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Abstract

In recent years, language-guided open-world aerial object detection has gained
significant attention due to its better alignment with real-world application needs.
However, due to limited datasets, most existing language-guided methods primar-
ily focus on vocabulary, which fails to meet the demands of more fine-grained
open-world detection. To address this limitation, we propose constructing a large-
scale language-guided open-set aerial detection dataset, encompassing three lev-
els of language guidance: from words to phrases, and ultimately to sentences.
Centered around an open-source large vision-language model and integrating
image-operation-based preprocessing with BERT-based postprocessing, we present
the OS-W2S Label Engine, an automatic annotation pipeline capable of han-
dling diverse scene annotations for aerial images. Using this label engine, we
expand existing aerial detection datasets with rich textual annotations and con-
struct a novel benchmark dataset, called Multi-instance Open-set Aerial Dataset
(MI-OAD), addressing the limitations of current remote sensing grounding data
and enabling effective open-set aerial detection. Specifically, MI-OAD contains
163,023 images and 2 million image-caption pairs, with multiple instances per
caption, approximately 40 times larger than the comparable datasets. We also
employ state-of-the-art open-set methods from the natural image domain, trained
on our proposed dataset, to validate the model’s open-set detection capabilities. For
instance, when trained on our dataset, Grounding DINO achieves improvements
of 31.1 APsg and 34.7 Recall @10 for sentence inputs under zero-shot transfer
conditions. Both the dataset and the Label Engine will be made publicly available.

1 Introduction

Object detection is indispensable for accurately identifying and localizing objects of interest in
aerial imagery [J]. It plays a crucial role in various applications, such as environmental monitoring,
urban planning, and rescue operations [[1} 25/ 34]. Most existing aerial detectors primarily focus on
addressing the inherent challenges of aerial images and are limited to fixed categories and scenarios,
which defines them as closed-set detectors. However, as the demand for more versatile applications
increases, closed-set detectors become inadequate for meeting real-world requirements.

Recently, language-guided open-world object detection has garnered significant attention due to its
alignment with real-world application requirements. Several studies 12, [16} 24} 30] have explored
open-vocabulary aerial detection. CastDet [[12]] employs a multi-teacher architecture that leverages the
superior image-text alignment capabilities inherited from pre-trained VLMs. OVA-Det[24] proposes
a lightly open-vocabulary aerial detector that adopts a text-guided strategy to further enhance image-
text alignment. These methods are constrained by the limited category diversity in aerial detection,
which provides minimal semantic information. Besides, there is an approach that addresses this
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Meeting the Demands of More Fine-Grained Open-World Aerial Detection

Prompt: There is a gray bridge.

Prompt: ship Prompt: A black car.
= = an % 3

Prompt: A big white car with a
black roof is parked on the right
side of the road, adjacent to a
yellow barrier, located in the
middle, far right of the image.

o O b 5:
(b) Open-Vocabulary Aerial Detection (c) Open-Set Aerial Detection (Data from MI-OAD)

Figure 1: (a) Remote-sensing visual grounding focuses on precise object localization, corresponding
to a single instance only, and lacks caption diversity due to its reliance on template-generated captions.
(b) Open-vocabulary aerial detection is constrained by a limited number of aerial categories, which
have only minimal semantic richness. (c) Open-set aerial detection supports multi-level descriptive
detection, ranging from words to phrases, and ultimately to richly detailed sentences.

limitation from the dataset perspective: LAE-DINO [[16] employs VLMs to expand the number of
detectable categories, aiming to increase category diversity and enrich the semantic content of the
detection text. Although these methods effectively equip models with open-vocabulary capabilities to
overcome the category limitations of traditional aerial detectors, their practical applicability remains
constrained by the weak semantic representation of categories, which are typically represented by a
single word. In other words, there is still significant room for optimization.

Compared to the aerial domain, open-set object detection in natural scenes has achieved advancement
significantly [21]]. We note that this is primarily due to the abundance of grounding data available
for natural scenes. For instance, Grounding DINOV1.5 provides robust open-set detection capability
by training on over 20 million grounding samples. In contrast, aerial grounding data is scarce. Only
a few attempts [10} 23] 31]] have been made to construct remote sensing visual grounding (RSVG)
datasets by annotating detection data with captions, yet these datasets suffer from several limitations:
1) Lack of scene diversity: Dataset construction is restricted to images containing no more than five
objects of the same category, to ensure the correct correspondence between captions and instances,
resulting in only simplistic scenes. 2) Limited caption diversity: Captions are generated using fixed
templates, restricting their variability. 3) Single-instance annotation: Current RSVG datasets solely
emphasize precise localization, where each image-caption pair corresponds to a single instance.
Including cases where a vague caption corresponds to multiple instances within an image is critical
for practical applications. 4) Limited Dataset Scale: The largest available dataset comprises only
25,452 images and 48,952 image-caption pairs. These limitations make existing datasets inadequate
for open-set aerial object detection, and the scarcity of large-scale, semantically rich grounding data
remains a major bottleneck in advancing the field.

To bridge this gap, in this paper, we aim to lay the data foundation for open-set aerial object detection.
Specifically, we propose the OS-W2S Label Engine, an automatic annotation pipeline capable of
handling diverse scene annotations for aerial images. It is based on an open-source vision-language
model, image-operate-based preprocessing, and BERT-based postprocessing. Using this label engine,
we construct a novel large-scale benchmark dataset, called MI-OAD, to overcome the limitations of
current RSVG data.
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Key aspects include: ) Scene Diversity: As depicted in Fig.[2] we introduced pre-processing steps
(e.g., extracting foreground and instance regions) and post-processing steps (e.g., matching caption-
instance associations for each image) both before and after interactions with the VLM. This design
enables the pipeline to effectively handle various scenarios aerial images and ensure label quality.
2) Caption Diversity: Leveraging the robust vision-language capabilities of the VLM, we generate
captions with varying levels of detail for each instance based on its attributes, thereby ensuring
caption diversity. 3) Multi-instance annotation: We aim to match varying numbers of instances to
each caption based on its descriptive details during the post-processing steps. This process enables the
generated data to meet diverse requirements in practical applications, accommodating both precise
and approximated localization. 4) Dataset Scale: Using this label engine, we expanded eight widely
used aerial detection datasets, yielding 163,023 images and 2 million image-caption pairs, which is
40 times larger than those available in existing RS grounding datasets.

In summary, our contributions are three-fold: (1)We introduce the OS-W2S Label Engine, an
automatic annotation pipeline that lays the data foundation for open-set aerial object detection
and can be executed on a single workstation equipped with eight RTX4090 GPUs. (2)Using this
engine, we present MI-OAD, the first benchmark for open-set aerial object detection, encompassing
2 million image—caption pairs with multiple instances per caption, annotated at the word-, phrase-,
and sentence-level. (3)We show that training mainstream open-set detectors, originally designed for
natural images, on MI-OAD leads to significant gains in open-set aerial object detection performance.

2 Related Work

2.1 Open-set Object Detection

Open-set object detection, which refers to detecting objects based on arbitrary textual inputs, demon-
strates significant potential due to its close alignment with real-world application needs. Several
studies [3} 11} 13} 120, |29/ 32]] have demonstrated the feasibility of open-set object detection in the
natural image domain. GLIP [11]] established a foundation for open-set detection by integrating
object detection and grounding tasks. Building on this, models such as YOLO-World [3] and the
Grounding DINO series [13} 120l 21] have made significant progress. Notably, Grounding DINO v1.5,
trained on over 20 million images with grounding annotations, demonstrates exceptional open-set
detection performance, underscoring the crucial role of large-scale grounding data.

Compared to the natural image domain, the development of open-set aerial object detection has
lagged behind, primarily due to a lack of sufficient grounding data in aerial contexts. To bridge this
gap, this paper aims to establish a data foundation for open-set aerial object detection.

2.2 Object Detection in Aerial Imagery

Aerial object detection can be bordely divide into two types: closed-set aerial detection and open-
vocabulary aerial detection.

Closed-set aerial detection refers to predicting bounding boxes and corresponding categories for
objects that have been seen during training. Several studies [4, |6 8, [14} 28] have primarily focused
on addressing the inherent challenges of RS images. For instance, models such as UFPMP-Det [6],
ClustDet [28], and DMNet [8]] employ a coarse-to-fine two-stage detection architecture to mitigate
significant background interference and effectively detect tiny, densely distributed objects. However,
these models are constrained by predefined training categories, making them suitable only for specific
scenarios in real-world applications.

Open-vocabulary aerial detection marks a step towards meeting the demands of open-world aerial
detection. It seeks to eliminate the category limitations inherent in closed-set detection by establishing
a relationship between image features and category embeddings, rather than simply linking image
features to category indices. Models such as CastDet [12], DescReg [30], and OVA-Det [24] leverage
the superior image-text alignment capabilities inherited from pre-trained Visual Language Models
(VLMs) to enable open-vocabulary aerial detection capabilities. However, the performance of these
models is constrained by a limited number of categories in aerial detection. Additionally, LAE-DINO
[[L6] aim of addressing this limitation from a dataset perspective. It employs VLMs to expand the
detection category set, thereby increasing category diversity and enriching the semantic content of
the detection text.
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Despite these advancements, current research in open-vocabulary aerial detection remains limited at
the vocabulary level—relying on only a few words that offer scant semantic information. Compared
with the natural image domain, open-set object detection in aerial images still has significant room
for exploration and improvement.

2.3 Visual Grounding in Aerial Imagery

Visual grounding in remote sensing (RSVG) aims to locate objects based on natural language
descriptions. Compared to close-set object detection, which relies on fixed category labels, RSVG can
process arbitrary descriptions to identify corresponding bounding boxes, offering greater flexibility
and suitability for practical applications [10]. However, this flexibility also introduces additional
complexity to the RSVG task. Currently, RSVG remains in its early stages of development, with only
three publicly available datasets: RSVG-H [23]], DIOR-RSVG [31]], and OPT-RSVG [10]. Among
these, RSVG-H comprises 4,239 RS images paired with 7,933 textual descriptions, each providing
precise geographic distances (e.g., “Find a ground track field, located approximately 295 meters
southeast of a baseball field.”). DIOR-RSVG, based on the DIOR dataset [9], makes use of tools
such as HSV and OpenCV to extract instance attributes (e.g., geometric shapes and colors) and
employs predefined templates to generate 38,320 image-caption pairs. Meanwhile, OPT-RSVG
further enriches RSVG scenarios by combining three detection datasets (DIOR, HRRSD [33]], and
SPCD [2]) and follows the annotation process in [31]] to produce 25,452 RS images with 48,952
image-caption pairs.

Nevertheless, compared to the abundance of grounding data for natural images, the number of
available aerial grounding data is extremely limited. This poses a significant barrier for data-
driven open-set detection tasks. We observe that this issue stems from the inherent challenges in
annotating aerial images, which often contain predominantly small objects and substantial background
interference. Moreover, the captions in existing grounding datasets are typically generated through
fixed templates, with each image-caption pair corresponding to a single instance annotation.

To address these limitations and lay the data foundation for open-set aerial object detection, this
paper proposes the OS-W2S label engine and constructs MI-OAD, a large-scale benchmark dataset
for open-set aerial detection tasks.

3 Dataset Construction

3.1 Motivation

In the aerial detection domain, current research primarily focuses on open-vocabulary detection,
aiming to eliminate the limitations imposed by predefined categories. Although these studies have
made notable progress, they remain confined to the vocabulary level, which provides only minimal
semantic information and consequently limits their applicability. Developing open-set aerial detection
is imperative to enable more flexible detection, thereby meeting the rapidly growing demands of
fine-grained, open-world aerial detection. We observe that open-set detection in natural images has
advanced significantly more than in the aerial detection domain. This disparity is primarily due to the
extreme scarcity of aerial grounding data compared to that available for natural images.

To fill this gap, we propose OS-W2S Label Engine, an automatic annotation pipeline capable of
handling diverse scene annotations for aerial images, and construct MI-OAD, a large-scale benchmark
dataset for open-set aerial object detection tasks, thereby laying a robust data foundation for future
research in this area.

3.2 Design of OS-W2S Label Engine

As shown in Fig. 2] the OS-W2S Label Engine consists of the following four components:

Data Collection. We collected eight representative aerial detection datasets [[7, (9, [17, 22} 26} 27, 33|
351, ensuring diverse scenes due to variations in capturing heights and equipment (e.g., satellites and
drones) across different datasets. Due to inconsistencies in image resolution and annotation formats,
we standardized the resolution by cropping high-resolution images and aligning annotation formats.
These processing steps, combined with annotations of instance categories and coordinates inherent to
detection tasks, establish a robust foundation for the subsequent annotation pipeline.
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Figure 2: The pipeline of the proposed OS-W2S Label Engine. The labeling process includes
four major components: Data Collection, Data Preprocessing, Instance-Level Sentence Caption
Generation, and Data Postprocessing. Each aerial image undergoes a comprehensive annotation
process involving attribute extraction, caption generation with varying detail levels using a VLM, and
precise matching of caption-instance associations based on attribute similarity.

Data Preprocessing. Data preprocessing aims to simplify complex aerial images, enabling VLMs
to effectively focus on relevant regions. Specifically, we process images to extract three critical
components: instance regions, foreground regions, and partial instance attributes. (1) Instance
regions: These are easily obtained by cropping sub-images based on the coordinates provided in
the detection annotations. (2) Foreground regions: Given the dense distribution of instances and
the large proportion of background in aerial imagery, we apply a foreground-extraction algorithm
to isolate object regions. Specifically, we compute the maximum enclosing rectangle of the object
bounding boxes to isolate multiple object clusters within each image. (3) Partial Instance Attributes:
Inspired by previous approaches [[15,131]], we leverage instance attributes as components to generate
diverse captions. We focus on six primary attributes: category, size, color, geometric shape, relative
position, and absolute position. While the category is predefined, size and absolute position attributes
are determined based on manual rules due to their inherent subjective nature and spatial complexity.
Specifically, size attributes are classified according to predefined thresholds, and absolute positions
are categorized into 25 labeled regions (e.g., Left-Top, Far Right-Bottom). The remaining attributes
are dynamically generated by the VLM based on image content during the annotation process.

Instance-Level Sentence Caption Generation. This step aims to interact with the VLM to generate
three sentence captions with varying levels of detail and additional instance attributes for each
instance. To achieve an optimal balance between annotation fidelity and computational efficiency,
we employ the InternVL-2.5-38B-AWQ model, which can be executed on a single workstation
equipped with eight RTX4090 GPUs. This benefits from the proposed OS-W2S Label engine, which
enables high-quality caption annotation to be acquired without dependence on excessively large-scale
models. The interaction with the VLM for each instance can be structured into four rounds: (1)
Introduction of the overall annotation workflow to the VLM. (2) Providing the instance-specific
region image along with known attributes such as instance category and size, prompting the VLM
to infer additional attributes (color, geometric) and subsequently generate an initial self-descriptive
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caption. (3) Presentation of the foreground region image corresponding to the instance, enabling
the VLM to extract the relative positional attribute based on the surrounding context and extend the
previous caption with the relative positional attribute. (4) Provision of the absolute position attribute
to the VLM, prompting it to integrate this information into the existing caption, thus generating
a comprehensive caption reflecting the absolute spatial context. To ensure consistent and precise
VLM outputs, each interaction is regulated through structured JSON templates. Consequently, each
instance is annotated with three distinct sentence captions with different levels of descriptive detail,
supplemented by a set of six attributes.

Data Postprocessing. Based on the attributes obtained from previous steps, we generate three phrase-
level captions per instance using combinations of category, color, and size attributes, resulting in six
unique captions per instance. However, due to instance similarities, captions with fewer attributes
often correspond to multiple instances. Leveraging attribute-based captions and the recorded attribute
information for each instance, we effectively establish caption-instance associations by comparing
the attribute similarity between captions and instances. The attribute similarity is computed using
Sentence-BERT [19].
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Figure 3: Statistical analysis and visualization of the MI-OAD dataset. (a) The number of distinct
expressions per attribute, highlighting attribute diversity. (b) Distribution of caption types, empha-
sizing that the caption types are evenly distributed. (c) Distribution of caption lengths, reflecting
semantic richness. (d) Distribution of instances per caption, indicating that captions correspond to
both single-instance and multi-instance cases. (e) Word cloud visualization of categories directly
sourced from the collected detection datasets. (f)-(h) Word cloud visualizations illustrating diverse
semantic expressions for color, geometry, and relative position attributes generated by the VLM.

3.3 MI-OAD Dataset

Using the OS-W2S Label Engine, we created a large-scale, multi-instance dataset for open-set
aerial object detection. This dataset comprises 163,023 images and 2 million image-caption pairs,
encompassing three levels of language guidance: vocabulary-level, phrase-level, and sentence-level.
The average caption length is 10.61 words, providing rich semantic information. Benefiting from the
design of the OS-W2S Label Engine, the MI-OAD dataset effectively addresses the limitations of the
existing RSVG dataset and establishes the first benchmark dataset for open-set aerial object detection.

Scene Diversity: We made two efforts to ensure scene diversity. First, we collected data from
eight detection datasets, which include images taken from various altitudes and viewpoints using
drones and satellites. Second, we generated multiple types of captions and performed both data
preprocessing and postprocessing to ensure the quality of captions for complex scenes. As a result,
there is no need to filter out complex scenes based on an upper limit on instance count.

Caption Diversity: Each caption is generated based on the attributes of instances. To ensure
comprehensive coverage, we defined three sentence caption types and three phrase caption types,
each varying in detail based on attribute combinations. The sentence captions provide detailed
instance descriptions suitable for precise localization. Specifically, self sentence captions describe the
category, size, color, and geometric attributes of instances. By adding relative positional information,
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we obtain relative sentence captions, and by incorporating absolute positional information, we
form absolute sentence captions. Additionally, three types of phrase captions constructed from
combinations of category, color, and size attributes were created to support approximate localization.

Fig[3b] illustrates the distribution of caption types, highlighting that after applying the sampling
strategy described in Sectionf4.1] the caption types are evenly distributed. Fig[3apresents the number
of distinct expressions for each attribute, highlighting the rich diversity in attributes (relative location,
color, and geometry) generated by the VLM. To visually demonstrate the quality of these VLM-
generated attributes, we conducted a word cloud analysis as shown in Fig[3[f)-(h). Notably, the
geometry attribute extends beyond basic shapes to include descriptive components (e.g., “a cylindrical
tower with three blades"). Furthermore, we analyzed the distribution of caption lengths to illustrate
the richness of descriptions, as depicted in Fig[3| Collectively, these analyses underscore the caption
diversity within our dataset.

Multi-instance Annotation: To better align with real-world applications requiring both precise and
approximate localization, each caption corresponds to all relevant instances in the image matching
the description, encompassing both single-instance and multi-instance cases. We construct caption-
instance associations by comparing the attributes of captions and instances. As shown in Fig.
66.2% of captions correspond to a single instance, demonstrating that the generated captions effec-
tively support precise localization even in complex scenes. The remaining captions, which involve
multiple instances, fulfill the requirements for approximated localization.

Dataset Scale: The OS-W2S Label Engine is capable of generating high-quality caption annotations
for each instance, and the aerial detection dataset contains numerous instance annotations. These
conditions enable us to establish a large-scale dataset for open-set aerial detection. Finally, we
constructed the MI-OAD dataset, which contains 163,023 images and 2 million image-caption pairs,
making it 40 times larger than the existing RSVG dataset.

3.4 Quality Control Analysis

To guarantee the reliability of the captions generated by the OS-W2S Label Engine, we employ a
three-tier quality-assurance pipeline:

* Authoritative data sources. We start from widely used aerial detection datasets whose
bounding boxes and category labels have been manually verified. These well-curated
sources let us inherit precise instance locations and trustworthy class information, forming a
solid basis for caption generation.

* Rule-based constraints. For every instance we extract six attributes. Category, size, and
absolute location are deterministically derived from the detection annotations. Color and
geometric shape are inferred by the VLM that receives an instance-centered crop, ensuring
the model attends exclusively to the target. The relative position attribute is obtained by
supplying the VLM with a foreground region corresponding to the instance. This targeted
zoom-in operation explicitly guides the VLM’s attention and thus improves caption quality.
We further enforce syntactic correctness through regular-expression filtering, ultimately
producing three sentence-level and three phrase-level captions per instance—each with high
linguistic quality.

» Two-stage manual verification. Stage 1: We randomly sampled 1,000 images and asked
five senior experts to assess each instance and its corresponding caption. 95% were deemed
correct, and the remaining discrepancies were mainly color mismatches caused by illumi-
nation changes or motion blur. Stage 2: To ensure balanced category representation, we
grouped the MI-OAD validation image—caption pairs by category and manually selected
10,000 high-quality pairs (approximately 100 per category) to construct the MI-OAD test
set. This careful manual filtering guarantees that MI-OAD is a dependable benchmark.

4 Experiments

In this section, we explore three key questions: 1) How can we effectively leverage the MI-OAD
dataset? 2) How can we equip existing models with capabilities for open-set aerial detection? 3) How
can we evaluate the open-set aerial detection capabilities of models at the word, phrase, and sentence
levels? Additional experiments and implementation details are provided in the supplemental material.
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4.1 MI-OAD Dataset Split and Sample

Base and Novel Classes Split. We designate 75 classes as Base and 25 classes as Novel. The class
division is based on clustering the class semantic embeddings and selecting one class from each pair
of leaf nodes in the clustering tree [30]. This assignment of novel classes ensures that the dataset can
effectively evaluate zero-shot transfer capabilities.

Data Split. To fully exploit the available data while preserving the original splits of each detection
dataset, we merge the train and test splits of all eight constituent datasets. Images containing only base
categories form the pre-training set (P-Set), whereas the entire merged pool serves as the fine-tuning
set (FT-Set). The validation splits are processed analogously: images that include at least one novel
category (with only their novel annotations retained) constitute Val-ZSD, and the complete merged
validation pool is denoted Val-FT. We use P-Set together with Val-ZSD to assess zero-shot transfer,
while models fine-tuned on FT-Set are evaluated on Val-FT to benchmark conventional detection and
grounding performance.

Sampling Strategy and Experimental Data Statistics. Considering the large scale of the dataset,
the substantial computational resources required, and recognizing this as the first work focused on
open-set aerial object detection, we conducted caption sampling post-annotation. Specifically, for
each image, we categorized captions by type and then sampled one caption per type category to form
image-caption pairs, ensuring dataset diversity and annotation quality. Consequently, the MI-OAD
dataset comprises approximately 2 million image-caption pairs and 163,023 detection annotations.
Specifically, The P-Set comprises 0.56M image—caption pairs and 68,243 detection annotations. The
FT-Set include 1.40M pairs and 128 019 annotations. For validation: Val-ZSD provides about 0.12M
pairs and 16,992 detection annotations for zero-shot evaluation, whereas Val-FT contains roughly
0.38M pairs and 35,004 annotations for conventional assessment.

4.2 Training Strategy

Most open-set detectors for natural images adopt the grounding data format introduced in [[18]: each
sample consists of an image—caption pair plus instance annotations, and a single image-level caption
contains multiple noun phrases, each aligned with a distinct object. In aerial scenes, however, objects
are densely packed and backgrounds are highly cluttered, making it infeasible to craft a caption that
is both comprehensive and unambiguous for every instance.

To address this mismatch, we redefine the grounding format for aerial images. For each image we
provide a set of instance-level captions; each caption describes one specific object (or a homogeneous
group of objects) and is stored together with its bounding box. These fine-grained captions therefore
extend the traditional notion of a category label with richer textual semantics.

Under this design we unify grounding and detection: the grounding task is recast as a detection task
in which the instance-level caption replaces the corresponding class label. Consequently, the model
learns open-set aerial detection while integrating linguistic cues, achieving a seamless combination
of visual localization and textual classification.

4.3 Evaluation Details

To comprehensively evaluate open-set detection capability, we propose three evaluation protocols
simulating real-world scenarios: vocabulary-level detection, phrase-level grounding, and sentence-
level grounding, each corresponding to varying levels of detail in natural language input (vocabulary,
phrase, and sentence). Additionally, we define three evaluation setups to assess detection performance
under different constraints: zero-shot transfer to novel classes without domain adaptation, zero-shot
transfer to novel classes with domain adaptation, and fine-tuned evaluation. The primary distinction
between the first two setups is the use of the MI-OAD P-Set for domain adaptation of detectors
originally designed for natural images.

4.4 Open-set Aerial Object Detection Results

From Table [I] we evaluate the open-set aerial detection capabilities of two representative
approaches—Yolo-World (YOLOvVS8-L) and Grounding DINO (Swin-T)—across three different
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AP;p R@100| APy R@1 R@10 R@100|AP;p R@1 R@10 R@100
Zero-shot transfer with novel classes (w/o domain adaptive).

Yolo-World [3]] 32 371 | 38 6.8 250 344 | 14 43 169 246
Grounding DINO [13]| 40 49.6 | 92 10.7 351 504 | 52 103 338 429
Zero-shot transfer with novel classes (w/ domain adaptive).

Method

Yolo-World 53 30.6 | 180 183 435 559 |159 19.1 449 57.1
Grounding DINO 98 698 [32.1 24.1 609 809 |363 351 685 827
Fine-tuned.

Yolo-World 39.6 58.0 |51.6 329 699 864 |[47.6 36.1 71.1 869

Grounding DINO | 37.1 70.1 |57.8 352 744 915 |564 44.1 78.0 903

Table 1: Performance comparison of representative methods on the MI-OAD dataset across different
open-set evaluation tasks (vocabulary-level detection, phrase-level grounding, and sentence-level
grounding). The evaluation setups differ as follows: zero-shot transfer w/ or w/o domain adaptation
indicates whether the model was trained on the MI-OAD P-Set for domain adaptation, while fine-
tuned conditions represent models trained on the FT-Set of MI-OAD.

evaluation scenarios. Both methods are evaluated on detection, phrase-level grounding, and sentence-
level grounding, reflecting different levels of granularity in open-set detection tasks.

Zero-shot Transfer (w/o Domain Adaptation). When directly applying models trained on natural-
image data to the MI-OAD V-Set, performance is notably limited. For instance, Yolo-World achieves
a mere 1.4% APs( under sentence-level prompts. Grounding DINO performs slightly better (5.2%
APsp), yet both methods exhibit substantial performance gaps, demonstrating the unique challenges
posed by open-set aerial object detection. Zero-shot Transfer (w/ Domain Adaptation). Introducing
domain adaptation for these models by training on the MI-OAD P-Set results in considerable
performance improvements for both methods. For example, Grounding DINO’s detection A Psq
improve from 4.0% to 9.8%, while its sentence-level grounding A Ps increases by 31.1%. These
results underscore the effectiveness of our proposed dataset. Fine-tuning. After fine-tuning on the
FT-Set, both models achieve superior results. Grounding DINO achieves outstanding performance,
obtaining A Psq values of 37.1% for detection, 57.8% for phrase grounding, and 56.4% for sentence
grounding. These results demonstrate that the MI-OAD dataset provides an effective basis for
advancing open-set aerial object detection and further confirm the importance of large-scale grounding
data with rich textual annotations.

5 Conclusion

In this paper, we propose the OS-W2S Label Engine, which addresses the scarcity of rich textual
grounding data in the aerial domain and establishes a robust data foundation for open-set aerial
detection. Using this pipeline, we introduce the MI-OAD, the first benchmark dataset for open-
set aerial detection. MI-OAD contains 163,023 images and 2.0 million image—caption pairs, with
captions at the word, phrase, and sentence levels. We demonstrate that training existing open-set
detectors on MI-OAD enables open-set aerial detection and improves performance across different
caption levels. Our OS-W2S Label Engine and MI-OAD aim to benefit the research community and
foster future advancements in open-set aerial detection.

6 Limitation and Broader impacts

The OS-W2S Label Engine and MI-OAD provide foundational resources to advance aerial object
detection research, which can significantly benefit practical applications such as environmental
monitoring and urban development planning. While these resources offer numerous advantages,
we acknowledge two main limitations. (1) Even with rules to mitigate hallucinations from VLMs,
the small sizes of aerial instances and occasional low-quality imagery can still lead to imprecise
descriptions. (2) Our captions are constructed using only six fundamental attributes, constraining
the range of details they can convey. By pointing out these limitations, we aim to stimulate future
research towards generating richer and more precise captions for aerial imagery.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Refer to the Abstract.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Refer to the Section 6.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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503 Justification: This is a benchmark work, including data sets and evaluation methods, but no
504 mathematical theory derivation.

505 Guidelines:

506 * The answer NA means that the paper does not include theoretical results.

507  All the theorems, formulas, and proofs in the paper should be numbered and cross-
508 referenced.

509 * All assumptions should be clearly stated or referenced in the statement of any theorems.
510 * The proofs can either appear in the main paper or the supplemental material, but if
511 they appear in the supplemental material, the authors are encouraged to provide a short
512 proof sketch to provide intuition.

513 * Inversely, any informal proof provided in the core of the paper should be complemented
514 by formal proofs provided in appendix or supplemental material.

515 * Theorems and Lemmas that the proof relies upon should be properly referenced.

516 4. Experimental result reproducibility

517 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
518 perimental results of the paper to the extent that it affects the main claims and/or conclusions
519 of the paper (regardless of whether the code and data are provided or not)?

520 Answer: [Yes]

521 Justification: The dataset, code and model weights will be released publicly. Detailed
522 experimental settings are provided in the supplemental material.

523 Guidelines:

524 * The answer NA means that the paper does not include experiments.

525 * If the paper includes experiments, a No answer to this question will not be perceived
526 well by the reviewers: Making the paper reproducible is important, regardless of
527 whether the code and data are provided or not.

528 * If the contribution is a dataset and/or model, the authors should describe the steps taken
529 to make their results reproducible or verifiable.

530 * Depending on the contribution, reproducibility can be accomplished in various ways.
531 For example, if the contribution is a novel architecture, describing the architecture fully
532 might suffice, or if the contribution is a specific model and empirical evaluation, it may
533 be necessary to either make it possible for others to replicate the model with the same
534 dataset, or provide access to the model. In general. releasing code and data is often
535 one good way to accomplish this, but reproducibility can also be provided via detailed
536 instructions for how to replicate the results, access to a hosted model (e.g., in the case
537 of a large language model), releasing of a model checkpoint, or other means that are
538 appropriate to the research performed.

539 * While NeurIPS does not require releasing code, the conference does require all submis-
540 sions to provide some reasonable avenue for reproducibility, which may depend on the
541 nature of the contribution. For example

542 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
543 to reproduce that algorithm.

544 (b) If the contribution is primarily a new model architecture, the paper should describe
545 the architecture clearly and fully.

546 (c) If the contribution is a new model (e.g., a large language model), then there should
547 either be a way to access this model for reproducing the results or a way to reproduce
548 the model (e.g., with an open-source dataset or instructions for how to construct
549 the dataset).

550 (d) We recognize that reproducibility may be tricky in some cases, in which case
551 authors are welcome to describe the particular way they provide for reproducibility.
552 In the case of closed-source models, it may be that access to the model is limited in
553 some way (e.g., to registered users), but it should be possible for other researchers
554 to have some path to reproducing or verifying the results.

555 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The dataset, code will be released publicly.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Refer to the Section 4. The full details can be provided with the code and
supplemental material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Sections 3.3 provides the statistical of MI-OAD. Section 4.4 provide the
experimental results support the main claim of this paper. Supplemental material provides
the more training details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Refer to the supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Refer to Section6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: The paper does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited the creators or original owners of assets used in the
paper and we use the license CC-BY 4.0.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: All new assets introduced in this paper will be well documented.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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760 * We recognize that the procedures for this may vary significantly between institutions

761 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
762 guidelines for their institution.

763 * For initial submissions, do not include any information that would break anonymity (if
764 applicable), such as the institution conducting the review.

765 16. Declaration of LLM usage

766 Question: Does the paper describe the usage of LLMs if it is an important, original, or
767 non-standard component of the core methods in this research? Note that if the LLM is used
768 only for writing, editing, or formatting purposes and does not impact the core methodology,
769 scientific rigorousness, or originality of the research, declaration is not required.

770 Answer: [Yes]

771 Justification: Refer to Model-assisted annotation part in Section 3.2.

772 Guidelines:

773 * The answer NA means that the core method development in this research does not
774 involve LLMs as any important, original, or non-standard components.

775 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
776 for what should or should not be described.
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