7, _yy4 1.7,
parameterized as: v;(«) = (1 — &)X, —w.r,—1 + oX1,—w+1.1;, @ € [0, 1]. This keeps ~;(«) near
the data manifold and mitigates OOD issues, yielding:

ores (f, Xe,a | T1 = T2) = 0ig (f, Xe,a | T2) — 016 (f, Xea | T1).

Dual-path integration. Since pgrps uses distinct baselines at 7 and 75, relying on a single path
may lead to incomplete explanations. Thus, we define 7; ; : [0, 1] — RW*D as the straight-line path:
Yij(a) = (1 — a)Xp,—w.r,—1 + aX,—wort;, a € [0,1], 4,5 € {1,2}. DPI integrates along all
four baseline—input pairs 7; ; and averages the results:
1 2 i,2 Yi,1
eop1(f, Xea | T — T2) = 3 Z (@IG (f, Xea | T2) — 16" (f Xea | T1))-
i=1

This symmetric construction balances both baselines and, more importantly, ensures online complete-
ness in Theorem [T} so that summed attributions equal the prediction change.

Piecewise-linear historical integration. When the gap between baseline T; — 1 and target T in
wppr 1s large, the straight-line path 7; ; from X1, _y .7, to XTj—W+1sz may still traverse OOD
regions. To avoid this, we define a piecewise-linear path +; ; that interpolates through historical
windows. Specifically, let m = |T; — (T; — 1)| and o = sign(T}; — (T; — 1)). For a € [0, 1], let

k= |am] , a=am—-k, s=(T;,—1)+ 0k,
—— S—— ~————
segment index segment ratio window index
and define ; j(a) = (1 — &) Xs_w1:s + @ X(s40)—W1:(s+0)- This keeps trajectories near the
data manifold, yielding more stable attributions. SWING then integrates over all four baseline—target
pairs by producing stable and interpretable attributions while ensuring online completeness:
2
oswinG ([ Xea | T1 — T) = 3 Z (@?@’2”7 Xia | To) = 016" (f; Xea | Tl))-
i=1

In practice, o is uniformly sampled with ngmples points within [0, 1], ensuring tractable approximation
of the path integral.
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Theoretical properties of SWING. SWING extends the axiomatic guarantees of IG—Online Com-
pleteness, Implementation Invariance, and Skew-Symmetry—providing principled interpretations of
online prediction changes. The proofs provided in Section[H

Theorem 2 (Online Completeness). The sum of SWING attributions equals the prediction difference
between two time steps: 3, ; oswing(f, Xe,a | T1 = To) = f(Xr,—wirm) — fF(X1y—wirm).-

Theorem 3 (Implementation Invariance). SWING attributions depend only on the model function,
remaining invariant to equivalent network implementations.

Theorem 4 (Skew-Symmetry). For reversed prediction changes, SWING attributions satisfy skew-
symmetry: oswine(f,Xt,a | T = To) = —pswing(f- Xe,a | To — T1).

5 EVALUATION METRICS FOR EXPLAINING PREDICTION CHANGES

This section introduces new metrics for online time series monitoring. We first examine issues
with zero and average imputation (Section [5.1), then propose metrics for attribution faithfulness
and sufficiency (Section [5.2), and finally extend beyond these to a unified evaluation standard

(Section[5.3).

5.1 PROBLEM OF EXISTING EVALUATION METRICS

Modern time series XAI methods (Ciu et al.} [2024bja) typically Table 1: Substitution analysis
assess faithfulness—how well attributions reflect model decisions— for XAl evaluation.
and sufficiency—how well retained features preserve predictions— g peer e [ CPD 00D Score
by substituting removed features with zero or average baselines.

.S, 5 . . Zero 28.12 0.840
These substitutions ignore temporal locality and autocorrelation, — y' . o 1485 0222
yielding out-of-distribution (OOD) samples. Our analysis on MIMIC-  porward-Fill | 12.98  0.093
IIT (Johnson et al., 2016) (LSTM backbone, SWING attributions) in
Table|[T]shows that zero/average substitution produces substantial OOD samples, with high Cumulative
Prediction Difference (CPD) and large OOD scores measured by conditional generative model MSE,
exaggerating prediction differences and distorting correlations. We therefore adopt forward-filling for
faithfulness evaluation, as it reduces OOD effects and improves reliability.

5.2 PROPOSED EVALUATION METRICS FOR FAITHFULNESS AND SUFFICIENCY

Recently, TIMING (Jang et al., 2025) has identified a key issue in faithfulness and sufficiency
evaluation of time series XAI: removing top/bottom salient points simultaneously can inflate scores
by rewarding mere sign alignment. To mitigate this, TIMING introduced Cumulative Prediction
Difference (CPD) and Cumulative Prediction Preservation (CPP), which remove features sequentially.
In our wrapper setting g with input X:

K-1
CPD(g, X, K) Z lg(XL) = g(XL, ), CPP(g, X, K) = D [la(Xy) — 9(Xi )|,
k=0

where XZ and Xt are inputs with the top-k and bottom-k features removed at the final step 7. These
metrics showed that gradient-based methods like IG (Sundararajan et al.,[2017)) often outperform
recent masking-based ones (Liu et al.| [2024bj |Queen et al., 2024; [Liu et al.,[20244)), a trend we also
find for online prediction changes.

However, these metrics have key limitations: 1) they ignore the relative ranking among top-k features,
2) they overlook evolving attributions across time, and 3) they assess only ranking, not magnitude. To
address 1), we introduce area-based metrics, Area Under Prediction Difference/Preservation (AUPD,
AUPP). AUPD is defined as the average of CPD values over all prefixes of the top-k features:

AUPD(g, X, K) = 7 Z (CPD 9,X, k) +CPD(g, X, k — 1))

AUPP is defined analogously using CPP instead of CPD. For 2), we aggregate attributions with a

centered sliding window: (X 4 | T) = 1/(2W — 1) Z?’_Z:Ilv-&-l ©(Xy,q | T'). We denote the
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resulting macro-level metrics as Macro Prediction Difference/Preservation (MPD, MPP) and their
area-based variants as Area Under Macro Prediction Difference/Preservation (AUMPD, AUMPP).
For 3), we propose Corr., the correlation between ordered attributions and prediction differences:

Corr.(p, X, K) = Corr.({go(l), o @) HWXD=K+1) .7¢(WXD)},

77|gji(_g%(1’j|>7

Together, these metrics capture ranking consistency, temporal dynamics, and attribution magnitudes,
providing more faithful and interpretable evaluations.

T T A5 s
9k —9Ik-1l !91 — 9

|:|gI_gg|7“w

5.3 BEYOND FAITHFULNESS AND SUFFICIENCY: BROADER EVALUATION METRICS

Existing time series XAl studies (Tonekaboni et al., |2020; [Leung et al., [2021; |Crabbé & Van
Der Schaar, 2021} |[Enguehard, 2023} |Liu et al.| 2024b; (Queen et al.,|2024; [Liu et al.||2024a)) mainly
assess faithfulness and sufficiency. While crucial—and expanded here with nine detailed metrics—
these alone are insufficient for practical utility. We therefore incorporate: 1) Coherence, checking
alignment with domain knowledge (case study); and 2) Time/Memory Complexity, measuring real-
time feasibility (empirically). Together, these provide a more comprehensive evaluation of XAl
methods.

6 EXPERIMENTS

In this section, we comprehensively evaluate SWING against 14 time series XAl baselines within our
Delta-XAI framework. We begin with the experimental setup (Section [6.T), then compare methods
on faithfulness to prediction changes (Section [6.2). Next, we analyze the contribution of each
SWING component through ablation study (Section[6.3)), examine qualitative and coherence aspects
(Section[6.4)), and finally provide further analyses under diverse settings along with computational
cost analysis (Section [6.5).

6.1 EXPERIMENTAL SETUP

Datasets. Following prior work (Liu et al., 2024aib), we use two large-scale clinical datasets
commonly adopted for online time series monitoring: MIMIC-III (Johnson et al.,|2016) for decom-
pensation prediction and PhysioNet 2019 (Reyna et al., 2020b) for early sepsis detection, where
predictions are updated as new data arrive. To assess generalizability, we also test on Activity, a
human activity recognition dataset (Vidulin et al.,2010), and synthetic benchmarks with controlled
temporal dynamics (Delayed Spike (Leung et al.,|[2021)), Switch-Feature (Tonekaboni et al.| 2020)).
Further details are provided in Section

Model architectures. We mainly evaluate XAI methods with LSTM architectures, a fundamental
choice for time series classification (Tonekaboni et al., [2020; Leung et al., [2021)). To show our
framework’s versatility, we also implement a CNN with stacked convolutions and a Transformer
encoder for long-range dependencies.

XAI baselines. We comprehensively implement and evaluate all XAI methods in Delta-XAlI, includ-
ing our proposed SWING. Existing methods are categorized as: 1) modality-agnostic perturbation-
based (LIME (Ribeiro et al., 2016), FO (Suresh et al.,[2017), AFO (Tonekaboni et al.| [2020)); 2)
gradient-based (IG (Sundararajan et al.,[2017), DeepLIFT (Shrikumar et al.,[2017)), GradSHAP (Lund-
berg, 2017)); and 3) time series-specific methods, including online explainers (FIT (Tonekaboni et al.|
2020), WinIT (Leung et al., [2021))), masking frameworks (Dynamask (Crabbé & Van Der Schaar,
2021)), ExtrMask (Enguehard, [2023)), ContralLSP (Liu et al., 2024b), TimeX (Queen et al., [2024),
TimeX++(Liu et al.,[2024a)), and TIMING (Jang et al., 2025)), augmenting IG with random masking.

Implementation details. Our method uses a single hyperparameter (ngampies = 50). We set T —
T, = 1 for adjacent-step explanations, remove K = 50 points, and absolutize directional attributions
for fairness. Explanations are obtained through the wrapper g, which highlights features driving
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Table 2: Performance comparison of XAI methods on clinical prediction tasks: MIMIC-III decom-
pensation benchmark using LSTM as backbone architecture. Evaluation is performed by removing
the most or least salient 50 feature points per time step, using forward-fill substitution.

Removal of Most Salient 50 Points Removal of Least Salient 50 Points

Algorithm CPD1 AUPD? MPD1 AUMPD1| CPP| AUPP| MPP| AUMPP || CO™T
LIME (Ribeiro et al.|[2016) 2264004  1.724003 13.78+008 7.70+002 |32.46+0.16 14.26+0.10 33.45+0.14 15.30+0.10 | 0.02+0.00
GradSHAP (Lundberg|[2017) 13.73+006 9.05+004 16.68+0.08 11.19+005 |32.97+0.13 13.96+006 30.13+0.17 11.95+0.09 | 0.14+0.00
IG (Sundararajan et al.{|2017) 13.42+006 9.10+005 16.14+007 11.31+004 | 33.55+0.12 13.97+0.04 29.46+0.17 10.85+0.05 | 0.17+0.00
DeepLIFT (Shrikumar et al.{[2017) 13.58+006 9.42+004 16.03+008 11.25+0.06 | 35.96+0.16 14.61+007 31.53+0.15 11.41+006 [0.19+0.00
FO (Suresh et al.[2017) 13.14x010 9.92+007 17.79+0.10 12.92+006 | 44.02:£0.19 22.32+009 16.92+009 6.242003 |0.26:£000
AFO (Tonekabont et al.{2020) 13.24+007 9.30+005 17.16+007 11.95+0.03 | 36.13+£022 16.64+009 24.13+0.16 9.32+0.07 |0.28+0.00
FIT (Tonekaboni et al.[[2020) 3.40+004 2.70+003 7.11x004 6.14+0.04 |35.52+0.11 17.55+008 12.07+0.05 10.19:0.05 | 0.06:£0.00
WinIT (Leung et al.|[2021] 19.64+0.07 12.25+004 24.87+0.13 15.45+008 |29.222+007 13.05+005 26.11+012 11.92+0.06 | 0.21=0.00
Dynamask (Crabbé & Van Der Schaar)2021) | 11.72+008 7.56+004 13.15+008 8.25+004 |53.07+024 26.22+0.08 49.80+0.16 24.26+0.06 | 0.04=0.00
Extrmask (Enguehard!2023} 16.66+0.11 10.47+006 17.51+0.12 10.634005 | 29.91+0.17 15.13£0.09 29.64+0.17 14.84+0.12 | 0.08+0.00
ContraL.SP (Liu et al.}|2024b) 12.88+036 8.69+026 18.00+0.16 11.11+0.18 |41.62+030 21.17+0.10 42.67+029 21.94+0.10 | 0.03+0.00
TimeX (Queen et al.[[2024] 16.99+009 11.45+006 19.45+010 12.45+0.06 | 50.34£0.10 24.11+004 51.06:+0.09 24.50+0.05 | 0.030.00
TimeX++ (Liu et al.||2024a] 11.12+005 7.00+004 13.14+002 7.76+002 |34.21+0.17 13.72+007 32.34+0.11 13.08+0.05 | 0.03+0.00
TIMING (Jang et al.}[2025) 14.99+007 9.71+005 16.50+008 11.53+0.04 | 31.22+0.06 13.362005 27.19+0.19 10.24+0.07 | 0.19+000
SWING |23.87+0.16 16.23+0.10 22.27=019 15.52+0.12 | 17.76+004 5.85:004 18.204006 6.06::0.05 | 0.40-0.00

the T} — T, change. Metrics are scaled by 10 except for correlations, memory, and time. Results
are reported as mean=standard error over five runs, with best and second-best marked in bold and
underline.

6.2 RESULTS ON ATTRIBUTION FAITHFULNESS AND SUFFICIENCY

Main results. Tables E] and @ shows that, under the Delta-X Al protocol, SWING achieves the best
performance on most metrics across both clinical datasets (MIMIC-III and PhysioNet 2019). Other
gradient-based explainers such as IG, DeepLIFT, and TIMING also perform consistently well. In
contrast, surrogate-driven methods like LIME, TimeX, and TimeX++ exhibit lower performance
on preservation metrics, likely due to the data- and hyperparameter-sensitivity of their surrogate
models. These findings underscore SWING’s dominance and refine the performance hierarchy of
XAI techniques within Delta-XAlI.

Diverse synthetic and real-world benchmarks. On the real-world Activity dataset (Table [7),
SWING achieves the highest scores across all metrics. On the synthetic State and Switch-Feature
benchmarks, it performs best or second-best on most metrics, with competitive results elsewhere,
underscoring its robustness across both practical and controlled scenarios.

Different backbone architectures. To assess generalizability across architectures, we re-evaluate
the five strongest clinical baselines and SWING on the MIMIC-III dataset using CNN and Transformer
backbones in Table [§] SWING outperforms competing methods across most of the metrics; these
findings confirm that SWING maintains robust faithfulness across diverse backbones within Delta-
XAL

Larger time differences. To assess robustness over longer time gaps, we compare SWING with
five strong baselines on MIMIC-III at T, — 17 = 6 and 24 (Table @]), with WinIT reported only for 6
due to generator limits. SWING achieves best or near-best scores on most metrics, with particularly
dominant gains on preservation metrics, though performance gaps narrow for longer intervals as CPD
and AUPD converge across methods.

6.3 ABLATION STUDY

This subsection examines the contributions of SWING components—retrospective baseline selection
(RBS), piecewise-linear historical integration (PHI), and dual-path integration (DPI). As shown in
Table[3] removing both RBS and PHI causes substantial degradation, while individually removing
either module also reduces performance, highlighting their complementary roles. Without DPI, the
model attains the best faithfulness scores (CPD, AUPD, MPD, AUMPD) but falls behind SWING in
preservation metrics, suggesting that DPI primarily stabilizes preservation. Overall, SWING sacri-
fices a small margin in prediction-difference metrics to achieve strong preservation and correlation
performance. Varying the baseline offset d further shows that using the immediate past window
(d = 1) yields the best trade-off, as both too short (d = 0) and longer offsets (d > 3) degrade results.
Finally, SWING maintains stable performance across varying ngmples (10 to 100), demonstrating
robustness to hyperparameter changes (Figure [4).
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Table 3: Ablation study of SWING examining retrospective baseline selection (RBS), dual-path
integration (DPI), and piecewise-linear historical integration (PHI) on the MIMIC-III decompensation
benchmark (Johnson et al.l [2016), with LSTM (Hochreiter & Schmidhuber, |1997) backbone and
interval T, — T7 = 24. We vary the baseline distance d (default: 1) and remove the most or least
salient 50 feature points per time step, using forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. 1
8 CPD 1 AUPD 1 MPD 1  AUMPD 1 CPP | AUPP | MPP| AUMPP | .
w/o RBS, PHI 45.82+020 26.85+0.13 40.85+022 26.31x0.14 | 104.05+034 48.43+0.19 77.94+030 29.56+0.11 | 0.20+0.00
w/o RBS 40.55+027 24.54+0.19 47.00+036 29.35+022 | 80.62+041 31.59+025 83.91+038 33.72+020 | 0.16:+0.00
w/o DPI (71,1,72,2) | 55.01+035 32.39+021 53.09+038 33.08+021 | 71.01+030 26.12+0.10 76.26+034 29.29+0.09 | 0.19+0.00
d=0 33.80+023 20.11+0.13 48.98+044 29.78+024 | 82284029 33.99+0.10 83.69+035 33.31+0.12 | 0.11+0.00
d=3 42.00+033  26.00+028 47.49+044 29.74+034 | 68.53+049 25.60+0.18 71.88+062 27.54+027 | 0.19+0.00
d=5 41.98+031 25.65+025 47.18+045 29.44x033 | 7231066 27.88+022 74.62+071 29.11x026 | 0.18=0.00
d=10 41.02+028 24.94+0.a8 46.89+039 29.23+025 | 76.55+048 29.96+016 78.11+044 31.04+0.16 | 0.17+0.00
SWING 41.07+022 26.46+0.18 50.58+028 32.29+0.20 \ 60.29+0.14  21.60+0.08 64.43+0.19 23.87+0.10 0.21+0.00

6.4 QUALITATIVE ANALYSIS

Case study on feature attributions. Beyond quantitative evaluation, we qualitatively assess XAl
methods within the Delta-XAI framework. Figures 5] to[9] show raw input trajectories with attribution
heatmaps for fifteen baselines at 75 — 77 = 1. FO, TimeX, and TimeX++ tend to spread attributions
broadly across the time axis, while Dynamask and TimeX++ align closely with input fluctuations,
reflecting their strong benchmark scores. In contrast, SWING yields sharper, localized attributions
that emphasize recent time steps most responsible for prediction changes.

Coherence analysis. We further assess whether SWING aligns with clinical knowledge by inspect-
ing attributions on a representative MIMIC-III case in Figure [I0] (due to the spatial constraint). A
sharp SBP drop at the last time step increases risk (a, b), consistent with evidence linking hypotensive
episodes to decompensation (Toki et al.,2025). In contrast, an SpO, rise lowers risk (c), reflecting
the stabilizing effect of improved oxygenation (Semler et al., 2022)), while a steep fall in blood pH
raises risk (d), in line with studies associating acidemia with poor outcomes (Henrique et al., 2023).
These examples demonstrate that SWING produces attribution patterns consistent with established
clinical findings.

6.5 FURTHER ANALYSIS

In-depth analysis under diverse settings. To further examine SWING’s behavior, we perform
subgroup analyses by splitting cases according to whether predictions or class labels change (Tables|[10]
and [TT)), where it consistently preserves explanatory advantages. We also test different temporal
resolutions with 24- and 72-length windows (Table [I2)), confirming that SWING yields stable
attributions and clear gains over baselines across both horizons. These results demonstrate that
SWING provides reliable explanations under diverse prediction dynamics and temporal contexts,
reinforcing its applicability to real-world clinical monitoring.

Efficiency analysis: runtime and memory. We assess SWING’s efficiency along two
axes—runtime and memory footprint. As shown in Figure [3] SWING attains the highest AUPD
while requiring only 0.35s per sample, comparable to other gradient-based explainers (DeepLIFT
0.11s, GradSHAP 0.18s). For memory, it consumes 448 MB per sample, identical to IG (448 MB)
and close to GradSHAP and DeepLIFT (438 MB). These results demonstrate that SWING achieves
state-of-the-art explanatory quality without incurring additional computational or memory costs.

7 CONCLUSION

In this paper, we have introduced the task of explaining prediction changes in online time series
monitoring and proposed Delta-XAlI, a unified framework that integrates 14 XAI methods with a
dedicated evaluation suite for temporal dynamics. Through extensive experiments, we demonstrated
that, when adapted, classical gradient-based methods, such as Integrated Gradients (IG), remain strong
baselines. Motivated by this, we developed SWING, an extension of IG that robustly captures temporal
feature evolution. We believe our contributions significantly advance XAl for online time series by
shifting the paradigm from static interpretations toward dynamic, context-sensitive explanations—an
essential step toward trustworthy Al in time-critical domains.
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ETHICS STATEMENT

This work develops explainable Al (XAI) methods for online time series monitoring in domains
such as healthcare and finance. We use only publicly available open-source benchmark datasets (e.g.,
MIMIC-III, PhysioNet 2019, Activity), adhering to their usage protocols and ethical standards, and
do not collect new human subject data. Our contributions are methodological, aiming to enhance the
transparency and interpretability of time series models. Potential misuse may arise if explanations are
taken as direct clinical or financial advice; therefore, we emphasize that outputs should be interpreted
by domain experts.

REPRODUCIBILITY STATEMENT

We provide an anonymized implementation of Delta-XAI and SWING at the anonymous reposi-
tory link https://anonymous.4open.science/r/Delta—XATI, All experimental details—
including dataset preprocessing, model architectures, training protocols, hyperparameter settings, and
evaluation metrics—are provided in Sections [|and[G] while theoretical proofs and pre-processing
steps for MIMIC-III, PhysioNet 2019, Activity, and synthetic benchmarks are elaborated in Sec-
tion[G] In addition, several ablation studies and robustness analyses over multiple iterations further
validate the stability of results. All procedures are publicly available and fully reproducible, enabling
independent researchers to reproduce and verify our findings.
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A LIMITATIONS AND BROADER IMPACTS

Limitations. Our proposed approach has few limitations. First, while SWING extends IG by
incorporating historical points with shifted window paths, it introduces additional computational
overhead compared to simpler methods like standard IG. Second, while our prediction wrapper
function can seamlessly incorporate most existing single-time XAl algorithms, a few require minor
adjustments—particularly those that rely on probability outputs or internal model representations. The
specifics of such adaptations are tangential to our main contribution and are left to future algorithm
designers.

Broader impacts. Our work significantly advances explainability in time-critical domains by en-
abling a nuanced explanation of temporal prediction changes. By providing insights into why and how
model predictions evolve, our framework supports decision-making in critical areas such as health-
care, finance, and transportation, potentially improving outcomes through enhanced transparency and
accountability. While responsible interpretation and privacy considerations remain important, the
benefits of improved trustworthiness and actionable insights in high-stakes environments significantly
outweigh these concerns.

B LLM USAGE DISCLOSURE

In drafting this manuscript, we made limited use of a Large Language Model (LLM) solely for minor
writing improvements, such as grammar polishing and readability enhancement. The LLM was not
used for research conception, experimental design, analysis, or generation of substantive content. Its
role was strictly restricted to language editing, and all scientific contributions are entirely attributable
to the authors.

C RELATED WORK

Modality-agnostic explainable artificial intelligence. Although deep neural networks have
achieved impressive results across domains like vision (He et al., 2016} [Dosovitskiy et al.l [2020),
language (Vaswani et al.| 2017; Brown et al.|[2020), and time series (Gamboal, 2017), they often act
as black boxes, limiting transparency and accountability—especially in high-stakes areas such as
healthcare (Christoph, |2020). To address this, various modality-agnostic XAI methods have been
developed. Popular approaches such as LIME (Ribeiro et al.l 2016) and SHAP (Shapley, [1953;
Lundberg, |2017) attribute predictions to input features by estimating their contribution strength and
direction. Variants like KernelSHAP, GradientSHAP, and DeepSHAP (Kokhlikyan et al.| [2020)) ex-
pand their applicability. Gradient-based methods, including Integrated Gradients (IG) (Sundararajan
et al., [2017) and DeepLIFT (Shrikumar et al.,|2017), compute attributions using model gradients.
Perturbation-based methods like Feature Occlusion (FO) (Suresh et al.,[2017) and Augmented Feature
Occlusion (AFO) (Tonekaboni et al.l [2020) measure feature importance by replacing inputs and
observing prediction changes. While these methods have enhanced model explainability, most have
been evaluated in vision tasks (Das & Rad, [2020). Their application to time series—particularly
for explaining prediction changes in online settings—remains limited, despite the importance of
capturing temporal dependencies for meaningful explanations.

Explainable artificial intelligence for time series. XAl for time series presents unique challenges
due to temporal dependencies, where the order and historical context of observations significantly
affect model behavior. Standard modality-agnostic XAI methods, which often assume independently
distributed inputs, fail to capture such dynamics. To address this, a number of time series-specific
attribution methods have been proposed (Bento et al., 2021} [Tonekaboni et al., [2020; |[Leung et al.,
2021} |Crabbé & Van Der Schaar, |2021; [Enguehard, 2023} [Liu et al., [2024b; |Queen et al., [2024;
Liu et al.| 2024a)). More recent methods have improved temporal modeling through dynamic mask-
ing (Crabbé & Van Der Schaar} 2021} Enguehard, |2023)), contrastive learning (Liu et al., 2024b)), and
interpretable surrogate modeling (Queen et al., [2024; [Liu et al.,|2024a), with TimeX++ incorporating
an information bottleneck to mitigate trivial explanations. TIMING (Jang et al., |2025)) introduces
novel evaluation metrics and enhances IG with random masking to improve sensitivity to temporal
variation. Despite recent progress, existing methods fall short in explaining prediction changes in
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online time series, lacking contextual insight and temporal evaluation. Our Delta-XAI addresses
these gaps by attributing prediction changes directly and introducing metrics aligned with sequential
dynamics.

Explainable artificial intelligence for online time series monitoring. Among time series XAl
methods, FIT (Tonekaboni et al.,|2020) and WinIT (Leung et al., 2021} are particularly relevant to
online prediction tasks. FIT estimates feature importance by comparing predictive distributions under
observed and counterfactual inputs using KL divergence, whereas WinlIT models delayed effects
by assessing how past observations influence future predictions. However, our proposed framework
significantly extends beyond these methods by offering a comprehensive and unified approach.
Unlike FIT, which quantifies feature importance solely based on predictive distribution changes
at consecutive time points, and WinIT, which evaluates feature relevance within fixed observation
windows—both producing static attributions across the entire series—our Delta-XAI explicitly
explains prediction changes between distinct time points. Specifically, we attribute changes in model
predictions directly rather than attributing individual predictions independently, thus generating
dynamic and prediction-time-specific attributions that accurately capture temporal evolution in feature
importance. Additionally, we introduce SWING, an advanced attribution method demonstrating
superior empirical performance and fulfilling essential theoretical properties, including linearity,
completeness, and directional attribution. Finally, our framework systematically integrates existing
attribution methods and proposes specialized evaluation metrics tailored explicitly to assessing
prediction change explanations in online time series monitoring.

D ADAPTING EXISTING XAI ALGORITHMS

In this section, we provide a detailed description of how we adapt existing XAl baselines to our
setting. Specifically, Section presents the algorithms that can be applied without modification,
i.e., with seamless integration into our prediction-difference framework, while Section @]deseribes
those that require minimal adjustments. In both cases, the adaptation is realized through a wrapper
function g, which standardizes the attribution process for time series inputs. Notably, this wrapper
neither necessitates additional post-training procedures nor alters the underlying models, ensuring
fair and consistent comparison across baselines.

D.1 NO MODIFICATION

The following attribution algorithms operate without modification: LIME (Ribeiro et al., 2016),
IG (Sundararajan et al., 2017), DeepLIFT (Shrikumar et al., |2017), FO (Suresh et al., [2017),
AFO (Tonekaboni et al.,[2020), WinIT (Leung et al., [2021]), Dynamask (Crabbé & Van Der Schaar),
2021), Extrmask (Enguehard, |2023), ContralLSP (Liu et al.,|2024b)), and TIMING (Jang et al., 2025).
In all of these cases, the only adjustment involves the use of the prediction-difference wrapper g
instead of the single-time prediction model f. This wrapper applies uniformly across baselines
without altering their internal mechanisms, so the algorithms remain unmodified in our framework.

D.2 MINIMAL MODIFICATION

The following attribution algorithms require minimal modification: GradSHAP (Lundberg} 2017),
FIT (Tonekaboni et al.,[2020), TimeX (Queen et al.} 2024}, and TimeX++ (Liu et al., [2024a).

GradSHAP. Applying GradSHAP (Lundberg, 2017)) directly to the wrapper ¢ violates complete-
ness, since the baseline input for g depends on whether the evaluation is at 73 or 75. For example,
if T} corresponds to a window X7, 1.7, and T to Xr,_w 1.7, then the baseline for g dif-
fers depending on which window is active, leading to inconsistency. To address this, we compute
GradSHAP directly on f, perform two runs with a shared baseline, and subtract the resulting at-
tributions—mirroring the construction of SWING. This procedure preserves completeness while
remaining consistent with the prediction-difference formulation.

FIT. For FIT (Tonekaboni et al., | 2020), we bypass the wrapper g and operate directly on the base
model f. We construct both the current and previous input windows and masks, X1, _y41.7, and
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X1, —w+1.13 , and obtain the corresponding predictions py,, and py,. . At each time step and feature
dimension, we sample candidate imputations from the generator, evaluate their effect on p,,, , and
compute the divergence with respect to the prediction difference. For the divergence metric, we
follow the original implementation and support both KL-divergence and mean absolute deviation.
This adaptation retains FIT’s perturbation design while aligning it with prediction differences.

TimeX. For TimeX (Queen et al.,[2024), the prediction-difference wrapper g is implemented as a
Python class, where the forward () method returns the prediction difference f(Xz,—w11.1,) —
f X7, —w+1.1,). To support the Model Behavior Consistency (MBC) loss, the class defines an
auxiliary method that returns the difference between latent embeddings at the two time points.
Specifically, while TimeX formulates the MBC loss as

1 2
Lmpc(Z,27) = Nz Z [Dz(zi,2) — Dze(2],2)]",
4,7

we obtain latent embeddings using the encoder of the model, f = dec o enc. For an input sequence
X7, —w41.1,, We split it into two windows X7y _y 1.7y and X7,y 41.73,, then compute embeddings
as
z = enc(Xp,—w1.1,) — enc(Xr — w11y )-

We also experiment with concatenated embeddings z = [enc(Xr,—w 1.1, ), enc(Xq —w+1.7y )] and
observe negligible differences in performance. In either case, this embedding construction provides
a meaningful space over which the surrogate model operates, while remaining consistent with the
prediction-difference wrapper g.

TimeX++. For TimeX++ (Liu et al.l 2024a), we adopt the same strategy: embeddings are obtained
in the same manner as in TimeX, and the surrogate model operates on the difference zp,, — 27,. We
further modify the label consistency loss. Instead of the cross-entropy formulation in the original
implementation, we employ mean squared error (MSE) loss for stability. Here, X denotes the original
input sequence and X denotes the perturbed version of the input produced by the explanation method.
Concretely, the label consistency objective is defined as

Lic(f(X), (X)) = E[Dys(f(X) | F(X))],

following the Jensen—Shannon divergence form in (Queen et al.| 2024), but realized with an MSE
surrogate. This yields a loss function better aligned with the prediction-difference framework.

E ALGORITHM

We provide the detailed procedure of SWING in Algorithm [I] which computes attribution scores
for prediction changes in online time series monitoring. The algorithm explicitly defines integration
paths using historically observed shifted windows, computes gradients along piecewise-linear paths
via interpolation, and averages attributions from dual integration paths. This approach ensures
compliance with the completeness property, provides realistic integration trajectories, and mitigates
out-of-distribution (OOD) issues.

F PROOFS

F.1 PROOF OF THEOREM([]]

]RWXD

By completeness of ¢, for any baseline X' € , we have:

Ts D
FXrpmwinm)e — f(Xe = Y D o(fiXea| To),

t=T>o—W+1d=1

and similarly,

T D
FXr—wirm)e— FXe= > D o(f, Xea | T).

t=T1—-W+1d=1
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Algorithm 1 SWING: Shifted Window Integrated Gradients

1: Input: Model f, inputs X7, —w1.7,, X7, —w+1.7,, discretization steps ngamples-

2: Output: Attributions @SWING<f7 Xt,d | T — Tg) for all t € {Tl - W + 1,... ,TQ}, d €
{1,...,D}.

3: for each v; ; with ¢, j € {1,2} do

4 M« |Tj—(Ti=1)|, o+ sign(T; — (T, - 1))
5: X© X7, —w.T,—1
6 GO« af(X@)/ox®
7: 167 O(Ty—Ty+W)x D
8: for m = 1 t0 ngmples o
9: Oy < m/nsamples
10:
ke lamM|  a<anM—k s (T, -1)+0k
—— — e —
segment index segment ratio window index
11:
XM (1—a)Xe-wirs + O X(s+0)~W+1:(s+0)
12: G« gf(x™)/ox™
B B . o ™ 4 q(m-1)
13: o (td) < g (. d) + (X[ — X7y Zea Tt vy g
14: end for
15: end for
16:

2

> (6™ Xea | ) = 3" (£. %10 | 1))

i=1

DN | =

wswinG (f, X¢a | Th — To) +

By subtracting two equations, we obtain:

7, D
fXry—wirm,)e — (X —wim )e = Z Z%(fa Xta | T2)

t=T1+1d=1

T D T,-W D
+ Z Z [o(f: Xea | T2) — o(f Xea | T1)] — Z Zﬁp(f, Xia | T1).

t=Tr—W+1d=1 t=T1—-W+1d=1

F.2 PROOF OF THEOREM[2|

Lemma 5 (Completeness of Integrated Gradients along General Paths). Let f : RV*P RC pe
continuously differentiable and let v : [0, 1] — RW*P be any continuously differentiable curve with
v(0) = X' (baseline) and v(1) = X1 _y 1.7 (input). Define the generalized Integrated Gradients
attribution for each coordinate (t,d) by

1y .9
ol (f, Xea | T) = /0 fé}ii)) ’Ygda(a) d.

Then completeness holds along any such curve:

> la(f Xea | T) = fXr-wirr)e — F(X)e-
t.d

Proof. Stacking coordinates into a vector gives:
1
> Al X | T) = [ VIO (@) da = [ Ve ds = F(1)e = 160):
t,d 0 ¥

by the Fundamental Theorem of Line Integrals, since the integrand is the gradient field of the scalar
potential fz. Substituting (1) = X7 _141.7 and 7(0) = X’ completes the proof. O
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Proof of Theorem[2, By Lemma[5|we have:

Z Zwm (f,Xia | T2) = fXny—warm)e — fXn—wer —1)e,

i=T1—W+1d=1

T
> ZSDW (£ X | T2) = fXry—wims)e — f(Xm—wir—1)es

=T —W+1d=1

Z Z 6 (X | Ty) = f(Xr—woirn)e — fF(Xn—wen—1)e,

i=T1—W+1d=1

T
> ngwz A Xa | T) = Xy —wirn)e — X —wor —1)e

i=T1—W+1d=1

SWING averages the attributions of the two paths to X7, _y+1.7, and subtracts the average of the
two paths to X7, _w41.7y, yielding:

2

Z%DSWING(f, Xea | Th = To) = = Z (@IG (f. Xea | o) — ot (F, Xea | T1))
t,d i=1

= %[Qf(XTrWH;Tz)a - Qf(XTﬁWH:Tl)a} = fXnp-wiin)e — fXr—wi1m)e,

which establishes online completeness.

DO =

F.3 PROOF OF THEOREM[3]

SWING is defined as an average of Integrated Gradients (IG) attributions computed along multiple
paths . For a continuously differentiable curve 7 : [0, 1] — RW*P with (0) = X’ (baseline) and
~(1) = X (input), the IG attribution is

Lot 5
ei6(f, Xt,a) :/0 fa()zjj)) ’Yg;(a) o

Therefore, the resulting SWING attribution pswing (f, Xt,4), obtained by averaging over its desig-
nated paths, depends solely on the function f(X) and not on the particular architecture or parame-
terization used to realize f. Consequently, any two models implementing the same function yield
identical SWING attributions, establishing implementation invariance.

F.4 PROOF OF THEOREM[4]

By definition,

2

1 i i,
Z@SWING(]C, Xia| Th—12) = 3 Z(Z%??dz(fa Xia | To) — tz‘;@?dl(ﬁ Xt | Tl))-

t.d i=1  td

Consider the reversed prediction change T» — T7. SWING uses the same four designated curves but
traversed in reverse, so each IG term flips sign (antisymmetry of line integrals under reversed limits)
and the two to T» terms and the two to 7T terms swap roles. Hence,

> pswina(f, Xea | To—Th) = Z( Z@%l (f Xea | T1) +Z<P%2 vat,d|T2))

t,d =1

== @SWING(ﬁ Xta | T1—13).
td
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Table 4: We evaluate our method on five datasets: three real-world benchmarks—MIMIC-III (Johnson
et al.|[2016), PhysioNet 2019 (Reyna et al.}2020a)), and Activity (Reiss & Stricker| [2012)—and two
widely used synthetic datasets—Delayed Spike (Leung et al.,[2021)) and Switch-Feature (Tonekaboni
et al.,[2020; Liu et al.| 2024b)).

Type | Name | Task | #IDs #Samples/ID Window Size Feature Classes
MIMIC-IIT Decompensation prediction | 6,221 5 48 32 2

Real-world | PhysioNet 2019 | Sepsis prediction 8,066 5 48 40 2
Activity Human action recognition 5 200 50 12 7

Synthetic Delayed Spike | Binary classification 1,000 5 40 3 2
y Switch-Feature | Binary classification 600 5 50 3 2

G DETAILS OF DATASETS

MIMIC-III. For the MIMIC-III Clinical Database (Johnson et al., 2016), we adopt the decompen-
sation prediction benchmark defined in|Johnson et al.|(2016). The dataset consists of over 41,000
ICU stays from 2001-2012, with rich multivariate time series covering vital signs, laboratory values,
interventions, and demographics. Following the benchmark setup, we use sliding windows of length
48 hours with a prediction horizon of 24 hours, labeling an instance positive if the patient dies within
the horizon. This yields roughly 2.5 million prediction windows, of which about 63,000 (2.5%) are
positive. Each window contains irregularly sampled trajectories across up to 32 variables, making it a
challenging setting for both temporal modeling and interpretability.

PhysioNet 2019. For the PhysioNet 2019 dataset (Reyna et al., 2020b), we adopt the sepsis
prediction task defined under the Sepsis-3 criteria (Singer et al.,|2016). The dataset comprises nearly
40,000 ICU stays collected across multiple hospital systems, with each stay providing multivariate
physiological time series such as vitals, labs, and demographics. We define prediction windows
using a 48-hour observation length and a 12-hour prediction horizon, labeling a sample positive
if sepsis onset occurs within the horizon. This yields around 1.1 million prediction instances, of
which approximately 27,000 (2.5%) are positive. Compared to MIMIC-III, this dataset presents
higher variability in measurement density across hospitals, offering a complementary benchmark for
evaluating both predictive performance and explanation reliability.

Activity. We adopt the Activity dataset (Frank, 2010) and follow the preprocessing protocol from
Latent ODEs (Rubanova et al.,|2019). The dataset comprises 25 sequences from five individuals, each
having around 6,600 time points. We segment each sequence into overlapping windows of 50 time
points using a stride of 1 (unlike the stride 25 used in the original Latent ODEs paper). Labels are
provided at each time point across 11 fine-grained actions; to reduce ambiguity, we merge them into
seven coarse classes as in (Rubanova et al.,2019): walking, falling, lying, sitting, standing up, on all
fours, and sitting on the ground. For evaluation, we split by individual: the first three for training, the
fourth for validation, and the fifth for testing.

Delayed Spike. We adopt the Delayed Spike dataset (Leung et al.,|[2021)), a variant of the Spike
benchmark originally introduced by [Tonekaboni et al.| (2020) and later extended by |[Leung et al.
(2021)). The standard Spike dataset consists of three multivariate NARMA sequences with added
linear trends and random spikes, where the label flips from 0 to 1 immediately after a spike appears in
feature 0 and remains positive thereafter. In the Delayed Spike version, however, the label transition is
shifted by two time steps: it becomes 1 exactly two steps after the spike in feature 0. This modification
forces explanation methods to correctly identify the causal spike event rather than simply aligning
with the delayed label change.

Switch-Feature. We generate the Switch-Feature dataset following the design in FIT (Tonekaboni
et al., [2020). Similar to the State dataset, it is constructed based on a three-state hidden Markov model
with an initial distribution 7 = (1/3,1/3,1/3) and the following transition matrix:

0.95 0.02 0.03
0.02 0.95 0.03]).
0.03 0.02 0.95
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Each hidden state emits a time series from a Gaussian process with an RBF kernel (y = 0.2) and
a fixed marginal variance of 0.1 for all features. The mean vectors of the three states are given
by p1 = [0.8,0.5,0.2], uz = [0,1.0,0], and p3 = [0.2,0.2,0.8]. Labels y;[t] are sampled from a
Bernoulli distribution Bernoulli(p;[t]), where:

(1+exp(—=X;1))" ' ifs; =0
pilt] = ¢ (L +exp(=X;2))~" if s, =1
(1+exp(—X;3))~ ' ifsy =2
and s; denotes the latent state at time ¢. In our experiments, we generate sequences of length 100 and

extract multiple online prediction samples from each sequence using a fixed-length sliding window
of size 50.
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Table 5: Evaluation metrics for prediction-change explanations on the MIMIC-IIT decompensation
benchmark with an LSTM backbone. We follow the same setting as the main experiments, but
evaluate by removing the most salient 50 feature points per time step with forward-fill substitution.

Algorithm ‘ CPD 1 AUPD 1 Corr. T
Dynamask w/ Naive Subtraction | 0.14+000 0.12+000 -0.1940.00
Dynamask in Delta-XAI 11.72+0.08 7.56+0.04  0.04-0.00

H ADDITIONAL EXPERIMENTS

This section presents additional experiments that complement the main findings. The content is
organized into extended quantitative evaluations, backbone generalization, longer prediction intervals,
ablation and robustness analyses, efficiency, qualitative case studies, and clinical coherence.

Extended benchmarks. Tables [6] and [7] provide further results on clinical datasets, synthetic
benchmarks, and the Activity dataset. Across all settings, SWING achieves the best or second-best
scores on most metrics, reinforcing its robustness across both controlled and real-world scenarios.

Backbone architectures. Table [§] compares CNN and Transformer backbones on MIMIC-IIL
The results show that SWING retains strong performance across both architectures, demonstrating
versatility beyond LSTMs.

Longer time intervals. Table[J]evaluates explanations at 75 — 77 = 6 and 24. Although CPD and
AUPD converge across methods with longer intervals, SWING consistently achieves best or near-best
results, and shows particularly dominant gains on preservation metrics.

Ablation and robustness. Table analyzes the contributions of RBS, PHI, and DPI. Removing RBS
or PHI degrades performance, confirming their complementary roles, while DPI mainly stabilizes
preservation. Baseline offset analysis further shows that d = 1 yields the best trade-off, with d = 0
and larger offsets leading to degradation. Figure [ confirms robustness across a broad range of
Nsamples- Subgroup and temporal resolution analyses (Tables ['115] to @ additionally show that SWING
preserves its advantages regardless of prediction or label changes and remains stable across both 24-
and 72-length windows.

Efficiency. Figure 3|demonstrates that SWING achieves state-of-the-art explanatory quality with-
out significant computational overhead. Runtime (0.35s/sample) and memory (448 MB) remain
comparable to gradient-based baselines such as IG and GradSHAP.

Qualitative and clinical coherence. Figures [5]to [9 visualize attribution maps, where SWING
produces sharper, localized explanations than surrogate or masking methods. Finally, Figure [I0]
confirms coherence with medical knowledge, correctly highlighting risk increases from SBP drops
and pH declines, and protective effects from SpO; rises.

Overall, these supplementary experiments confirm that SWING consistently delivers reliable, efficient,
and clinically meaningful explanations across diverse datasets, models, and experimental conditions.
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Table 6: Performance comparison of XAI methods on clinical prediction tasks: PhysioNet 2019
sepsis benchmark using LSTM as backbone architecture. Evaluation is performed by removing the
most or least salient 50 feature points per time step, using forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. 1
CPDT AUPDtT MPDT AUMPDT| CPP| AUPP| MPP| AUMPP |

LIME (R: 0.29+000 0.21+000 1.83+001 1.02+000 |3.66+001 1.82+000 3.96+000 2.09+0.01 |-0.08+0.00

GradS m 1.60+000 0.93+000 2.52+001 1.50+000 |3.48+000 1.64+0.00 3.75+001 1.86+0.00 | 0.02+0.00

1G ( 2.68+000 1.54+000 3.00+001 1.93+0.00 |3.19+001 1.43+000 3.43+001 1.61+000 | 0.11+0.00

Deep W 2.72+000 1.60+000 2.87+000 1.86+0.00 |3.06+0.01 1.35+0.00 3.38+001 1.56+0.00 | 0.16:0.00

Suresh et al.||20 1.17+000 0.78+0.00 2.75+001 1.80+000 |4.63+001 3.13+001 2.44+001 1.13+000 | 0.02+0.00
\m 1.87+000 1.16+000 2.88+001 1.86+£000 |3.12+£000 1.48+000 3.28+001 1.55+000 | 0.15+0.00
|@ 0.71+£000 0.48+000 1.10+000 0.91x000 |3.81+000 1.96+000 1.30+£0.00 1.02+000 | 0.00-£0.00

1.86+0.00 1.10+000 2.85+001 1.66+000 |3.88+000 2.02+000 3.12+001 1.64=000 | 0.06:£0.00
Dynamas Van D E 1.69+000 1.11x000 2.05+000 1.36+000 |4.98+001 2.77+000 4.74+001 2.59+000 | 0.06:0.00
1.16+000 0.72+000 1.91+000 1.11+000 |4.04+001 2.41+000 3.98+001 2.36+001 | 0.05+0.00
0.73+002 0.34x001 2.47+002 1.32+001 |5.32+004 2.93+0.04 5.35+004 2.97+0.04 | 0.04+0.00

TimeX (Queen et al.[[2024 0.74+000 0.36+000 1.96+001 1.00+0.00 |5.33+001 2.77+000 5.49+001 2.89+0.01 |-0.03+0.00
TimeX++ (Liu et al.| a 1.76+001 1.06+000 2.07+001 1.19+000 |3.99+001 1.81+0.00 4.02+001 1.82+0.00 | 0.05+0.00
TIMING (Jang et al. 2.73+000 1.56+000 3.02+0.00 1.94:+0.00 |3.12:+000 1.41+000 3.38+000 1.60+0.00 | 0.13+0.00
SWING [3.10£001 1.96+0.00 2.81x001 1.78+001 |2.27=001 0.93+0.00 2.38+000 1.01+000 0.32=0.02

Table 7: Performance of XAl methods on (top) Activity (Vidulin et al.l 2010), (middle) Delayed
Spike (Leung et al,[2021)), and (bottom) Switch-Feature (Tonekaboni et al.,[2020) benchmarks with
an LSTM backbone. Evaluation is performed by removing the most or least salient 50 feature points
per time step, using forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr.
8 CPD 1 AUPD 1 MPD 1 AUMPD 1 CPP | AUPP | MPP | AUMPP | :
IG (Sundararajan et al. 19.80+053  12.53x031 7.81+053 4.76+0.28 17.51x070 7.33+028 20.23+1.06 8.77+045 0.09:+0.01

21.01+059  13.25+036 8.15+052 5.10+0.30 15.26+049 6.22:+0.17 19.07x0.61 8.20+0.23 0.17+0.02
15.20+052  10.11+029  7.51+038 4.79+025 13.69+092  5.66+035 18.23+077  7.99+028 | 0.17+0.01
6.62+0.38 3.34x015 6.61:+0.42 3.87+025 24.10+126  12.61+063  20.16+1.09 9.45+054 | 0.09:+0.01
13.75+071 8.08+037 7.18+054 4.35+035 19.39+1.06 9.28+053 19.441074 8.69+033 0.08-£0.01
21.77+080  14.96+063  9.20+033 6.19+0.60 7.64+0.33 2.70+003  15.15+037  6.05+0.12  0.46:0.03

290.74x101  246.74+103 281.63+1.67 225.76+120 | 13.14x022 4.30+0.07 15.78+032 5.59+0.10 | 0.46:+001
289.95+137 251.30+105 277.38+108 228.97x071 | 11.47+023  3.69+0.08 14.85+022  5.11x008 | 0.58+0.00
256.70+190 189.27+142 240.04+170 165.29+122 | 7.83+0.19 2.66+0.06 12294033 4.46+0.19 | 0.19+0.00
426.69+533 114.50+137 191.86+138 56.91+031 | 398.05+440 344.09+376 180.94+196 46.32+048 | -0.02:+0.00
327.29+4346  199.724220 205.82+233  96.03+094 | 261.30+242 230.69+2.10 205.20+237  92.31+097 | -0.01+000

| 317.95+250 252.16+186 305.09+206 232.50+142 | 3.35:004 1.13x0.02 5.70+0.10 1.85+004  0.44+0.00

464241643 422124583 474.36+558 395.55+459 | 10.97=0.13 4.29+005 17.94x0.61 6.56+0.16 | 0.65+0.00
525.16+7.67 470.90+667 523.95+531 430.36x4.01 | 8.66+0.10 3.45+0.04 16.35+056  5.97+021 | 0.63+001
533.94+778 475.55+678 529.43+672 431.48+492 | 9.88+021 3.98+010  13.30+030  5.37+0a4 | 0.58+0.00
507.88+5.15 447.504505 496.19+7.13  391.83+6.16 | 12.46+0.19 7.46x010  311.71+523 113.50+1.90 | 0.53+0.01
418.65+335 391.51+317 446.03+422 373.96+350 | 13.97+022 7.54x012  507.71x618 255.11+326 | 0.64+0.01

| 536.43+646 481.90+586 519.55+526 436.18+442 | 7.32:+0.10 2.99+006 15844053  5.81+020  0.74+0.00

Table 8: Performance comparison of XAI methods on MIMIC-III decompensation prediction task
with different backbone architectures: CNN (top) and Transformer (bottom) architectures. Evaluation
is performed by removing the most or least salient 50 feature points per time step, using forward-fill
substitution.

Removal of Most Salient 50 Points Removal of Least Salient 50 Points

Algorithm CPD} AUPDT MPD} AUMPD| CPP|  AUPP, MPP} AUMPP|| Co™T
1G rajan et al.|[2017} 28.68+004 16.83+003 32.16+009 20.25+006 | 41.37+006 19.08+004 37.25+005 15.63+004 | 0.2440.00
Deep! 12017} | 29.59+006 17.60+004 32.14+013  20.29+008 | 41.69+012 19.132005 37.68+010 15.65:003 | 0.282000

20.64x0.14 13.42+000 32.35+015 20.16+009 | 50.97+0.12 25.25+007 34.30+008 14.49+004 | 0.30+0.00

mzu

Winl 23.15+007 13.35+004 32.69+009 18.44+006 | 55.61+0.16 25.09+008 42.21+007 19.95+0.04 | 0.23+0.00
TIMIN . 29.80+006 17.26+005 32.33+0.12 20.45+008 | 40.54+0.10 18.86+005 36.10+009 15.26+006 | 0.26+0.00
SWING 44.02:017 27.85+0.12 40.36+0.12 25.86+0.10 | 24.47+007  8.23:003 24.97+003  8.44:003 | 0.530.00
Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr.
g CPD1 AUPDT MPDt AUMPD?| CPP,  AUPP| MPP| AUMPP| :
1G ( rajan et al.|[2017} 16.33+006  9.77+005  15.26+007 10.42+005 | 33.52+021 14.58+012 27.42+0.10 10.42+0.07 | 0.15+0.00
Deep! 2017} | 15.112007  9.87+006 15404007 10.53+005 | 33.24+£022 14.13z0m1 28.24+017  10.40+0.10 | 0.142000

|Em 14.61+006 10.22+003 17.514003 12.06+003 | 37.26+0.19 18.10+009 23.78+0.16 9.23+0.10 | 0.23+0.00
17.20+005 10.04+004 23.99+014 14.12+008 | 34.44+012 16.04+009 25.92+010 12.36+006 | 0.12+0.00

TIMIN . 22.53+005 12.59+003 15.95+007 10.94+005 | 31.53+0.13 14.04+008 25.78+0.16 10.01+008 | 0.18+0.00
SWING 25.50+013 16.38+0.09 23.71+015 15.84:+0.09 \ 17.57+013 5.98:006 18.05:+013  6.30-x0.07 \0.26i0.00
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Table 9: Performance comparison of XAI methods on MIMIC-III decompensation prediction task
with various time interval settings between two time steps 7} < T5: 6 timestamps interval (top) and
24 timestamps interval (bottom) using LSTM as backbone architecture. Evaluation is performed by
removing the most or least salient 50 feature points per time step, using forward-fill substitution.

Removal of Least Salient 50 Points

Algorithm Removal of Most Salient 50 Points Corr.
& CPD1t AUPDT MPDt AUMPD?1| CPP| AUPP|  MPP| AUMPP| :
1G (Sundararajan et al.|2017) 44.17x015 26.92x0.10 45.53+023 29.23x0.13 | 91.67+046 39.68+0.17 76.67+028 28.60+0.14 | 0.22:£0.00
DeepLIFT (Shrikumar et al.[[2017) | 42.00+0.18 25.91x0.10 44.50+022 28.54=x0.2 | 100.64+054 41.62+021 84.92+043 30.38+0.18 | 0.19+0.00
AFO (Tonekaboni et al.[|2020} 35214010 22.98+007 47.47+0.16 30.01+009 | 106.36+057 49.814+023 65.85+047 25.13+0.22 | 0.22:+0.00
WinlIT (Leung et al.|[2021) 52.98+0.02 28.48+001 19.19+001 10.47+000 | 91.22+009 43.19+004 83.18+051 41.23+025 | 0.14+0.00
TIMING (Jang et al.[[2025) 52.76+023 30.71x0.13 47.30+017 30.32x0.2 | 87.90+029 38.52+014 72.48+035 27.26x015 | 0.23+0.00
SWING | 51.46:+024 33.55:0.14 55.64:036 35.81+024 | 61.90+029 20.75+011 63.95:019 2190011 | 0.29:0.00
Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr.
& CPD 1 AUPD 1 MPD1  AUMPD 1 CPP | AUPP | MPP |  AUMPP | .
IG (Sundararajan et al.|2017) 45.75+019 26.81+0.14 40.79+024 26.37+0.15 | 103.48+045 48.124+020 77.63+044 29.38+0.15 | 0.20+0.00
DeepLIFT (Shrikumar et al.[2017) | 40.53+0.18 24.80+0.12  40.16+026 25.96+0.15 | 109.50+052 49.11+022 83.81+039 30.47+0.15 | 0.18+0.00
AFO (Tonekabont et al.[[2020}) 31.04+021 20.46+0.16 42.44+023 26.92+0.15 | 120.00+030 61.17+0.12 64.36:+035 25.25+0.08 | 0.18+0.00
TIMING (Jang et al.[[2025) 58.83+030 32.38:x022 42.52+026 27.42+0.47 | 97.93+041 46.75+018 72.36+035 27.82x015 | 0.22:+0.00
SWING | 4107022 26.46+01s 50.58+028 32.29+020 | 60.29+0.14 21.60+0.08 64.43+019 23.87+0.10 | 0.21+000

Table 10: Subgroup analysis of attribution methods under different score-change conditions (high:
|A| > 0.1 (top), low: |A| < 0.1 (bottom), where A = f(X7,—w+1:15) — f (X —w+1:73 ))- Results
are reported on the MIMIC-III decompensation benchmark with an LSTM backbone with 75 —T; = 1.
Evaluation is performed by removing the most or least salient 50 feature points per time step, using

forward-fill substitution.

Removal of Most Salient 50 Points

Removal of Least Salient 50 Points

Algorithm ‘ CPD 4 AUPD 1 MPDt AUMPD?{ | CPP| AUPP | MPP|  Aumpp| | ComT

IG (Sundararajan et al.||2017) 281.32+042  222.60+037 319.69+075 251.67+058 | 381.59+071 186.83+036 349.24+073 147.10+022 | 0.37+0.00
DeepLIFT (Shrikumar et al.[[2017) | 296.81+0.72 236.89+0.50 326.36+043 257.72+0.42 | 371.51+066 181.49+035 334.79+064 140.56+045 | 0.29+0.00
AFO (Tonekaboni et al.{[2020} 279.71+031 224.13+0.19 329.23+083 257.53+036 | 371.05+086 190.70+0.78 316.06+0.52 133.02+0.38 | 0.42+0.00
WinIT (Leung et al.[|2021 ] 341.14+065 244.84+035 408.03+0.65 283.17+026 | 350.94+1.06 182.03+051 366.12+134 194.42+077 | 0.23+0.00
TIMING (Jang et al.][2025) 285.87+053 224.72+042 322.54+081 253.72+076 | 378.87+129 184.84+049 346.25+039 145.34+021 | 0.37+0.00
SWING | 397.28+073 31194052 388434095 308.56+079 | 261.28+055 96.11+024  264.34=077  98.10-£029 | 0.57+0.00
Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr.

& CPD 1 AUPD 1 MPD 1 AUMPD t CPP | AUPP | MPP | AUMPP | :

IG (Sundararajan et al.||2017) 11.44+003 7.44+0.01 14.04+0.06 9.53+0.03 30.33+006  12.58+003  26.29+0.12 9.56+004 | 0.09+0.00
DeepLIFT (Shrikumar et al.[2017) | 11.44+003  7.63x0.02 13.79+006  9.39x0.04 32.95+007  13.29+004  28.57+007  10.26+004 | 0.13+0.00
AFO (Tonekaboni et al.{[2020} 11.35+0.08 7.71+0.05 15.03+009  10.20+006 | 33.20+0.07 15.29+004  21.31+005 8.24+0.03 | 0.19+0.00
WinIT (Leung et al.[[2021} 17.58+0.00  10.82+0.07  22.35+013  13.65+0.08 | 25.97+0.19  11.39+006  23.13x016  10.38+0.06 | 0.20+000
TIMING (Jang et al.][2025) 13.04-+0.07 8.08-£0.03 14.35+007  9.72+004 28.14x008  12.01x003  24.18+007  9.05+002 | 0.11=000
SWING | 21254008  14.09+007  19.63+013 13344010 | 15.34+009 497002 15.09+012  5.21+002 | 0.32+0.00

Table 11: Subgroup analysis of attribution methods with respect to prediction stability. Cases are
divided into changed (top) vs. unchanged (bottom), depending on whether the predicted class label
(i.e.,argmax f(Xp, —w1.1, ) vs. arg max f(Xg, —w 1.7, )) is different or remains the same. Results
are reported on the MIMIC-III decompensation benchmark with an LSTM backbone (75 — 77 = 1).
Evaluation is performed by removing the most or least salient 50 feature points per time step, using
forward-fill substitution.

Removal of Least Salient 50 Points

Algorithm Removal of Most Salient 50 Points Corr. 1
& CPD 1 AUPD 1 MPD 1 AUMPD t CPP | AUPP | MPP | AUMPP | .
IG (Sundararajan et al.||2017) 227.09+027 177.97+023 256.60+081 202.19+062 | 277.70+062 138.81+036 252.27+090 107.53+038 | 0.45+000
DeepLIFT (Shrikumar et al.[[2017) | 230.31+022 181.47+020 256.18+038 202.44+024 | 272.82+068 136.23+042 246.01+077 104.30+042 | 0.32+0.00
AFO (Tonekaboni et al.{[2020} 216.81+049 171.28+048 260.44+056 203.22+048 | 276.04+146 145.05+103 228.50+1.23 98.48+0.29 | 0.45+0.00
WinIT (Leung et al.[|2021 ] 290.84+041  207.59+035 340.70+0.77 238.05+040 | 252.09+064 130.44+050 269.08+1.12 141.56+070 | 0.27+0.00
TIMING (Jang et al.][2025) 230.00+057 179.32+032 258.60+055 203.50+043 | 276.34£092 137.86+061 249.23+072 106.18+056 | 0.44+0.00
SWING | 323.55+025 253.80+020 311354092 246.80+074 | 185.96-045 69.09+022 189.32+058 70.43+034 | 0.62+0.00
Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr.
& CPD 1 AUPD 1 MPD 1 AUMPD 1 CPP | AUPP | MPP | AUMPP | .
IG (Sundararajan et al.||2017) 12.39+0.08 8.26:£0.05 15.01+005  10.36+003 | 31.93+031 13.25+012  27.87+024  10.14+007 | 0.13+000
DeepLIFT (Shrikumar et al.[2017) | 12.61+0.07 8.60-£0.05 14.88+005  10.32+003 | 34.14+034  13.79+012  29.75+0290  10.70+0.08 | 0.16+0.00
AFO (Tonekaboni et al.{[2020} 12.36+0.08 8.54+0.05 16.04+009  11.03+006 | 34.50+030  15.86+0.11  22.49+0.26 8.68+0.07 | 0.24-+0.00
WinIT (Leung et al.[[2021} 18.59+0.11  11.474008  23.41+012  14.40+007 | 27.50+0.45  12.20+008  24.66+012  11.15+007 | 0.20+000
TIMING (Jang et al.][2025) 14.07-+0.08 8.92:£0.06 15.37+008  10.58+004 | 29.36+032  12.58+0.12  25.55+029  9.57+009 | 0.15+0.00
SWING | 22.54+025 15054007 20944015 14384013 | 16.44+025 539007  17.02:+024  5.65+008 | 0.36+0.00
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Table 12: Performance of XAI methods on the MIMIC-III dataset with an LSTM backbone, shown
for window size 24 (top) and window size 72 (bottom). We evaluate by removing the most or least
salient 50 points with forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr.
& CPDT AUPDT MPDt AUMPDT| CPP|  AUPP| MPP| AUMPP :
IG (Sundararajan et al.|2017} 11.984247 7.84+150 13.914300 9.404204 | 24.08+642 10.694264 20.67+605 8.35£236 | 0.21+000
Deep (Shrikumar et al.[2017) | 12.40+267  831+179  13.932307  9.45+2m1 | 25334701 11.05+279 22.36+685 8.90262 | 0.240.00
AFO (Tonekaboni et al.|2020] 13.35+251  9.05+171  17.264332  11.60+224 | 32.11+722 15484330 22.38+535 9.29+2.17 | 0.26+0.00
Winl 1w|g@| 16.75+306 10.36+191 22214427 13.441264 | 27.08+677 12.70+308 25.44+600 12.24+2385 | 0.22+0.00
TIMING (Jang et al.|[20 13.35+307  8.43+187 14.22+306  9.59+215 | 22424590 10.21+249 19.27+553  7.91+2.19 | 0.23+0.00
SWING 19.33:459 12.89+296 17.96+425 12.22+288 | 13.20+406 4.37+135 1421442 4.91=152 | 0.49+0.03

. Removal of Most Salient 50 Points Removal of Least Salient 50 Points
Algorithm Corr. 1

CPD 1 AUPD 1 MPD 1  AUMPD ¢t CPP | AUPP | MPP|  AUMPP |
8.71+005  5.93+004 10.23+006 7.16+005 | 15.64+008 7.27+003 12.40+007 4.76+002 | 0.23+0.00

2017)
(Shrikumar et al.|[2017)

Deep 9.28+002 6394002 10.35+005  7.29+004 | 16.37+007 7.46+003 13.05+007 4.91+0.01 | 0.26+0.00
AFO (Tonekaboni et al.|2020] 8.73+005  6.05+004 10.86+004 7.56+004 | 16.11+0.10 8.09+004 10.57x005 4.17+002 | 0.29+000
‘Winl 'W'@ 11.44+010 7.22+006 14.88+008 9.17+007 | 12.00+006 5.77+002 11.56+005 5.53+0.03 | 0.25+0.00
TIMING (Jang et al.|[20 9.14+£006  6.08+005 10.36+007 7.24x005 | 14.73x006 7.00+003 11.55+006 4.51+002 | 0.240.00

SWING 13.79+007 946005 13.05+007 9.10+006 | 7.51+004 2.45+002 7.75:004  2.56=0.02 | 0.48=0.00
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Figure 3: Computational efficiency analysis comparing SWING with baselines on the MIMIC-III
benchmark. (a) Elapsed real time per sample (sec/sample, log-scale) versus AUPD (K = 50). (b)
GPU peak memory consumption per sample (MB/sample) versus AUPD (K = 50).
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Table 13: List of clinical features used from the MIMIC-III dataset, including their indices and
descriptive names for model input.

Index Name | Index Name | Index Name | Index Name

0 Height 11 Weight 22 GCS-Motor4 | 33 GCS-Total9

1 Hours 12 Blood pH 23 GCS-Motor5 | 34 GCS-Total10
2 Diastolic BP 13 Cap. Refill 24 GCS-Total0 | 35 GCS-Totall1
3 FiO, 14 GCS-Eye0 25 GCS-Totall | 36 GCS-Total12
4 Glucose 15 GCS-Eyel 26 GCS-Total2 37 GCS-Verbal0
5 Heart Rate 16 GCS-Eye2 27 GCS-Total3 38 GCS-Verball
6 Mean BP 17 GCS-Eye3 28 GCS-Total4 39 GCS-Verbal2
7 SpO, 18 GCS-Motor0 | 29 GCS-Total5 | 40 GCS-Verbal3
8 Respiratory Rate 19 GCS-Motorl | 30 GCS-Total6 | 41 GCS-Verbal4
9 Systolic BP 20 GCS-Motor2 | 31 GCS-Total7

10 Body Temperature | 21 GCS-Motor3 | 32 GCS-Total8
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Figure 5: Qualitative case study showing attributions extracted with XAI methods on MIMIC-

I (Johnson et al} [2016) using LSTM (Hochreiter & Schmidhuber| [1997) backbone with T; = 47
and Tb = 48, i.e., To — T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-X Al framework, reflecting their respective explanations of the score changes.

26



Under review as a conference paper at ICLR 2026

Previous Score: 0.04 — Current Score: 0.03 (Score Diff: -0.01)

Input

%

- e g

LIME

GradSHAP

1G

FIT

uuuuuuu

Extrmask

uuuuuuu

uuuuuu

xxxx

uuuuu

((((((

ContraLSP

xxxxxxxx

........

,,,,,,,,

uuuuuuu

TIMING

00002

e e e

SRRSO R

Figure 6: Qualitative case study showing attributions extracted with XAI methods on MIMIC-
I (Johnson et al, 2016)) using LSTM (Hochreiter & Schmidhuber, [1997) backbone with T} = 47

and To = 48, i.e., To — T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-XAI framework, reflecting their respective explanations of the score changes.
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Figure 7: Qualitative case study showing attributions extracted with XAI methods on MIMIC-
I (Johnson et al, 2016)) using LSTM (Hochreiter & Schmidhuber, [1997) backbone with T} = 47
and To = 48, i.e., To — T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-XAI framework, reflecting their respective explanations of the score changes.
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Figure 8: Qualitative case study showing attributions extracted with XAI methods on M
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I (Johnson et al, 2016)) using LSTM (Hochreiter & Schmidhuber, [1997)) backbone with T} = 47

and To = 48, i.e., To — T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-XAI framework, reflecting their respective explanations of the score changes.
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Figure 9: Qualitative case study showing attributions extracted with XAI methods on MIMIC-

I (Johnson et al, 2016)) using LSTM (Hochreiter & Schmidhuber, [1997)) backbone with T} = 47

and To = 48, i.e., To — T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-XAI framework, reflecting their respective explanations of the score changes.
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Figure 10: These visualization illustrates case studies for coherence analysis of decompensation risk.
Each subfigure (a-d) shows two heatmaps for a MIMIC-III (Johnson et al.|[2016)) sample processed
with a LSTM (Hochreiter & Schmidhuber, [1997) backbone: the left heatmap visualizes normalized
input features, and the right heatmap displays SWING’s feature attributions. These panels reveal the
clinically relevant features and temporal patterns that SWING identifies as most influential for the
observed changes in decompensation risk score.
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