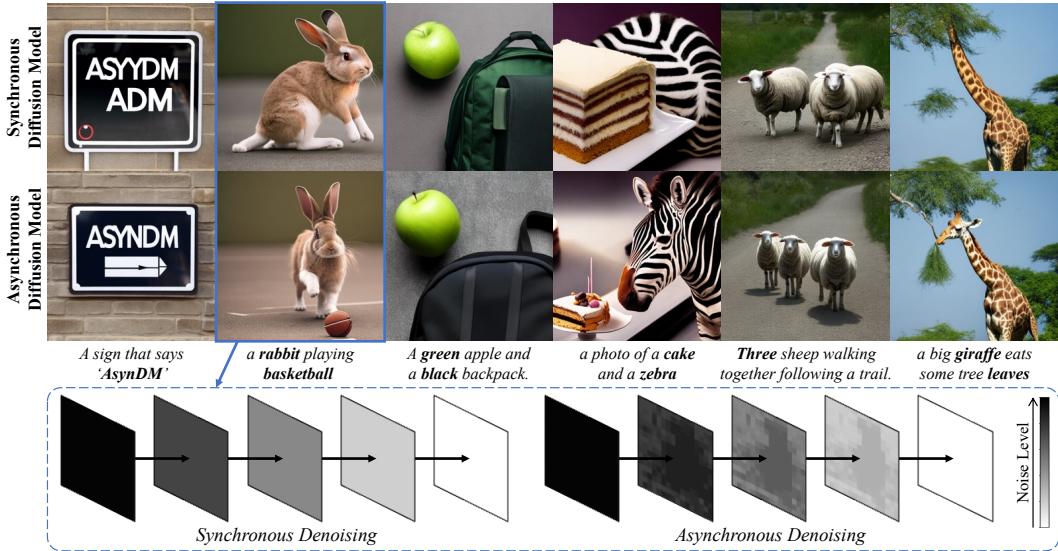


000 001 002 003 004 005 ASYNCHRONOUS DENOISING DIFFUSION MODELS 006 FOR ALIGNING TEXT-TO-IMAGE GENERATION 007 008 009

010
011 **Anonymous authors**
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100

005
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100



027
028 Figure 1: Existing diffusion models generate images through synchronous denoising, where all pixels
029
030 are simultaneously denoised step-by-step from noises to images, hindering text-to-image alignment.
031
032 Asynchronous diffusion models denoise the prompt-related regions more gradually than other
033
034 regions, thereby receiving clearer inter-pixel context and ultimately achieving improved alignment.

ABSTRACT

035 Diffusion models have achieved impressive results in generating high-quality images. Yet, they often struggle to faithfully align the generated images with the
036 input prompts. **This limitation is associated with synchronous denoising**, where
037 all pixels simultaneously evolve from random noise to clear images. As a result,
038 during generation, the prompt-related regions can only reference the unrelated
039 regions at the same noise level, failing to obtain clear context and ultimately im-
040 pairing text-to-image alignment. To address this issue, we propose asynchronous
041 diffusion models—a novel framework that allocates distinct timesteps to different
042 pixels and reformulates the pixel-wise denoising process. By dynamically modu-
043 lating the timestep schedules of individual pixels, prompt-related regions are de-
044 noised more gradually than unrelated regions, thereby allowing them to leverage
045 clearer inter-pixel context. Consequently, these prompt-related regions achieve
046 better alignment in the final images. Extensive experiments demonstrate that our
047 asynchronous diffusion models can significantly improve text-to-image alignment
048 across diverse prompts.

1 INTRODUCTION

052 Diffusion models have achieved remarkable success across a wide range of domains, such as
053 robotics (Chi et al., 2024; Wolf et al., 2025), classification (Li et al., 2023a; Tong et al., 2025a),
image segmentation (Amit et al., 2021), text generation (Austin et al., 2021; Nie et al., 2025) and

054 visual generation (Yang et al., 2023; Wang et al., 2025). Among these, text-to-image generation
 055 has emerged as the most widely recognized application, with the generated images demonstrating
 056 impressive diversity and high fidelity (Ho et al., 2020; Rombach et al., 2022). Despite their success,
 057 even the most advanced diffusion models still struggle with the issue of *text-to-image misalign-*
 058 *ment* (Hinz et al., 2020; Ramesh et al., 2022; Feng et al., 2023; Chefer et al., 2023), where the
 059 generated images often fail to faithfully match the user-provided prompts, for example with respect
 060 to text, color, or count, as illustrated in Figure 1.

061 We argue that *misalignment in diffusion models is closely associated with the issue of synchronous*
 062 *denoising*. That is, under the formulation of a Markov decision process (Ho et al., 2020; Song et al.,
 063 2022), all pixels in an image simultaneously evolve from random noise to a clear state, following
 064 the same timestep schedule. At each denoising step, pixels interact by leveraging one another as
 065 contextual references, ultimately forming a coherent and harmonious image.

066 Beyond this, an image is composed of diverse regions. Some of these regions correspond directly
 067 to the objects described in the prompt, while others serve as background. For aligned generation,
 068 prompt-related regions typically demand more gradual refinement to accurately capture fine-grained
 069 semantics. In contrast, prompt-unrelated regions involve fewer semantic constraints and mainly pro-
 070 vide supporting context, allowing them to be denoised into a clear state relatively quickly. However,
 071 synchronous denoising treats all pixels equally, overlooking the heterogeneous nature of different
 072 regions. Consequently, these prompt-related regions always rely on other regions at the same noise
 073 level for contextual references. This raises the concern that *synchronous denoising limits the effec-*
 074 *tive utilization of inter-pixel context, and ultimately hinders text-to-image alignment*.

075 Based on the above motivation, we propose **Asynchronous Diffusion Models** (AsynDM), a plug-
 076 and-play and tuning-free framework that reformulates the denoising process of pre-trained diffusion
 077 models. Instead of denoising all pixels simultaneously, the asynchronous diffusion model allows
 078 different pixels to be denoised according to varying timestep schedules, as shown in Figure 1. In
 079 particular, prompt-unrelated regions can be denoised more quickly, while prompt-related regions
 080 are denoised more gradually to ensure sufficient refinement for capturing prompt semantics. These
 081 clearer unrelated regions prevent noisy and ambiguous context from bringing uncertainty to the
 082 related regions (e.g., undetermined style, shape, etc.). As a result, the related regions can better
 083 focus on the content specified by the prompt, thereby enhancing text-to-image alignment.

084 Moreover, we introduce a method that dynamically identifies the prompt-related regions and mod-
 085 ulates the timestep schedules along the denoising process. Specifically, the cross-attention mod-
 086 ules (Vaswani et al., 2017) in diffusion models encapsulate rich information about the shapes and
 087 structures of the generated images. At each denoising step, we can extract a mask from the cross-
 088 attention modules, which highlights the objects in the prompt. Guided by this mask, the asyn-
 089 chronous diffusion model adaptively modulates the timestep schedules of different regions. The
 090 highlighted regions (i.e., prompt-related regions) are modulated to be denoised more gradually than
 091 other regions (i.e., prompt-unrelated regions), thereby receiving clearer inter-pixel context.

092 We conduct experiments on four sets of commonly used prompts and compare with advanced base-
 093 lines. The results show that AsynDM can effectively improve text-to-image alignment both qual-
 094 itatively and quantitatively. Meanwhile, AsynDM maintains comparable sampling efficiency to the
 095 vanilla diffusion model, as it only requires the additional encoding of pixel-wise timesteps.

096 The main contributions of this paper can be summarized as follows: (1) We highlight that syn-
 097 chronous denoising is a primary reason for the text-to-image misalignment in existing diffusion
 098 models. (2) We propose asynchronous diffusion models that introduces pixel-level timesteps, and
 099 adaptively modulate the timestep schedules of different pixels, to address the above issue. (3) Com-
 100 prehensive experiments demonstrate that asynchronous diffusion models consistently improve text-
 101 to-image alignment across diverse prompts.

102 2 BACKGROUND

103 2.1 TEXT-TO-IMAGE DIFFUSION MODELS

104 **Diffusion Model Formulation.** Diffusion models have emerged as a powerful family of text-to-
 105 image generative models. DDPM (Ho et al., 2020) formulates the generation process as a Markovian

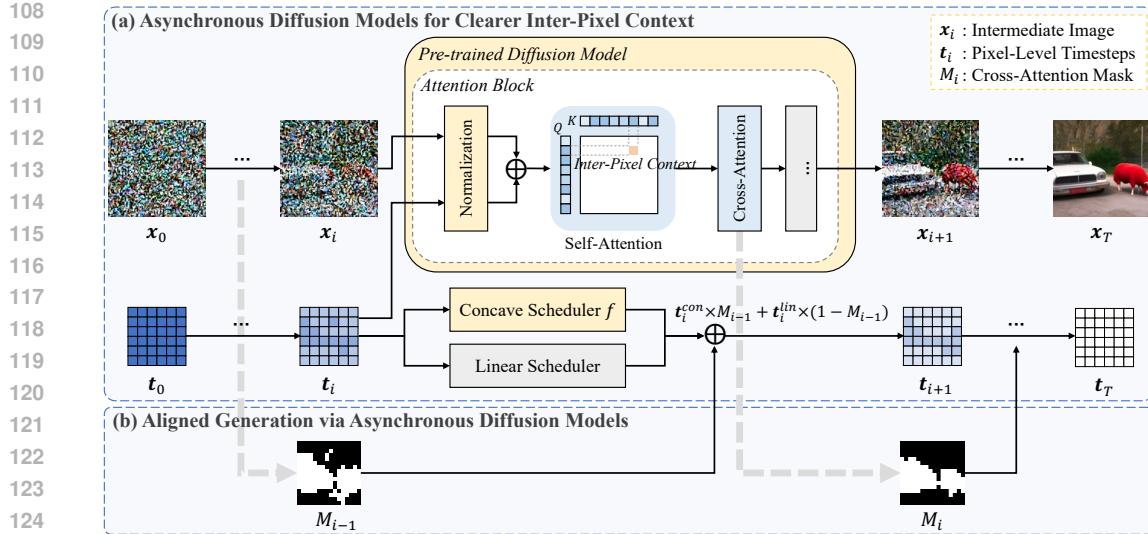


Figure 2: Asynchronous diffusion models improve text-to-image alignment by (a) assigning distinct timesteps to different pixels, where faster-denoised regions provide clearer context, serving as better references for slower ones, and (b) using masks extracted from cross-attention to identify prompt-related regions and dynamically modulate pixel-level timestep schedules.

sequence of latent states. By denoising step by step, these models progressively transform random noise into a coherent image. Based on the DDPM sampler, at each denoising step, the model predicts the last intermediate state \mathbf{x}_{t-1} from current state \mathbf{x}_t according to:

$$p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{c}) = \mathcal{N}(\mathbf{x}_{t-1} \mid \mu_\theta(\mathbf{x}_t, t, \mathbf{c}), \sigma_t^2 \mathbf{I}), \quad (1)$$

$$\text{with } \mu_\theta(\mathbf{x}_t, t, \mathbf{c}) = \frac{1}{\sqrt{\alpha_t}} (\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \alpha_t}}) \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c}), \quad (2)$$

where ϵ_θ denotes the denoising model parameterized by θ , \mathbf{c} is the prompt, and σ_t , α_t and β_t are timestep-dependent constants. Subsequent extensions, such as DDIM (Song et al., 2022) and DPM-Solver (Lu et al., 2022), further enhance the efficiency and sample quality. These formulations act as the foundation of most modern diffusion-based generative models (Rombach et al., 2022).

Attention Module in Diffusion Models. The attention mechanism (Vaswani et al., 2017) has played an important role not only in large language models (Zhao et al., 2025; Han et al., 2025), but also in text-to-image diffusion models (Hertz et al., 2023; Tumanyan et al., 2023). Both UNet-based (Rombach et al., 2022; Podell et al., 2023) and DiT-based (Peebles & Xie, 2023; Esser et al., 2024) diffusion models employ attention blocks to enhance expressiveness. A typical attention block includes a self-attention part and a cross-attention part, and can be formally expressed as:

$$\text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_{\text{key}}}}\right)V, \quad (3)$$

where $Q \in \mathbb{R}^{m \times d_{\text{key}}}$ denotes queries projected from image features, and $K \in \mathbb{R}^{n \times d_{\text{key}}}$, $V \in \mathbb{R}^{n \times d_{\text{value}}}$ denote keys and values, projected either from image features (in self-attention) or from prompt embeddings (in cross-attention). Cross-attention allows the models to condition image generation on textual prompts, while self-attention further enables the models to capture long-range dependencies across the pixels.

2.2 DIFFUSION MODEL ALIGNMENT

Text-to-image misalignment has been a longstanding challenge across various generative models, including VAEs, GANs and diffusion models (Zhang & Peng, 2018; Wang et al., 2021; Liao et al., 2022). Early diffusion model studies have explored methods for conditioning generation on specific factors, such as class labels (Dhariwal & Nichol, 2021; Wang et al., 2023b), styles (Sohn et al., 2023) and layouts (Zheng et al., 2023). The incorporation of text encoders has endowed diffusion models

162 with the capability to generate images from textual descriptions(Rombach et al., 2022). Following
 163 this development, recent studies therefore focus on the challenge of text-to-image misalignment in
 164 diffusion models, which is essential for the reliable deployment.

165 On the one hand, researchers have sought to achieve better alignment through fine-tuning. Some
 166 studies focus on directly fine-tuning the model (Lee et al., 2023; Tong et al., 2025b), among which
 167 reinforcement learning-based methods stand out (Fan et al., 2023; Hu et al., 2025a;b). **Others op-
 168 timize different components without altering the main model parameters. For example, some pro-
 169 gressively refine the intermediate noisy images during the denoising process (Chefer et al., 2023; Li
 170 et al., 2023c; Rassin et al., 2023), while others optimize prompts to be more precise and informa-
 171 tive (Wang et al., 2023a; Mañas et al., 2024).**

172 On the other hand, some studies investigate alignment techniques that do not require fine-tuning.
 173 For instance, Z-Sampling (LiChen et al., 2025) enhances alignment by introducing zigzag diffusion
 174 step. SEG (Hong, 2024) exploits the energy-based perspective of self-attention to improve image
 175 generation. S-CFG (Shen et al., 2024) and CFG++ (Chung et al., 2025) improve text-to-image
 176 alignment by refining the classifier-free guidance technique (Ho & Salimans, 2022).

178 3 ASYNCHRONOUS DENOISING FOR CLEARER INTER-PIXEL CONTEXT

180 In this section, we first introduce the rationale and methodology for allocating distinct timesteps
 181 to pixels. We then describe our approach to scheduling the pixel-level timesteps in asynchronous
 182 diffusion models. The overview of this section is shown in Figure 2 (a).

184 3.1 PIXEL-LEVEL Timestep Allocation

186 It is reasonable to allocate distinct timesteps to different pixels. During the denoising process of dif-
 187 fusion models, image features establish inter-pixel dependencies through the attention mechanism,
 188 thus pixels can interact with each other and form a coherent image. Notably, timestep information
 189 is embedded into the features in a pixel-wise manner external to the attention modules, rather than
 190 being directly injected into the attention. In other words, timesteps are involved only in intra-pixel
 191 computations, which naturally allows different pixels to be associated with distinct timesteps.

192 We present the pixel-level timestep formulation of the DDPM sampler, as follows¹. **We adopt $i \in$**
 $[0, T]$ **as the new index of the denoising process, since different pixels have distinct timesteps t .** This
 193 formulation performs denoising from 0 to T , rather than from T to 0. Accordingly, the model
 194 predicts the next state \mathbf{x}_{i+1} from current state \mathbf{x}_i , where $\mathbf{x}_i, \mathbf{x}_{i+1} \in \mathbb{R}^{n_c \times h \times w}$.

$$p_\theta(\mathbf{x}_{i+1} | \mathbf{x}_i, \mathbf{c}) = \mathcal{N}(\mathbf{x}_{i+1} | \mu_\theta(\mathbf{x}_i, \mathbf{t}_i, \mathbf{c}), \sigma_i^2 \mathbf{I}), \quad (4)$$

$$\text{with } \mu_\theta(\mathbf{x}_i, \mathbf{t}_i, \mathbf{c}) = \frac{1}{\sqrt{\alpha_{\mathbf{t}_i}}} (\mathbf{x}_i - \frac{\beta_{\mathbf{t}_i}}{\sqrt{1 - \bar{\alpha}_{\mathbf{t}_i}}} \epsilon_\theta(\mathbf{x}_i, \mathbf{t}_i, \mathbf{c})), \quad (5)$$

200 where $\mathbf{t}_i \in \mathbb{R}^{h \times w}$ denotes the timestep states assigned to individual pixels. Specifically, $\alpha_{\mathbf{t}_i}$, $\beta_{\mathbf{t}_i}$
 201 and $\bar{\alpha}_{\mathbf{t}_i}$ denote element-wise indexing, where each entry of \mathbf{t}_i selects corresponding scalar value,
 202 yielding matrices of the same shape as \mathbf{t}_i . These constant matrices are automatically broadcast
 203 along the channel dimension, enabling joint computations with \mathbf{x}_i . Moreover, the denoising model
 204 ϵ_θ can be seamlessly extended to handle pixel-level timesteps by independently encoding them and
 205 incorporating the resulting embeddings into the original computation on a per-pixel basis.

206 The above formulation enables diffusion models to incorporate pixel-level timesteps. Importantly,
 207 the asynchronous diffusion model still preserves the *Markov property*. In the asynchronous setting,
 208 \mathbf{t}_i becomes a tensor with the same height and width as \mathbf{x}_i , serving as a state within the Markov
 209 chain, rather than its original role as the reverse-time index.

210 3.2 Timestep Scheduling in Asynchronous Diffusion Models

212 During the denoising process of diffusion models, the noise level of individual pixels gradually
 213 decreases as the timestep progresses from T to 0. In conventional diffusion models, all pixels share

215 ¹The pixel-level timestep formulation can generalize across diverse diffusion samplers. We also provide the
 formulation of DDIM sampler in Appendix A.2.

216 the same timestep scheduler from T to 0, and commonly used samplers, such as DDPM and DDIM,
 217 typically implement this progression linearly. In this subsection, we schedule the timesteps and
 218 allow certain regions to evolve more slowly than others. This scheduling enables these regions to
 219 accumulate clearer inter-pixel context, thereby achieving more gradual refinement.

220 We adopt the concave function $t = f(i)$ as the scheduler, according to Proposition 1.
 221

222 **Proposition 1. (See proof in Appendix A.1)** *Let $f(i) : [0, T] \rightarrow \mathbb{R}$ be a concave function with
 223 $f(0) = T$ and $f(T) = 0$. For any i_0 with $0 < i_0 < T$ and any t_0 with $T - i_0 \leq t_0 \leq f(i_0)$, there
 224 exist unique constants a, b such that the shifted function $f(i - a) + b$ satisfies:*

$$225 \quad f(i_0 - a) + b = t_0, \quad f(T - a) + b = 0. \quad (6)$$

227 As illustrated in Figure 3, this proposition states that any point
 228 located within the shaded area can reach $t = 0$ along the
 229 appropriately shifted concave function. In the asynchronous
 230 diffusion model, pixels within the target regions (*i.e.*, the prompt-
 231 related regions in text-to-image alignment task) are denoised
 232 according to the concave function. By applying only a shift to
 233 the concave function, regions selected earlier as targets are
 234 denoised at a slower rate. Other regions, in contrast, are denoised
 235 following a linear function (or a less concave function in some
 236 samplers). Therefore, the target regions can be denoised more
 237 gradually, thus receive clearer inter-pixel context.

238 From the perspective of a Markov decision process, in the
 239 conventional synchronous diffusion models, the state \mathbf{x}_t transitions
 240 to the next state \mathbf{x}_{t-1} under the policy distribution p_θ .
 241 Differently, the state in the asynchronous diffusion model is composed of $(\mathbf{x}_i, \mathbf{t}_i)$, which transitions
 242 to the next state $(\mathbf{x}_{i+1}, \mathbf{t}_{i+1})$ under the policy distribution (p_θ, f) . In our experiments, we simply
 243 adopt a quadratic function $f(i) = T - \frac{1}{T}i^2$ as the scheduling function.

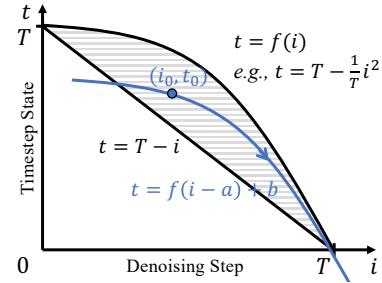


Figure 3: Any point located within the shaded area can reach $t = 0$ along appropriately shifted f .

4 ALIGNED GENERATION VIA ASYNCHRONOUS DIFFUSION MODELS

246 In this section, we introduce a method that dynamically identifies the prompt-related regions and
 247 modulates the timestep schedules of individual pixels along the denoising process.

249 **Prompt-Related Region Extraction.** In most text-to-image diffusion models, cross-attention is em-
 250 ployed to condition image generation on textual prompts. Even for DiT-based models that rely solely
 251 on self-attention, the prompt embeddings are concatenated with image features, thereby enabling
 252 implicit cross-attention computations within the self-attention modules (Peebles & Xie, 2023).

253 In cross-attention computation, the term $\text{softmax}(\frac{QK^\top}{\sqrt{d_{\text{key}}}})$ is commonly referred to as cross-attention
 254 maps, denoted by $A \in \mathbb{R}^{|c| \times h \times w}$, where $|c|$ is the number of tokens in prompt c . Previous studies
 255 (Tang et al., 2023; Hertz et al., 2023; Cao et al., 2023) show that cross-attention maps encapsulate
 256 rich information about the shapes and structures of the generated images. Specifically, the o -th map
 257 in A , denoted by A^o , highlights the pixels most influenced by the o -th token. This property allows
 258 us to extract a mask that identifies the image regions most relevant to the prompt, as follows:

$$260 \quad M = \bigvee_{o \in \mathcal{O}_c} \{\mathbf{1}[A^o > A_{\text{mean}}^o]\}, \quad (7)$$

263 where \mathcal{O}_c denotes the set of token indices corresponding to the objects described in prompt c . For
 264 each token o , A_{mean}^o represents the average value of its cross-attention map A^o . $\mathbf{1}[\cdot]$ is the indicator
 265 function that produces a binary mask based on the given condition, and the operator \bigvee indicates
 266 an element-wise logical OR across the resulting masks. This formula ultimately yields a mask that
 267 highlights the prompt-related regions.

268 **Mask-Guided Asynchronous Denoising.** At each denoising step i , we can extract a mask M_i
 269 according to Eq.(7). As illustrated in Figure 2 (b), each mask serves as a guidance signal for the
 next denoising step, where the highlighted regions follow the concave scheduler, and the remaining

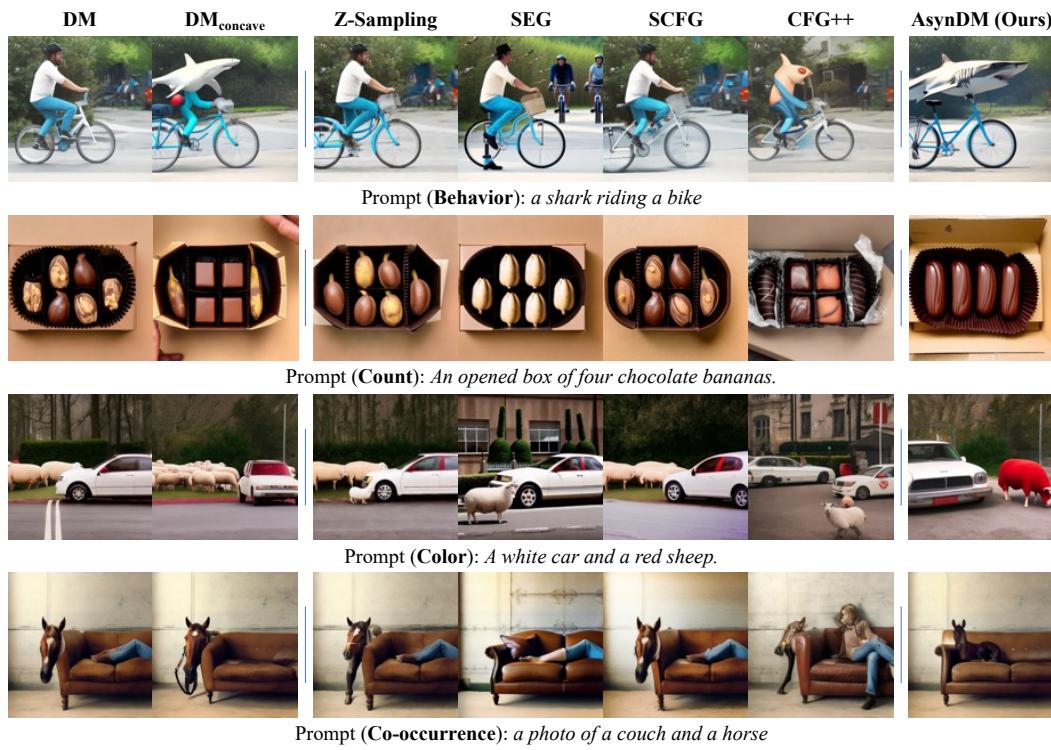


Figure 4: The samples generated by AsynDM and baseline methods across diverse prompts. The images generated by AsynDM show better text-to-image alignment.

regions follow the linear scheduler. As denoising progresses, the image gradually becomes clearer in a coarse-to-fine manner (Park et al., 2023; Rissanen et al., 2023), and the mask correspondingly evolves to precisely indicate the shapes and positions of the objects. Consequently, the object-related regions are dynamically modulated to denoise more slowly and gradually, thereby receiving clearer inter-pixel context. The clearer context enables these object-related regions to better focus on the content specified by the prompt, ultimately yielding more faithful and aligned image generation.

5 EXPERIMENTS

In this section, we first introduce our experimental setting. Next, we demonstrate the effectiveness of AsynDM in improving text-to-image alignment, providing both qualitative and quantitative results across diverse prompts and in comparison with multiple baselines. Finally, we conduct ablation on the mask and the concave scheduler, demonstrating the effectiveness and robustness of AsynDM.

5.1 EXPERIMENTAL SETTING

Diffusion Models. We adopt Stable Diffusion (SD) 2.1-512-base (Rombach et al., 2022), one of the commonly used UNet-based diffusion models, as the foundation model of our experiments. The total timesteps T is set to 50. We employ the DDIM sampler (Song et al., 2022), and the noise weight η is set to 1.0, which determines the extent of randomness at each denoising step. We also conduct experiments on more advanced diffusion models, including the UNet-based SDXL-base-1.0 (Podell et al., 2023) and DiT-based SD3.5-medium (Esser et al., 2024). The experimental results on these models are shown in Appendix D.1.

Prompts. We adopt four commonly used prompt sets in our experiments. (1) *Animal activity* (Black et al., 2023). This prompt set has the form “ $a(n)$ [animal] [activity]”, where the activities come from humans, such as “*riding a bike*”. (2) *Drawbench* (Saharia et al., 2022). This prompt set consists of 11 categories with approximately 200 prompts, including aspects such as color and count. (3) *GenEval* (Ghosh et al., 2023). This prompt set incorporates 553 prompts, including aspects such as

324
 325 Table 1: Text-to-image alignment performance of AsynDM compared with baseline methods across
 326 diverse prompts.

Prompt Set	Method	BERTScore \uparrow	CLIPScore \uparrow	ImageReward \uparrow	QwenScore \uparrow
Animal Activity	DM	0.6353	0.3685	0.7543	4.9445
	DM _{concave}	0.6381 (+0.0028)	0.3715 (+0.0030)	0.8544 (+0.1001)	5.0695 (+0.1250)
	Z-Sampling	0.6353 (+0.0000)	0.3708 (+0.0023)	0.8283 (+0.0740)	5.0242 (+0.0797)
	SEG	0.6309 (-0.0044)	0.3605 (-0.0080)	0.6493 (-0.1050)	4.7632 (-0.1813)
	S-CFG	0.6383 (+0.0030)	0.3716 (+0.0031)	0.8653 (+0.1110)	5.0421 (+0.0976)
	CFG++	0.6249 (-0.0104)	0.3565 (-0.0120)	0.3284 (-0.4259)	4.4484 (-0.4961)
	AsynDM	0.6414 (+0.0061)	0.3750 (+0.0065)	0.9219 (+0.1676)	5.5218 (+0.5773)
Drawbench	DM	0.6968	0.3659	0.3943	4.7406
	DM _{concave}	0.6970 (+0.0002)	0.3670 (+0.0011)	0.4152 (+0.0209)	4.8179 (+0.0773)
	Z-Sampling	0.6979 (+0.0011)	0.3676 (+0.0017)	0.4505 (+0.0562)	4.7656 (+0.0250)
	SEG	0.6925 (-0.0043)	0.3527 (-0.0132)	0.2478 (-0.1465)	4.6695 (-0.0711)
	S-CFG	0.6972 (+0.0004)	0.3693 (+0.0034)	0.4398 (+0.0455)	4.8750 (+0.1344)
	CFG++	0.6938 (-0.0030)	0.3539 (-0.0120)	0.1644 (-0.2299)	4.6210 (-0.1196)
	AsynDM	0.7007 (+0.0039)	0.3701 (+0.0042)	0.4560 (+0.0617)	4.9804 (+0.2398)
GenEval	DM	0.7030	0.3620	0.1541	4.9390
	DM _{concave}	0.7039 (+0.0009)	0.3637 (+0.0017)	0.1979 (+0.0438)	4.9976 (+0.0586)
	Z-Sampling	0.7046 (+0.0016)	0.3626 (+0.0006)	0.1757 (+0.0216)	4.9179 (-0.0211)
	SEG	0.7005 (-0.0025)	0.3493 (-0.0127)	0.0689 (-0.0852)	4.9125 (-0.0265)
	S-CFG	0.7031 (+0.0001)	0.3630 (+0.0010)	0.1819 (+0.0278)	4.8968 (-0.0422)
	CFG++	0.6992 (-0.0038)	0.3482 (-0.0138)	-0.1344 (-0.2885)	4.5835 (-0.3555)
	AsynDM	0.7081 (+0.0051)	0.3683 (+0.0063)	0.2895 (+0.1354)	5.3390 (+0.4000)
MSCOCO	DM	0.6995	0.3388	0.2696	5.8507
	DM _{concave}	0.7004 (+0.0009)	0.3395 (+0.0007)	0.2917 (+0.0221)	5.9632 (+0.1125)
	Z-Sampling	0.6999 (+0.0004)	0.3377 (-0.0011)	0.2946 (+0.0250)	5.8289 (-0.0218)
	SEG	0.6952 (-0.0043)	0.3295 (-0.0093)	0.1667 (-0.1029)	5.8320 (-0.0187)
	S-CFG	0.6995 (+0.0000)	0.3409 (+0.0021)	0.3316 (+0.0620)	5.9328 (+0.0821)
	CFG++	0.6975 (-0.0020)	0.3348 (-0.0040)	0.1471 (-0.1225)	5.6921 (-0.1586)
	AsynDM	0.7055 (+0.0060)	0.3420 (+0.0032)	0.3339 (+0.0643)	6.2601 (+0.4094)

353 co-occurrence, color and count. (4) *MSCOCO* (Lin et al., 2014). This prompt set is derived from
 354 the captions of the MSCOCO 2014 validation set and consists of descriptions of real-world images.
 355 For each set, we randomly select 40 prompts for our experiments.

356 **Metrics.** In our experiments, we employ four metrics to evaluate text-to-image alignment. (1)
 357 *BERTScore* (Zhang et al., 2020). This metric leverages a multimodal large language model to gen-
 358 erate a description for the image, and then employs BERT-based recall to quantify the semantic sim-
 359 ilarity between the prompt and the generated description. In our implementation, we use Qwen2.5-
 360 VL-7B-Instruct (Wang et al., 2024) to generate descriptions and DeBERTa xlarge model (He et al.,
 361 2021) to compute similarity. (2) *CLIPScore*. This metric measures the similarity between the text
 362 embeddings and image embeddings encoded by CLIP model (Radford et al., 2021). We use ViT-
 363 H-14 CLIP model in our implementation. (3) *ImageReward* (Xu et al., 2023). This metric employs
 364 a pre-trained model to estimate human preferences, in which alignment serves as a key factor. (4)
 365 *QwenScore*. We employ Qwen2.5-VL-7B-Instruct (Wang et al., 2024) to score text-to-image align-
 366 ment directly, ranging from 0 to 9. The prompts fed to Qwen are provided in Appendix B.4.

367 **Baselines.** We sample the diffusion model using both the standard scheduler and the concave sched-
 368 uler, denoted as DM and DM_{concave}, respectively. In addition, we compare AsynDM with the most
 369 advanced methods, including Z-Sampling (LiChen et al., 2025), SEG (Hong, 2024), S-CFG (Shen
 370 et al., 2024) and CFG++ (Chung et al., 2025).

373 5.2 QUALITATIVE EVALUATION

374
 375 We first provide the qualitative results of AsynDM in comparison with multiple baselines, as shown
 376 in Figure 4. We select several representative prompts that encompass object behavior, count, color,
 377 and co-occurrence. The vanilla diffusion model (*i.e.*, DM and DM_{concave}) fails to generate images
 that are well aligned with the prompts. In contrast, AsynDM effectively generates well-aligned

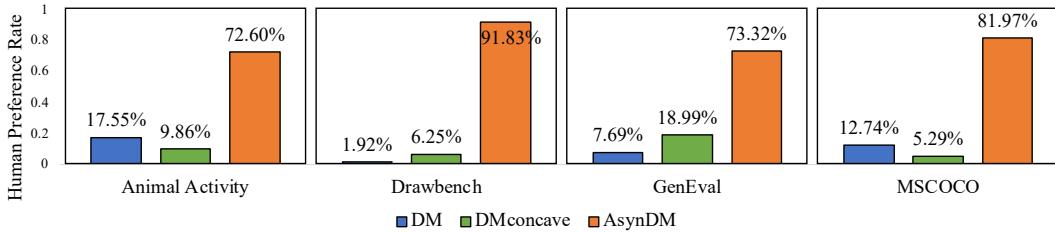


Figure 5: Human preference rates for text-to-image alignment of the images generated by DM, DM_{concave} and AsynDM.

Table 2: Text-to-image alignment performance of AsynDM when employing different concave schedulers and using fixed masks, across prompts from animal activity set.

Scheduler	Method	BERTScore↑	CLIPScore↑	ImageReward↑	QwenScore↑
		DM	0.6353	0.3685	4.9445
Quadratic	DM _{concave}	0.6381 (+0.0028)	0.3715 (+0.0030)	0.8544 (+0.1001)	5.0695 (+0.1250)
	AsynDM	0.6414 (+0.0061)	0.3750 (+0.0065)	0.9219 (+0.1676)	5.5218 (+0.5773)
	+fixed mask	0.6405 (+0.0052)	0.3722 (+0.0037)	0.8642 (+0.1099)	5.2593 (+0.3148)
Piecewise Linear	DM _{concave}	0.6338 (-0.0015)	0.3667 (-0.0018)	0.7043 (-0.0500)	4.7406 (-0.2039)
	AsynDM	0.6401 (+0.0048)	0.3724 (+0.0039)	0.8472 (+0.0929)	5.2335 (+0.2890)
	+fixed mask	0.6383 (+0.0030)	0.3705 (+0.0020)	0.7504 (-0.0039)	5.0812 (+0.1367)
Exponential	DM _{concave}	0.6352 (-0.0001)	0.3689 (+0.0004)	0.7981 (+0.0438)	4.9289 (-0.0156)
	AsynDM	0.6408 (+0.0055)	0.3715 (+0.0030)	0.8686 (+0.1143)	5.2367 (+0.2922)
	+fixed mask	0.6386 (+0.0033)	0.3714 (+0.0029)	0.8374 (+0.0831)	5.2023 (+0.2578)

images with the same random seeds. Additional qualitative examples, together with those from SDXL and SD 3.5, can be found in Appendix E.

5.3 QUANTITATIVE EVALUATION

We also quantitatively demonstrate the text-to-image alignment performance of AsynDM compared with baseline methods. As shown in Table 1, we sample 1,280 images for each of the four prompt sets, using the same random seeds across different methods. The generated images are then evaluated with four metrics. The results demonstrate that AsynDM consistently achieves better alignment across all prompt sets. Meanwhile, sampling 1,280 images takes 78 minutes using the vanilla diffusion model, compared to 86 minutes using AsynDM, which indicates that AsynDM achieves improvements without significantly sacrificing efficiency. In addition, we conduct a human evaluation. We invite 52 participants to choose the image they consider best aligned with the prompt from each group of three candidates, corresponding to DM, DM_{concave} and AsynDM. As shown in Figure 5, the results further demonstrate that AsynDM improves text-to-image alignment.

We also evaluate the image quality of AsynDM using FID-30K (↓). FID-30K refers to the Frechet Inception Distance calculated using 30,000 images from the MSCOCO 2024 validation set as the reference dataset (Pavlov et al., 2023; Lin et al., 2014). We merge all four prompt sets and generate 16,000 images with each of DM, DM_{concave}, and AsynDM. The resulting FID-30K scores are 48.63 for DM, 49.29 for DM_{concave}, and 49.38 for AsynDM. These results indicate that our method can largely preserve the image quality of the pretrained diffusion model.

5.4 ABLATION STUDY

Ablation on Mask. In this ablation study, we replace the dynamically updated mask with a fixed mask. This fixed mask is extracted from the average cross-attention map of DM during its denoising process, following Eq.(7). Due to the use of the same random seed, the mask derived from DM can roughly highlight the prompt-related regions in the image generated by AsynDM. The results are shown in the Table 2. Despite the fixed mask being imperfect, AsynDM still improves text-to-image alignment compared with the base model, demonstrating its robustness to inaccurate masks.

Figure 6: We further employ AsynDM to reduce image distortion and enhance editing performance.

Ablation on Concave Scheduler. In addition to the quadratic scheduler, we also employ the piecewise linear scheduler and the exponential scheduler to AsynDM, as follows:

$$f(i) = \min(T - \frac{1}{2}i, \frac{3}{2}T - \frac{3}{2}i), \quad \text{(Piecewise Linear Scheduler)}$$

$$f(i) = \frac{T}{e-1}(e - e^{\frac{1}{T}i}). \quad \text{(Exponential Scheduler)}$$

As shown in Table 2, AsynDM consistently improves image alignment across different schedulers. This is because, across all the variants, these concave schedulers enable the prompt-related regions to receive clearer inter-pixel context. These results further demonstrate the effectiveness and robustness of AsynDM. The image samples of these two ablation studies are provided in Appendix E.

6 FURTHER EXPLORATION AND DISCUSSION

Asynchronous Diffusion Models for Reducing Image Distortion. Diffusion-generated images often suffer from distortions, such as abnormal limb shapes. As shown in Figure 6 (a), inpainting the distorted regions under different random seeds yields limited improvements. In contrast, applying AsynDM with a mask over the distorted regions, while using the same seed, generates improved images. This suggests that AsynDM has the potential to mitigate image distortions.

Asynchronous Diffusion Models for Enhancing Editing Performance. FLUX.1 Kontext is a DiT-based diffusion model that unifies image generation and editing (Labs et al., 2025). However, as shown in Figure 6 (b), even this advanced model can produce edits that mismatch the user prompts. By manually annotating the regions to be edited and applying the concave scheduler during the editing process, the resulting images align more closely with user expectations. This observation suggests that AsynDM has the potential to further enhance the performance of image editing models.

486 **Limitations and Future Work.** (1) In this work, we employ a fixed concave function to guide
 487 the transition of timestep states. A promising direction for future research is to replace this fixed
 488 function with a learnable model that can adaptively predict the next timestep state for each pixel
 489 (e.g., Ye et al. (2025); Li et al. (2023b)), potentially leading to more flexible and accurate transitions.
 490 (2) We only distinguish between prompt-related and unrelated regions. A natural extension would
 491 be to capture more complex object relationships by sorting the objects or constructing a directed
 492 acyclic graph (Han et al., 2024; Kong et al., 2025). Assigning different objects with varying concave
 493 schedulers may further lead to improved performance. (3) When timestep states across pixels differ
 494 extremely, the faster denoised regions may be affected by noisy regions, causing the final image
 495 to retain a considerable amount of noise (See Appendix D.2 for an example). We attribute this
 496 limitation to the training-free nature of AsynDM, which makes it less robust to large disparities in
 497 noise levels. Future work could address this issue through fine-tuning or pre-training.
 498

499 7 CONCLUSION

500 In this work, we propose the asynchronous denoising diffusion models to improve text-to-image
 501 alignment. The AsynDM allocates distinct timesteps to individual pixels and schedules them using
 502 a concave function. Guided by the masks that highlight the prompt-related regions, these regions can
 503 be denoised more slowly than unrelated ones, allowing them to receive clearer inter-pixel context.
 504 The clearer context can help the related regions better capture the content specified by the prompts,
 505 thereby generating more aligned images. Our empirical results demonstrate the effectiveness and
 506 robustness of the proposed asynchronous diffusion models.
 507

508 ETHICS STATEMENT

510 This paper aims to advance the broader field of text-to-image alignment in diffusion models. While
 511 our method focuses on improving controllability and semantic faithfulness in generative models, it
 512 may have societal implications similar to those associated with image synthesis technologies. We
 513 do not identify any concerns unique to our approach that require special emphasis. For a more
 514 extensive discussion of the ethical considerations and broader impacts surrounding diffusion models
 515 and text-to-image generation, we refer interested readers to Po et al. (2024).
 516

517 REPRODUCIBILITY STATEMENT

518 We have taken several measures to ensure the reproducibility of our work. The detailed experimental
 519 setting is provided in Section 5.1 of the main paper, and the Appendix B includes comprehensive
 520 implementation details, such as hyperparameters. To further ensure reproducibility, we provide
 521 pseudo-code that outlines the proposed method step by step in Appendix C.
 522

524 REFERENCES

526 Tomer Amit, Tal Shahrbany, Eliya Nachmani, and Lior Wolf. Segdiff: Image segmentation with
 527 diffusion probabilistic models. *arXiv preprint arXiv:2112.00390*, 2021.

528 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 529 denoising diffusion models in discrete state-spaces. *Advances in neural information processing
 530 systems*, 34:17981–17993, 2021.

531 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
 532 models with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

533 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinjiang Zheng. Mas-
 534 actrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. In
 535 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 22560–22570,
 536 2023.

538 Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
 539 Attention-based semantic guidance for text-to-image diffusion models. *ACM transactions on
 Graphics (TOG)*, 42(4):1–10, 2023.

540 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 541 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024. URL
 542 <https://arxiv.org/abs/2303.04137>.

543

544 Hyungjin Chung, Jeongsol Kim, Geon Yeong Park, Hyelin Nam, and Jong Chul Ye. CFG++:
 545 Manifold-constrained classifier free guidance for diffusion models. In *The Thirteenth Interna-*
 546 *tional Conference on Learning Representations*, 2025. URL [https://openreview.net/](https://openreview.net/forum?id=E77uvbOTtp)
 547 [forum?id=E77uvbOTtp](https://openreview.net/forum?id=E77uvbOTtp).

548

549 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*
 550 *in neural information processing systems*, 34:8780–8794, 2021.

551

552 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 553 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 554 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 555 2024.

556

557 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
 558 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
 559 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
 36:79858–79885, 2023.

560

561 Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, Pradyumna Narayana,
 562 Sugato Basu, Xin Eric Wang, and William Yang Wang. Training-free structured diffusion
 563 guidance for compositional text-to-image synthesis. In *The Eleventh International Confer-*
 564 *ence on Learning Representations*, 2023. URL [https://openreview.net/forum?id=](https://openreview.net/forum?id=PUIqjtT4rzq7)
 565 [PUIqjtT4rzq7](https://openreview.net/forum?id=PUIqjtT4rzq7).

566

567 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
 568 for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:
 569 52132–52152, 2023.

570

571 Kairong Han, Kun Kuang, Ziyu Zhao, Junjian Ye, and Fei Wu. Causal agent based on large language
 572 model, 2024. URL <https://arxiv.org/abs/2408.06849>.

573

574 Kairong Han, Wenshuo Zhao, Ziyu Zhao, JunJian Ye, Lujia Pan, and Kun Kuang. Cat: Causal
 575 attention tuning for injecting fine-grained causal knowledge into large language models, 2025.
 576 URL <https://arxiv.org/abs/2509.01535>.

577

578 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
 579 with disentangled attention. In *International Conference on Learning Representations*, 2021.
 580 URL <https://openreview.net/forum?id=XPZIaotutsD>.

581

582 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or.
 583 Prompt-to-prompt image editing with cross-attention control. In *The Eleventh International Con-*
 584 *ference on Learning Representations*, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=_CDixzkzeyb)
 585 [forum?id=_CDixzkzeyb](https://openreview.net/forum?id=_CDixzkzeyb).

586

587 Tobias Hinz, Stefan Heinrich, and Stefan Wermter. Semantic object accuracy for generative text-to-
 588 image synthesis. *IEEE transactions on pattern analysis and machine intelligence*, 44(3):1552–
 589 1565, 2020.

590

591 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL <https://arxiv.org/abs/2207.12598>.

592

593 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 594 *neural information processing systems*, 33:6840–6851, 2020.

Susung Hong. Smoothed energy guidance: Guiding diffusion models with reduced energy curvature
 of attention. *Advances in Neural Information Processing Systems*, 37:66743–66772, 2024.

594 Zijing Hu, Fengda Zhang, Long Chen, Kun Kuang, Jiahui Li, Kaifeng Gao, Jun Xiao, Xin Wang, and
 595 Wenwu Zhu. Towards better alignment: Training diffusion models with reinforcement learning
 596 against sparse rewards. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 597 pp. 23604–23614, 2025a.

598 Zijing Hu, Fengda Zhang, and Kun Kuang. D-fusion: Direct preference optimization for aligning
 599 diffusion models with visually consistent samples. In *Forty-second International Conference on*
 600 *Machine Learning*, 2025b. URL <https://openreview.net/forum?id=WV1EwFiDGH>.

602 Lingjing Kong, Guangyi Chen, Biwei Huang, Eric P. Xing, Yuejie Chi, and Kun Zhang. Learning
 603 discrete concepts in latent hierarchical models, 2025. URL <https://arxiv.org/abs/2406.00519>.

605 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 606 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey,
 607 Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini,
 608 Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and
 609 editing in latent space, 2025. URL <https://arxiv.org/abs/2506.15742>.

611 Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
 612 Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
 613 feedback. *arXiv preprint arXiv:2302.12192*, 2023.

614 Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your dif-
 615 fusion model is secretly a zero-shot classifier. In *Proceedings of the IEEE/CVF International*
 616 *Conference on Computer Vision*, pp. 2206–2217, 2023a.

617 Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan, Fei
 618 Chao, and Rongrong Ji. Autodiffusion: Training-free optimization of time steps and architec-
 619 tures for automated diffusion model acceleration. In *Proceedings of the IEEE/CVF International*
 620 *Conference on Computer Vision*, pp. 7105–7114, 2023b.

622 Yumeng Li, Margret Keuper, Dan Zhang, and Anna Khoreva. Divide & bind your attention for
 623 improved generative semantic nursing. *arXiv preprint arXiv:2307.10864*, 2023c.

624 Wentong Liao, Kai Hu, Michael Ying Yang, and Bodo Rosenhahn. Text to image generation with
 625 semantic-spatial aware gan. In *Proceedings of the IEEE/CVF conference on computer vision and*
 626 *pattern recognition*, pp. 18187–18196, 2022.

628 Bai LiChen, Shitong Shao, zikai zhou, Zipeng Qi, zhiqiang xu, Haoyi Xiong, and Zeke Xie. Zigzag
 629 diffusion sampling: Diffusion models can self-improve via self-reflection. In *The Thirteenth*
 630 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=MKvQH1ekeY>.

632 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 633 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European*
 634 *conference on computer vision*, pp. 740–755. Springer, 2014.

636 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 637 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in neural*
 638 *information processing systems*, 35:5775–5787, 2022.

639 Oscar Mañas, Pietro Astolfi, Melissa Hall, Candace Ross, Jack Urbanek, Adina Williams, Aish-
 640 warya Agrawal, Adriana Romero-Soriano, and Michal Drozdzal. Improving text-to-image con-
 641 sistency via automatic prompt optimization. *arXiv preprint arXiv:2403.17804*, 2024.

642 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
 643 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL <https://arxiv.org/abs/2502.09992>.

646 Yong-Hyun Park, Mingi Kwon, Jaewoong Choi, Junghyo Jo, and Youngjung Uh. Understanding the
 647 latent space of diffusion models through the lens of riemannian geometry. *Advances in Neural*
 648 *Information Processing Systems*, 36:24129–24142, 2023.

648 I. Pavlov, A. Ivanov, and S. Stafievskiy. Text-to-Image Benchmark: A benchmark for genera-
 649 tive models. <https://github.com/boomb00m/text2image-benchmark>, September
 650 2023. Version 0.1.0.

651 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 652 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

653 Ryan Po, Wang Yifan, Vladislav Golyanik, Kfir Aberman, Jonathan T Barron, Amit Bermano, Eric
 654 Chan, Tali Dekel, Aleksander Holynski, Angjoo Kanazawa, et al. State of the art on diffusion
 655 models for visual computing. In *Computer graphics forum*, volume 43, pp. e15063. Wiley Online
 656 Library, 2024.

657 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 658 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 659 synthesis, 2023. URL <https://arxiv.org/abs/2307.01952>.

660 Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
 661 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 662 Learning transferable visual models from natural language supervision. In *ICML*, 2021.

663 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 664 conditional image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.

665 Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik.
 666 Linguistic binding in diffusion models: Enhancing attribute correspondence through attention
 667 map alignment. *Advances in Neural Information Processing Systems*, 36:3536–3559, 2023.

668 Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dis-
 669 sipation. In *The Eleventh International Conference on Learning Representations*, 2023. URL
 670 <https://openreview.net/forum?id=4PJUBT9f20l>.

671 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 672 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 673 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

674 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 675 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 676 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 677 tion processing systems*, 35:36479–36494, 2022.

678 Dazhong Shen, Guanglu Song, Zeyue Xue, Fu-Yun Wang, and Yu Liu. Rethinking the spatial
 679 inconsistency in classifier-free diffusion guidance. In *Proceedings of the IEEE/CVF Conference
 680 on Computer Vision and Pattern Recognition*, pp. 9370–9379, 2024.

681 Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
 682 Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, et al. Styledrop: Text-to-image generation in any
 683 style. *arXiv preprint arXiv:2306.00983*, 2023.

684 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
 685 <https://arxiv.org/abs/2010.02502>.

686 Raphael Tang, Linqing Liu, Akshat Pandey, Zhiying Jiang, Gefei Yang, Karun Kumar, Pontus Stene-
 687 torp, Jimmy Lin, and Ferhan Türe. What the daam: Interpreting stable diffusion using cross atten-
 688 tion. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
 689 (Volume 1: Long Papers)*, pp. 5644–5659, 2023.

690 Yunze Tong, Fengda Zhang, Zihao Tang, Kaifeng Gao, Kai Huang, Pengfei Lyu, Jun Xiao, and Kun
 691 Kuang. Latent score-based reweighting for robust classification on imbalanced tabular data. In
 692 *Proceedings of the 42nd International Conference on Machine Learning*, 2025a.

693 Yunze Tong, Fengda Zhang, Didi Zhu, Jun Xiao, and Kun Kuang. Decoding correlation-induced
 694 misalignment in the stable diffusion workflow for text-to-image generation. In *Proceedings of the
 695 IEEE/CVF international conference on computer vision*, 2025b.

702 Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-play diffusion features for
 703 text-driven image-to-image translation. In *2023 IEEE/CVF Conference on Computer Vision and*
 704 *Pattern Recognition (CVPR)*, pp. 1921–1930, 2023. doi: 10.1109/CVPR52729.2023.00191.

705 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 706 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 707 *tion processing systems*, 30, 2017.

709 Chen Wang, Hao-Yang Peng, Ying-Tian Liu, Jiatao Gu, and Shi-Min Hu. Diffusion models for
 710 3d generation: A survey. *Computational Visual Media*, 11(1):1–28, 2025. doi: 10.26599/CVM.
 711 2025.9450452.

712 Hao Wang, Guosheng Lin, Steven CH Hoi, and Chunyan Miao. Cycle-consistent inverse gan for
 713 text-to-image synthesis. In *Proceedings of the 29th ACM international conference on multimedia*,
 714 pp. 630–638, 2021.

716 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 717 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 718 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
 719 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

720 Yunlong Wang, Shuyuan Shen, and Brian Y Lim. Reprompt: Automatic prompt editing to refine ai-
 721 generative art towards precise expressions. In *Proceedings of the 2023 CHI conference on human*
 722 *factors in computing systems*, pp. 1–29, 2023a.

724 Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He, Zhangyang Wang,
 725 Weizhu Chen, Mingyuan Zhou, et al. Patch diffusion: Faster and more data-efficient training of
 726 diffusion models. *Advances in neural information processing systems*, 36:72137–72154, 2023b.

727 Rosa Wolf, Yitian Shi, Sheng Liu, and Rania Rayyes. Diffusion models for robotic manipulation: A
 728 survey, 2025. URL <https://arxiv.org/abs/2504.08438>.

729 Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
 730 denoising diffusion GANs. In *International Conference on Learning Representations*, 2022. URL
 731 <https://openreview.net/forum?id=JprM0p-q0Co>.

733 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 734 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
 735 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

736 Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video
 737 generation. *Entropy*, 25(10):1469, 2023.

739 Zilyu Ye, Zhiyang Chen, Tiancheng Li, Zemin Huang, Weijian Luo, and Guo-Jun Qi. Schedule on
 740 the fly: Diffusion time prediction for faster and better image generation. In *Proceedings of the*
 741 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 23412–23422,
 742 June 2025.

743 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
 744 and Taesung Park. One-step diffusion with distribution matching distillation. In *Proceedings of*
 745 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6613–6623, 2024.

746 Chenrui Zhang and Yuxin Peng. Stacking vae and gan for context-aware text-to-image generation.
 747 In *2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM)*, pp. 1–5. IEEE,
 748 2018.

749 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
 750 ating text generation with bert, 2020. URL <https://arxiv.org/abs/1904.09675>.

752 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 753 Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
 754 Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
 755 Ji-Rong Wen. A survey of large language models, 2025. URL <https://arxiv.org/abs/2303.18223>.

756 Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, and Xi Li. Layoutdiffusion:
757 Controllable diffusion model for layout-to-image generation. In *Proceedings of the IEEE/CVF*
758 *Conference on Computer Vision and Pattern Recognition*, pp. 22490–22499, 2023.
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 The Appendix is organized as follows:
 811

- 812 • **Appendix A:** provides the proof of the proposition in the main text and the formulation of the
 813 DDIM sampler.
- 814 • **Appendix B:** provides more details on implementation.
- 815 • **Appendix C:** provides the pseudo-code of employing AsynDM to generate images.
- 816 • **Appendix D:** presents more experimental results.
- 817 • **Appendix E:** presents more image samples generated by AsynDM.
- 818 • **Appendix F:** describes the **role of the large language models (LLMs)** in preparing this paper.
 819

820 **A THEORETICAL DERIVATIONS**
 821

822 **A.1 PROOF OF PROPOSITION 1**
 823

824 From the second equation in Eq.(6) we obtain $b = -f(T - a)$. Substituting into the first equation
 825 yields the single-variable condition $f(i_0 - a) - f(T - a) = t_0$. Define:

$$826 \quad g(a) = f(i_0 - a) - f(T - a), \quad a \in [0, i_0]. \quad (8)$$

827 The domain $[0, i_0]$ ensures that both $i_0 - a$ and $T - a$ lie in $[0, T]$.

828 Since f is concave on $[0, T]$, then f is continuous, hence g is continuous on $[0, i_0]$. Moreover,
 829 concavity implies that the slope of f is nonincreasing, which in turn gives:
 830

$$831 \quad g'(a) = f'(T - a) - f'(i_0 - a) \leq 0, \quad (9)$$

832 whenever f is differentiable. Therefore, g is nonincreasing on $[0, i_0]$, and strictly decreasing unless
 833 f is linear.
 834

835 At the endpoints, we have:

$$836 \quad g(0) = f(i_0) - f(T) = f(i_0), \quad g(i_0) = f(0) - f(T - i_0) = T - f(T - i_0). \quad (10)$$

837 Therefore, the range of g is exactly the interval $[T - f(T - i_0), f(i_0)]$.
 838

839 Moreover, since f is concave on $[0, T]$, then:

$$840 \quad f(T - i_0) = f\left(\frac{i_0}{T} \cdot 0 + \frac{T - i_0}{T} \cdot T\right) \geq \frac{i_0}{T} \cdot f(0) + \frac{T - i_0}{T} \cdot f(T) = i_0. \quad (11)$$

841 Hence $T - f(T - i_0) \leq T - i_0$.
 842

843 According to the *intermediate value theorem*, for any $t_0 \in [T - i_0, f(i_0)]$, there exists some $a \in$
 844 $[0, i_0]$, such that $g(a) = t_0$. Monotonicity of g guarantees that this solution is unique. Finally, since
 845 a is uniquely determined, then $b = -f(T - a)$ is also uniquely determined.
 846

847 Therefore, the constants a, b exist and are unique.
 848

849 **A.2 ASYNCHRONOUS DENOISING WITH DDIM SAMPLER**
 850

851 The vanilla DDIM sampler predicts next intermediate state \mathbf{x}_{t-1} according to:
 852

$$853 \quad \mathbf{x}_{t-1} = \sqrt{\alpha_{t-1}} \cdot \hat{\mathbf{x}}_0 + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c}) + \sigma_t \epsilon_t, \quad (12)$$

$$854 \quad \text{with } \hat{\mathbf{x}}_0 = \frac{1}{\sqrt{\alpha_t}} (\mathbf{x}_t - \sqrt{1 - \alpha_t} \cdot \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c})), \quad (13)$$

855 where $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. The pixel-level timestep formulation of the DDIM sampler is given as follow:
 856

$$857 \quad \mathbf{x}_{i+1} = \sqrt{\alpha_{t_{i+1}}} \cdot \hat{\mathbf{x}}_0 + \sqrt{1 - \alpha_{t_{i+1}} - \sigma_i^2} \cdot \epsilon_\theta(\mathbf{x}_i, t_i, \mathbf{c}) + \sigma_i \epsilon_i, \quad (14)$$

$$858 \quad \text{with } \hat{\mathbf{x}}_0 = \frac{1}{\sqrt{\alpha_{t_i}}} (\mathbf{x}_i - \sqrt{1 - \alpha_{t_i}} \cdot \epsilon_\theta(\mathbf{x}_i, t_i, \mathbf{c})), \quad (15)$$

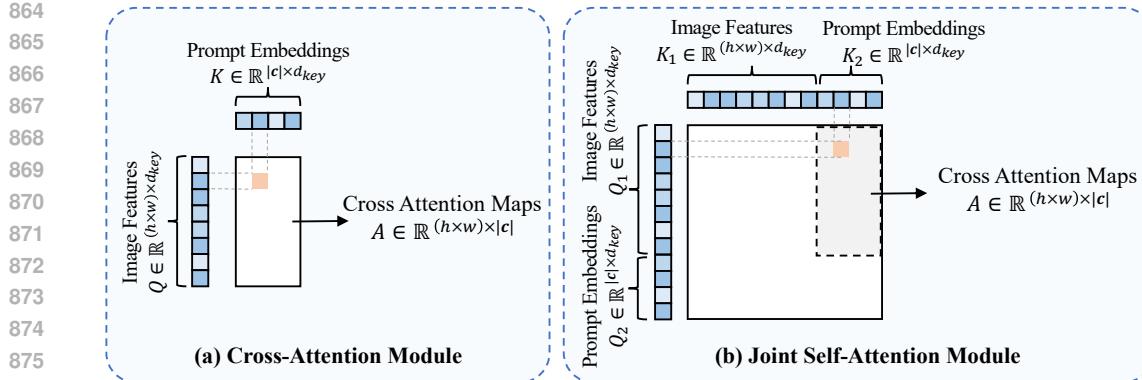


Figure 7: Extracting cross-attention masks from attention modules.

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS OF ASYNDM

Mask Extraction. In Section 4, we have described how to extract prompt-related regions from cross-attention maps. However, a model typically contains multiple cross-attention layers, each producing its own set of attention maps. For DiT-based diffusion models, we average the cross-attention maps across all layers and then extract the mask following the procedure outlined in Section 4. In contrast, UNet-based diffusion models comprise layers with varying spatial resolutions. Let $h \times w$ represent the image resolution of \mathbf{x}_t , and $h_l \times w_l$ represent the resolution at layer l of the UNet. Inspired by prior work (Hertz et al., 2023; Cao et al., 2023), we only use the cross-attention maps from layers at resolution $h_l \times w_l = \frac{h}{4} \times \frac{w}{4}$. The maps from these layers are averaged to obtain the mask, and subsequently upsampled to the resolution $h \times w$.

Scheduler Reweighting. As shown in Appendix D.2, when timestep states across pixels differ extremely, the prompt-unrelated regions in the final image might retain a considerable amount of noise. Therefore, constraining the maximum disparity of timestep states across pixels is fundamental to ensuring that any concave function can be reliably applied for denoising. To achieve this, we adopt a straightforward yet effective strategy by weighting the concave function f with the standard denoising function g (e.g., the linear function). Consequently, the concave function employed for state transitions becomes $f' = \omega \cdot f + (1 - \omega) \cdot g$, where $\omega \in (0, 1)$. The function f' not only retains the concavity, but also mitigates its maximum disparity with respect to the standard function.

B.2 DETAILS OF HUMAN EVALUATION

The human study was conducted with 52 participants from eight universities, including 23 females and 29 males, whose academic backgrounds ranged from undergraduates to Ph.D. students. Each participant was asked to complete a form. At the beginning of the form, we provided the following instruction: “*Image-prompt alignment refers to how well an image matches the given textual description. For each group of three images, please select the one you believe best matches the given textual description.*” The form contained 64 groups of images in total, corresponding to four prompt sets, each comprising 16 groups. These 64 groups were randomly selected from the images sampled during the evaluation of results reported in Table 1. Each group consisted of three images generated by DM, DM_{concave} and AsynDM under the same random seed, accompanied by the corresponding text prompt used for generation. All participants received the same set of images, but the presentation order was randomized, ensuring that participants were unaware of which method each image originated from. The entire form was presented in English.

B.3 EXTRACTING CROSS-ATTENTION MASKS FROM DiT-BASED MODELS

As shown in Figure 7 (a), in the cross-attention modules, we first obtain the cross-attention maps directly via $A = \text{softmax}(\frac{QK^\top}{\sqrt{d_{key}}})$, and subsequently derive the corresponding masks using Eq.(7).

918 However, DiT-based diffusion models typically do not include dedicated cross-attention modules.
 919 Instead, they rely on implicit cross-attention computation within the self-attention modules to enable
 920 the image to be guided by the prompt. As illustrated in Figure 7 (b), the queries Q and keys K
 921 are formed by concatenating the image features with the prompt embeddings. During the attention
 922 operation, the resulting attention maps A_{joint} has a size of $(h \times w + |\mathbf{c}|) \times (h \times w + |\mathbf{c}|)$. By extracting
 923 the submatrix corresponding to the interactions between the image-feature queries and the prompt-
 924 embedding keys, we can obtain the cross-attention maps (i.e., $A = A_{\text{joint}}[:, (h \times w), (h \times w) :]$). The
 925 cross-attention masks are then computed using Eq.(7)².

927 B.4 PROMPT FOR QWEN

929 We employ Qwen2.5-VL-7B-Instruct (Wang et al., 2024) to score text-to-image alignment with the
 930 following prompt: “*You are given an image and a description. Please evaluate how well the image
 931 matches the description on a scale from 0 to 9, where 0 means completely unrelated and 9 means
 932 perfectly aligned. Return only the score as a single integer without explanation.\n Description:
 933 [prompt used to generate the image]*”.

935 B.5 EXPERIMENTAL RESOURCES

937 The experiments were conducted on 24GB NVIDIA 3090 GPUs. It tooks approximately 78 minutes
 938 for the vanilla diffusion model (SD2.1-512-base) to generate 1,280 images, and approximately 86
 939 minutes for the asynchronous diffusion model.

941 B.6 HYPERPARAMETERS

943 The full hyperparameter list of our experiments is presented in Table 3.

946 Table 3: Hyperparameters of our experiments.

	Patameter	Value
Sampling	Denoising steps T	50
	Noise weight η	1.0
	Classifier-free guidance	True
	Guidance scale	5.0
	Batch size	8
	Batch count	160
Z-Sampling	Inversion guidance γ_2	0.0
	Zigzag steps	49
	Number of rounds T_{max}	1
SEG	SEG guidance γ_{seg}	3.0
	Blurred weight σ	1.0
CFG++	CFG++ guidance λ	0.4

964 C PSEUDO-CODE

966 The pseudo-code of employing the asynchronous diffusion model to generate text-aligned images is
 967 shown in Algorithm 1.

970 ²The cross-attention maps A has a size of $(h \times w) \times |\mathbf{c}|$. The dimension $|\mathbf{c}| \times h \times w$ mentioned in the main
 971 text corresponds to its transposed and reshaped form, which is presented to facilitate clearer understanding for
 the readers.

972
973 **Algorithm 1:** Pseudo-code of employing the asynchronous diffusion model to generate text-
974 aligned images.
975 **Input** : Total denoising timesteps T , number of samples N , prompt list C , pre-trained
976 diffusion model ϵ_θ , linear/standard scheduler g , concave scheduler f .
977 $D_{sample} = []$;
978 **for** $n \leftarrow 0$ **to** $N - 1$ **do**
979 $\mathbf{c} \leftarrow C_n$;
980 // Initialize \mathbf{x}_i , \mathbf{t}_i and M
981 Randomly choose \mathbf{x}_0 from $\mathcal{N}(\mathbf{0}, \mathbf{I})$;
982 $\mathbf{t}_0 \leftarrow \text{tensor}(\text{shape}(\mathbf{x}_0), \text{fill} = T)$;
983 $M \leftarrow \text{tensor}(\text{shape}(\mathbf{x}_0), \text{fill} = 1)$;
984 **for** $i \leftarrow 0$ **to** $T - 1$ **do**
985 // Transition of \mathbf{t}_i
986 $\mathbf{t}_{i+1}^{lin} \leftarrow \text{Calculate the next state of } \mathbf{t}_i \text{ using } g$;
987 $\mathbf{t}_{i+1}^{con} \leftarrow \text{Calculate the next state of } \mathbf{t}_i \text{ using } f$;
988 $\mathbf{t}_{i+1} \leftarrow M \times \mathbf{t}_{i+1}^{con} + (1 - M) \times \mathbf{t}_{i+1}^{lin}$;
989 // Transition of \mathbf{x}_i
990 $\epsilon \leftarrow \epsilon_\theta(\mathbf{x}_i, \mathbf{t}_i, \mathbf{c})$, and extract the cross-attention map A ;
991 Calculate \mathbf{x}_{i+1} according to the chosen sampler (e.g., Eq.(4) for DDPM);
992 // Update M
993 Update M using Eq.(7);
994 **end**
995 $D_{sample}.\text{append}(\mathbf{x}_T)$;
996 **end**
997 **Output:** D_{sample}

D MORE EXPERIMENTAL RESULTS

D.1 EXPERIMENTS ON SDXL AND SD3.5

1000
1001 We also quantitatively demonstrate the text-to-image alignment performance of AsynDM compared
1002 with baseline methods on SDXL and SD 3.5, as shown in Table 4 and Table 5 respectively. For
1003 experiments conducted on SD 3.5, we have not included comparisons with Z-Sampling or CFG++.
1004 This is because Z-Sampling relies on DDIM inversion, and CFG++ makes modifications to DDIM.
1005 However, SD 3.5 is a flow model that is not directly compatible with the DDIM sampler. The
1006 experimental results demonstrate that AsynDM consistently achieves better alignment across all
1007 prompt sets. The image samples for these experiments are shown in Figure 12 and Figure 13.
1008

1010
1011 Table 4: Text-to-image alignment performance of AsynDM compared with baseline methods on
1012 animal activity prompt set. The base model is SDXL-base-1.0 (Podell et al., 2023).
1013

Prompt Set	Method	BERTScore \uparrow	CLIPScore \uparrow	ImageReward \uparrow	QwenScore \uparrow
Animal Activity	DM	0.6671	0.3976	1.6552	6.6562
	DM _{concave}	0.6695 (+0.0024)	0.3993 (+0.0017)	1.6768 (+0.0216)	6.8421 (+0.1859)
	Z-Sampling	0.6674 (+0.0003)	0.4022 (+0.0046)	1.6677 (+0.0125)	6.7320 (+0.0758)
	SEG	0.6673 (+0.0002)	0.3963 (-0.0013)	1.6417 (-0.0135)	6.8085 (+0.1523)
	S-CFG	0.6670 (-0.0001)	0.3981 (+0.0005)	1.6481 (-0.0071)	6.6367 (-0.0195)
	CFG++	0.6581 (-0.0090)	0.3879 (-0.0097)	1.3748 (-0.2804)	6.4078 (-0.2484)
	AsynDM	0.6829 (+0.0158)	0.4026 (+0.0050)	1.6893 (+0.0341)	7.2781 (+0.6219)

D.2 ABLATION ON MAXIMUM Timestep DIFFERENCE

1021
1022 Given an extreme concave scheduler $f(i) = \min(T, 2T - 2i)$ and a standard linear scheduler $g(i) =$
1023 $T - i$, the maximum timestep difference between pixels within the same denoising step can reach $\frac{T}{2}$.
1024 By interpolating the two schedulers as $f' = \omega \cdot f + (1 - \omega) \cdot g$, we obtain a concave scheduler whose
1025

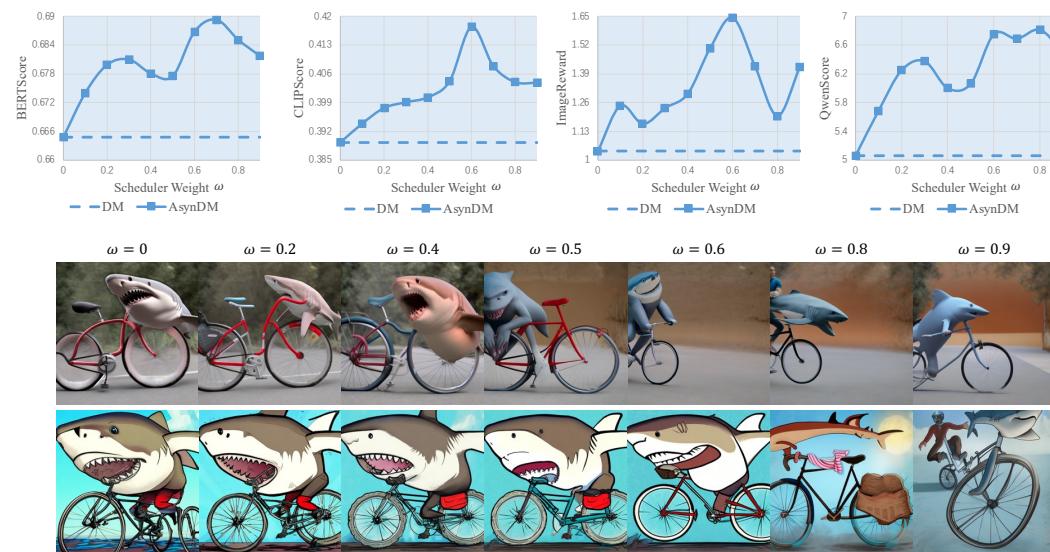
1026

1027 Table 5: Text-to-image alignment performance of AsynDM compared with baseline methods on
1028 animal activity prompt set. The base model is SD3.5-medium (Esser et al., 2024).

Prompt Set	Method	BERTScore↑	CLIPScore↑	ImageReward↑	QwenScore↑
Animal Activity	DM	0.6590	0.3906	1.5091	6.8812
	DM _{concave}	0.6603 (+0.0013)	0.3928 (+0.0022)	1.6385 (+0.1294)	7.0656 (+0.1844)
	SEG	0.6570 (-0.0020)	0.3740 (-0.0166)	1.4022 (-0.1069)	7.1250 (+0.2438)
	S-CFG	0.6629 (+0.0039)	0.3908 (+0.0002)	1.6227 (+0.1136)	7.0125 (+0.1313)
	AsynDM	0.6663 (+0.0073)	0.3941 (+0.0035)	1.6418 (+0.1327)	7.2171 (+0.3359)

1035

1036



1055

1056 Figure 8: As ω increases, the maximum timestep difference increases, and the alignment first im-
1057 proves and then degrades. The extreme differences cause faster-denoised regions to retain noise for
1058 contextual consistency, leading to blurry and noisy background in final images (e.g., $\omega = 0.8, 0.9$).
1059
1060

1061

maximum timestep difference can be flexibly controlled. As a case study, we consider the prompt “*a shark riding a bike*”, and sample 32 images for each value of ω to evaluate text-to-image alignment. As shown in Figure 8, the results indicate that as ω increases (*i.e.*, the maximum timestep difference increases), the alignment first improves and then degrades. The degradation occurs because, when timestep states across pixels differ extremely, the faster denoised regions may be affected by noisy regions, which continue to provide noisy context even at later denoising steps. Consequently, these faster denoised regions tend to preserve a considerable amount of noise in order to remain consistent with the context. This effect is particularly evident at $\omega = 0.8$ and $\omega = 0.9$, where the generated images exhibit blurry and noisy background regions.

1070

1071

D.3 ABLATION ON DENOISING STEPS

1073

1074

1075

1076

1077

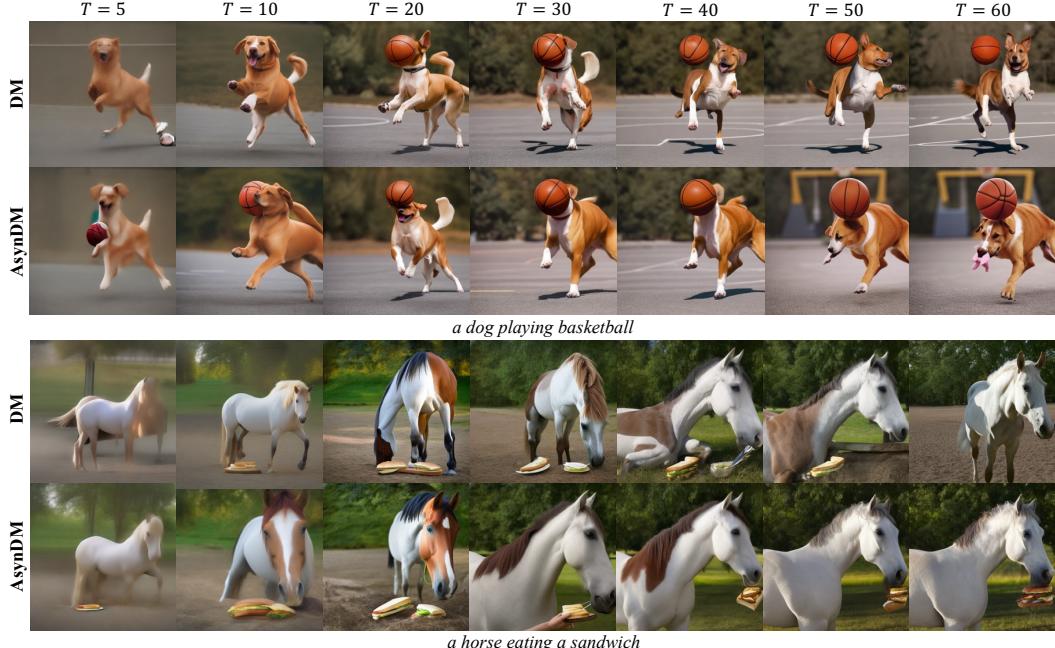
1078

1079

A growing body of work has focused on enabling diffusion models to generate high-quality images with only a small number of denoising steps (Xiao et al., 2022; Yin et al., 2024). Motivated by this line of research, we further evaluate the performance of AsynDM under different total denoising steps T . Specifically, we set the steps T to 5, 10, 20, 30, 40, 50 and 60, and generate 1,280 images for each setting on the animal activity prompt set. The results are summarized in Table 6. Across all denoising-step configurations, AsynDM consistently improves text-to-image alignment. Figure 9 provides some examples. These results further demonstrate the effectiveness of our method.

1080
1081 Table 6: Alignment performance of AsynDM for different denoising steps T , across prompts on
1082 animal activity prompt set. The base model is SD2.1-512-base.

Metric	Method	$T = 5$	$T = 10$	$T = 20$	$T = 30$	$T = 40$	$T = 50$	$T = 60$
BERTScore \uparrow	DM	0.5924	0.6221	0.6311	0.6330	0.6371	0.6353	0.6346
	AsynDM	0.5987	0.6280	0.6364	0.6372	0.6402	0.6414	0.6412
CLIPScore \uparrow	DM	0.3111	0.3574	0.3681	0.3672	0.3689	0.3685	0.3691
	AsynDM	0.3260	0.3636	0.3708	0.3699	0.3729	0.3750	0.3752
ImageReward \uparrow	DM	-1.0882	0.0926	0.5801	0.6458	0.7606	0.7543	0.7668
	AsynDM	-0.7556	0.3087	0.6732	0.7561	0.8692	0.9219	0.9123
QwenScore \uparrow	DM	2.8703	4.0750	4.7148	4.7359	4.8992	4.9445	4.9382
	AsynDM	3.3164	4.5718	4.9976	5.0218	5.2859	5.5218	5.3234



1105 Figure 9: Samples generated by AsynDM compared with DM for different denoising steps T . The
1106 base model is SD2.1-512-base.

1107 D.4 STANDARD DEVIATIONS OF QUANTITATIVE RESULTS

1109 Here we provide the standard deviations of the results reported in Table 1, Table 2, Table 4 and
1110 Table 5, as shown in Table 7, Table 8, Table 9 and Table 10 respectively.

1112 E MORE SAMPLES

1113 In this section, we present additional samples generated by AsynDM, alongside those from baseline
1114 methods. Specifically, Figure 10 presents more samples on SD 2.1 across diverse prompts. Figure 11
1115 presents the samples of the ablation studies in Section 5.4. Figure 12 and Figure 13 present the
1116 samples on SDXL and SD 3.5, respectively.

1117 F DECLARATION OF LLM USAGE

1118 In preparing this manuscript, we used the large language model (LLM) as a general-purpose writing
1119 assistant. Specifically, the LLM was employed to (1) check grammar and correctness of the text,
1120 and (2) suggest more natural and fluent wording. When using the LLM, we first wrote an initial

1134 draft of the sentence, and then asked the LLM to check and polish it. The LLM did not contribute to
 1135 research ideas, methods, experiments, or results. The authors take full responsibility for the content
 1136 of this paper.

1138
1139 Table 7: Standard deviations of Table 1.

Prompt Set	Method	BERTScore↑	CLIPScore↑	ImageReward↑	QwenScore↑
Animal Activity	DM	0.0321	0.0391	0.9657	2.6160
	DM _{concave}	0.0323	0.0383	0.9300	2.6090
	Z-Sampling	0.0312	0.0385	0.9179	2.4824
	SEG	0.0333	0.0435	1.0453	2.7407
	S-CFG	0.0330	0.0370	0.9149	2.5524
	CFG++	0.0318	0.0466	1.1062	2.7309
	AsynDM	0.0322	0.0334	0.8611	2.4162
Drawbench	DM	0.0226	0.0354	0.7256	1.9625
	DM _{concave}	0.0234	0.0364	0.7397	2.0889
	Z-Sampling	0.0228	0.0340	0.7208	1.9152
	SEG	0.0243	0.0384	0.7783	2.2053
	S-CFG	0.0237	0.0347	0.7138	1.8801
	CFG++	0.0253	0.0360	0.7828	2.0983
	AsynDM	0.0232	0.0324	0.7045	1.8936
GenEval	DM	0.0238	0.0396	0.8833	2.4434
	DM _{concave}	0.0242	0.0398	0.9051	2.4122
	Z-Sampling	0.0245	0.0397	0.8905	2.4414
	SEG	0.0248	0.0423	0.9348	2.4923
	S-CFG	0.0245	0.0402	0.9012	2.4150
	CFG++	0.0249	0.0427	0.9148	2.3647
	AsynDM	0.0244	0.0383	0.8702	2.3426
MSCOCO	DM	0.0267	0.0291	0.6696	2.1744
	DM _{concave}	0.0266	0.0287	0.6403	2.1839
	Z-Sampling	0.0260	0.0297	0.6771	2.1776
	SEG	0.0262	0.0303	0.6933	2.1959
	S-CFG	0.0268	0.0284	0.6551	2.1360
	CFG++	0.0268	0.0307	0.7182	2.2440
	AsynDM	0.0265	0.0274	0.6323	2.0151

1167
1168 Table 8: Standard deviations of Table 2.

Scheduler	Method	BERTScore↑	CLIPScore↑	ImageReward↑	QwenScore↑
	DM	0.0321	0.0391	0.9657	2.6160
Quadratic	DM _{concave}	0.0323	0.0383	0.9300	2.6090
	AsynDM	0.0322	0.0334	0.8611	2.4162
	+fixed mask	0.0314	0.0385	0.9489	2.5205
Piecewise Linear	DM _{concave}	0.0317	0.0391	0.9282	2.5570
	AsynDM	0.0317	0.0376	0.9394	2.5430
	+fixed mask	0.0319	0.0399	0.9916	2.5752
Exponential	DM _{concave}	0.0320	0.0385	0.9643	2.6149
	AsynDM	0.0320	0.0382	0.9422	2.5430
	+fixed mask	0.0327	0.0400	0.9799	2.5657

1188

1189

Table 9: Standard deviations of Table 4.

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

Table 10: Standard deviations of Table 5.

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Prompt Set	Method	BERTScore↑	CLIPScore↑	ImageReward↑	QwenScore↑
Animal Activity	DM	0.0258	0.0160	0.3061	1.6000
	DM _{concave}	0.0280	0.0159	0.2814	1.5290
	Z-Sampling	0.0272	0.0151	0.2961	1.5937
	SEG	0.0289	0.0175	0.3480	1.5495
	S-CFG	0.0265	0.0159	0.3171	1.6653
	CFG++	0.0293	0.0230	0.5516	1.7666
	AsynDM	0.0268	0.0163	0.3027	1.5785

Prompt Set	Method	BERTScore↑	CLIPScore↑	ImageReward↑	QwenScore↑
Animal Activity	DM	0.0282	0.0205	0.4052	1.4930
	DM _{concave}	0.0289	0.0185	0.3438	1.3569
	SEG	0.0343	0.0252	0.6220	1.4515
	S-CFG	0.0283	0.0175	0.3192	1.3775
	AsynDM	0.0288	0.0198	0.3941	1.3657

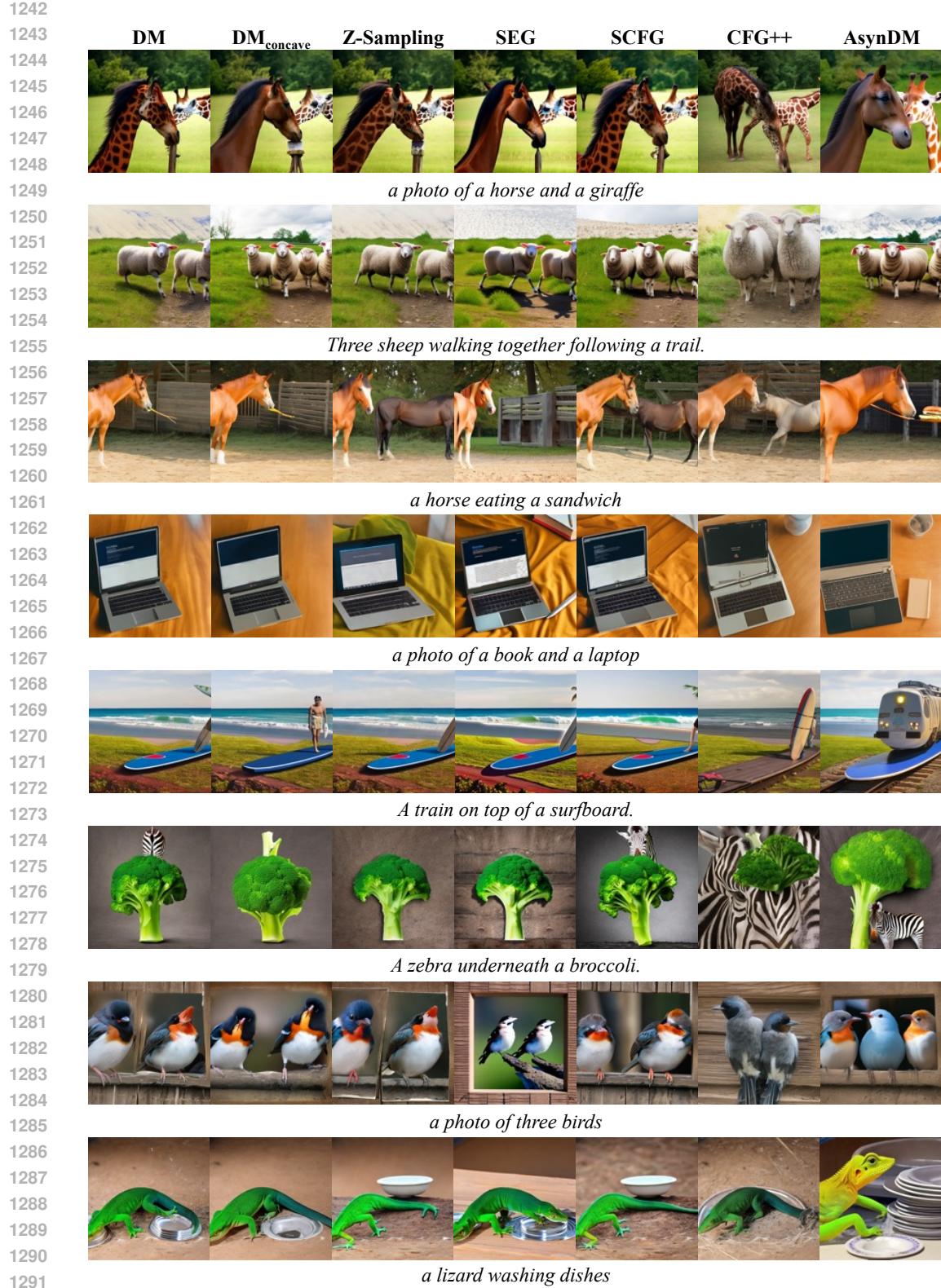


Figure 10: More samples generated by AsynDM compared with baseline methods. The images sampled by AsynDM show higher text-to-image alignment. The base model used to sample these images is SD2.1-512-base.

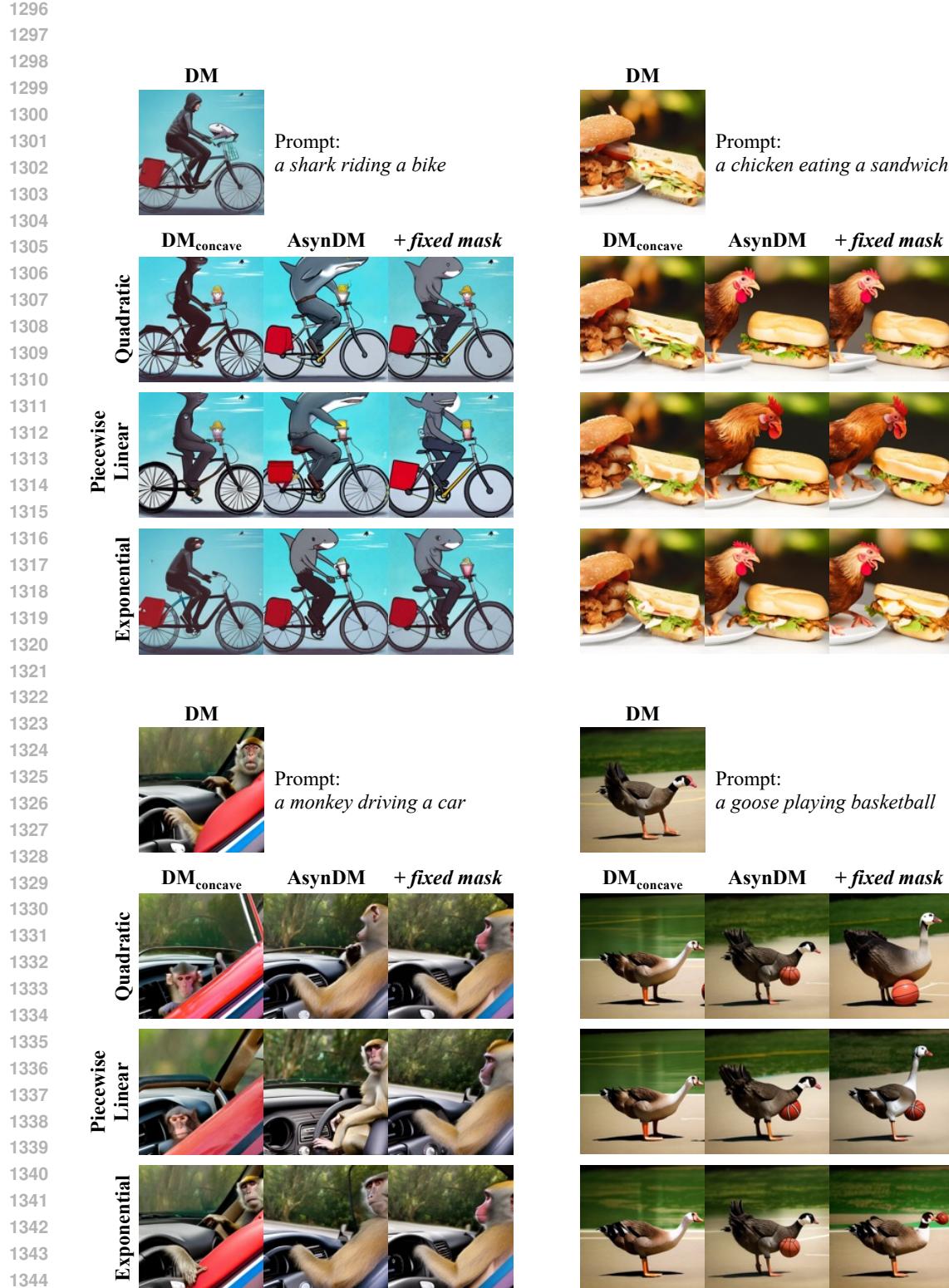


Figure 11: Samples generated by AsynDM when employing different concave schedulers and using fixed masks. The base model used to sample these images is SD2.1-512-base.

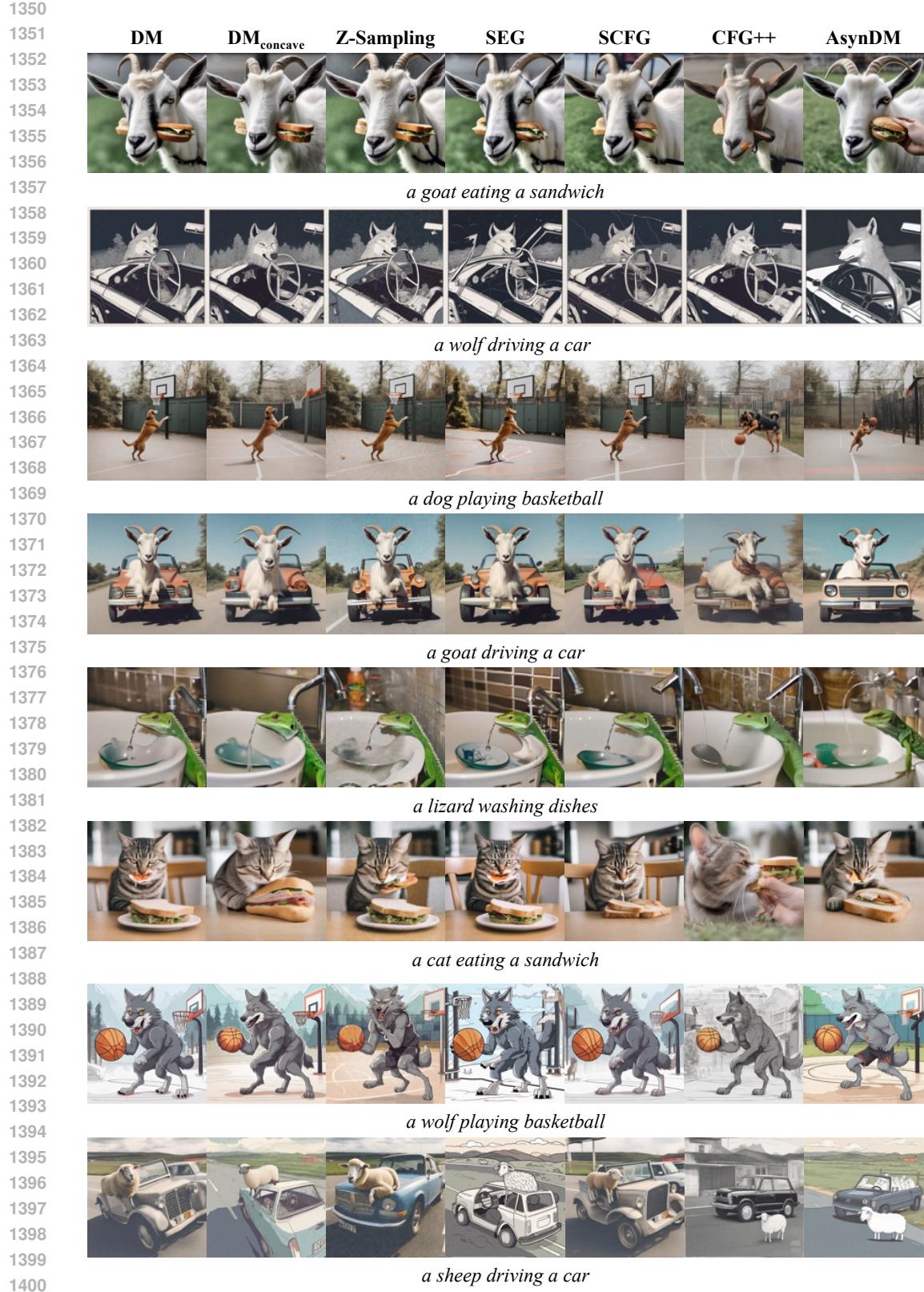


Figure 12: Samples generated by AsynDM compared with baseline methods when using SDXL-base-1.0. The images sampled by AsynDM show higher text-to-image alignment.

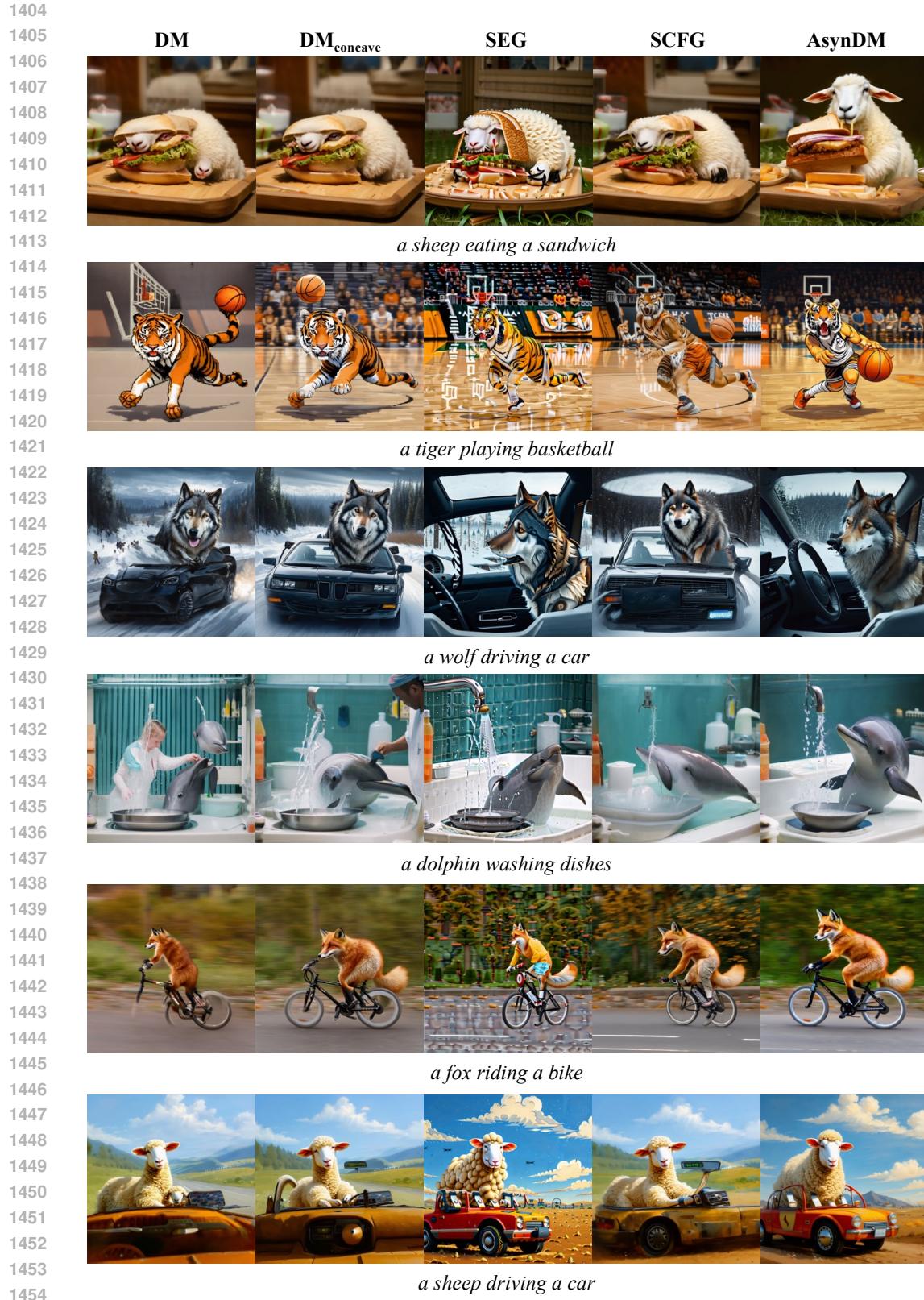


Figure 13: Samples generated by AsynDM compared with baseline methods when using SD3.5-medium. The images sampled by AsynDM show higher text-to-image alignment.