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Abstract

In recent years, language-guided open-world aerial object detection has gained1

significant attention due to its better alignment with real-world application needs.2

However, due to limited datasets, most existing language-guided methods primar-3

ily focus on vocabulary, which fails to meet the demands of more fine-grained4

open-world detection. To address this limitation, we propose constructing a large-5

scale language-guided open-set aerial detection dataset, encompassing three lev-6

els of language guidance: from words to phrases, and ultimately to sentences.7

Centered around an open-source large vision-language model and integrating8

image-operation-based preprocessing with BERT-based postprocessing, we present9

the OS-W2S Label Engine, an automatic annotation pipeline capable of han-10

dling diverse scene annotations for aerial images. Using this label engine, we11

expand existing aerial detection datasets with rich textual annotations and con-12

struct a novel benchmark dataset, called Multi-instance Open-set Aerial Dataset13

(MI-OAD), addressing the limitations of current remote sensing grounding data14

and enabling effective open-set aerial detection. Specifically, MI-OAD contains15

163,023 images and 2 million image-caption pairs, with multiple instances per16

caption, approximately 40 times larger than the comparable datasets. We also17

employ state-of-the-art open-set methods from the natural image domain, trained18

on our proposed dataset, to validate the model’s open-set detection capabilities. For19

instance, when trained on our dataset, Grounding DINO achieves improvements20

of 31.1 AP50 and 34.7 Recall@10 for sentence inputs under zero-shot transfer21

conditions. Both the dataset and the Label Engine will be made publicly available.22

1 Introduction23

Object detection is indispensable for accurately identifying and localizing objects of interest in24

aerial imagery [5]. It plays a crucial role in various applications, such as environmental monitoring,25

urban planning, and rescue operations [1, 25, 34]. Most existing aerial detectors primarily focus on26

addressing the inherent challenges of aerial images and are limited to fixed categories and scenarios,27

which defines them as closed-set detectors. However, as the demand for more versatile applications28

increases, closed-set detectors become inadequate for meeting real-world requirements.29

Recently, language-guided open-world object detection has garnered significant attention due to its30

alignment with real-world application requirements. Several studies [12, 16, 24, 30] have explored31

open-vocabulary aerial detection. CastDet [12] employs a multi-teacher architecture that leverages the32

superior image-text alignment capabilities inherited from pre-trained VLMs. OVA-Det[24] proposes33

a lightly open-vocabulary aerial detector that adopts a text-guided strategy to further enhance image-34

text alignment. These methods are constrained by the limited category diversity in aerial detection,35

which provides minimal semantic information. Besides, there is an approach that addresses this36
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Prompt: motor

(b) Open-Vocabulary Aerial Detection

Prompt: There is a gray bridge.

(a) Remote Sensing Visual Grounding

(c) Open-Set Aerial Detection (Data from MI-OAD)

Prompt: ship

Prompt: A big white car with a 

black roof is parked on the right 

side of the road, adjacent to a 

yellow barrier, located in the 

middle, far right of the image.

Prompt: A black car.

Meeting the Demands of More Fine-Grained Open-World Aerial Detection

Figure 1: (a) Remote-sensing visual grounding focuses on precise object localization, corresponding
to a single instance only, and lacks caption diversity due to its reliance on template-generated captions.
(b) Open-vocabulary aerial detection is constrained by a limited number of aerial categories, which
have only minimal semantic richness. (c) Open-set aerial detection supports multi-level descriptive
detection, ranging from words to phrases, and ultimately to richly detailed sentences.

limitation from the dataset perspective: LAE-DINO [16] employs VLMs to expand the number of37

detectable categories, aiming to increase category diversity and enrich the semantic content of the38

detection text. Although these methods effectively equip models with open-vocabulary capabilities to39

overcome the category limitations of traditional aerial detectors, their practical applicability remains40

constrained by the weak semantic representation of categories, which are typically represented by a41

single word. In other words, there is still significant room for optimization.42

Compared to the aerial domain, open-set object detection in natural scenes has achieved advancement43

significantly [13, 21]. We note that this is primarily due to the abundance of grounding data available44

for natural scenes. For instance, Grounding DINOv1.5 provides robust open-set detection capability45

by training on over 20 million grounding samples. In contrast, aerial grounding data is scarce. Only46

a few attempts [10, 23, 31] have been made to construct remote sensing visual grounding (RSVG)47

datasets by annotating detection data with captions, yet these datasets suffer from several limitations:48

1) Lack of scene diversity: Dataset construction is restricted to images containing no more than five49

objects of the same category, to ensure the correct correspondence between captions and instances,50

resulting in only simplistic scenes. 2) Limited caption diversity: Captions are generated using fixed51

templates, restricting their variability. 3) Single-instance annotation: Current RSVG datasets solely52

emphasize precise localization, where each image-caption pair corresponds to a single instance.53

Including cases where a vague caption corresponds to multiple instances within an image is critical54

for practical applications. 4) Limited Dataset Scale: The largest available dataset comprises only55

25,452 images and 48,952 image-caption pairs. These limitations make existing datasets inadequate56

for open-set aerial object detection, and the scarcity of large-scale, semantically rich grounding data57

remains a major bottleneck in advancing the field.58

To bridge this gap, in this paper, we aim to lay the data foundation for open-set aerial object detection.59

Specifically, we propose the OS-W2S Label Engine, an automatic annotation pipeline capable of60

handling diverse scene annotations for aerial images. It is based on an open-source vision-language61

model, image-operate-based preprocessing, and BERT-based postprocessing. Using this label engine,62

we construct a novel large-scale benchmark dataset, called MI-OAD, to overcome the limitations of63

current RSVG data.64
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Key aspects include: 1) Scene Diversity: As depicted in Fig. 2, we introduced pre-processing steps65

(e.g., extracting foreground and instance regions) and post-processing steps (e.g., matching caption-66

instance associations for each image) both before and after interactions with the VLM. This design67

enables the pipeline to effectively handle various scenarios aerial images and ensure label quality.68

2) Caption Diversity: Leveraging the robust vision-language capabilities of the VLM, we generate69

captions with varying levels of detail for each instance based on its attributes, thereby ensuring70

caption diversity. 3) Multi-instance annotation: We aim to match varying numbers of instances to71

each caption based on its descriptive details during the post-processing steps. This process enables the72

generated data to meet diverse requirements in practical applications, accommodating both precise73

and approximated localization. 4) Dataset Scale: Using this label engine, we expanded eight widely74

used aerial detection datasets, yielding 163,023 images and 2 million image-caption pairs, which is75

40 times larger than those available in existing RS grounding datasets.76

In summary, our contributions are three-fold: (1)We introduce the OS-W2S Label Engine, an77

automatic annotation pipeline that lays the data foundation for open-set aerial object detection78

and can be executed on a single workstation equipped with eight RTX4090 GPUs. (2)Using this79

engine, we present MI-OAD, the first benchmark for open-set aerial object detection, encompassing80

2 million image–caption pairs with multiple instances per caption, annotated at the word-, phrase-,81

and sentence-level. (3)We show that training mainstream open-set detectors, originally designed for82

natural images, on MI-OAD leads to significant gains in open-set aerial object detection performance.83

2 Related Work84

2.1 Open-set Object Detection85

Open-set object detection, which refers to detecting objects based on arbitrary textual inputs, demon-86

strates significant potential due to its close alignment with real-world application needs. Several87

studies [3, 11, 13, 20, 29, 32] have demonstrated the feasibility of open-set object detection in the88

natural image domain. GLIP [11] established a foundation for open-set detection by integrating89

object detection and grounding tasks. Building on this, models such as YOLO-World [3] and the90

Grounding DINO series [13, 20, 21] have made significant progress. Notably, Grounding DINO v1.5,91

trained on over 20 million images with grounding annotations, demonstrates exceptional open-set92

detection performance, underscoring the crucial role of large-scale grounding data.93

Compared to the natural image domain, the development of open-set aerial object detection has94

lagged behind, primarily due to a lack of sufficient grounding data in aerial contexts. To bridge this95

gap, this paper aims to establish a data foundation for open-set aerial object detection.96

2.2 Object Detection in Aerial Imagery97

Aerial object detection can be bordely divide into two types: closed-set aerial detection and open-98

vocabulary aerial detection.99

Closed-set aerial detection refers to predicting bounding boxes and corresponding categories for100

objects that have been seen during training. Several studies [4, 6, 8, 14, 28] have primarily focused101

on addressing the inherent challenges of RS images. For instance, models such as UFPMP-Det [6],102

ClustDet [28], and DMNet [8] employ a coarse-to-fine two-stage detection architecture to mitigate103

significant background interference and effectively detect tiny, densely distributed objects. However,104

these models are constrained by predefined training categories, making them suitable only for specific105

scenarios in real-world applications.106

Open-vocabulary aerial detection marks a step towards meeting the demands of open-world aerial107

detection. It seeks to eliminate the category limitations inherent in closed-set detection by establishing108

a relationship between image features and category embeddings, rather than simply linking image109

features to category indices. Models such as CastDet [12], DescReg [30], and OVA-Det [24] leverage110

the superior image-text alignment capabilities inherited from pre-trained Visual Language Models111

(VLMs) to enable open-vocabulary aerial detection capabilities. However, the performance of these112

models is constrained by a limited number of categories in aerial detection. Additionally, LAE-DINO113

[16] aim of addressing this limitation from a dataset perspective. It employs VLMs to expand the114

detection category set, thereby increasing category diversity and enriching the semantic content of115

the detection text.116

3



Despite these advancements, current research in open-vocabulary aerial detection remains limited at117

the vocabulary level—relying on only a few words that offer scant semantic information. Compared118

with the natural image domain, open-set object detection in aerial images still has significant room119

for exploration and improvement.120

2.3 Visual Grounding in Aerial Imagery121

Visual grounding in remote sensing (RSVG) aims to locate objects based on natural language122

descriptions. Compared to close-set object detection, which relies on fixed category labels, RSVG can123

process arbitrary descriptions to identify corresponding bounding boxes, offering greater flexibility124

and suitability for practical applications [10]. However, this flexibility also introduces additional125

complexity to the RSVG task. Currently, RSVG remains in its early stages of development, with only126

three publicly available datasets: RSVG-H [23], DIOR-RSVG [31], and OPT-RSVG [10]. Among127

these, RSVG-H comprises 4,239 RS images paired with 7,933 textual descriptions, each providing128

precise geographic distances (e.g., “Find a ground track field, located approximately 295 meters129

southeast of a baseball field.”). DIOR-RSVG, based on the DIOR dataset [9], makes use of tools130

such as HSV and OpenCV to extract instance attributes (e.g., geometric shapes and colors) and131

employs predefined templates to generate 38,320 image-caption pairs. Meanwhile, OPT-RSVG132

further enriches RSVG scenarios by combining three detection datasets (DIOR, HRRSD [33], and133

SPCD [2]) and follows the annotation process in [31] to produce 25,452 RS images with 48,952134

image-caption pairs.135

Nevertheless, compared to the abundance of grounding data for natural images, the number of136

available aerial grounding data is extremely limited. This poses a significant barrier for data-137

driven open-set detection tasks. We observe that this issue stems from the inherent challenges in138

annotating aerial images, which often contain predominantly small objects and substantial background139

interference. Moreover, the captions in existing grounding datasets are typically generated through140

fixed templates, with each image-caption pair corresponding to a single instance annotation.141

To address these limitations and lay the data foundation for open-set aerial object detection, this142

paper proposes the OS-W2S label engine and constructs MI-OAD, a large-scale benchmark dataset143

for open-set aerial detection tasks.144

3 Dataset Construction145

3.1 Motivation146

In the aerial detection domain, current research primarily focuses on open-vocabulary detection,147

aiming to eliminate the limitations imposed by predefined categories. Although these studies have148

made notable progress, they remain confined to the vocabulary level, which provides only minimal149

semantic information and consequently limits their applicability. Developing open-set aerial detection150

is imperative to enable more flexible detection, thereby meeting the rapidly growing demands of151

fine-grained, open-world aerial detection. We observe that open-set detection in natural images has152

advanced significantly more than in the aerial detection domain. This disparity is primarily due to the153

extreme scarcity of aerial grounding data compared to that available for natural images.154

To fill this gap, we propose OS-W2S Label Engine, an automatic annotation pipeline capable of155

handling diverse scene annotations for aerial images, and construct MI-OAD, a large-scale benchmark156

dataset for open-set aerial object detection tasks, thereby laying a robust data foundation for future157

research in this area.158

3.2 Design of OS-W2S Label Engine159

As shown in Fig. 2, the OS-W2S Label Engine consists of the following four components:160

Data Collection. We collected eight representative aerial detection datasets [7, 9, 17, 22, 26, 27, 33,161

35], ensuring diverse scenes due to variations in capturing heights and equipment (e.g., satellites and162

drones) across different datasets. Due to inconsistencies in image resolution and annotation formats,163

we standardized the resolution by cropping high-resolution images and aligning annotation formats.164

These processing steps, combined with annotations of instance categories and coordinates inherent to165

detection tasks, establish a robust foundation for the subsequent annotation pipeline.166
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Figure 2: The pipeline of the proposed OS-W2S Label Engine. The labeling process includes
four major components: Data Collection, Data Preprocessing, Instance-Level Sentence Caption
Generation, and Data Postprocessing. Each aerial image undergoes a comprehensive annotation
process involving attribute extraction, caption generation with varying detail levels using a VLM, and
precise matching of caption-instance associations based on attribute similarity.

Data Preprocessing. Data preprocessing aims to simplify complex aerial images, enabling VLMs167

to effectively focus on relevant regions. Specifically, we process images to extract three critical168

components: instance regions, foreground regions, and partial instance attributes. (1) Instance169

regions: These are easily obtained by cropping sub-images based on the coordinates provided in170

the detection annotations. (2) Foreground regions: Given the dense distribution of instances and171

the large proportion of background in aerial imagery, we apply a foreground-extraction algorithm172

to isolate object regions. Specifically, we compute the maximum enclosing rectangle of the object173

bounding boxes to isolate multiple object clusters within each image. (3) Partial Instance Attributes:174

Inspired by previous approaches [15, 31], we leverage instance attributes as components to generate175

diverse captions. We focus on six primary attributes: category, size, color, geometric shape, relative176

position, and absolute position. While the category is predefined, size and absolute position attributes177

are determined based on manual rules due to their inherent subjective nature and spatial complexity.178

Specifically, size attributes are classified according to predefined thresholds, and absolute positions179

are categorized into 25 labeled regions (e.g., Left-Top, Far Right-Bottom). The remaining attributes180

are dynamically generated by the VLM based on image content during the annotation process.181

Instance-Level Sentence Caption Generation. This step aims to interact with the VLM to generate182

three sentence captions with varying levels of detail and additional instance attributes for each183

instance. To achieve an optimal balance between annotation fidelity and computational efficiency,184

we employ the InternVL-2.5-38B-AWQ model, which can be executed on a single workstation185

equipped with eight RTX4090 GPUs. This benefits from the proposed OS-W2S Label engine, which186

enables high-quality caption annotation to be acquired without dependence on excessively large-scale187

models. The interaction with the VLM for each instance can be structured into four rounds: (1)188

Introduction of the overall annotation workflow to the VLM. (2) Providing the instance-specific189

region image along with known attributes such as instance category and size, prompting the VLM190

to infer additional attributes (color, geometric) and subsequently generate an initial self-descriptive191
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caption. (3) Presentation of the foreground region image corresponding to the instance, enabling192

the VLM to extract the relative positional attribute based on the surrounding context and extend the193

previous caption with the relative positional attribute. (4) Provision of the absolute position attribute194

to the VLM, prompting it to integrate this information into the existing caption, thus generating195

a comprehensive caption reflecting the absolute spatial context. To ensure consistent and precise196

VLM outputs, each interaction is regulated through structured JSON templates. Consequently, each197

instance is annotated with three distinct sentence captions with different levels of descriptive detail,198

supplemented by a set of six attributes.199

Data Postprocessing. Based on the attributes obtained from previous steps, we generate three phrase-200

level captions per instance using combinations of category, color, and size attributes, resulting in six201

unique captions per instance. However, due to instance similarities, captions with fewer attributes202

often correspond to multiple instances. Leveraging attribute-based captions and the recorded attribute203

information for each instance, we effectively establish caption-instance associations by comparing204

the attribute similarity between captions and instances. The attribute similarity is computed using205

Sentence-BERT [19].206
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Figure 3: Statistical analysis and visualization of the MI-OAD dataset. (a) The number of distinct
expressions per attribute, highlighting attribute diversity. (b) Distribution of caption types, empha-
sizing that the caption types are evenly distributed. (c) Distribution of caption lengths, reflecting
semantic richness. (d) Distribution of instances per caption, indicating that captions correspond to
both single-instance and multi-instance cases. (e) Word cloud visualization of categories directly
sourced from the collected detection datasets. (f)-(h) Word cloud visualizations illustrating diverse
semantic expressions for color, geometry, and relative position attributes generated by the VLM.

3.3 MI-OAD Dataset207

Using the OS-W2S Label Engine, we created a large-scale, multi-instance dataset for open-set208

aerial object detection. This dataset comprises 163,023 images and 2 million image-caption pairs,209

encompassing three levels of language guidance: vocabulary-level, phrase-level, and sentence-level.210

The average caption length is 10.61 words, providing rich semantic information. Benefiting from the211

design of the OS-W2S Label Engine, the MI-OAD dataset effectively addresses the limitations of the212

existing RSVG dataset and establishes the first benchmark dataset for open-set aerial object detection.213

Scene Diversity: We made two efforts to ensure scene diversity. First, we collected data from214

eight detection datasets, which include images taken from various altitudes and viewpoints using215

drones and satellites. Second, we generated multiple types of captions and performed both data216

preprocessing and postprocessing to ensure the quality of captions for complex scenes. As a result,217

there is no need to filter out complex scenes based on an upper limit on instance count.218

Caption Diversity: Each caption is generated based on the attributes of instances. To ensure219

comprehensive coverage, we defined three sentence caption types and three phrase caption types,220

each varying in detail based on attribute combinations. The sentence captions provide detailed221

instance descriptions suitable for precise localization. Specifically, self sentence captions describe the222

category, size, color, and geometric attributes of instances. By adding relative positional information,223
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we obtain relative sentence captions, and by incorporating absolute positional information, we224

form absolute sentence captions. Additionally, three types of phrase captions constructed from225

combinations of category, color, and size attributes were created to support approximate localization.226

Fig.3b illustrates the distribution of caption types, highlighting that after applying the sampling227

strategy described in Section4.1, the caption types are evenly distributed. Fig.3a presents the number228

of distinct expressions for each attribute, highlighting the rich diversity in attributes (relative location,229

color, and geometry) generated by the VLM. To visually demonstrate the quality of these VLM-230

generated attributes, we conducted a word cloud analysis as shown in Fig.3(f)-(h). Notably, the231

geometry attribute extends beyond basic shapes to include descriptive components (e.g., “a cylindrical232

tower with three blades"). Furthermore, we analyzed the distribution of caption lengths to illustrate233

the richness of descriptions, as depicted in Fig.3c. Collectively, these analyses underscore the caption234

diversity within our dataset.235

Multi-instance Annotation: To better align with real-world applications requiring both precise and236

approximate localization, each caption corresponds to all relevant instances in the image matching237

the description, encompassing both single-instance and multi-instance cases. We construct caption-238

instance associations by comparing the attributes of captions and instances. As shown in Fig. 3d,239

66.2% of captions correspond to a single instance, demonstrating that the generated captions effec-240

tively support precise localization even in complex scenes. The remaining captions, which involve241

multiple instances, fulfill the requirements for approximated localization.242

Dataset Scale: The OS-W2S Label Engine is capable of generating high-quality caption annotations243

for each instance, and the aerial detection dataset contains numerous instance annotations. These244

conditions enable us to establish a large-scale dataset for open-set aerial detection. Finally, we245

constructed the MI-OAD dataset, which contains 163,023 images and 2 million image-caption pairs,246

making it 40 times larger than the existing RSVG dataset.247

3.4 Quality Control Analysis248

To guarantee the reliability of the captions generated by the OS-W2S Label Engine, we employ a249

three-tier quality-assurance pipeline:250

• Authoritative data sources. We start from widely used aerial detection datasets whose251

bounding boxes and category labels have been manually verified. These well-curated252

sources let us inherit precise instance locations and trustworthy class information, forming a253

solid basis for caption generation.254

• Rule-based constraints. For every instance we extract six attributes. Category, size, and255

absolute location are deterministically derived from the detection annotations. Color and256

geometric shape are inferred by the VLM that receives an instance-centered crop, ensuring257

the model attends exclusively to the target. The relative position attribute is obtained by258

supplying the VLM with a foreground region corresponding to the instance. This targeted259

zoom-in operation explicitly guides the VLM’s attention and thus improves caption quality.260

We further enforce syntactic correctness through regular-expression filtering, ultimately261

producing three sentence-level and three phrase-level captions per instance—each with high262

linguistic quality.263

• Two-stage manual verification. Stage 1: We randomly sampled 1,000 images and asked264

five senior experts to assess each instance and its corresponding caption. 95% were deemed265

correct, and the remaining discrepancies were mainly color mismatches caused by illumi-266

nation changes or motion blur. Stage 2: To ensure balanced category representation, we267

grouped the MI-OAD validation image–caption pairs by category and manually selected268

10,000 high-quality pairs (approximately 100 per category) to construct the MI-OAD test269

set. This careful manual filtering guarantees that MI-OAD is a dependable benchmark.270

4 Experiments271

In this section, we explore three key questions: 1) How can we effectively leverage the MI-OAD272

dataset? 2) How can we equip existing models with capabilities for open-set aerial detection? 3) How273

can we evaluate the open-set aerial detection capabilities of models at the word, phrase, and sentence274

levels? Additional experiments and implementation details are provided in the supplemental material.275
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4.1 MI-OAD Dataset Split and Sample276

Base and Novel Classes Split. We designate 75 classes as Base and 25 classes as Novel. The class277

division is based on clustering the class semantic embeddings and selecting one class from each pair278

of leaf nodes in the clustering tree [30]. This assignment of novel classes ensures that the dataset can279

effectively evaluate zero-shot transfer capabilities.280

Data Split. To fully exploit the available data while preserving the original splits of each detection281

dataset, we merge the train and test splits of all eight constituent datasets. Images containing only base282

categories form the pre-training set (P-Set), whereas the entire merged pool serves as the fine-tuning283

set (FT-Set). The validation splits are processed analogously: images that include at least one novel284

category (with only their novel annotations retained) constitute Val-ZSD, and the complete merged285

validation pool is denoted Val-FT. We use P-Set together with Val-ZSD to assess zero-shot transfer,286

while models fine-tuned on FT-Set are evaluated on Val-FT to benchmark conventional detection and287

grounding performance.288

Sampling Strategy and Experimental Data Statistics. Considering the large scale of the dataset,289

the substantial computational resources required, and recognizing this as the first work focused on290

open-set aerial object detection, we conducted caption sampling post-annotation. Specifically, for291

each image, we categorized captions by type and then sampled one caption per type category to form292

image-caption pairs, ensuring dataset diversity and annotation quality. Consequently, the MI-OAD293

dataset comprises approximately 2 million image-caption pairs and 163,023 detection annotations.294

Specifically, The P-Set comprises 0.56M image–caption pairs and 68,243 detection annotations. The295

FT-Set include 1.40M pairs and 128 019 annotations. For validation: Val-ZSD provides about 0.12M296

pairs and 16,992 detection annotations for zero-shot evaluation, whereas Val-FT contains roughly297

0.38M pairs and 35,004 annotations for conventional assessment.298

4.2 Training Strategy299

Most open-set detectors for natural images adopt the grounding data format introduced in [18]: each300

sample consists of an image–caption pair plus instance annotations, and a single image-level caption301

contains multiple noun phrases, each aligned with a distinct object. In aerial scenes, however, objects302

are densely packed and backgrounds are highly cluttered, making it infeasible to craft a caption that303

is both comprehensive and unambiguous for every instance.304

To address this mismatch, we redefine the grounding format for aerial images. For each image we305

provide a set of instance-level captions; each caption describes one specific object (or a homogeneous306

group of objects) and is stored together with its bounding box. These fine-grained captions therefore307

extend the traditional notion of a category label with richer textual semantics.308

Under this design we unify grounding and detection: the grounding task is recast as a detection task309

in which the instance-level caption replaces the corresponding class label. Consequently, the model310

learns open-set aerial detection while integrating linguistic cues, achieving a seamless combination311

of visual localization and textual classification.312

4.3 Evaluation Details313

To comprehensively evaluate open-set detection capability, we propose three evaluation protocols314

simulating real-world scenarios: vocabulary-level detection, phrase-level grounding, and sentence-315

level grounding, each corresponding to varying levels of detail in natural language input (vocabulary,316

phrase, and sentence). Additionally, we define three evaluation setups to assess detection performance317

under different constraints: zero-shot transfer to novel classes without domain adaptation, zero-shot318

transfer to novel classes with domain adaptation, and fine-tuned evaluation. The primary distinction319

between the first two setups is the use of the MI-OAD P-Set for domain adaptation of detectors320

originally designed for natural images.321

4.4 Open-set Aerial Object Detection Results322

From Table 1, we evaluate the open-set aerial detection capabilities of two representative323

approaches—Yolo-World (YOLOv8-L) and Grounding DINO (Swin-T)—across three different324

8



Method Detection Phrase Grounding Sentence Grounding
AP50 R@100 AP50 R@1 R@10 R@100 AP50 R@1 R@10 R@100

Zero-shot transfer with novel classes (w/o domain adaptive).
Yolo-World [3] 3.2 37.1 3.8 6.8 25.0 34.4 1.4 4.3 16.9 24.6

Grounding DINO [13] 4.0 49.6 9.2 10.7 35.1 50.4 5.2 10.3 33.8 42.9
Zero-shot transfer with novel classes (w/ domain adaptive).

Yolo-World 5.3 30.6 18.0 18.3 43.5 55.9 15.9 19.1 44.9 57.1
Grounding DINO 9.8 69.8 32.1 24.1 60.9 80.9 36.3 35.1 68.5 82.7

Fine-tuned.
Yolo-World 39.6 58.0 51.6 32.9 69.9 86.4 47.6 36.1 71.1 86.9

Grounding DINO 37.1 70.1 57.8 35.2 74.4 91.5 56.4 44.1 78.0 90.3

Table 1: Performance comparison of representative methods on the MI-OAD dataset across different
open-set evaluation tasks (vocabulary-level detection, phrase-level grounding, and sentence-level
grounding). The evaluation setups differ as follows: zero-shot transfer w/ or w/o domain adaptation
indicates whether the model was trained on the MI-OAD P-Set for domain adaptation, while fine-
tuned conditions represent models trained on the FT-Set of MI-OAD.

evaluation scenarios. Both methods are evaluated on detection, phrase-level grounding, and sentence-325

level grounding, reflecting different levels of granularity in open-set detection tasks.326

Zero-shot Transfer (w/o Domain Adaptation). When directly applying models trained on natural-327

image data to the MI-OAD V-Set, performance is notably limited. For instance, Yolo-World achieves328

a mere 1.4% AP50 under sentence-level prompts. Grounding DINO performs slightly better (5.2%329

AP50), yet both methods exhibit substantial performance gaps, demonstrating the unique challenges330

posed by open-set aerial object detection. Zero-shot Transfer (w/ Domain Adaptation). Introducing331

domain adaptation for these models by training on the MI-OAD P-Set results in considerable332

performance improvements for both methods. For example, Grounding DINO’s detection AP50333

improve from 4.0% to 9.8%, while its sentence-level grounding AP50 increases by 31.1%. These334

results underscore the effectiveness of our proposed dataset. Fine-tuning. After fine-tuning on the335

FT-Set, both models achieve superior results. Grounding DINO achieves outstanding performance,336

obtaining AP50 values of 37.1% for detection, 57.8% for phrase grounding, and 56.4% for sentence337

grounding. These results demonstrate that the MI-OAD dataset provides an effective basis for338

advancing open-set aerial object detection and further confirm the importance of large-scale grounding339

data with rich textual annotations.340

5 Conclusion341

In this paper, we propose the OS-W2S Label Engine, which addresses the scarcity of rich textual342

grounding data in the aerial domain and establishes a robust data foundation for open-set aerial343

detection. Using this pipeline, we introduce the MI-OAD, the first benchmark dataset for open-344

set aerial detection. MI-OAD contains 163,023 images and 2.0 million image–caption pairs, with345

captions at the word, phrase, and sentence levels. We demonstrate that training existing open-set346

detectors on MI-OAD enables open-set aerial detection and improves performance across different347

caption levels. Our OS-W2S Label Engine and MI-OAD aim to benefit the research community and348

foster future advancements in open-set aerial detection.349

6 Limitation and Broader impacts350

The OS-W2S Label Engine and MI-OAD provide foundational resources to advance aerial object351

detection research, which can significantly benefit practical applications such as environmental352

monitoring and urban development planning. While these resources offer numerous advantages,353

we acknowledge two main limitations. (1) Even with rules to mitigate hallucinations from VLMs,354

the small sizes of aerial instances and occasional low-quality imagery can still lead to imprecise355

descriptions. (2) Our captions are constructed using only six fundamental attributes, constraining356

the range of details they can convey. By pointing out these limitations, we aim to stimulate future357

research towards generating richer and more precise captions for aerial imagery.358
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1. Claims453

Question: Do the main claims made in the abstract and introduction accurately reflect the454

paper’s contributions and scope?455

Answer: [Yes]456

Justification: Refer to the Abstract.457

Guidelines:458

• The answer NA means that the abstract and introduction do not include the claims459

made in the paper.460

• The abstract and/or introduction should clearly state the claims made, including the461

contributions made in the paper and important assumptions and limitations. A No or462

NA answer to this question will not be perceived well by the reviewers.463

• The claims made should match theoretical and experimental results, and reflect how464

much the results can be expected to generalize to other settings.465

• It is fine to include aspirational goals as motivation as long as it is clear that these goals466

are not attained by the paper.467

2. Limitations468

Question: Does the paper discuss the limitations of the work performed by the authors?469

Answer: [Yes]470

Justification: Refer to the Section 6.471

Guidelines:472

• The answer NA means that the paper has no limitation while the answer No means that473

the paper has limitations, but those are not discussed in the paper.474

• The authors are encouraged to create a separate "Limitations" section in their paper.475

• The paper should point out any strong assumptions and how robust the results are to476

violations of these assumptions (e.g., independence assumptions, noiseless settings,477

model well-specification, asymptotic approximations only holding locally). The authors478

should reflect on how these assumptions might be violated in practice and what the479

implications would be.480

• The authors should reflect on the scope of the claims made, e.g., if the approach was481

only tested on a few datasets or with a few runs. In general, empirical results often482

depend on implicit assumptions, which should be articulated.483

• The authors should reflect on the factors that influence the performance of the approach.484

For example, a facial recognition algorithm may perform poorly when image resolution485

is low or images are taken in low lighting. Or a speech-to-text system might not be486

used reliably to provide closed captions for online lectures because it fails to handle487
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• The authors should discuss the computational efficiency of the proposed algorithms489

and how they scale with dataset size.490

• If applicable, the authors should discuss possible limitations of their approach to491

address problems of privacy and fairness.492
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover494
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judgment and recognize that individual actions in favor of transparency play an impor-496

tant role in developing norms that preserve the integrity of the community. Reviewers497

will be specifically instructed to not penalize honesty concerning limitations.498

3. Theory assumptions and proofs499

Question: For each theoretical result, does the paper provide the full set of assumptions and500

a complete (and correct) proof?501

Answer: [NA]502
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Justification: This is a benchmark work, including data sets and evaluation methods, but no503

mathematical theory derivation.504
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-507

referenced.508
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• The proofs can either appear in the main paper or the supplemental material, but if510
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proof sketch to provide intuition.512

• Inversely, any informal proof provided in the core of the paper should be complemented513

by formal proofs provided in appendix or supplemental material.514

• Theorems and Lemmas that the proof relies upon should be properly referenced.515

4. Experimental result reproducibility516

Question: Does the paper fully disclose all the information needed to reproduce the main ex-517

perimental results of the paper to the extent that it affects the main claims and/or conclusions518

of the paper (regardless of whether the code and data are provided or not)?519

Answer: [Yes]520

Justification: The dataset, code and model weights will be released publicly. Detailed521

experimental settings are provided in the supplemental material.522
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• The answer NA means that the paper does not include experiments.524

• If the paper includes experiments, a No answer to this question will not be perceived525

well by the reviewers: Making the paper reproducible is important, regardless of526

whether the code and data are provided or not.527

• If the contribution is a dataset and/or model, the authors should describe the steps taken528

to make their results reproducible or verifiable.529

• Depending on the contribution, reproducibility can be accomplished in various ways.530

For example, if the contribution is a novel architecture, describing the architecture fully531

might suffice, or if the contribution is a specific model and empirical evaluation, it may532

be necessary to either make it possible for others to replicate the model with the same533

dataset, or provide access to the model. In general. releasing code and data is often534

one good way to accomplish this, but reproducibility can also be provided via detailed535

instructions for how to replicate the results, access to a hosted model (e.g., in the case536

of a large language model), releasing of a model checkpoint, or other means that are537

appropriate to the research performed.538

• While NeurIPS does not require releasing code, the conference does require all submis-539

sions to provide some reasonable avenue for reproducibility, which may depend on the540

nature of the contribution. For example541

(a) If the contribution is primarily a new algorithm, the paper should make it clear how542

to reproduce that algorithm.543

(b) If the contribution is primarily a new model architecture, the paper should describe544

the architecture clearly and fully.545

(c) If the contribution is a new model (e.g., a large language model), then there should546

either be a way to access this model for reproducing the results or a way to reproduce547

the model (e.g., with an open-source dataset or instructions for how to construct548

the dataset).549

(d) We recognize that reproducibility may be tricky in some cases, in which case550

authors are welcome to describe the particular way they provide for reproducibility.551

In the case of closed-source models, it may be that access to the model is limited in552

some way (e.g., to registered users), but it should be possible for other researchers553

to have some path to reproducing or verifying the results.554

5. Open access to data and code555
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Question: Does the paper provide open access to the data and code, with sufficient instruc-556

tions to faithfully reproduce the main experimental results, as described in supplemental557

material?558

Answer: [Yes]559

Justification: The dataset, code will be released publicly.560

Guidelines:561

• The answer NA means that paper does not include experiments requiring code.562

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/563

public/guides/CodeSubmissionPolicy) for more details.564

• While we encourage the release of code and data, we understand that this might not be565

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not566

including code, unless this is central to the contribution (e.g., for a new open-source567

benchmark).568

• The instructions should contain the exact command and environment needed to run to569

reproduce the results. See the NeurIPS code and data submission guidelines (https:570

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.571

• The authors should provide instructions on data access and preparation, including how572

to access the raw data, preprocessed data, intermediate data, and generated data, etc.573

• The authors should provide scripts to reproduce all experimental results for the new574

proposed method and baselines. If only a subset of experiments are reproducible, they575

should state which ones are omitted from the script and why.576

• At submission time, to preserve anonymity, the authors should release anonymized577

versions (if applicable).578

• Providing as much information as possible in supplemental material (appended to the579

paper) is recommended, but including URLs to data and code is permitted.580

6. Experimental setting/details581

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-582

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the583

results?584

Answer: [Yes]585

Justification: Refer to the Section 4. The full details can be provided with the code and586

supplemental material.587

Guidelines:588

• The answer NA means that the paper does not include experiments.589

• The experimental setting should be presented in the core of the paper to a level of detail590

that is necessary to appreciate the results and make sense of them.591

• The full details can be provided either with the code, in appendix, or as supplemental592

material.593

7. Experiment statistical significance594

Question: Does the paper report error bars suitably and correctly defined or other appropriate595

information about the statistical significance of the experiments?596

Answer: [Yes]597

Justification: Sections 3.3 provides the statistical of MI-OAD. Section 4.4 provide the598

experimental results support the main claim of this paper. Supplemental material provides599

the more training details.600
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• The answer NA means that the paper does not include experiments.602

• The authors should answer "Yes" if the results are accompanied by error bars, confi-603

dence intervals, or statistical significance tests, at least for the experiments that support604

the main claims of the paper.605
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• The factors of variability that the error bars are capturing should be clearly stated (for606

example, train/test split, initialization, random drawing of some parameter, or overall607

run with given experimental conditions).608

• The method for calculating the error bars should be explained (closed form formula,609

call to a library function, bootstrap, etc.)610

• The assumptions made should be given (e.g., Normally distributed errors).611

• It should be clear whether the error bar is the standard deviation or the standard error612

of the mean.613

• It is OK to report 1-sigma error bars, but one should state it. The authors should614

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis615

of Normality of errors is not verified.616

• For asymmetric distributions, the authors should be careful not to show in tables or617

figures symmetric error bars that would yield results that are out of range (e.g. negative618

error rates).619

• If error bars are reported in tables or plots, The authors should explain in the text how620

they were calculated and reference the corresponding figures or tables in the text.621

8. Experiments compute resources622

Question: For each experiment, does the paper provide sufficient information on the com-623

puter resources (type of compute workers, memory, time of execution) needed to reproduce624

the experiments?625

Answer: [Yes]626

Justification: Refer to the supplemental material.627

Guidelines:628

• The answer NA means that the paper does not include experiments.629

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,630

or cloud provider, including relevant memory and storage.631

• The paper should provide the amount of compute required for each of the individual632

experimental runs as well as estimate the total compute.633

• The paper should disclose whether the full research project required more compute634

than the experiments reported in the paper (e.g., preliminary or failed experiments that635

didn’t make it into the paper).636

9. Code of ethics637

Question: Does the research conducted in the paper conform, in every respect, with the638

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?639

Answer: [Yes]640

Justification: The research conducted in the paper conform, in every respect, with the641

NeurIPS Code of Ethics.642

Guidelines:643

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.644

• If the authors answer No, they should explain the special circumstances that require a645

deviation from the Code of Ethics.646

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-647

eration due to laws or regulations in their jurisdiction).648

10. Broader impacts649

Question: Does the paper discuss both potential positive societal impacts and negative650

societal impacts of the work performed?651

Answer: [Yes]652

Justification: Refer to Section6.653

Guidelines:654

• The answer NA means that there is no societal impact of the work performed.655
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• If the authors answer NA or No, they should explain why their work has no societal656

impact or why the paper does not address societal impact.657

• Examples of negative societal impacts include potential malicious or unintended uses658

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations659

(e.g., deployment of technologies that could make decisions that unfairly impact specific660

groups), privacy considerations, and security considerations.661

• The conference expects that many papers will be foundational research and not tied662

to particular applications, let alone deployments. However, if there is a direct path to663

any negative applications, the authors should point it out. For example, it is legitimate664

to point out that an improvement in the quality of generative models could be used to665

generate deepfakes for disinformation. On the other hand, it is not needed to point out666

that a generic algorithm for optimizing neural networks could enable people to train667

models that generate Deepfakes faster.668

• The authors should consider possible harms that could arise when the technology is669

being used as intended and functioning correctly, harms that could arise when the670

technology is being used as intended but gives incorrect results, and harms following671

from (intentional or unintentional) misuse of the technology.672

• If there are negative societal impacts, the authors could also discuss possible mitigation673

strategies (e.g., gated release of models, providing defenses in addition to attacks,674

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from675

feedback over time, improving the efficiency and accessibility of ML).676

11. Safeguards677

Question: Does the paper describe safeguards that have been put in place for responsible678

release of data or models that have a high risk for misuse (e.g., pretrained language models,679

image generators, or scraped datasets)?680

Answer: [Yes]681

Justification: The paper does not pose such risks.682

Guidelines:683

• The answer NA means that the paper poses no such risks.684

• Released models that have a high risk for misuse or dual-use should be released with685

necessary safeguards to allow for controlled use of the model, for example by requiring686

that users adhere to usage guidelines or restrictions to access the model or implementing687

safety filters.688

• Datasets that have been scraped from the Internet could pose safety risks. The authors689

should describe how they avoided releasing unsafe images.690

• We recognize that providing effective safeguards is challenging, and many papers do691

not require this, but we encourage authors to take this into account and make a best692

faith effort.693

12. Licenses for existing assets694

Question: Are the creators or original owners of assets (e.g., code, data, models), used in695

the paper, properly credited and are the license and terms of use explicitly mentioned and696

properly respected?697

Answer: [Yes]698

Justification: We have properly credited the creators or original owners of assets used in the699

paper and we use the license CC-BY 4.0.700

Guidelines:701

• The answer NA means that the paper does not use existing assets.702

• The authors should cite the original paper that produced the code package or dataset.703

• The authors should state which version of the asset is used and, if possible, include a704

URL.705

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.706

• For scraped data from a particular source (e.g., website), the copyright and terms of707

service of that source should be provided.708
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• If assets are released, the license, copyright information, and terms of use in the709

package should be provided. For popular datasets, paperswithcode.com/datasets710

has curated licenses for some datasets. Their licensing guide can help determine the711

license of a dataset.712

• For existing datasets that are re-packaged, both the original license and the license of713

the derived asset (if it has changed) should be provided.714

• If this information is not available online, the authors are encouraged to reach out to715

the asset’s creators.716

13. New assets717

Question: Are new assets introduced in the paper well documented and is the documentation718

provided alongside the assets?719

Answer: [Yes]720

Justification: All new assets introduced in this paper will be well documented.721

Guidelines:722

• The answer NA means that the paper does not release new assets.723

• Researchers should communicate the details of the dataset/code/model as part of their724

submissions via structured templates. This includes details about training, license,725

limitations, etc.726

• The paper should discuss whether and how consent was obtained from people whose727

asset is used.728

• At submission time, remember to anonymize your assets (if applicable). You can either729

create an anonymized URL or include an anonymized zip file.730

14. Crowdsourcing and research with human subjects731

Question: For crowdsourcing experiments and research with human subjects, does the paper732

include the full text of instructions given to participants and screenshots, if applicable, as733

well as details about compensation (if any)?734

Answer: [NA]735

Justification: The paper does not involve crowdsourcing nor research with human subjects.736

Guidelines:737

• The answer NA means that the paper does not involve crowdsourcing nor research with738

human subjects.739

• Including this information in the supplemental material is fine, but if the main contribu-740

tion of the paper involves human subjects, then as much detail as possible should be741

included in the main paper.742

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,743

or other labor should be paid at least the minimum wage in the country of the data744

collector.745

15. Institutional review board (IRB) approvals or equivalent for research with human746

subjects747

Question: Does the paper describe potential risks incurred by study participants, whether748

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)749

approvals (or an equivalent approval/review based on the requirements of your country or750

institution) were obtained?751

Answer: [NA]752

Justification: The paper does not involve crowdsourcing nor research with human subjects.753

Guidelines:754

• The answer NA means that the paper does not involve crowdsourcing nor research with755

human subjects.756

• Depending on the country in which research is conducted, IRB approval (or equivalent)757

may be required for any human subjects research. If you obtained IRB approval, you758

should clearly state this in the paper.759
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• We recognize that the procedures for this may vary significantly between institutions760

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the761

guidelines for their institution.762

• For initial submissions, do not include any information that would break anonymity (if763

applicable), such as the institution conducting the review.764

16. Declaration of LLM usage765

Question: Does the paper describe the usage of LLMs if it is an important, original, or766

non-standard component of the core methods in this research? Note that if the LLM is used767

only for writing, editing, or formatting purposes and does not impact the core methodology,768

scientific rigorousness, or originality of the research, declaration is not required.769

Answer: [Yes]770

Justification: Refer to Model-assisted annotation part in Section 3.2.771

Guidelines:772

• The answer NA means that the core method development in this research does not773

involve LLMs as any important, original, or non-standard components.774

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)775

for what should or should not be described.776
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