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ABSTRACT

Explaining online time series monitoring models is crucial across sensitive do-
mains such as healthcare and finance, where temporal and contextual predic-
tion dynamics underpin critical decisions. While recent XAI methods have im-
proved the explainability of time series models, they mostly analyze each time
step independently, overlooking temporal dependencies. This results in further
challenges: explaining prediction changes is non-trivial, methods fail to leverage
online dynamics, and evaluation remains difficult. To address these challenges,
we propose Delta-XAI, which adapts 14 existing XAI methods through a wrap-
per function and introduces a principled evaluation suite for the online setting,
assessing diverse aspects, such as faithfulness, sufficiency, and coherence. Ex-
periments reveal that classical gradient-based methods, such as Integrated Gradi-
ents (IG), can outperform recent approaches when adapted for temporal analysis.
Building on this, we propose Shifted Window Integrated Gradients (SWING),
which incorporates past observations in the integration path to systematically
capture temporal dependencies and mitigate out-of-distribution effects. Exten-
sive experiments consistently demonstrate the effectiveness of SWING across
diverse settings with respect to diverse metrics. Our code is publicly available at
https://anonymous.4open.science/r/Delta-XAI.

1 INTRODUCTION

Time series data, inherently gleaned online, span safety- and mission-critical domains such as
healthcare (Johnson et al., 2016; Reyna et al., 2020b), transportation (Polson & Sokolov, 2017; Zheng
& Huang, 2020), finance (Sezer et al., 2020; Xu et al., 2024), and climate monitoring (Camps-Valls
et al., 2021; Reichstein et al., 2019). Despite their success in time series prediction (Mahmoud &
Mohammed, 2021; Wang et al., 2024), the black-box nature of deep neural networks (Zhao et al.,
2023) and their use in sensitive domains (Wang & Chung, 2022) make explainability essential. When
it comes to online time series, practitioners often place greater emphasis on prediction differences
between adjacent time steps rather than isolated predictions, as identical predictions can signify
different contextual meanings. For instance, in clinical settings, a decrease in the probability of
sepsis from 90% to 50% indicates patient improvement, while an increase from 10% to 50% signals
potentially severe deterioration (Boussina et al., 2024; Shashikumar et al., 2017). This epitomizes the
necessity to contextualize prediction changes in online time series and attribute them to the features
driving such transitions.

Albeit diverse explainable artificial intelligence (XAI) methods for time series (Ribeiro et al., 2016;
Lundberg, 2017; Sundararajan et al., 2017; Shrikumar et al., 2017; Suresh et al., 2017; Tonekaboni
et al., 2020; Leung et al., 2021; Crabbé & Van Der Schaar, 2021; Enguehard, 2023; Liu et al.,
2024b; Queen et al., 2024; Liu et al., 2024a; Jang et al., 2025) have been suggested, existing
approaches mostly explain predictions at isolated time steps, neglecting how predictions have evolved.
In this regard, directly applying single-time attribution methods to explain prediction changes poses
significant challenges. First, these methods overlook the contextual dynamics of attributions. For
instance, this frequently leads to practically irrelevant explanations (see Section 3 for more details).
Second, it is in general impossible to explain prediction differences using isolated attributions from
individual time steps, which are irrelevant to prediction changes. For example, Table 5 reveals that
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the existing XAI approach (Crabbé & Van Der Schaar, 2021) produces implausible attributions when
subtracting across two time steps. Last, appropriate evaluation metrics for attribution in explaining
prediction changes remain largely unexplored. Common evaluation metrics, such as performance
degradation after removing salient features, often exhibit limited correlation with attribution quality
in evolving prediction settings.

To bridge this gap, we introduce Delta-XAI, a novel framework for explaining prediction changes in
online time series monitoring. We begin with a problem setup of explaining prediction changes in
online time series, attributing features to differences between adjacent steps rather than single-step
predictions. Within this framework, we successfully adapt 14 mainstream XAI methods—including
general approaches (Ribeiro et al., 2016; Lundberg, 2017; Sundararajan et al., 2017; Shrikumar et al.,
2017; Suresh et al., 2017) and time series-specific ones (Tonekaboni et al., 2020; Leung et al., 2021;
Crabbé & Van Der Schaar, 2021; Enguehard, 2023; Liu et al., 2024b; Queen et al., 2024; Liu et al.,
2024a; Jang et al., 2025)—via a wrapper function that transforms single-time explanations to directly
quantify prediction changes. We also propose a novel evaluation suite for online time series XAI,
assessing attributions for faithfulness, sufficiency, completeness, coherence, and efficiency, providing
a holistic standard over fragmented practices. Within this framework, we uncover that conventional
gradient-based methods like Integrated Gradients (IG) (Sundararajan et al., 2017) typically outperform
recent alternatives, consistent with offline setting (Jang et al., 2025).

Motivated by these observations, we introduce Shifted Window Integrated Gradients (SWING), a
novel XAI method for explaining prediction changes in online time series. IG typically exploits
integration along a straight path from a zero baseline to the input, failing to capture temporal
dynamics and inducing an out-of-distribution (OOD) problem. SWING addresses these issues by
generalizing the integration path with the retrospective prediction window as baseline and performing
piecewise line integrals through intermediate windows between two time steps. This yields faithful and
interpretable attributions that capture temporal dynamics and mitigate OOD issues, while satisfying
desirable theoretical properties for online time series monitoring—completeness, implementation
invariance, and skew-symmetry. Extensive experiments under a wide range of settings, spanning
diverse datasets and model architectures, verify that SWING outperforms existing baselines.

Our contribution can be summarized as follows:

• We formulate a problem of explaining prediction changes in online time series monitoring
and propose a novel framework that adapts 14 existing XAI methods via a prediction
wrapper, alongside comprehensive evaluation metrics tailored to this setup.

• We propose SWING, an XAI method for online time series that extends IG by incorporating
past observations into the integration path, enabling temporal dynamics to be captured while
mitigating OOD effects, while satisfying key theoretical properties.

• Through extensive experiments across diverse benchmarks and backbone architectures, we
systematically analyze existing time series attribution methods and demonstrate that SWING
surpasses state-of-the-art alternatives under diverse evaluation metrics.

2 PROBLEM SETUP

Let f : RW×D → [0, 1]C be an online time series classifier where W is the fixed lookback window
size, D is the number of features, and C is the number of output classes, which can be either binary or
multiclass. Given an online time series X ∈ RL×D of length L, the model receives at each time step T
the input window XT−W+1:T ∈ RW×D and outputs predicted class probabilities f(XT−W+1:T ) ∈
∆C−1 := {p ∈ [0, 1]C |

∑C
c=1 pc = 1}. In a conventional time series XAI setup, the goal is

to explain the model’s prediction at time T by estimating the contribution of each input feature
within the window: for each t and d, existing approaches calculate the attribution φ(f,Xt,d | T ),
which quantifies the contribution of feature d at time t to the model output f(XT−W+1:T )ĉ, where
ĉ = argmaxc f(XT−W+1:T )c.

In contrast, our goal is to explain prediction changes between two time steps T1 < T2. We define
the target class as the one with the largest probability increase: ĉ = argmaxc f(XT2−W+1:T2

)c −
f(XT1−W+1:T1

)c, with the corresponding change ∆ = f(XT2−W+1:T2
)ĉ − f(XT1−W+1:T1

)ĉ. To
explain this change ∆, we compute attributions over t ∈ {T1 −W + 1, . . . , T2}, d ∈ {1, . . . , D},
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Figure 1: Motivation for explaining prediction changes through illustrative scenarios that are not
generated by actual XAI outputs. (top) Vital signs across T1, T2, T3: risk rises from 10% to 90%
then partially recovers (70%). Conventional attribution at T3 misleads, while our method highlights
features driving recovery. (bottom) Risk evolves from 10% at T1 to 80% at T2 and slightly increases
(85%) at T3 due to delayed effects. Our method attributes prediction changes between T1 → T2 and
T2 → T3, resolving these issues. Here, T0 denotes a hypothetical past time step at which the baseline
input is placed to compute the initial score.

where each φ(f,Xt,d | T1 → T2) quantifies the contribution of feature d at time t to ∆. By default,
we take ĉ to be the class with the largest probability increase, motivated by the fact that increasing-
probability classes are often the most practically relevant. For instance, in disease risk prediction,
even if normal remains the top class, a sharp rise in respiratory failure probability from T1 to T2

is clinically significant and merits explanation. However, Delta-XAI also supports flexible setups
such as attributing the difference between the predicted classes, i.e., ∆ = f(XT2−W+1:T2)ĉ2 −
f(XT1−W+1:T1)ĉ1 , where ĉ1 = argmaxc f(XT1−W+1:T1)c and ĉ2 = argmaxc f(XT2−W+1:T2)c,
though this is not our primary concern. We further restrict to T2 − T1 < W , as larger gaps yield
non-overlapping windows and no common temporal context for attribution.

3 MOTIVATION: CHALLENGES IN ONLINE TIME SERIES EXPLANATION

In time series applications, stakeholders often care less about static predictions and more about
why they change. Standard XAI methods attribute importance to a single prediction, but clinicians,
financiers, or engineers instead want to know which features caused risk to rise, fall, or remain stable.
For instance, a doctor may ask which signals explain a patient’s sudden recovery, or an analyst may
seek factors driving a credit score drop. Explaining such changes requires attribution methods tailored
to highlight features responsible for prediction differences over time.

With regard to this, existing XAI methods explain single-time predictions without historical context,
making it hard to tell whether a feature caused risk to rise, fall, or stay stable. The top of Figure 1
shows a sepsis model over three steps T1 < T2 < T3: risk rises from 10% at T1 to 90% at T2, then
drops to 70% at T3 (b). Clinicians want explanations for the recovery between T2 and T3, but standard
methods (c) still highlight T2’s features, linking them to high risk. Explaining this 20% reduction
instead requires attribution methods explicitly designed for prediction changes (d).

Real-world time series further suffer from irregular sampling and imputation, e.g., by forward filling.
As shown in the bottom part of Figure 1, when all values at T3 are imputed (a), standard methods (c)
wrongly assign high attribution to them because models emphasize recent inputs, whereas clinicians
require attribution for actual observations. Our setup (d) instead supports time-wise attribution,
computing T2’s attributions from the change T1 → T2 and T3’s from T2 → T3, thereby highlighting
genuine observations while de-emphasizing imputed ones.

4 DELTA-XAI: A FRAMEWORK FOR EXPLAINING PREDICTION CHANGES

In this section, we elaborate on our approach for attributing prediction changes in online time series
monitoring. To achieve this, we first introduce a prediction difference wrapper that seamlessly adapts
existing single-prediction time series explainers to explain prediction changes; we also highlight the
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special cases where the wrapper function simplifies to differences of attributions due to linearity
properties (Section 4.1). Second, motivated by empirical findings that classical Integrated Gradients
(IG) outperform recent alternatives, we propose Shifted Window Integrated Gradients (SWING),
specifically designed to explain prediction differences, incorporating historical contexts and thereby
addressing the limitations of IG in explaining prediction changes for online time series (Section 4.2).

4.1 FROM STATIC TO DYNAMIC: EXTENDING XAI TO PREDICTION CHANGES

Given an online time series classifier f : RW×D → [0, 1]C , our goal is to attribute prediction change
f(XT2−W+1:T2

)ĉ − f(XT1−W+1:T1
)ĉ with ĉ = argmaxc f(XT2−W+1:T2

)c − f(XT1−W+1:T1
)c

between two time steps T1 < T2. However, in general, it is impossible to explain prediction differences
using isolated attributions from individual time steps, since they are irrelevant to such change. Indeed,
neither computing attributions on differenced inputs (as f is generally nonlinear), nor subtracting
attributions across outputs (as attribution algorithms are also nonlinear), provides valid explanations,
often yielding implausible results; for example, Table 5 shows that Dynamask (Crabbé & Van
Der Schaar, 2021) produces misleading explanations when subtracting attributions across two time
steps. To address this, we devise a prediction difference wrapper g:

g : R(T2−T1+W )×D → [0, 1]C , g(XT1−W+1:T2) := f(XT2−W+1:T2)− f(XT1−W+1:T1), (1)

which allows any single-prediction XAI method φ to be directly applied to explain prediction changes:

φ(f,Xt,d | T1 → T2) = φ(g,Xt,d | T2), ∀t ∈ {T1 −W + 1, . . . , T2}, d ∈ {1, . . . , D}. (2)

This wrapper reformulates attribution of prediction differences as a single-prediction explanation,
making it broadly applicable across existing methods. It further enables single-time XAI approaches
to be adapted with little or no modification, as detailed in Section D.

Special case: linear and complete XAI methods. While our wrapper function g is broadly
applicable, it requires recomputing attributions for each time pair (T1, T2). When φ satisfies linearity
in the attribution space, prediction changes reduce to the difference of single-time attributions,
allowing those from one step to be reused across any pair that includes it, without computing them
through g:

φ(f,Xt,d | T1 → T2) = φ(f,Xt,d | T2)− φ(f,Xt,d | T1). (3)
If φ also satisfies completeness in the attribution space, e.g., SHAP variants (Lundberg, 2017),
IG (Sundararajan et al., 2017), DeepLIFT (Shrikumar et al., 2017), this formulation guarantees online
completeness, ensuring that summed attributions exactly match the prediction change:
Theorem 1 (Attribution Decomposition Theorem for Online Completeness). Given a linear and
complete attribution method φ with a fixed baseline, the following decomposition holds:

f(XT2−W+1:T2
)ĉ − f(XT1−W+1:T1

)ĉ =

T2∑
t=T1+1

D∑
d=1

φ(f,Xt,d | T2)︸ ︷︷ ︸
Addition of newest features

+

T1∑
t=T2−W+1

D∑
d=1

[φ(f,Xt,d | T2)− φ(f,Xt,d | T1)]︸ ︷︷ ︸
Delayed effect of intermediate features

−
T2−W∑

t=T1−W+1

D∑
d=1

φ(f,Xt,d | T1)︸ ︷︷ ︸
Removal of oldest features

.

(4)

This theorem indicates that summed attributions across all features and time points exactly equal the
prediction change, providing clear interpretability. The proof is in Section F.

4.2 SWING: SHIFTED WINDOW INTEGRATED GRADIENTS

Standard Integrated Gradients (IG) remains competitive for explaining prediction changes but suffers
from OOD artifacts and ignores temporal dynamics. We propose SWING, extending IG with i)
retrospective baseline selection (RBS), ii) dual-path integration (DPI) ensuring online completeness,
and iii) piecewise-linear historical integration (PHI), yielding reliable explanations while preserving
key theoretical properties. The overall pipeline is shown in Figure 2, with the detailed procedure
outlined in Algorithm 1.
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Figure 2: Overview of the proposed SWING framework for explaining prediction changes in online
patient monitoring. SWING extends conventional Integrated Gradients (IG) by replacing zero-baseline
straight paths with line integrals over shifted historical windows and piecewise-linear paths, capturing
temporal dynamics and mitigating out-of-distribution effects.

Extending IG to line integrals over parameterized curves. We generalize IG as a line integral
over a parameterized curve γ : [0, 1]→ RW×D connecting a baseline X′ to the input XT−W+1:T :

φγ
IG(f,Xt,d | T ) =

∫ 1

0

∂f(γ(α))ĉ
∂Xt,d

∂γt,d(α)

∂α
dα. (5)

Here, standard IG appears as the special case of a straight-line path γ(α) = (1−α)X′+αXT−W+1:T ,
where ∂γt,d(α)/∂α = Xt,d−X′

t,d, yielding φγ
IG(f,Xt,d | T ) = (Xt,d−X′

t,d)
∫ 1

0
∂f(X′+α(X−X′))ĉ

∂Xt,d
dα.

Retrospective baseline selection. Motivated by the intuition that the most realistic baseline is the
recent past observation, we generalize the baseline to the window d steps before the input. For an
input window XT−W+1:T , this generalized baseline is XT−W+1−d:T−d. In practice, we set d = 1 as
the default, since the immediate past provides the most stable and realistic reference. Formally, with
d = 1, we denote by γi : [0, 1] → RW×D the straight-line path from the baseline XTi−W :Ti−1 to
the input XTi−W+1:Ti

, parameterized as: γi(α) = (1−α)XTi−W :Ti−1 +αXTi−W+1:Ti
, α ∈ [0, 1].

This keeps γi(α) near the data manifold and mitigates OOD issues, yielding:

φRBS(f,Xt,d | T1 → T2) = φγ2

IG (f,Xt,d | T2)− φγ1

IG (f,Xt,d | T1). (6)

Dual-path integration. Since φRBS uses distinct baselines at T1 and T2, relying on a single path
may lead to incomplete explanations. Thus, we define γ̃i,j : [0, 1]→ RW×D as the straight-line path:
γ̃i,j(α) = (1− α)XTi−W :Ti−1 + αXTj−W+1:Tj , α ∈ [0, 1], i, j ∈ {1, 2}. DPI integrates along all
four baseline–input pairs γ̃i,j and averages the results:

φDPI(f,Xt,d | T1 → T2) =
1

2

2∑
i=1

(
φ
γ̃i,2

IG (f,Xt,d | T2)− φ
γ̃i,1

IG (f,Xt,d | T1)
)
. (7)

This symmetric construction balances both baselines and, more importantly, ensures online complete-
ness in Theorem 1, so that summed attributions equal the prediction change.

Piecewise-linear historical integration. When the temporal gap between the baseline at Ti−1 and
the target at Tj is large, directly interpolating between XTi−W :Ti−1 and XTj−W+1:Tj

may traverse
regions far from the data manifold, leading to unstable attributions. To prevent such off-manifold
transitions, we introduce a piecewise-linear sliding path γi,j(α) that incrementally shifts the window
across intermediate historical time points, ensuring a smooth and temporally consistent progression
from baseline to target. We describe the case i < j; the case i > j is obtained by reversing the
temporal order. Let M = Tj − Ti + 1 denote the number of window transitions between Ti − 1 and
Tj , and for α ∈ [0, 1] set:

K = ⌊αM⌋︸ ︷︷ ︸
segment index

, α̃ = αM −K︸ ︷︷ ︸
local interpolation ratio

. (8)

5
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Then, the integration path is defined as γi,j(α) = (1− α̃)XTi+K−W :Ti+K−1+ α̃XTi+K−W+1:Ti+K .
As α increases from 0 to 1, the interpolation shifts smoothly from the baseline window at Ti − 1 to
the target window at Tj in M small linear steps, ensuring that the trajectory remains close to the
temporal data manifold rather than jumping directly across distant windows. This sliding construction
yields more stable and faithful attributions for long-range temporal changes. SWING then aggregates
contributions over all baseline–target combinations, producing a temporally consistent explanation
while preserving online completeness:

φSWING(f,Xt,d | T1 → T2) =
1

2

2∑
i=1

(
φ
γi,2

IG (f,Xt,d | T2) + φ
γi,1

IG (f,Xt,d | T1)
)
. (9)

In practice, we uniformly sample α at nsamples points within [0, 1] to obtain a tractable approximation
of the path integral.

Theoretical properties of SWING. SWING extends the axiomatic guarantees of IG—Online Com-
pleteness, Implementation Invariance, and Skew-Symmetry—providing principled interpretations of
online prediction changes. The proofs provided in Section F.
Theorem 2 (Online Completeness). The sum of SWING attributions equals the prediction difference
between two time steps:

∑
t,d φSWING(f,Xt,d | T1 → T2) = f(XT2−W+1:T2)− f(XT1−W+1:T1).

Theorem 3 (Implementation Invariance). SWING attributions depend only on the model function,
remaining invariant to equivalent network implementations.
Theorem 4 (Skew-Symmetry). For reversed prediction changes, SWING attributions satisfy skew-
symmetry: φSWING(f,Xt,d | T1 → T2) = −φSWING(f,Xt,d | T2 → T1).

5 EVALUATION METRICS FOR EXPLAINING PREDICTION CHANGES

This section introduces new metrics for online time series monitoring. We first examine issues
with zero and average imputation (Section 5.1), then propose metrics for attribution faithfulness
and sufficiency (Section 5.2), and finally extend beyond these to a unified evaluation standard
(Section 5.3).

5.1 PROBLEM OF EXISTING EVALUATION METRICS

Table 1: Substitution analysis
for XAI evaluation.

Substitution CPD OOD Score

Zero 28.12 0.840
Average 14.85 0.222
Forward-Fill 12.98 0.093

Modern time series XAI methods (Liu et al., 2024b;a) typically
assess faithfulness—how well attributions reflect model decisions—
and sufficiency—how well retained features preserve predictions—
by substituting removed features with zero or average baselines.
These substitutions ignore temporal locality and autocorrelation,
yielding out-of-distribution (OOD) samples. Our analysis on MIMIC-
III (Johnson et al., 2016) (LSTM backbone, SWING attributions) in
Table 1 shows that zero/average substitution produces substantial OOD samples, with high Cumulative
Prediction Difference (CPD) and large OOD scores measured by conditional generative model MSE,
exaggerating prediction differences and distorting correlations. We therefore adopt forward-filling for
faithfulness evaluation, as it reduces OOD effects and improves reliability.

5.2 PROPOSED EVALUATION METRICS FOR FAITHFULNESS AND SUFFICIENCY

Recently, TIMING (Jang et al., 2025) has identified a key issue in faithfulness and sufficiency
evaluation of time series XAI: removing top/bottom salient points simultaneously can inflate scores
by rewarding mere sign alignment. To mitigate this, TIMING introduced Cumulative Prediction
Difference (CPD) and Cumulative Prediction Preservation (CPP), which remove features sequentially.
In our wrapper setting g with input X:

CPD(g,X,K) =

K−1∑
k=0

∥∥g(X↑
k)− g(X↑

k+1)
∥∥
1
, CPP(g,X,K) =

K−1∑
k=0

∥∥g(X↓
k)− g(X↓

k+1)
∥∥
1
, (10)

where X↑
k and X↓

k denote the inputs obtained by removing the top-k and bottom-k features, respec-
tively, from the full set of (T2 − T1 +W )×D features across the entire time window. These metrics

6
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showed that gradient-based methods like IG (Sundararajan et al., 2017) often outperform recent
masking-based ones (Liu et al., 2024b; Queen et al., 2024; Liu et al., 2024a), a trend we also find for
online prediction changes.

However, these metrics have key limitations: 1) they ignore the relative ranking among top-k features,
2) they overlook evolving attributions across time, and 3) they assess only ranking, not magnitude. To
address 1), we introduce area-based metrics, Area Under Prediction Difference/Preservation (AUPD,
AUPP). AUPD is defined as the average of CPD values over all prefixes of the top-k features:

AUPD(g,X,K) =
1

2K

K∑
k=1

(
CPD(g,X, k) + CPD(g,X, k − 1)

)
. (11)

AUPP is defined analogously using CPP instead of CPD. For 2), we aggregate attributions with a
centered sliding window: φ(Xt,d | T ) = 1/(2W − 1)

∑t+W−1
T ′=t−W+1 φ(Xt,d | T ′). We denote the

resulting macro-level metrics as Macro Prediction Difference/Preservation (MPD, MPP) and their
area-based variants as Area Under Macro Prediction Difference/Preservation (AUMPD, AUMPP).
For 3), we propose Corr., the correlation between ordered attributions and prediction differences:

Corr.(φ,X,K) = Corr.
([

φ(1), . . . , φ(K), φ(W×D−K+1), . . . , φ(W×D)
]
,[∣∣g↑1 − g↑0

∣∣, . . . , ∣∣g↑K − g↑K−1

∣∣, ∣∣g↓1 − g↓0
∣∣, . . . , ∣∣g↓K − g↓K−1

∣∣]), (12)

Together, these metrics capture ranking consistency, temporal dynamics, and attribution magnitudes,
providing more faithful and interpretable evaluations.

5.3 BEYOND FAITHFULNESS AND SUFFICIENCY: BROADER EVALUATION METRICS

Existing time series XAI studies (Tonekaboni et al., 2020; Leung et al., 2021; Crabbé & Van
Der Schaar, 2021; Enguehard, 2023; Liu et al., 2024b; Queen et al., 2024; Liu et al., 2024a) mainly
assess faithfulness and sufficiency. While crucial—and expanded here with nine detailed metrics—
these alone are insufficient for practical utility. We therefore incorporate: 1) Coherence, checking
alignment with domain knowledge (case study); and 2) Time/Memory Complexity, measuring real-
time feasibility (empirically). Together, these provide a more comprehensive evaluation of XAI
methods.

6 EXPERIMENTS

In this section, we comprehensively evaluate SWING against 14 time series XAI baselines within our
Delta-XAI framework. We begin with the experimental setup (Section 6.1), then compare methods
on faithfulness to prediction changes (Section 6.2). Next, we analyze the contribution of each
SWING component through ablation study (Section 6.3), examine qualitative and coherence aspects
(Section 6.4), and finally provide further analyses under diverse settings along with computational
cost analysis (Section 6.5).

6.1 EXPERIMENTAL SETUP

Datasets. Following prior work (Liu et al., 2024a;b), we use two large-scale clinical datasets
commonly adopted for online time series monitoring: MIMIC-III (Johnson et al., 2016) for decom-
pensation prediction and PhysioNet 2019 (Reyna et al., 2020b) for early sepsis detection, where
predictions are updated as new data arrive. To assess generalizability, we also test on Activity, a
human activity recognition dataset (Vidulin et al., 2010), and synthetic benchmarks with controlled
temporal dynamics (Delayed Spike (Leung et al., 2021), Switch-Feature (Tonekaboni et al., 2020)).
Further details are provided in Section G.

Model architectures. We mainly evaluate XAI methods with LSTM architectures, a fundamental
choice for time series classification (Tonekaboni et al., 2020; Leung et al., 2021). To show our
framework’s versatility, we also implement a CNN with stacked convolutions and a Transformer
encoder for long-range dependencies.

7
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Table 2: Performance comparison of XAI methods on clinical prediction tasks: MIMIC-III decom-
pensation benchmark using LSTM as backbone architecture. Evaluation is performed by removing
the most or least salient 50 feature points per time step, using forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
LIME (Ribeiro et al., 2016) 2.26±0.04 1.72±0.03 13.78±0.08 7.70±0.02 32.46±0.16 14.26±0.10 33.45±0.14 15.30±0.10 0.02±0.00

GradSHAP (Lundberg, 2017) 13.73±0.06 9.05±0.04 16.68±0.08 11.19±0.05 32.97±0.13 13.96±0.06 30.13±0.17 11.95±0.09 0.14±0.00

IG (Sundararajan et al., 2017) 13.42±0.06 9.10±0.05 16.14±0.07 11.31±0.04 33.55±0.12 13.97±0.04 29.46±0.17 10.85±0.05 0.17±0.00

DeepLIFT (Shrikumar et al., 2017) 13.58±0.06 9.42±0.04 16.03±0.08 11.25±0.06 35.96±0.16 14.61±0.07 31.53±0.15 11.41±0.06 0.19±0.00

FO (Suresh et al., 2017) 13.14±0.10 9.92±0.07 17.79±0.10 12.92±0.06 44.02±0.19 22.32±0.09 16.92±0.09 6.24±0.03 0.26±0.00

AFO (Tonekaboni et al., 2020) 13.24±0.07 9.30±0.05 17.16±0.07 11.95±0.03 36.13±0.22 16.64±0.09 24.13±0.16 9.32±0.07 0.28±0.00

FIT (Tonekaboni et al., 2020) 3.40±0.04 2.70±0.03 7.11±0.04 6.14±0.04 35.52±0.11 17.55±0.08 12.07±0.05 10.19±0.05 0.06±0.00

WinIT (Leung et al., 2021) 19.64±0.07 12.25±0.04 24.87±0.13 15.45±0.08 29.22±0.07 13.05±0.05 26.11±0.12 11.92±0.06 0.21±0.00

Dynamask (Crabbé & Van Der Schaar, 2021) 11.72±0.08 7.56±0.04 13.15±0.08 8.25±0.04 53.07±0.24 26.22±0.08 49.80±0.16 24.26±0.06 0.04±0.00

Extrmask (Enguehard, 2023) 16.66±0.11 10.47±0.06 17.51±0.12 10.63±0.05 29.91±0.17 15.13±0.09 29.64±0.17 14.84±0.12 0.08±0.00

ContraLSP (Liu et al., 2024b) 12.88±0.36 8.69±0.26 18.00±0.16 11.11±0.18 41.62±0.30 21.17±0.10 42.67±0.29 21.94±0.10 0.03±0.00

TimeX (Queen et al., 2024) 16.99±0.09 11.45±0.06 19.45±0.10 12.45±0.06 50.34±0.10 24.11±0.04 51.06±0.09 24.50±0.05 0.03±0.00

TimeX++ (Liu et al., 2024a) 11.12±0.05 7.00±0.04 13.14±0.02 7.76±0.02 34.21±0.17 13.72±0.07 32.34±0.11 13.08±0.05 0.03±0.00

TIMING (Jang et al., 2025) 14.99±0.07 9.71±0.05 16.50±0.08 11.53±0.04 31.22±0.16 13.36±0.05 27.19±0.19 10.24±0.07 0.19±0.00

SWING 23.87±0.16 16.23±0.10 22.27±0.19 15.52±0.12 17.76±0.04 5.85±0.04 18.20±0.06 6.06±0.05 0.40±0.00

XAI baselines. We comprehensively implement and evaluate all XAI methods in Delta-XAI, includ-
ing our proposed SWING. Existing methods are categorized as: 1) modality-agnostic perturbation-
based (LIME (Ribeiro et al., 2016), FO (Suresh et al., 2017), AFO (Tonekaboni et al., 2020)); 2)
gradient-based (IG (Sundararajan et al., 2017), DeepLIFT (Shrikumar et al., 2017), GradSHAP (Lund-
berg, 2017)); and 3) time series-specific methods, including online explainers (FIT (Tonekaboni et al.,
2020), WinIT (Leung et al., 2021)), masking frameworks (Dynamask (Crabbé & Van Der Schaar,
2021), ExtrMask (Enguehard, 2023), ContraLSP (Liu et al., 2024b), TimeX (Queen et al., 2024),
TimeX++(Liu et al., 2024a)), and TIMING (Jang et al., 2025), augmenting IG with random masking.

Implementation details. Our method uses a single hyperparameter (nsamples = 50). We set T2 −
T1 = 1 for adjacent-step explanations, remove K = 50 points, and absolutize directional attributions
for fairness. Explanations are obtained through the wrapper g, which highlights features driving
the T1 → T2 change. Metrics are scaled by 103 except for correlations, memory, and time. Results
are reported as mean±standard error over five runs, with best and second-best marked in bold and
underline.

6.2 RESULTS ON ATTRIBUTION FAITHFULNESS AND SUFFICIENCY

Main results. Tables 2 and 6 shows that, under the Delta-XAI protocol, SWING achieves the best
performance on most metrics across both clinical datasets (MIMIC-III and PhysioNet 2019). Other
gradient-based explainers such as IG, DeepLIFT, and TIMING also perform consistently well. In
contrast, surrogate-driven methods like LIME, TimeX, and TimeX++ exhibit lower performance
on preservation metrics, likely due to the data- and hyperparameter-sensitivity of their surrogate
models. These findings underscore SWING’s dominance and refine the performance hierarchy of
XAI techniques within Delta-XAI.

Diverse synthetic and real-world benchmarks. On the real-world Activity dataset (Table 7),
SWING achieves the highest scores across all metrics. On the synthetic State and Switch-Feature
benchmarks, it performs best or second-best on most metrics, with competitive results elsewhere,
underscoring its robustness across both practical and controlled scenarios.

Different backbone architectures. To assess generalizability across architectures, we re-evaluate
the five strongest clinical baselines and SWING on the MIMIC-III dataset using CNN and Transformer
backbones in Table 8. SWING outperforms competing methods across most of the metrics; these
findings confirm that SWING maintains robust faithfulness across diverse backbones within Delta-
XAI.

Larger time differences. To assess robustness over longer time gaps, we compare SWING with
five strong baselines on MIMIC-III at T2 − T1 = 6 and 24 (Table 9), with WinIT reported only for 6
due to generator limits. SWING achieves best or near-best scores on most metrics, with particularly
dominant gains on preservation metrics, though performance gaps narrow for longer intervals as CPD
and AUPD converge across methods.
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Table 3: Ablation study of SWING examining retrospective baseline selection (RBS), dual-path
integration (DPI), and piecewise-linear historical integration (PHI) on the MIMIC-III decompensation
benchmark (Johnson et al., 2016), with LSTM (Hochreiter & Schmidhuber, 1997) backbone and
interval T2 − T1 = 24. We vary the baseline distance d (default: 1) and remove the most or least
salient 50 feature points per time step, using forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
w/o RBS, PHI 45.82±0.20 26.85±0.13 40.85±0.22 26.31±0.14 104.05±0.34 48.43±0.19 77.94±0.30 29.56±0.11 0.20±0.00

w/o RBS 40.55±0.27 24.54±0.19 47.00±0.36 29.35±0.22 80.62±0.41 31.59±0.25 83.91±0.38 33.72±0.20 0.16±0.00

w/o DPI (γ1,1, γ2,2) 55.01±0.35 32.39±0.21 53.09±0.38 33.08±0.21 71.01±0.30 26.12±0.10 76.26±0.34 29.29±0.09 0.19±0.00

d = 0 33.80±0.23 20.11±0.13 48.98±0.44 29.78±0.24 82.28±0.29 33.99±0.10 83.69±0.35 33.31±0.12 0.11±0.00

d = 3 42.00±0.33 26.00±0.28 47.49±0.44 29.74±0.34 68.53±0.49 25.60±0.18 71.88±0.62 27.54±0.27 0.19±0.00

d = 5 41.98±0.31 25.65±0.25 47.18±0.45 29.44±0.33 72.31±0.66 27.88±0.22 74.62±0.71 29.11±0.26 0.18±0.00

d = 10 41.02±0.28 24.94±0.18 46.89±0.39 29.23±0.25 76.55±0.48 29.96±0.16 78.11±0.44 31.04±0.16 0.17±0.00

SWING 41.07±0.22 26.46±0.18 50.58±0.28 32.29±0.20 60.29±0.14 21.60±0.08 64.43±0.19 23.87±0.10 0.21±0.00

6.3 ABLATION STUDY

This subsection examines the contributions of SWING components—retrospective baseline selection
(RBS), piecewise-linear historical integration (PHI), and dual-path integration (DPI). The meaning of
each ablation configuration and its corresponding mathematical formulation are minutely detailed
in Section H. As shown in Table 3, removing both RBS and PHI causes substantial degradation, while
individually removing either module also reduces performance, highlighting their complementary
roles. Without DPI, the model attains the best faithfulness scores (CPD, AUPD, MPD, AUMPD)
but falls behind SWING in preservation metrics, suggesting that DPI primarily stabilizes preserva-
tion. Overall, SWING sacrifices a small margin in prediction-difference metrics to achieve strong
preservation and correlation performance. Varying the baseline offset d further shows that using the
immediate past window (d = 1) yields the best trade-off, as both too short (d = 0) and longer offsets
(d ≥ 3) degrade results. Finally, SWING maintains stable performance across varying nsamples (10 to
100), demonstrating robustness to hyperparameter changes (Figure 4).

6.4 QUALITATIVE ANALYSIS

Case study on feature attributions. Beyond quantitative evaluation, we qualitatively assess XAI
methods within the Delta-XAI framework. Figures 5 to 9 show raw input trajectories with attribution
heatmaps for fifteen baselines at T2 − T1 = 1. FO, TimeX, and TimeX++ tend to spread attributions
broadly across the time axis, while Dynamask and TimeX++ align closely with input fluctuations,
reflecting their strong benchmark scores. In contrast, SWING yields sharper, localized attributions
that emphasize recent time steps most responsible for prediction changes.

Coherence analysis. We further assess whether SWING aligns with clinical knowledge by inspect-
ing attributions on a representative MIMIC-III case in Figure 10 (due to the spatial constraint). To
maximize visibility, we closely examine how the features at the last time step influence the model’s
predictions. A sharp blood pressure drop at the last time step increases risk (a), consistent with
evidence linking hypotensive episodes to decompensation (Toki et al., 2025). In contrast, an SpO2
rise lowers risk (b), while an SpO2 drop increases risk (c), reflecting the destabilizing effect of oxygen
desaturation (Semler et al., 2022). A rise in GCS lowers risk (d), consistent with evidence linking
improved consciousness to better outcomes (Marincowitz et al., 2018). These examples demonstrate
that SWING produces attribution patterns consistent with established clinical findings.

6.5 FURTHER ANALYSIS

In-depth analysis under diverse settings. To further examine SWING’s behavior, we perform
subgroup analyses by splitting cases according to whether predictions or class labels change (Tables 10
and 11), where it consistently preserves explanatory advantages. We also test different temporal
resolutions with 24- and 72-length windows (Table 12), confirming that SWING yields stable
attributions and clear gains over baselines across both horizons. These results demonstrate that
SWING provides reliable explanations under diverse prediction dynamics and temporal contexts,
reinforcing its applicability to real-world clinical monitoring.
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Efficiency analysis: runtime and memory. We assess SWING’s efficiency along two
axes—runtime and memory footprint. As shown in Figure 3, SWING attains the highest AUPD
while requiring only 0.35s per sample, comparable to other gradient-based explainers (DeepLIFT
0.11s, GradSHAP 0.18s). For memory, it consumes 448 MB per sample, identical to IG (448 MB)
and close to GradSHAP and DeepLIFT (438 MB). These results demonstrate that SWING achieves
state-of-the-art explanatory quality without incurring additional computational or memory costs.

7 CONCLUSION

In this paper, we have introduced the task of explaining prediction changes in online time series
monitoring and proposed Delta-XAI, a novel framework that integrates 14 XAI methods with a
dedicated evaluation suite for temporal dynamics. Through extensive experiments, we demonstrated
that, when adapted, classical gradient-based methods, such as Integrated Gradients (IG), remain strong
baselines. Motivated by this, we developed SWING, an extension of IG that robustly captures temporal
feature evolution. We believe our contributions significantly advance XAI for online time series by
shifting the paradigm from static interpretations toward dynamic, context-sensitive explanations—an
essential step toward trustworthy AI in time-critical domains.

ETHICS STATEMENT

This work develops explainable AI (XAI) methods for online time series monitoring in domains
such as healthcare and finance. We use only publicly available open-source benchmark datasets (e.g.,
MIMIC-III, PhysioNet 2019, Activity), adhering to their usage protocols and ethical standards, and
do not collect new human subject data. Our contributions are methodological, aiming to enhance the
transparency and interpretability of time series models. Potential misuse may arise if explanations are
taken as direct clinical or financial advice; therefore, we emphasize that outputs should be interpreted
by domain experts.

REPRODUCIBILITY STATEMENT

We provide an anonymized implementation of Delta-XAI and SWING at the anonymous reposi-
tory link https://anonymous.4open.science/r/Delta-XAI. All experimental details—
including dataset preprocessing, model architectures, training protocols, hyperparameter settings, and
evaluation metrics—are provided in Sections 6 and G, while theoretical proofs and pre-processing
steps for MIMIC-III, PhysioNet 2019, Activity, and synthetic benchmarks are elaborated in Sec-
tion G. In addition, several ablation studies and robustness analyses over multiple iterations further
validate the stability of results. All procedures are publicly available and fully reproducible, enabling
independent researchers to reproduce and verify our findings.
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A LIMITATIONS AND BROADER IMPACTS

Limitations. Our proposed approach has few limitations. First, while SWING extends IG by
incorporating historical points with shifted window paths, it introduces additional computational
overhead compared to simpler methods like standard IG. Second, while our prediction wrapper
function can seamlessly incorporate most existing single-time XAI algorithms, a few require minor
adjustments—particularly those that rely on probability outputs or internal model representations. The
specifics of such adaptations are tangential to our main contribution and are left to future algorithm
designers.

Broader impacts. Our work significantly advances explainability in time-critical domains by en-
abling a nuanced explanation of temporal prediction changes. By providing insights into why and how
model predictions evolve, our framework supports decision-making in critical areas such as health-
care, finance, and transportation, potentially improving outcomes through enhanced transparency and
accountability. While responsible interpretation and privacy considerations remain important, the
benefits of improved trustworthiness and actionable insights in high-stakes environments significantly
outweigh these concerns.

B LLM USAGE DISCLOSURE

In drafting this manuscript, we made limited use of a Large Language Model (LLM) solely for minor
writing improvements, such as grammar polishing and readability enhancement. The LLM was not
used for research conception, experimental design, analysis, or generation of substantive content. Its
role was strictly restricted to language editing, and all scientific contributions are entirely attributable
to the authors.

C RELATED WORK

Modality-agnostic explainable artificial intelligence. Although deep neural networks have
achieved impressive results across domains like vision (He et al., 2016; Dosovitskiy et al., 2020),
language (Vaswani et al., 2017; Brown et al., 2020), and time series (Gamboa, 2017), they often act
as black boxes, limiting transparency and accountability—especially in high-stakes areas such as
healthcare (Christoph, 2020). To address this, various modality-agnostic XAI methods have been
developed. Popular approaches such as LIME (Ribeiro et al., 2016) and SHAP (Shapley, 1953;
Lundberg, 2017) attribute predictions to input features by estimating their contribution strength and
direction. Variants like KernelSHAP, GradientSHAP, and DeepSHAP (Kokhlikyan et al., 2020) ex-
pand their applicability. Gradient-based methods, including Integrated Gradients (IG) (Sundararajan
et al., 2017) and DeepLIFT (Shrikumar et al., 2017), compute attributions using model gradients.
Perturbation-based methods like Feature Occlusion (FO) (Suresh et al., 2017) and Augmented Feature
Occlusion (AFO) (Tonekaboni et al., 2020) measure feature importance by replacing inputs and
observing prediction changes. While these methods have enhanced model explainability, most have
been evaluated in vision tasks (Das & Rad, 2020). Their application to time series—particularly
for explaining prediction changes in online settings—remains limited, despite the importance of
capturing temporal dependencies for meaningful explanations.

Explainable artificial intelligence for time series. XAI for time series presents unique challenges
due to temporal dependencies, where the order and historical context of observations significantly
affect model behavior. Standard modality-agnostic XAI methods, which often assume independently
distributed inputs, fail to capture such dynamics. To address this, a number of time series-specific
attribution methods have been proposed (Bento et al., 2021; Tonekaboni et al., 2020; Leung et al.,
2021; Crabbé & Van Der Schaar, 2021; Enguehard, 2023; Liu et al., 2024b; Queen et al., 2024; Liu
et al., 2024a; Kim et al., 2025). More recent methods have improved temporal modeling through
dynamic masking (Crabbé & Van Der Schaar, 2021; Enguehard, 2023), contrastive learning (Liu
et al., 2024b), and interpretable surrogate modeling (Queen et al., 2024; Liu et al., 2024a), with
TimeX++ incorporating an information bottleneck to mitigate trivial explanations. TIMING (Jang
et al., 2025) introduces novel evaluation metrics and enhances IG with random masking to improve
sensitivity to temporal variation. Despite recent progress, existing methods fall short in explaining
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prediction changes in online time series, lacking contextual insight and temporal evaluation. Our
Delta-XAI addresses these gaps by attributing prediction changes directly and introducing metrics
aligned with sequential dynamics.

Explainable artificial intelligence for online time series monitoring. Among time series XAI
methods, FIT (Tonekaboni et al., 2020) and WinIT (Leung et al., 2021) are particularly relevant to
online prediction tasks. FIT estimates feature importance by comparing predictive distributions under
observed and counterfactual inputs using KL divergence, whereas WinIT models delayed effects
by assessing how past observations influence future predictions. However, our proposed framework
significantly extends beyond these methods by offering a comprehensive and unified approach.
Unlike FIT, which quantifies feature importance solely based on predictive distribution changes
at consecutive time points, and WinIT, which evaluates feature relevance within fixed observation
windows—both producing static attributions across the entire series—our Delta-XAI explicitly
explains prediction changes between distinct time points. Specifically, we attribute changes in model
predictions directly rather than attributing individual predictions independently, thus generating
dynamic and prediction-time-specific attributions that accurately capture temporal evolution in feature
importance. Additionally, we introduce SWING, an advanced attribution method demonstrating
superior empirical performance and fulfilling essential theoretical properties, including linearity,
completeness, and directional attribution. Finally, our framework systematically integrates existing
attribution methods and proposes specialized evaluation metrics tailored explicitly to assessing
prediction change explanations in online time series monitoring.

D ADAPTING EXISTING XAI ALGORITHMS

In this section, we provide a detailed description of how we adapt existing XAI baselines to our
setting. Specifically, Section D.1 presents the algorithms that can be applied without modification,
i.e., with seamless integration into our prediction-difference framework, while Section D.2 describes
those that require minimal adjustments. In both cases, the adaptation is realized through a wrapper
function g, which standardizes the attribution process for time series inputs. Notably, this wrapper
neither necessitates additional post-training procedures nor alters the underlying models, ensuring
fair and consistent comparison across baselines.

D.1 NO MODIFICATION

The following attribution algorithms operate without modification: LIME (Ribeiro et al., 2016),
IG (Sundararajan et al., 2017), DeepLIFT (Shrikumar et al., 2017), FO (Suresh et al., 2017),
AFO (Tonekaboni et al., 2020), WinIT (Leung et al., 2021), Dynamask (Crabbé & Van Der Schaar,
2021), Extrmask (Enguehard, 2023), ContraLSP (Liu et al., 2024b), and TIMING (Jang et al., 2025).
In all of these cases, the only adjustment involves the use of the prediction-difference wrapper g
instead of the single-time prediction model f . This wrapper applies uniformly across baselines
without altering their internal mechanisms, so the algorithms remain unmodified in our framework.

D.2 MINIMAL MODIFICATION

The following attribution algorithms require minimal modification: GradSHAP (Lundberg, 2017),
FIT (Tonekaboni et al., 2020), TimeX (Queen et al., 2024), and TimeX++ (Liu et al., 2024a).

GradSHAP. Applying GradSHAP (Lundberg, 2017) directly to the wrapper g violates complete-
ness, since the baseline input for g depends on whether the evaluation is at T1 or T2. For example,
if T1 corresponds to a window XT1−W+1:T1 and T2 to XT2−W+1:T2 , then the baseline for g dif-
fers depending on which window is active, leading to inconsistency. To address this, we compute
GradSHAP directly on f , perform two runs with a shared baseline, and subtract the resulting at-
tributions—mirroring the construction of SWING. This procedure preserves completeness while
remaining consistent with the prediction-difference formulation.

FIT. For FIT (Tonekaboni et al., 2020), we bypass the wrapper g and operate directly on the base
model f . We construct both the current and previous input windows and masks, XT2−W+1:T2 and
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XT1−W+1:T1
, and obtain the corresponding predictions pyT2

and pyT1
. At each time step and feature

dimension, we sample candidate imputations from the generator, evaluate their effect on pyT2
, and

compute the divergence with respect to the prediction difference. For the divergence metric, we
follow the original implementation and support both KL-divergence and mean absolute deviation.
This adaptation retains FIT’s perturbation design while aligning it with prediction differences.

TimeX. For TimeX (Queen et al., 2024), the prediction-difference wrapper g is implemented as a
Python class, where the forward() method returns the prediction difference f(XT2−W+1:T2

)−
f(XT1−W+1:T1

). To support the Model Behavior Consistency (MBC) loss, the class defines an
auxiliary method that returns the difference between latent embeddings at the two time points.
Specifically, while TimeX formulates the MBC loss LMBC as:

LMBC(Z,Z
E) =

1

N2

∑
i,j

[
DZ(zi, zj)−DZE (zEi , zEj )

]2
, (13)

we obtain latent embeddings using the encoder of the model f with f = dec ◦ enc. For an input
sequence XT1−W+1:T2

, we split it into two windows XT1−W+1:T1
and XT2−W+1:T2

, then compute
embeddings as:

z = enc(XT2−W+1:T2)− enc(XT1−W+1:T1). (14)
We also experiment with concatenated embeddings z = [enc(XT2−W+1:T2), enc(XT1−W+1:T1)] and
observe negligible differences in performance. In either case, this embedding construction provides
a meaningful space over which the surrogate model operates, while remaining consistent with the
prediction-difference wrapper g.

TimeX++. For TimeX++ (Liu et al., 2024a), we adopt the same strategy: embeddings are obtained
in the same manner as in TimeX, and the surrogate model operates on the difference zT2 − zT1 . We
further modify the label consistency loss. Instead of the cross-entropy formulation in the original
implementation, we employ mean squared error (MSE) loss for stability. Here, X denotes the original
input sequence and X̃ denotes the perturbed version of the input produced by the explanation method.
Concretely, the label consistency objective LLC is defined as:

LLC(f(X), f(X̃)) = E
[
DJS(f(X) ∥ f(X̃))

]
, (15)

following the Jensen–Shannon divergence form in (Queen et al., 2024), but realized with an MSE
surrogate. This yields a loss function better aligned with the prediction-difference framework.

E ALGORITHM

We provide the detailed procedure of SWING in Algorithm 1, which computes attribution scores
for prediction changes in online time series monitoring. The algorithm explicitly defines integration
paths using historically observed shifted windows, computes gradients along piecewise-linear paths
via interpolation, and averages attributions from dual integration paths. This approach ensures
compliance with the completeness property, provides realistic integration trajectories, and mitigates
out-of-distribution (OOD) issues.

F PROOFS

F.1 PROOF OF THEOREM 1

By completeness of φ, for any baseline X′ ∈ RW×D, we have:

f(XT2−W+1:T2
)ĉ − f(X′)ĉ =

T2∑
t=T2−W+1

D∑
d=1

φ(f,Xt,d | T2), (16)

and similarly,

f(XT1−W+1:T1
)ĉ − f(X′)ĉ =

T1∑
t=T1−W+1

D∑
d=1

φ(f,Xt,d | T1). (17)
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Algorithm 1 SWING: Shifted Window Integrated Gradients

1: Input: Model f , inputs XT1−W+1:T1
, XT2−W+1:T2

, discretization steps nsamples.
2: Output: Attributions φSWING(f,Xt,d | T1 → T2) for all t ∈ {T1 − W + 1, . . . , T2}, d ∈
{1, . . . , D}.

3: for each γi,j with i, j ∈ {1, 2} do
4: M ← |Tj − (Ti − 1)|, σ ← sign

(
Tj − (Ti − 1)

)
5: X(0) ← XTi−W :Ti−1

6: G(0) ← ∂f(X(0))/∂X(0)

7: φ
γi,j

IG ← 0(T2−T1+W )×D

8: for m = 1 to nsamples do ▷ Parallelized in our implementation
9: αm ← m/nsamples

10: K ← min
(
⌊αmM⌋, M − 1

)︸ ︷︷ ︸
segment index

α̃← αmM −K︸ ︷︷ ︸
local interpolation ratio

11: s← (Ti − 1) + σK

12: X(m) ← (1− α̃)Xs−W+1:s + α̃X(s+σ)−W+1:(s+σ)

13: G(m) ← ∂f(X(m))/∂X(m)

14: φ
γi,j

IG (t, d)← φ
γi,j

IG (t, d) +
(
X(m)

t,d − X(m−1)
t,d

) G
(m)
t,d +G

(m−1)
t,d

2 , ∀t, d
15: end for
16: M ← |Tj − (Ti − 1)|, σ ← sign

(
Tj − (Ti − 1)

)
17: end for
18:

φSWING(f,Xt,d | T1 → T2)←
1

2

2∑
i=1

(
φ
γi,2

IG (f,Xt,d | T2)− φ
γi,1

IG (f,Xt,d | T1)
)

By subtracting two equations, we obtain:

f(XT2−W+1:T2
)ĉ − f(XT1−W+1:T1

)ĉ =

T2∑
t=T1+1

D∑
d=1

φ(f,Xt,d | T2)

+

T1∑
t=T2−W+1

D∑
d=1

[φ(f,Xt,d | T2)− φ(f,Xt,d | T1)]−
T2−W∑

t=T1−W+1

D∑
d=1

φ(f,Xt,d | T1).

(18)

F.2 PROOF OF THEOREM 2

Lemma 5 (Completeness of Integrated Gradients along General Paths). Let f : RW×D→RC be
continuously differentiable and let γ : [0, 1]→ RW×D be any continuously differentiable curve with
γ(0) = X′ (baseline) and γ(1) = XT−W+1:T (input). Define the generalized Integrated Gradients
attribution for each coordinate (t, d) by:

φγ
IG(f,Xt,d | T ) :=

∫ 1

0

∂f(γ(α))ĉ
∂Xt,d

∂γt,d(α)

∂α
dα. (19)

Then completeness holds along any such curve:∑
t,d

φγ
IG(f,Xt,d | T ) = f(XT−W+1:T )ĉ − f(X′)ĉ. (20)

Proof. Stacking coordinates into a vector gives:∑
t,d

φγ
IG(f,Xt,d | T ) =

∫ 1

0

∇f(γ(α))⊤ĉ γ′(α) dα =

∫
γ

∇fĉ · ds = f(γ(1))ĉ − f(γ(0))ĉ (21)

by the Fundamental Theorem of Line Integrals, since the integrand is the gradient field of the scalar
potential fĉ. Substituting γ(1) = XT−W+1:T and γ(0) = X′ completes the proof.
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Proof of Theorem 2. By Lemma 5 we have:

T2∑
i=T1−W+1

D∑
d=1

φ
γ1,2

IG (f,Xi,d | T2) = f(XT2−W+1:T2
)ĉ − f(XT1−W :T1−1)ĉ,

T2∑
i=T1−W+1

D∑
d=1

φ
γ2,2

IG (f,Xi,d | T2) = f(XT2−W+1:T2
)ĉ − f(XT2−W :T2−1)ĉ,

T2∑
i=T1−W+1

D∑
d=1

φ
γ1,1

IG (f,Xi,d | T1) = f(XT1−W+1:T1
)ĉ − f(XT1−W :T1−1)ĉ,

T2∑
i=T1−W+1

D∑
d=1

φ
γ2,1

IG (f,Xi,d | T1) = f(XT1−W+1:T1)ĉ − f(XT2−W :T2−1)ĉ.

(22)

SWING averages the attributions of the two paths to XT2−W+1:T2
and subtracts the average of the

two paths to XT1−W+1:T1
, yielding:

∑
t,d

φSWING(f,Xt,d | T1 → T2) =
1

2

2∑
i=1

(
φ
γi,2

IG (f,Xt,d | T2)− φ
γi,1

IG (f,Xt,d | T1)
)

=
1

2

[
2f(XT2−W+1:T2

)ĉ − 2f(XT1−W+1:T1
)ĉ

]
= f(XT2−W+1:T2

)ĉ − f(XT1−W+1:T1
)ĉ,

(23)

which establishes online completeness.

F.3 PROOF OF THEOREM 3

SWING is defined as an average of Integrated Gradients (IG) attributions computed along multiple
paths γ. For a continuously differentiable curve γ : [0, 1]→ RW×D with γ(0) = X′ (baseline) and
γ(1) = X (input), the IG attribution is:

φγ
IG(f,Xt,d) =

∫ 1

0

∂fĉ(γ(α))

∂Xt,d

∂γt,d(α)

∂α
dα. (24)

Therefore, the resulting SWING attribution φSWING(f,Xt,d), obtained by averaging over its desig-
nated paths, depends solely on the function f(X) and not on the particular architecture or parame-
terization used to realize f . Consequently, any two models implementing the same function yield
identical SWING attributions, establishing implementation invariance.

F.4 PROOF OF THEOREM 4

By definition,

∑
t,d

φSWING(f,Xt,d | T1→T2) =
1

2

2∑
i=1

(∑
t,d

φ
γi,2

IG (f,Xt,d | T2)−
∑
t,d

φ
γi,1

IG (f,Xt,d | T1)
)
. (25)

Consider the reversed prediction change T2→T1. SWING uses the same four designated curves but
traversed in reverse, so each IG term flips sign (antisymmetry of line integrals under reversed limits)
and the two to T2 terms and the two to T1 terms swap roles. Hence,

∑
t,d

φSWING(f,Xt,d | T2→T1) =
1

2

2∑
i=1

(
−
∑
t,d

φ
γi,1

IG (f,Xt,d | T1) +
∑
t,d

φ
γi,2

IG (f,Xt,d | T2)
)

= −
∑
t,d

φSWING(f,Xt,d | T1→T2).

(26)
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Table 4: We evaluate our method on five datasets: three real-world benchmarks—MIMIC-III (Johnson
et al., 2016), PhysioNet 2019 (Reyna et al., 2020a), and Activity (Reiss & Stricker, 2012)—and two
widely used synthetic datasets—Delayed Spike (Leung et al., 2021) and Switch-Feature (Tonekaboni
et al., 2020; Liu et al., 2024b).

Type Name Task # ID # Sample / ID Window Size Feature Class

Real-world
MIMIC-III Decompensation prediction 6,221 5 48 32 2
PhysioNet 2019 Sepsis prediction 8,066 5 48 40 2
Activity Human action recognition 5 200 50 12 7

Synthetic Delayed Spike Binary classification 1,000 5 40 3 2
Switch-Feature Binary classification 600 5 50 3 2

G DETAILS OF DATASETS

MIMIC-III. For the MIMIC-III Clinical Database (Johnson et al., 2016), we adopt the decompen-
sation prediction benchmark defined in Johnson et al. (2016). The dataset consists of over 41,000
ICU stays from 2001–2012, with rich multivariate time series covering vital signs, laboratory values,
interventions, and demographics. Following the benchmark setup, we use sliding windows of length
48 hours with a prediction horizon of 24 hours, labeling an instance positive if the patient dies within
the horizon. This yields roughly 2.5 million prediction windows, of which about 63,000 (2.5%) are
positive. Each window contains irregularly sampled trajectories across up to 32 variables, making it a
challenging setting for both temporal modeling and interpretability.

PhysioNet 2019. For the PhysioNet 2019 dataset (Reyna et al., 2020b), we adopt the sepsis
prediction task defined under the Sepsis-3 criteria (Singer et al., 2016). The dataset comprises nearly
40,000 ICU stays collected across multiple hospital systems, with each stay providing multivariate
physiological time series such as vitals, labs, and demographics. We define prediction windows
using a 48-hour observation length and a 12-hour prediction horizon, labeling a sample positive
if sepsis onset occurs within the horizon. This yields around 1.1 million prediction instances, of
which approximately 27,000 (2.5%) are positive. Compared to MIMIC-III, this dataset presents
higher variability in measurement density across hospitals, offering a complementary benchmark for
evaluating both predictive performance and explanation reliability.

Activity. We adopt the Activity dataset (Frank, 2010) and follow the preprocessing protocol from
Latent ODEs (Rubanova et al., 2019). The dataset comprises 25 sequences from five individuals, each
having around 6,600 time points. We segment each sequence into overlapping windows of 50 time
points using a stride of 1 (unlike the stride 25 used in the original Latent ODEs paper). Labels are
provided at each time point across 11 fine-grained actions; to reduce ambiguity, we merge them into
seven coarse classes as in (Rubanova et al., 2019): walking, falling, lying, sitting, standing up, on all
fours, and sitting on the ground. For evaluation, we split by individual: the first three for training, the
fourth for validation, and the fifth for testing.

Delayed Spike. We adopt the Delayed Spike dataset (Leung et al., 2021), a variant of the Spike
benchmark originally introduced by Tonekaboni et al. (2020) and later extended by Leung et al.
(2021). The standard Spike dataset consists of three multivariate NARMA sequences with added
linear trends and random spikes, where the label flips from 0 to 1 immediately after a spike appears in
feature 0 and remains positive thereafter. In the Delayed Spike version, however, the label transition is
shifted by two time steps: it becomes 1 exactly two steps after the spike in feature 0. This modification
forces explanation methods to correctly identify the causal spike event rather than simply aligning
with the delayed label change.

Switch-Feature. We generate the Switch-Feature dataset following the design in FIT (Tonekaboni
et al., 2020). Similar to the State dataset, it is constructed based on a three-state hidden Markov model
with an initial distribution π = (1/3, 1/3, 1/3) and the following transition matrix:(

0.95 0.02 0.03
0.02 0.95 0.03
0.03 0.02 0.95

)
.
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Each hidden state emits a time series from a Gaussian process with an RBF kernel (γ = 0.2) and
a fixed marginal variance of 0.1 for all features. The mean vectors of the three states are given
by µ1 = [0.8, 0.5, 0.2], µ2 = [0, 1.0, 0], and µ3 = [0.2, 0.2, 0.8]. Labels yi[t] are sampled from a
Bernoulli distribution Bernoulli(pi[t]), where:

pi[t] =


(1 + exp(−Xt,1))

−1 if st = 0,
(1 + exp(−Xt,2))

−1 if st = 1,
(1 + exp(−Xt,3))

−1 if st = 2.
(27)

and st denotes the latent state at time t. In our experiments, we generate sequences of length 100 and
extract multiple online prediction samples from each sequence using a fixed-length sliding window
of size 50.
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H DETAILS OF ABLATION STUDY

In this section, we clarify the meaning of each ablation configuration and present its corresponding
mathematical formulation. We independently verify the contribution of each SWING component
by removing 1) both RBS and PHI, 2) RBS alone, and 3) DPI (γ1,1, γ2,2). The following variants
correspond directly to the results in Table 3 and ensure that each ablation is rigorously defined and
remains faithful to the original algorithm.

SWING w/o RBS, PHI. This variant removes both the retrospective baseline selection (RBS) and
the piecewise-linear historical integration (PHI), leaving only DPI active. Both integration paths
start from the zero baseline, and the resulting attribution reduces to subtracting Integrated Gradients
computed at T2 and T1:

φSWING (w/o RBS, PHI) = φγ2

IG (f,Xt,d | T2)− φγ1

IG (f,Xt,d | T1), (28)
where each path is a straight line from zero to the corresponding input window γi(α) =
αXTi−W+1:Ti

. This configuration is mathematically equivalent to applying IG independently at
two time points and comparing their attributions.

SWING w/o RBS. This configuration removes only the baseline-selection component. The retro-
spective baselines XTi−W :Ti−1 are replaced with the zero baseline, while all DPI mechanisms and
the PHI interpolation remain unchanged. As a result, only the initial segment of each integration path
is modified: the path originates at zero rather than at XTi−W :Ti−1, but all subsequent interpolation
segments and the dual-path structure are preserved. This ablation isolates the effect of removing
temporal baseline adaptation while retaining both historical integration and dual-path comparison.

SWING w/o DPI (γ1,1, γ2,2). This variant removes the self-window DPI components γ1,1 and
γ2,2, while keeping the cross-window paths γ1,2 and γ2,1 active. Since the cross-window paths are
essential for attributing prediction changes between T1 and T2, PHI remains applied to them, yielding
the following attribution:

φSWING (w/o DPI) = φ
γ2,1

IG (f,Xt,d | T2)− φ
γ1,2

IG (f,Xt,d | T1). (29)
By eliminating only the self-window paths while retaining the cross-window integration, this ablation
isolates the contribution of DPI to SWING’s temporal attribution mechanism.

I ADDITIONAL EXPERIMENTS

This section presents additional experiments that complement the main findings. The content is
organized into extended quantitative evaluations, backbone generalization, longer prediction intervals,
ablation and robustness analyses, efficiency, qualitative case studies, and clinical coherence.

Extended benchmarks. Tables 6 and 7 provide further results on clinical datasets, synthetic
benchmarks, and the Activity dataset. Across all settings, SWING achieves the best or second-best
scores on most metrics, reinforcing its robustness across both controlled and real-world scenarios.

Backbone architectures. Table 8 compares CNN and Transformer backbones on MIMIC-III.
The results show that SWING retains strong performance across both architectures, demonstrating
versatility beyond LSTMs.

Longer time intervals. Table 9 evaluates explanations at T2 − T1 = 6 and 24. Although CPD and
AUPD converge across methods with longer intervals, SWING consistently achieves best or near-best
results, and shows particularly dominant gains on preservation metrics.

Ablation and robustness. Table 3 analyzes the contributions of RBS, PHI, and DPI. Removing RBS
or PHI degrades performance, confirming their complementary roles, while DPI mainly stabilizes
preservation. Baseline offset analysis further shows that d = 1 yields the best trade-off, with d = 0
and larger offsets leading to degradation. Figure 4 confirms robustness across a broad range of
nsamples. Subgroup and temporal resolution analyses (Tables 10 to 12) additionally show that SWING
preserves its advantages regardless of prediction or label changes and remains stable across both 24-
and 72-length windows.
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Table 5: Evaluation metrics for prediction-change explanations on the MIMIC-III decompensation
benchmark with an LSTM backbone. We follow the same setting as the main experiments, but
evaluate by removing the most salient 50 feature points per time step with forward-fill substitution.

Algorithm CPD ↑ AUPD ↑ Corr. ↑
Dynamask w/ Naive Subtraction 0.14±0.00 0.12±0.00 -0.19±0.00

Dynamask in Delta-XAI 11.72±0.08 7.56±0.04 0.04±0.00

Table 6: Performance comparison of XAI methods on clinical prediction tasks: PhysioNet 2019
sepsis benchmark using LSTM as backbone architecture. Evaluation is performed by removing the
most or least salient 50 feature points per time step, using forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
LIME (Ribeiro et al., 2016) 0.29±0.00 0.21±0.00 1.83±0.01 1.02±0.00 3.66±0.01 1.82±0.00 3.96±0.00 2.09±0.01 -0.08±0.00

GradSHAP (Lundberg, 2017) 1.60±0.00 0.93±0.00 2.52±0.01 1.50±0.00 3.48±0.00 1.64±0.00 3.75±0.01 1.86±0.00 0.02±0.00

IG (Sundararajan et al., 2017) 2.68±0.00 1.54±0.00 3.00±0.01 1.93±0.00 3.19±0.01 1.43±0.00 3.43±0.01 1.61±0.00 0.11±0.00

DeepLIFT (Shrikumar et al., 2017) 2.72±0.00 1.60±0.00 2.87±0.00 1.86±0.00 3.06±0.01 1.35±0.00 3.38±0.01 1.56±0.00 0.16±0.00

FO (Suresh et al., 2017) 1.17±0.00 0.78±0.00 2.75±0.01 1.80±0.00 4.63±0.01 3.13±0.01 2.44±0.01 1.13±0.00 0.02±0.00

AFO (Tonekaboni et al., 2020) 1.87±0.00 1.16±0.00 2.88±0.01 1.86±0.00 3.12±0.00 1.48±0.00 3.28±0.01 1.55±0.00 0.15±0.00

FIT (Tonekaboni et al., 2020) 0.71±0.00 0.48±0.00 1.10±0.00 0.91±0.00 3.81±0.00 1.96±0.00 1.30±0.00 1.02±0.00 0.00±0.00

WinIT (Leung et al., 2021) 1.86±0.00 1.10±0.00 2.85±0.01 1.66±0.00 3.88±0.00 2.02±0.00 3.12±0.01 1.64±0.00 0.06±0.00

Dynamask (Crabbé & Van Der Schaar, 2021) 1.69±0.00 1.11±0.00 2.05±0.00 1.36±0.00 4.98±0.01 2.77±0.00 4.74±0.01 2.59±0.00 0.06±0.00

Extrmask (Enguehard, 2023) 1.16±0.00 0.72±0.00 1.91±0.00 1.11±0.00 4.04±0.01 2.41±0.00 3.98±0.01 2.36±0.01 0.05±0.00

ContraLSP (Liu et al., 2024b) 0.73±0.02 0.34±0.01 2.47±0.02 1.32±0.01 5.32±0.04 2.93±0.04 5.35±0.04 2.97±0.04 0.04±0.00

TimeX (Queen et al., 2024) 0.74±0.00 0.36±0.00 1.96±0.01 1.00±0.00 5.33±0.01 2.77±0.00 5.49±0.01 2.89±0.01 -0.03±0.00

TimeX++ (Liu et al., 2024a) 1.76±0.01 1.06±0.00 2.07±0.01 1.19±0.00 3.99±0.01 1.81±0.00 4.02±0.01 1.82±0.00 0.05±0.00

TIMING (Jang et al., 2025) 2.73±0.00 1.56±0.00 3.02±0.00 1.94±0.00 3.12±0.00 1.41±0.00 3.38±0.00 1.60±0.00 0.13±0.00

SWING 3.10±0.01 1.96±0.00 2.81±0.01 1.78±0.01 2.27±0.01 0.93±0.00 2.38±0.00 1.01±0.00 0.32±0.02

Table 7: Performance of XAI methods on (top) Activity (Vidulin et al., 2010), (middle) Delayed
Spike (Leung et al., 2021), and (bottom) Switch-Feature (Tonekaboni et al., 2020) benchmarks with
an LSTM backbone. Evaluation is performed by removing the most or least salient 50 feature points
per time step, using forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 19.80±0.53 12.53±0.31 7.81±0.53 4.76±0.28 17.51±0.70 7.33±0.28 20.23±1.06 8.77±0.45 0.09±0.01

DeepLIFT (Shrikumar et al., 2017) 21.01±0.59 13.25±0.36 8.15±0.52 5.10±0.30 15.26±0.49 6.22±0.17 19.07±0.61 8.20±0.23 0.17±0.02

AFO (Tonekaboni et al., 2020) 15.20±0.52 10.11±0.29 7.51±0.38 4.79±0.25 13.69±0.92 5.66±0.35 18.23±0.77 7.99±0.28 0.17±0.01

WinIT (Leung et al., 2021) 6.62±0.38 3.34±0.15 6.61±0.42 3.87±0.25 24.10±1.26 12.61±0.63 20.16±1.09 9.45±0.54 0.09±0.01

TIMING (Jang et al., 2025) 13.75±0.71 8.08±0.37 7.18±0.54 4.35±0.35 19.39±1.06 9.28±0.53 19.44±0.74 8.69±0.33 0.08±0.01

SWING 21.77±0.80 14.96±0.63 9.20±0.83 6.19±0.60 7.64±0.33 2.70±0.13 15.15±0.37 6.05±0.12 0.46±0.03

IG (Sundararajan et al., 2017) 290.74±1.01 246.74±1.03 281.63±1.67 225.76±1.20 13.14±0.22 4.30±0.07 15.78±0.32 5.59±0.10 0.46±0.01

DeepLIFT (Shrikumar et al., 2017) 289.95±1.37 251.30±1.05 277.38±1.08 228.97±0.71 11.47±0.23 3.69±0.08 14.85±0.22 5.11±0.08 0.58±0.00
AFO (Tonekaboni et al., 2020) 256.70±1.90 189.27±1.42 240.04±1.70 165.29±1.22 7.83±0.19 2.66±0.06 12.29±0.33 4.46±0.19 0.19±0.00

WinIT (Leung et al., 2021) 426.69±5.33 114.50±1.37 191.86±1.38 56.91±0.31 398.05±4.40 344.09±3.76 180.94±1.96 46.32±0.48 -0.02±0.00

TIMING (Jang et al., 2025) 327.29±3.46 199.72±2.20 205.82±2.33 96.03±0.94 261.30±2.42 230.69±2.10 205.20±2.37 92.31±0.97 -0.01±0.00

SWING 317.95±2.50 252.16±1.86 305.09±2.06 232.50±1.42 3.35±0.04 1.13±0.02 5.70±0.10 1.85±0.04 0.44±0.00

IG (Sundararajan et al., 2017) 464.24±6.43 422.12±5.83 474.36±5.58 395.55±4.59 10.97±0.13 4.29±0.05 17.94±0.61 6.56±0.16 0.65±0.00

DeepLIFT (Shrikumar et al., 2017) 525.16±7.67 470.90±6.67 523.95±5.31 430.36±4.01 8.66±0.10 3.45±0.04 16.35±0.56 5.97±0.21 0.63±0.01

AFO (Tonekaboni et al., 2020) 533.94±7.78 475.55±6.78 529.43±6.72 431.48±4.92 9.88±0.21 3.98±0.10 13.30±0.30 5.37±0.14 0.58±0.00

WinIT (Leung et al., 2021) 507.88±5.15 447.50±5.05 496.19±7.13 391.83±6.16 12.46±0.19 7.46±0.10 311.71±5.23 113.50±1.90 0.53±0.01

TIMING (Jang et al., 2025) 418.65±3.35 391.51±3.17 446.03±4.22 373.96±3.50 13.97±0.22 7.54±0.12 507.71±6.18 255.11±3.26 0.64±0.01

SWING 536.43±6.46 481.90±5.86 519.55±5.26 436.18±4.42 7.32±0.10 2.99±0.06 15.84±0.53 5.81±0.20 0.74±0.00

Efficiency. Figure 3 demonstrates that SWING achieves state-of-the-art explanatory quality with-
out significant computational overhead. Runtime (0.35s/sample) and memory (448 MB) remain
comparable to gradient-based baselines such as IG and GradSHAP.

Qualitative and clinical coherence. Figures 5 to 9 visualize attribution maps, where SWING
produces sharper, localized explanations than surrogate or masking methods. Finally, Figure 10
confirms coherence with medical knowledge, correctly highlighting risk increases from SBP drops
and pH declines, and protective effects from SpO2 rises.

Overall, these supplementary experiments confirm that SWING consistently delivers reliable, efficient,
and clinically meaningful explanations across diverse datasets, models, and experimental conditions.
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Table 8: Performance comparison of XAI methods on MIMIC-III decompensation prediction task
with different backbone architectures: CNN (top) and Transformer (bottom) architectures. Evaluation
is performed by removing the most or least salient 50 feature points per time step, using forward-fill
substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 28.68±0.04 16.83±0.03 32.16±0.09 20.25±0.06 41.37±0.06 19.08±0.04 37.25±0.05 15.63±0.04 0.24±0.00

DeepLIFT (Shrikumar et al., 2017) 29.59±0.06 17.60±0.04 32.14±0.13 20.29±0.08 41.69±0.12 19.13±0.05 37.68±0.10 15.65±0.03 0.28±0.00

AFO (Tonekaboni et al., 2020) 20.64±0.14 13.42±0.09 32.35±0.15 20.16±0.09 50.97±0.12 25.25±0.07 34.30±0.08 14.49±0.04 0.30±0.00

WinIT (Leung et al., 2021) 23.15±0.07 13.35±0.04 32.69±0.09 18.44±0.06 55.61±0.16 25.09±0.08 42.21±0.07 19.95±0.04 0.23±0.00

TIMING (Jang et al., 2025) 29.80±0.06 17.26±0.05 32.33±0.12 20.45±0.08 40.54±0.10 18.86±0.05 36.10±0.09 15.26±0.06 0.26±0.00

SWING 44.02±0.17 27.85±0.12 40.36±0.12 25.86±0.10 24.47±0.07 8.23±0.03 24.97±0.03 8.44±0.03 0.53±0.00

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 16.33±0.06 9.77±0.05 15.26±0.07 10.42±0.05 33.52±0.21 14.58±0.12 27.42±0.10 10.42±0.07 0.15±0.00

DeepLIFT (Shrikumar et al., 2017) 15.11±0.07 9.87±0.06 15.40±0.07 10.53±0.05 33.24±0.22 14.13±0.11 28.24±0.17 10.40±0.10 0.14±0.00

AFO (Tonekaboni et al., 2020) 14.61±0.06 10.22±0.03 17.51±0.03 12.06±0.03 37.26±0.19 18.10±0.09 23.78±0.16 9.23±0.10 0.23±0.00

WinIT (Leung et al., 2021) 17.20±0.05 10.04±0.04 23.99±0.14 14.12±0.08 34.44±0.12 16.04±0.09 25.92±0.10 12.36±0.06 0.12±0.00

TIMING (Jang et al., 2025) 22.53±0.05 12.59±0.03 15.95±0.07 10.94±0.05 31.53±0.13 14.04±0.08 25.78±0.16 10.01±0.08 0.18±0.00

SWING 25.50±0.13 16.38±0.09 23.71±0.15 15.84±0.09 17.57±0.13 5.98±0.06 18.05±0.13 6.30±0.07 0.26±0.00

Table 9: Performance comparison of XAI methods on MIMIC-III decompensation prediction task
with various time interval settings between two time steps T1 < T2: 6 timestamps interval (top) and
24 timestamps interval (bottom) using LSTM as backbone architecture. Evaluation is performed by
removing the most or least salient 50 feature points per time step, using forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 44.17±0.15 26.92±0.10 45.53±0.23 29.23±0.13 91.67±0.46 39.68±0.17 76.67±0.28 28.60±0.14 0.22±0.00

DeepLIFT (Shrikumar et al., 2017) 42.00±0.18 25.91±0.10 44.50±0.22 28.54±0.12 100.64±0.54 41.62±0.21 84.92±0.43 30.38±0.18 0.19±0.00

AFO (Tonekaboni et al., 2020) 35.21±0.10 22.98±0.07 47.47±0.16 30.01±0.09 106.36±0.57 49.81±0.23 65.85±0.47 25.13±0.22 0.22±0.00

WinIT (Leung et al., 2021) 52.98±0.02 28.48±0.01 19.19±0.01 10.47±0.00 91.22±0.09 43.19±0.04 83.18±0.51 41.23±0.25 0.14±0.00

TIMING (Jang et al., 2025) 52.76±0.23 30.71±0.13 47.30±0.17 30.32±0.12 87.90±0.29 38.52±0.14 72.48±0.35 27.26±0.15 0.23±0.00

SWING 51.46±0.24 33.55±0.14 55.64±0.36 35.81±0.24 61.90±0.29 20.75±0.11 63.95±0.19 21.90±0.11 0.29±0.00

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 45.75±0.19 26.81±0.14 40.79±0.24 26.37±0.15 103.48±0.45 48.12±0.20 77.63±0.44 29.38±0.15 0.20±0.00

DeepLIFT (Shrikumar et al., 2017) 40.53±0.18 24.80±0.12 40.16±0.26 25.96±0.15 109.50±0.52 49.11±0.22 83.81±0.39 30.47±0.15 0.18±0.00

AFO (Tonekaboni et al., 2020) 31.04±0.21 20.46±0.16 42.44±0.23 26.92±0.15 120.00±0.30 61.17±0.12 64.36±0.35 25.25±0.08 0.18±0.00

TIMING (Jang et al., 2025) 58.83±0.30 32.38±0.22 42.52±0.26 27.42±0.17 97.93±0.41 46.75±0.18 72.36±0.35 27.82±0.15 0.22±0.00

SWING 41.07±0.22 26.46±0.18 50.58±0.28 32.29±0.20 60.29±0.14 21.60±0.08 64.43±0.19 23.87±0.10 0.21±0.00

Table 10: Subgroup analysis of attribution methods under different score-change conditions (high:
|∆| ≥ 0.1 (top), low: |∆| < 0.1 (bottom), where ∆ = f(XT2−W+1:T2

)− f(XT1−W+1:T1
)). Results

are reported on the MIMIC-III decompensation benchmark with an LSTM backbone with T2−T1 = 1.
Evaluation is performed by removing the most or least salient 50 feature points per time step, using
forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 281.32±0.42 222.60±0.37 319.69±0.75 251.67±0.58 381.59±0.71 186.83±0.36 349.24±0.73 147.10±0.22 0.37±0.00

DeepLIFT (Shrikumar et al., 2017) 296.81±0.72 236.89±0.50 326.36±0.43 257.72±0.42 371.51±0.66 181.49±0.35 334.79±0.64 140.56±0.45 0.29±0.00

AFO (Tonekaboni et al., 2020) 279.71±0.31 224.13±0.19 329.23±0.83 257.53±0.36 371.05±0.86 190.70±0.78 316.06±0.52 133.02±0.38 0.42±0.00

WinIT (Leung et al., 2021) 341.14±0.65 244.84±0.35 408.03±0.65 283.17±0.26 350.94±1.06 182.03±0.51 366.12±1.34 194.42±0.77 0.23±0.00

TIMING (Jang et al., 2025) 285.87±0.53 224.72±0.42 322.54±0.81 253.72±0.76 378.87±1.29 184.84±0.49 346.25±0.39 145.34±0.21 0.37±0.00

SWING 397.28±0.73 311.94±0.52 388.43±0.93 308.56±0.79 261.28±0.55 96.11±0.24 264.34±0.77 98.10±0.29 0.57±0.00

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 11.44±0.03 7.44±0.01 14.04±0.06 9.53±0.03 30.33±0.06 12.58±0.03 26.29±0.12 9.56±0.04 0.09±0.00

DeepLIFT (Shrikumar et al., 2017) 11.44±0.03 7.63±0.02 13.79±0.06 9.39±0.04 32.95±0.07 13.29±0.04 28.57±0.07 10.26±0.04 0.13±0.00

AFO (Tonekaboni et al., 2020) 11.35±0.08 7.71±0.05 15.03±0.09 10.20±0.06 33.20±0.07 15.29±0.04 21.31±0.05 8.24±0.03 0.19±0.00

WinIT (Leung et al., 2021) 17.58±0.10 10.82±0.07 22.35±0.13 13.65±0.08 25.97±0.19 11.39±0.06 23.13±0.16 10.38±0.06 0.20±0.00

TIMING (Jang et al., 2025) 13.04±0.07 8.08±0.03 14.35±0.07 9.72±0.04 28.14±0.08 12.01±0.03 24.18±0.07 9.05±0.02 0.11±0.00

SWING 21.25±0.08 14.09±0.07 19.63±0.13 13.34±0.10 15.34±0.09 4.97±0.02 15.09±0.12 5.21±0.02 0.32±0.00
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Table 11: Subgroup analysis of attribution methods with respect to prediction stability. Cases are
divided into changed (top) vs. unchanged (bottom), depending on whether the predicted class label
(i.e., argmax f(XT1−W+1:T1

) vs. argmax f(XT2−W+1:T2
)) is different or remains the same. Results

are reported on the MIMIC-III decompensation benchmark with an LSTM backbone (T2 − T1 = 1).
Evaluation is performed by removing the most or least salient 50 feature points per time step, using
forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 227.09±0.27 177.97±0.23 256.60±0.81 202.19±0.62 277.70±0.62 138.81±0.36 252.27±0.90 107.53±0.38 0.45±0.00

DeepLIFT (Shrikumar et al., 2017) 230.31±0.22 181.47±0.20 256.18±0.38 202.44±0.24 272.82±0.68 136.23±0.42 246.01±0.77 104.30±0.42 0.32±0.00

AFO (Tonekaboni et al., 2020) 216.81±0.49 171.28±0.48 260.44±0.56 203.22±0.48 276.04±1.46 145.05±1.03 228.50±1.23 98.48±0.29 0.45±0.00

WinIT (Leung et al., 2021) 290.84±0.41 207.59±0.35 340.70±0.77 238.05±0.40 252.09±0.64 130.44±0.50 269.08±1.12 141.56±0.70 0.27±0.00

TIMING (Jang et al., 2025) 230.00±0.57 179.32±0.32 258.60±0.55 203.50±0.43 276.34±0.92 137.86±0.61 249.23±0.72 106.18±0.56 0.44±0.00

SWING 323.55±0.25 253.80±0.20 311.35±0.92 246.80±0.74 185.96±0.45 69.09±0.22 189.32±0.58 70.43±0.34 0.62±0.00

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 12.39±0.08 8.26±0.05 15.01±0.05 10.36±0.03 31.93±0.31 13.25±0.12 27.87±0.24 10.14±0.07 0.13±0.00

DeepLIFT (Shrikumar et al., 2017) 12.61±0.07 8.60±0.05 14.88±0.05 10.32±0.03 34.14±0.34 13.79±0.12 29.75±0.29 10.70±0.08 0.16±0.00

AFO (Tonekaboni et al., 2020) 12.36±0.08 8.54±0.05 16.04±0.09 11.03±0.06 34.50±0.30 15.86±0.11 22.49±0.26 8.68±0.07 0.24±0.00

WinIT (Leung et al., 2021) 18.59±0.11 11.47±0.08 23.41±0.12 14.40±0.07 27.50±0.15 12.20±0.08 24.66±0.12 11.15±0.07 0.20±0.00

TIMING (Jang et al., 2025) 14.07±0.08 8.92±0.06 15.37±0.08 10.58±0.04 29.36±0.32 12.58±0.12 25.55±0.29 9.57±0.09 0.15±0.00

SWING 22.54±0.25 15.05±0.17 20.94±0.15 14.38±0.13 16.44±0.25 5.39±0.07 17.02±0.24 5.65±0.08 0.36±0.00

Table 12: Performance of XAI methods on the MIMIC-III dataset with an LSTM backbone, shown
for window size 24 (top) and window size 72 (bottom). We evaluate by removing the most or least
salient 50 points with forward-fill substitution.

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 11.98±2.47 7.84±1.59 13.91±3.00 9.40±2.04 24.08±6.42 10.69±2.64 20.67±6.05 8.35±2.36 0.21±0.00

DeepLIFT (Shrikumar et al., 2017) 12.40±2.67 8.31±1.79 13.93±3.07 9.45±2.11 25.33±7.01 11.05±2.79 22.36±6.85 8.90±2.62 0.24±0.00

AFO (Tonekaboni et al., 2020) 13.35±2.51 9.05±1.71 17.26±3.32 11.60±2.24 32.11±7.22 15.48±3.30 22.38±5.35 9.29±2.17 0.26±0.00

WinIT (Leung et al., 2021) 16.75±3.06 10.36±1.91 22.21±4.27 13.44±2.64 27.08±6.77 12.70±3.08 25.44±6.00 12.24±2.85 0.22±0.00

TIMING (Jang et al., 2025) 13.35±3.07 8.43±1.87 14.22±3.16 9.59±2.15 22.42±5.90 10.21±2.49 19.27±5.53 7.91±2.19 0.23±0.00

SWING 19.33±4.59 12.89±2.96 17.96±4.25 12.22±2.88 13.20±4.06 4.37±1.35 14.21±4.42 4.91±1.52 0.49±0.03

Algorithm Removal of Most Salient 50 Points Removal of Least Salient 50 Points Corr. ↑CPD ↑ AUPD ↑ MPD ↑ AUMPD ↑ CPP ↓ AUPP ↓ MPP ↓ AUMPP ↓
IG (Sundararajan et al., 2017) 8.71±0.05 5.93±0.04 10.23±0.06 7.16±0.05 15.64±0.08 7.27±0.03 12.40±0.07 4.76±0.02 0.23±0.00

DeepLIFT (Shrikumar et al., 2017) 9.28±0.02 6.39±0.02 10.35±0.05 7.29±0.04 16.37±0.07 7.46±0.03 13.05±0.07 4.91±0.01 0.26±0.00

AFO (Tonekaboni et al., 2020) 8.73±0.05 6.05±0.04 10.86±0.04 7.56±0.04 16.11±0.10 8.09±0.04 10.57±0.05 4.17±0.02 0.29±0.00

WinIT (Leung et al., 2021) 11.44±0.10 7.22±0.06 14.88±0.08 9.17±0.07 12.00±0.06 5.77±0.02 11.56±0.05 5.53±0.03 0.25±0.00

TIMING (Jang et al., 2025) 9.14±0.06 6.08±0.05 10.36±0.07 7.24±0.05 14.73±0.06 7.00±0.03 11.55±0.06 4.51±0.02 0.24±0.00

SWING 13.79±0.07 9.46±0.05 13.05±0.07 9.10±0.06 7.51±0.04 2.45±0.02 7.75±0.04 2.56±0.02 0.48±0.00
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(a) Time complexity vs. performance
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LIME (374, 1.72)

TimeX++ (380, 7.00)

AFO (392, 9.30)

FO (392, 9.92)
Extrmask (442, 10.47)
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ContraLSP (440, 8.69)

GradSHAP (438, 9.05) DeepLIFT (438, 9.42)

(b) Memory complexity vs. performance

Figure 3: Computational efficiency analysis comparing SWING with baselines on the MIMIC-III
benchmark. (a) Elapsed real time per sample (sec/sample, log-scale) versus AUPD (K = 50). (b)
GPU peak memory consumption per sample (MB/sample) versus AUPD (K = 50).

Figure 4: Hyperparameter sensitivity of SWING with respect to nsamples, compared to IG (dotted
gray line).
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Table 13: List of clinical features used from the MIMIC-III dataset, including their indices and
descriptive names for model input.

Index Name Index Name Index Name Index Name
0 Height 11 Weight 22 GCS-Motor4 33 GCS-Total9
1 Hours 12 Blood pH 23 GCS-Motor5 34 GCS-Total10
2 Diastolic BP 13 Cap. Refill 24 GCS-Total0 35 GCS-Total11
3 FiO2 14 GCS-Eye0 25 GCS-Total1 36 GCS-Total12
4 Glucose 15 GCS-Eye1 26 GCS-Total2 37 GCS-Verbal0
5 Heart Rate 16 GCS-Eye2 27 GCS-Total3 38 GCS-Verbal1
6 Mean BP 17 GCS-Eye3 28 GCS-Total4 39 GCS-Verbal2
7 SpO2 18 GCS-Motor0 29 GCS-Total5 40 GCS-Verbal3
8 Respiratory Rate 19 GCS-Motor1 30 GCS-Total6 41 GCS-Verbal4
9 Systolic BP 20 GCS-Motor2 31 GCS-Total7
10 Body Temperature 21 GCS-Motor3 32 GCS-Total8

Figure 5: Qualitative case study showing attributions extracted with XAI methods on MIMIC-
III (Johnson et al., 2016) using LSTM (Hochreiter & Schmidhuber, 1997) backbone with T1 = 47
and T2 = 48, i.e., T2 − T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-XAI framework, reflecting their respective explanations of the score changes.
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Figure 6: Qualitative case study showing attributions extracted with XAI methods on MIMIC-
III (Johnson et al., 2016) using LSTM (Hochreiter & Schmidhuber, 1997) backbone with T1 = 47
and T2 = 48, i.e., T2 − T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-XAI framework, reflecting their respective explanations of the score changes.
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Figure 7: Qualitative case study showing attributions extracted with XAI methods on MIMIC-
III (Johnson et al., 2016) using LSTM (Hochreiter & Schmidhuber, 1997) backbone with T1 = 47
and T2 = 48, i.e., T2 − T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-XAI framework, reflecting their respective explanations of the score changes.
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Figure 8: Qualitative case study showing attributions extracted with XAI methods on MIMIC-
III (Johnson et al., 2016) using LSTM (Hochreiter & Schmidhuber, 1997) backbone with T1 = 47
and T2 = 48, i.e., T2 − T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-XAI framework, reflecting their respective explanations of the score changes.
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Figure 9: Qualitative case study showing attributions extracted with XAI methods on MIMIC-
III (Johnson et al., 2016) using LSTM (Hochreiter & Schmidhuber, 1997) backbone with T1 = 47
and T2 = 48, i.e., T2 − T1 = 1. The uppermost-left heatmap displays the normalized input features,
while the remaining fifteen panels illustrate the attribution heatmaps generated by each XAI method
under the Delta-XAI framework, reflecting their respective explanations of the score changes.
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Figure 10: Qualitative case study for coherence analysis on decompensation risk. Each subfigure indi-
cates two heatmaps for a MIMIC-III (Johnson et al., 2016) sample processed with a LSTM (Hochreiter
& Schmidhuber, 1997) backbone. Bars for individual features represent the attribution contributed by
newly observed inputs at the current time step, while the ’Delayed Effect of Intermediate Features’
and ’Removal of Oldest Features’ summarize the aggregated attributions of their respective feature
groups. These panels provide an intuitive understanding of how each variable contributes to the
observed change in decompensation risk score and illustrate the clinical plausibility of SWING’s
explanations.

31


	Introduction
	Problem Setup
	Motivation: Challenges in Online Time Series Explanation
	Delta-XAI: A Framework for Explaining Prediction Changes
	From Static to Dynamic: Extending XAI to Prediction Changes
	SWING: Shifted Window Integrated Gradients

	Evaluation Metrics for Explaining Prediction Changes
	Problem of Existing Evaluation Metrics
	Proposed Evaluation Metrics for Faithfulness and Sufficiency
	Beyond Faithfulness and Sufficiency: Broader Evaluation Metrics

	Experiments
	Experimental Setup
	Results on Attribution Faithfulness and Sufficiency
	Ablation Study
	Qualitative Analysis
	Further Analysis

	Conclusion
	Limitations and Broader Impacts
	LLM Usage Disclosure
	Related Work
	Adapting Existing XAI Algorithms
	No Modification
	Minimal Modification

	Algorithm
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of thm:implementationinvariance
	Proof of Theorem 4

	Details of Datasets
	Details of Ablation Study
	Additional Experiments

