
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZED MULTI-TOKEN JOINT DECODING WITH
AUXILIARY MODEL FOR LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success across diverse
tasks, yet their inference processes are hindered by substantial time and energy
demands due to single-token generation at each decoding step. While previous
methods such as speculative decoding mitigate these inefficiencies by producing
multiple tokens per step, each token is still generated by its single-token distri-
bution, thereby enhancing speed without improving output quality. In contrast,
our work simultaneously enhances inference speed and improves the output ef-
fectiveness. We consider multi-token joint decoding (MTJD), which generates
multiple tokens from their joint distribution at each iteration, theoretically reducing
perplexity and enhancing task performance. However, MTJD suffers from the
high cost of sampling from the joint distribution of multiple tokens. Inspired by
speculative decoding, we introduce multi-token assisted decoding (MTAD), a novel
framework designed to accelerate MTJD. MTAD leverages a smaller auxiliary
model to approximate the joint distribution of a larger model, incorporating a
verification mechanism that not only ensures the accuracy of this approximation,
but also improves the decoding efficiency over conventional speculative decoding.
Theoretically, we demonstrate that MTAD closely approximates exact MTJD with
bounded error. Empirical evaluations using Llama-2 and OPT models ranging from
13B to 70B parameters across various tasks reveal that MTAD reduces perplexity
by 21.2% and improves downstream performance compared to standard single-
token sampling. Furthermore, MTAD achieves a 1.42× speed-up and consumes
1.54× less energy than conventional speculative decoding methods. These results
highlight MTAD’s ability to make multi-token joint decoding both effective and
efficient, promoting more sustainable and high-performance deployment of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) such as GPT-4 and Llama-2 (Touvron et al., 2023) have demonstrated
extraordinary capabilities across a wide range of tasks (Brown et al., 2020; Chowdhery et al., 2023;
Thoppilan et al., 2022; Touvron et al., 2023). Despite their impressive performance, the deployment of
LLMs is often constrained by substantial inference costs in terms of time and energy. This inefficiency
primarily stems from the autoregressive nature of these models, where generating a sequence of
K tokens requires K separate model calls. Each call involves loading large weight matrices and
intermediate results from GPU global memory to computing units, leading to repeated memory
accesses and limited hardware utilization (Samsi et al., 2023; Leviathan et al., 2023).

To tackle this challenge, researchers have delved into non-autoregressive decoding approaches. Early
methods (Ghazvininejad et al., 2019; Gu et al., 2017; Guo et al., 2020) aimed at reducing inference
latency by concurrently generating multiple tokens. But these methods usually require task-dependent
techniques and information to match the performance of autoregressive decoding (Kim et al., 2023;
Xiao et al., 2023). More recently, speculative decoding has emerged (Leviathan et al., 2023; Chen
et al., 2023; Kim et al., 2023; Sun et al., 2023), exploiting the observation that most of the small
model’s prediction aligns well with that of a large model. It leverages a smaller auxiliary model to
draft a few future tokens autoregressively, which are subsequently validated in parallel by the larger
model. As the smaller model operates significantly faster and parallel token verification incurs a
similar time cost as generating a single token, speculative decoding achieves an overall speed-up

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of 1-2×. Despite gains in speed, these methods still generate each token based on its single-token
probability. Consequently, it does not enhance the effectiveness of the generated sequences.

In this work, we aim to go beyond the conventional trade-off between efficiency and effectiveness
by introducing multi-token joint decoding (MTJD). Unlike traditional approaches, MTJD produces
multiple tokens from their joint distribution at each decoding step. Theoretically, we show this joint
generation can lead to lower perplexity and hence improved task performance. However, directly
sampling from the joint distribution of multiple tokens poses significant computational challenges,
rendering MTJD impractical.

Inspired by speculative decoding, we propose multi-token assisted decoding (MTAD), a novel
framework designed to approximate and accelerate MTJD. MTAD employs a smaller auxiliary model
to estimate the joint distribution of a larger model, significantly reducing computational demands. To
ensure the accuracy of this approximation, MTAD incorporates a verification mechanism that not
only guarantees the accuracy of the draft tokens but also enhances efficiency beyond conventional
speculative decoding by maximizing the number of accepted tokens per iteration. We provide both
theoretical and empirical analyses to demonstrate that MTAD improves perplexity and downstream
performance. Meanwhile, it achieves significant reductions in energy and time usage compared to
existing decoding strategies.

Our contributions are as follows:

1. We introduce multi-token joint decoding (MTJD), a multi-token joint decoding approach
that theoretically reduces perplexity by generating tokens from their joint distribution.

2. We develop multi-token assisted decoding (MTAD), an efficient approximation of MTJD
with bounded error that leverages a smaller model for distribution approximation.

3. We analyze the energy consumption of LLM inference. To our knowledge, we are the first
to give theoretical and empirical evidence that, despite that MTAD and other speculative
decoding algorithms increase the number of FLOPs needed during LLM inference, they
reduce the overall energy consumption by reducing the overhead induced by accessing GPU
global memory.

4. We conducted comprehensive evaluations with Llama-2 and OPT models (ranging from 13B
to 70B parameters) across various tasks, demonstrating that MTAD enhances perplexity by
21.2% and improves downstream effectiveness compared to standard single-token sampling,
while also achieving a 1.42× speed-up and reducing energy consumption by 1.54× compared
to conventional speculative decoding methods.

These advancements position MTAD as a robust solution for making multi-token joint decoding both
effective and efficient, thereby facilitating more sustainable and high-performance deployment of
large-scale language models. Our code is publicly available1.

2 PRELIMINARIES

2.1 DECODINGS OF LLMS

Decoding and Perplexity. Let p denote the distribution defined by LLM model Mp. Given an input
context input, a decoding algorithm generates a sequence of N tokens whose likelihood is denoted
as p(x1:N |input). The likelihood of the sequence is directly linked to perplexity of the sequence,
which is the exponentiated average negative log-likelihood of all tokens. Based on autoregressive
decomposition p(x1:N |input) =

∏N
t=1 p(xt|x1:t−1, input)

2, the perplexity is defined as:

PPL(x1:N) = exp

{
− 1

N

N∑
t=1

log p(xt|x1:t−1)

}
(1)

Perplexity serves as a direct metric for assessing the effectiveness of a decoding algorithm. In
practice, when a model is well-trained, lower perplexity often correlates with improved downstream

1https://anonymous.4open.science/r/LLMSpeculativeSampling-EE52
2In the paper, we omit input when there is no ambiguity.

2

https://anonymous.4open.science/r/LLMSpeculativeSampling-EE52

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

performance. For example, beam sampling aims to return output with lower perplexity and is proven
to have better downstream performance in general (Shi et al., 2024).

To further demonstrate the relationship between perplexity and downstream performance, we evaluate
GPT-3.5-turbo on the spider (Yu et al., 2018) dataset. Using a temperature of 2, the model generated
10 outputs for each input. We measured the average perplexities and execution accuracies for the
outputs with the highest, lowest, and median (the 5-th lowest) perplexity. As shown in Table 1, lower
perplexity correlates with improved downstream performance, even in one of today’s largest models.

Table 1: Relationship between perplexity
and execution accuracy (EA, higher the
better) for GPT-3.5-turbo.

Output Avg. PPL ↓ EA (%) ↑

Highest PPL 4.13 33
5-th Lowest PPL 1.40 58
Lowest PPL 1.07 62

Now we introduce commonly used decoding approaches.

Multinomial Sampling. Multinomial sampling, also
known as standarized sampling or single-token sampling,
samples the next token xt based on T ◦p(·|x1:t−1, input),
where T is a warping operation applied to enhance the
high probability region. Some common warping opera-
tions include top-k warping, which limits the selection to
the top k tokens, and top-p warping, where tokens are sam-
pled from the smallest possible subset of the vocabulary
whose cumulative probability mass exceeds a specified threshold. The deterministic version of
multinomial sampling (i.e., greedy decoding) is a special case when k = 1.

Beam Sampling. Beam sampling aims to improve output perplexity over multinomial sampling.
For each position t (1 ≤ t ≤ N), it maintains W > 1 candidate sequences, which are also called
beams. Assume we have already kept the W sequences It−1 = {x(1)

1:t−1, . . . , x
(W)
1:t−1} at position

t−1, W sequences with length t are then sampled from T ◦pbeam, where pbeam : It−1×V → [0, 1]
is the beam sampling probability:

pbeam(x
(i)
1:t−1, xt) =

p(x
(i)
1:t−1, xt|input)∑

x
(j)
1:t−1,x

′
t∈It−1×V

p(x
(j)
1:t−1, x

′
t|input)

(2)

Notice that p(x(i)
1:t−1, xt|input) = p(xt|x(i)

1:t−1, input) ·p(x
(i)
1:t−1|input). In practice, beam sampling

stores the likelihood p(x
(i)
1:t−1|input) for each beam, and the computation complexity of pbeam is

O(W · |V |). In deterministic beam sampling, the top W sequences with the highest likelihood
pbeam(x1:t) will be kept.

2.2 VANILLA SPECULATIVE DECODING

Besides effectiveness, speculative decoding is proposed by (Leviathan et al., 2023; Chen et al., 2023)
to accelerate the inference of LLMs. It utilizes a small model to generate the next γ tokens and then
uses the large model to verify the drafted tokens in parallel, which is summarized below:

1. Let input be the input context, the small model samples γ draft tokens x1, . . . , xγ using
multinomial sampling based on q̃(xt|x1:t−1, input)) for t = 1, . . . , γ, where q̃ = T ◦ q and
q is the small model’s output distribution.

2. The large model verifies the draft tokens in parallel by computing the conditional probability
p̃(xt|x1:t−1, input) for t = 1, . . . , γ.

3. Each draft token xt is accepted with probability min(1, p̃(xt)/q̃(xt)). The draft tokens
before the first rejected token are kept as the decoding output. An additional token is sampled
from a residual distribution as a correction to the first rejected token. Then the accepted
tokens and the resampled token are appended to the context input as the input to the next
iteration.

4. Repeat step 1-3 until reaching the stopping criteria, e.g., reaching the length limit..

Because the large model verifies γ tokens in parallel with one run, the time cost is smaller than calling
it γ times. Meanwhile, although the small model still runs in an autoregressive way, its inference
speed is much faster than the large model. As a result, speculative decoding achieves a speedup of
1–2× compared to multinomial sampling while maintaining an identical sampling distribution.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

As discussed in Section 2, the goal of this work is to design an algorithm that yields lower perplexity
and better efficiency than multinomial sampling and vanilla speculative decoding. In this section,
we first introduce multi-token joint decoding (MTJD), which generates multiple tokens based on
their joint likelihood. We prove it can yield lower perplexity. Then we introduce multi-token assisted
decoding (MTAD), which approximates and accelerates MTJD by exploiting an auxiliary model.

3.1 MULTI-TOKEN JOINT DECODING

We first introduce a new decoding algorithm to improve multinomial sampling in terms of perplexity.

Definition 3.1. Multi-Token Joint Decoding. Let Mp be the large target model with distribution p.
Different from single-token multinomial sampling, multi-token joint decoding (MTJD) generates the
next γi tokens at step i based on their joint conditional probability p(xt+1:t+γi |x1:t), where γi is an
integer no less than 1 and t =

∑i−1
i′=1 γi′ , i.e., the total tokens generated in the previous i− 1 steps.

Figure 1: Perplexity and Rouge-L score of the
output when γi = K for MTJD with OPT-
125M and Llama-2-68M fine-tuned on ChatGPT-
Prompts (Rashad, 2023) dataset.

Multinomial sampling is a special case of MTJD
where γi = 1, ∀i. When γ1 = N , MTJD
generates the sequence directly based on their
joint likelihood. So intuitively, output perplexity
should improve as γi increases. Besides, gener-
ating γi tokens simultaneously allows MTJD to
consider their interactions. In contrast, multino-
mial sampling selects each token without consid-
ering any future tokens. So MTJD is less prone
to choosing local optima.

Theorem 3.2 shows the limit of perplexity of
MTJD when N approaches infinity. The proofs
are included in the Appendix A.

Theorem 3.2. Assume at the i-th (i = 1, . . . , N)
iteration, MTJD generates γi tokens. Let Γi

denote the total number of tokens generated at the first i iterations. Let x1:ΓN
denote the generated

tokens. When N →∞

PPLp(x1:ΓN
)→ exp

(
− 1

γ̄
EγLp(γ, p̃)

)
(3)

where γ̄ is the expected number of γi, p̃ = T ◦ p represents how we sample the next γi tokens from
p (e.g., in deterministic sampling, p̃ = argmax ◦p always returns the tokens with the highest joint
likelihood), and Lp(γ, p̃) is the expected log-likelihood of the γ tokens sampled from p̃:

Lp(γ, p̃) = Ex1:t∈X
∑

xt+1:t+γ

p̃(xt+1:t+γ |x1:t) log p(xt+1:t+γ |x1:t) (4)

Here X is the space of all possible inputs.

Corollary 3.3. Based on Theorem 3.2, we can show that when N →∞, greedy MTJD (i.e., top-1
MTJD sampling) has lower perplexity than greedy decoding (top-1 single-token sampling).

Empirical evidence supports our claim. We fine-tune both a Llama and an OPT model on the ChatGPT-
Prompts dataset and evaluate the output perplexity and Rouge-L scores with example outputs. Figure
1 shows the output perplexity and Rouge-L scores of MTJD with γi set to a constant K, where K =
1, . . . , 5. Notice that setting K = 1 is equivalent to multinomial sampling. We use beam sampling to
approximate the argmax sampling from the joint distribution p(xt+1:t+K |x+ 1 : t, input). We can
see that the perplexity keeps dropping when K increases. It confirms our claim that increasing γi
will increase the output perplexity. Moreover, the Rouge-L score also improves with K, supporting
our claim that better perplexity reflects enhanced performance in downstream tasks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

input small
model

I, like, writing, codes large
model

I,
I, like,
I, like, writing
I, like, writing, codes

prefixesdraft tokens

I, like, writing, python

accepted tokens +
additional token

decisions

Figure 2: An example of MTAD’s verification process. MTAD accepts the longest draft sub-sequence
that passes verification based on joint likelihood.

3.2 MULTI-TOKEN ASSISTED DECODING

Unfortunately, the computation cost of MTJD is infeasible in practice, since the time and space
complexity to compute the joint distribution of γi tokens is |V |γi . Inspired by speculative decoding
and the facts that “even when a small model is an order of magnitude smaller than a large model, only
a small fraction of the small model’s prediction deviate from those of the large model” (Leviathan
et al., 2023; Kim et al., 2023), we propose multi-token assisted decoding (MTAD), which exploits a
small auxiliary model Mq to accelerate MTJD approximately. The core idea is to (1) use the joint
distribution q(xt+1:t+γi |x1:t) output by Mq to approximate p(xt+1:t+γi |x1:t)

3 and generate γ draft
tokens from q(xt+1:t+γi |x1:t), then (2) use the large model to validate draft tokens in parallel and
accept the longest draft prefix sub-sequence that passes verification, and (3) sample an additional
token from the distribution of the large model without extra overhead to ensure at least one token is
generated at each iteration. However, it is still infeasible to directly generate draft tokens from the
joint distribution q(xt+1:t+γi

|x1:t). So we propose to further approximate this process with beam
sampling, which is an effective and efficient algorithm to generate sequences with high likelihood.
In this way, MTAD reduces the number of runs of the large model to generate N tokens, thus
accelerating the inference in the same way as vanilla speculative decoding does. Algorithm 1 in the
Appendix illustrates the pseudocode of MTAD algorithm.

Draft Tokens Verification Figure 2 illustrates the verification process of MTAD. Let
xt+1, . . . , xt+γ be the draft tokens generated by beam sampling with the auxiliary model. Since
beam sampling is a widely recognized algorithm to generate sequences with high overall likeli-
hood (Leblond et al., 2021), it is reasonable to assume q(xt+1:t+γ |x1:t) is large. Also, since beam
sampling works in an autoregressive way, we can also assume that ∀j ∈ {1, . . . , γ}, q(xt+1:t+j |x1:t)
is large. To approximate MTJD, for each step i, MTAD needs to ensure the accepted tokens xt+1:t+γi

(0 ≤ γi ≤ γ) also have high joint likelihood with the large model Mp. So MTAD first com-
putes the joint likelihood p(xt+1:t+j |x1:t) for j = 1, . . . , γ. Then for each prefix sub-sequence
xt+1:t+j , it passes verification if and only if min(1,

p(xt+1:t+j |x1:t)
q(xt+1:t+j |x1:t)

) > τ , where τ ∈ [0, 1) is a

pre-defined threshold. Notice that if min(1,
p(xt+1:t+j |x1:t)
q(xt+1:t+j |x1:t)

) > τ , we have p(xt+1:t+j |x1:t)
q(xt+1:t+j |x1:t)

> τ ,

which means q(xt+1:t+j |x1:t)−p(xt+1:t+j |x1:t)
p(xt+1:t+j |x1:t)

< 1
τ − 1. Therefore, our acceptance policy guar-

antees that when q(xt+1:t+j |x1:t) > p(xt+1:t+j |x1:t), the relative error is bounded. And if
q(xt+1:t+j |x1:t) ≤ p(xt+1:t+j |x1:t), it means the sub-sequence has higher likelihood in the large
model, then it is reasonable to accept it. After verifying all the sub-sequences, MTAD accepts the
longest prefix sub-sequence that passes verification.

The verification step of MTAD ensures that the accepted tokens have a high joint likelihood with
the large model. We have shown that selecting multiple tokens based on their joint likelihood lead
to better output perplexity. Thus, MTAD is more effective than multinomial sampling and vanilla
speculative decoding. Furthermore, since MTAD accepts the longest draft sub-sequence with high
likelihood, it can tolerate low-quality tokens as long as the joint likelihood is high. So at each
iteration, MTAD can accept more draft tokens than vanilla speculative decoding, which results in
better efficiency.

3It is also valid to approximate p̃ with q̃. Without loss of generality, we consider non-warped distribution in
the illustration of MTAD.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Next, we theoretically analyze the approximation error of MTAD. Lemma 3.4 shows the upper bound
of MTAD’s perplexity. And Theorem 3.5 shows the upper bound of the ratio between the perplexity
of approximate MTAD and exact MTJD. The proofs are given in Appendix A.

Lemma 3.4. Let us assume that when the small auxiliary model generates draft tokens with beam
sampling, the beam width is large enough such that the returned log-likelihood is close to the
maximum log-likelihood, i.e.,

Ex1:Γi−1
∈X log q(xΓi−1+1:Γi−1|x1:Γi−1

)) ≥ (1−ϵ)Ex1:Γi−1
∈X max

xΓi−1+1:Γi−1

log q(xΓi−1+1:Γi−1|x1:Γi−1
))

(5)
where ϵ is an error term and ϵ ≤ 0 because log q ≤ 0.

Furthermore, let H(p, q) the single-token cross entropy between p and q, i.e., H(p, q) =
−Ex1:t∈X

∑
xt+1

p(xt+1|x1:t) log q(xt+1|x1:t).

With the two assumption above, when N →∞ we have

PPLq(x1:ΓN
) ≤ exp(−1− ϵ

γ̄
EγLq(γ − 1, argmax ◦q) + H(p, q)

γ̄
) (6)

where
Lq(γ, argmax ◦q) = Ex1:t∈X max

xt+1:t+γ

log q(xt+1:t+γ |x1:t)) (7)

Theorem 3.5. Let x1:ΓN
be the tokens generated by approximate MTAD, and x∗

1:ΓN
be the tokens

generated by deterministic exact MTJD. Assume ∀x1:t ∈ X , ∥ log p(x|x1:t)− log q(x|x1:t)∥∞ ≤ U ,
where U is a constant. We have

lim
N→∞

PPLp(x1:ΓN
)

PPLp(x∗
1:ΓN

)
≤ τ−

1
γ̄ exp

(
(1− ϵγ̄)H(p) + (1− ϵ+ γ̄)U

γ̄

)
(8)

where H(p) is the entropy of p and ϵ < 0 is the error term of beam sampling (see Lemma 3.4).

Theorem 3.5 suggests the approximation error of MTAD is bounded by a factor related to the
verification threshold τ , average number of accepted tokens γ̄, the difference between the large and
small models (measured by U), the error of beam sampling ϵ, and the entropy of the large model
itself. In addition, the following theorem analyzes γ̄. The proof is illustrated in Appendix A.

Theorem 3.6. Following the assumption in Theorem 3.5, we have γ̄ ≥ | log τ |
U .

With Theorem 3.6, we observe that when q → p, we have U → 0 and γ̄ →∞. Meanwhile, when
ϵ→ 0, meaning the beam width for the auxiliary model is large enough, the ratio bound in Theorem
3.5 converges to 1, It implies that MTAD converges to MTJD under these limiting conditions.

Similar to Spectr (Sun et al., 2023) and SpecInfer (Miao et al., 2023), it is possible to enhance the
number of accepted tokens in MTAD by allowing the draft model to generate multiple draft sequences
and applying tree-based attention (Miao et al., 2023) for simultaneous verification. However, our
preliminary experiment results suggest that since MTAD already selects the longest accepted prefix
sub-sequence, the advantage of generating multiple draft tokens is less significant. Moreover, this
approach increases the memory cost during inference and may affect the error bounds derived above.
Therefore, we leave a more detailed exploration of this extension as future work.

4 ENERGY EFFICIENCY ANALYSIS

Previous studies (Leviathan et al., 2023; Chen et al., 2023; Kim et al., 2023; Sun et al., 2023) only
focus on the speed of speculative decoding. However, an equally important consideration is energy
consumption. To our knowledge, there is no existing work evaluating the impact of speculative
decoding on inference energy consumption. Although MTAD and speculative decoding increase
the number of FLOPs due to the involvement of a small auxiliary model and the rollback operation,
they concurrently reduce the inference time and memory operations, which are key factors of GPU
energy consumption (Allen & Ge, 2016; Chen et al., 2011). Consequently, it poses an open question
regarding whether speculative decoding increases or decreases overall energy consumption.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: The effect of batch size to inference speed and energy consumption. The number of inputs is
the product of the number of LLM runs and input batch size.

Batch Size Energy (J) Energy/run (J) Energy/Input (J) Time (s) Time/run (s) Time/input(s)

1 42,450 14.1 14.1 1,129 0.376 0.376
2 49,621 16.5 8.26 1,191 0.397 0.198
4 53,325 17.7 4.43 1,178 0.392 0.098
8 59,210 19.7 2.46 1,211 0.403 0.050
16 74,058 24.7 1.54 1,255 0.418 0.026

To understand the net effect of speculative decoding, we decompose the total energy consumption
into two parts following (Allen & Ge, 2016):

Etotal = PWflopTflop + PWmemTmem (9)

where PWflop, PWmem denote the power (energy/second) of FLOPs and memory operations, and
Tflop, Tmem denote the time spent on these operations. When input batch size increases, PWflop

increases until it reaches the power of maximum FLOPs, denoted as PW ∗
flop. Meanwhile, PWmem

is irrelevant to the input batch size, as it only depends on the memory hardware.

Table 3: Speed and energy cost of multi-
nomial sampling (ms) and speculative
decoding (spec).

OPT LLAMA-2
MS SPEC MS SPEC

TOKENS/S 23.8 35.6 22.0 31.6
J/TOKEN 11.3 5.74 11.2 6.97

To determine the relative magnitude relationship between
PWflop and PWmem, we first point out the fact that GPU
memory operations in LLM inference are dominated by
accessing off-chip global memory, which consumes about
100× of energy compared to accessing on-chip shared
memory (Jouppi et al., 2021). It is because each mul-
tiprocessor on GPU usually has 64KB of on-chip mem-
ory shared by multiple threads, while storing a single
layer of LLM, say T5-11b (Raffel et al., 2020), requires
about 1GB memory. Moreover, Allen and Ge showed
that doing sequential read from off-chip memory con-
sumes 20-30% more power than running maximum FLOPs (Allen & Ge, 2016). So we have
PWmem > PW ∗

flop ≥ PWflop. Notice that PW ∗
flop = PWflop only if the batch size reaches the

maximum parallelization capacity of GPUs. During multinomial sampling and speculative decoding,
the batch size is usually small (Leviathan et al., 2023). So most of the computing power is not
utilized (Leviathan et al., 2023), which means PWmem ≫ PWflop.

In addition, previous studies have shown that during LLM inference Tmem ≫ Tflop (Leviathan et al.,
2023). Therefore, the energy induced by memory operations, i.e., PWmemTmem dominates Etotal.
Since speculative decoding reduces Tmem by reducing the number of runs of the large model, it
should reduce the inference energy consumption to a similar extent as it reduces time consumption.

To validate our hypothesis, we conducted an experiment to evaluate how batch size influences
energy consumption during inference. We ran OPT-13b models on a Nvidia L40 GPUs with 48GB
memory. Fixing the total number of runs of the large model while varying the input batch size b ∈
{1, 2, 4, 8, 16} for each run, we measured time and energy cost. The details of energy measurement
are illustrated in the Appendix D. Table 2 shows the results. As batch size doubles, although the
number of FLOPs doubles, the energy consumption per run increases slightly. This observation
demonstrates that PWmemTmem dominates Etotal. Moreover, we measured the speed and energy
consumption of running multinomial sampling with the large model and speculative decoding using
OPT (125M, 13B) and Llama-2 (68M, 13B) models. The results, shown in Table 3, indicate that
speculative decoding reduces the energy consumption and the time cost. This observation corroborates
our claim to the energy efficiency of speculative decoding.

5 EXPERIMENTS

Datasets and Models. We use five public datasets for evaluation: (1) ChatGPT-Prompt (Rashad,
2023), (2) ChatAlpaca (Bian et al., 2023), (3) CNN Dailymail (See et al., 2017), (4) Spider (Yu et al.,
2018), and (5) MT-bench (Zheng et al., 2023). Table 8 in the Appendix shows more details of the
datasets. Following previous studies (Kim et al., 2023), we use two public LLM families in our
experiments: OPT (Zhang et al., 2022) and Llama-2 (Touvron et al., 2023). In this section, we set the
large model to be OPT-13B and Llama-2-13B as they are the largest models that can run on a single

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

40GB GPU, and use Llama-68M (Miao et al., 2023) and OPT-125M as the small models. Appendix
C reports additional experiment results with OPT-30B and Llama-2-chat-70B.

Baselines. For each pair of small and large models, we compare our method with four specula-
tive decoding methods: vanilla speculative decoding (speculative) (Lee et al., 2018; Chen et al.,
2023), Spectr (Sun et al., 2023), SpecInfer (Miao et al., 2023), and BiLD (Kim et al., 2023). Our
implementation of MTAD and all the baselines are based on a public implementation of speculative
decoding (Bear, 2024). For each method, we let it generate at most 128 tokens for each input and run
it for 1, 000 seconds. We open-sourced our code for reproduction. All the methods are stochastic
with top-k and top-p sampling. The details of the hyper-parameters (e.g., k and p) and machine
configurations of the experiments can be found in the Appendix D, E, and F.

Appendix C reports additional experiments and ablation studies.

Table 4: Inference efficiency and output perplexity of different methods on ChatGPT-Prompt (CP),
ChatAlpaca (CA), CNNDailyMail (CD), Spider (SP), and MT-Bench (MT) datasets. Bold numbers
mark the best result, underlined numbers mark the second best.

speculative BiLD Spectr SpecInfer MTAD

CP

Llama-2
speed (token/s) ↑ 36.8±0.53 34.4±0.87 45.1±1.32 29.7± 0.40 63.0±0.20
energy (J/token) ↓ 6.62±0.91 7.45±0.90 5.17±0.88 9.52±0.10 3.38±0.02

perplexity ↓ 3.64±0.11 3.15±0.06 3.64±0.08 3.64±0.11 2.06±0.06

OPT
speed (token/s) ↑ 33.8±2.47 31.5±1.87 38.0±2.20 32.8± 0.58 55.8±0.30
energy (J/token) ↓ 7.48±0.07 8.75±0.13 6.08±0.11 10.3±1.49 3.61±0.03

perplexity ↓ 5.47±0.11 4.51±0.09 5.27±0.09 5.12±0.01 3.00±0.09

CA

Llama-2
speed (token/s) ↑ 31.6±0.35 28.8±0.20 27.7±0.29 26.5±0.49 44.1±0.25
energy (J/token) ↓ 6.98±0.15 7.99±0.15 7.20±0.08 7.52±0.32 4.72±0.03

perplexity ↓ 2.13±0.03 1.95±0.03 2.15±0.01 2.15±0.01 1.88±0.05

OPT
speed (token/s) ↑ 35.6±0.45 38.5±0.93 28.4±0.34 31.4±0.39 49.6±0.42
energy (J/token) ↓ 5.74±0.11 5.12±0.06 6.24±0.11 8.68±1.83 4.03±0.02

perplexity ↓ 3.32±0.10 2.60±0.06 3.16±0.06 3.42±0.03 2.07±0.03

CD

Llama-2
speed (token/s) ↑ 30.7±0.18 30.5±0.21 25.0±0.31 24.6±0.06 44.2±0.99
energy (J/token) ↓ 7.07±0.19 7.41±0.16 8.22±0.19 7.59±0.85 4.80±0.12

perplexity ↓ 2.87±0.08 2.93±0.03 3.06±0.11 2.92±0.09 2.63±0.10

OPT
speed (token/s) ↑ 31.7±0.91 30.9±0.80 23.7±0.40 25.7±0.36 43.6±0.33
energy (J/token) ↓ 6.37±0.11 6.71±0.17 7.31±0.17 8.03±0.63 4.86±0.03

perplexity ↓ 3.97±0.06 3.74±0.09 4.04±0.07 3.92± 0.34 3.17±0.06

SP

Llama-2
speed (token/s) ↑ 24.0±0.28 26.2±0.08 24.2±0.29 23.8±0.20 26.4±0.28
energy (J/token) ↓ 10.75±0.02 9.84±0.07 11.0±0.08 11.0±0.76 9.01±0.07

perplexity ↓ 2.26±0.01 2.13±0.03 2.29±0.04 2.29±0.03 1.87±0.03

OPT
speed (token/s) ↑ 24.6±0.30 29.9±0.55 19.8±0.13 24.1±0.10 34.4±0.46
energy (J/token) ↓ 15.6±3.55 13.6±3.07 20.1±2.52 16.9±2.75 11.7±2.36

perplexity ↓ 2.30±0.07 1.90±0.01 2.20±0.09 2.21± 0.01 1.63±0.03

MT

Llama-2
speed (token/s) ↑ 23.0±1.10 23.7±1.43 19.1±2.71 23.7±2.03 29.4±2.71
energy (J/token) ↓ 7.99±0.26 7.40±0.19 9.27±0.54 9.20±0.73 6.71±1.19

perplexity ↓ 3.64±0.51 3.44±0.76 3.64±0.51 3.63±0.50 2.21±0.18

OPT
speed (token/s) ↑ 34.0±3.00 44.7±2.92 28.7±2.46 28.5±2.74 48.0±1.80
energy (J/token) ↓ 12.1±0.36 6.23±0.67 12.9±1.73 13.2±1.88 6.11±0.82

perplexity ↓ 2.02±0.40 1.50±0.27 1.97±0.38 1.99± 0.33 1.10±0.03

5.1 COMPARISON WITH BASELINES

Table 4 shows the primary results of our experiments while Table 5 details the block efficiency,
defined as the average number of tokens generated per iteration, of different methods. The standard
deviations in the tables are computed by repeating each experiment four times4. First, we observe
that MTAD is significantly more efficient than all baselines in terms of both energy and time. On one
hand, the energy consumption of MTAD is on average 1.54× smaller than that of vanilla speculative
decoding. On the other hand, MTAD is 1.10− 1.71× faster than vanilla speculative decoding, 1.38×
faster than BiLD, 1.59× faster than Spectr, and 1.60× faster than SpecInfer. SpecInfer and Spectr
has better block efficiency than vanilla speculative decoding, but are slower. This may be due to the
fact that they have to verify multiple draft sequences, which introduces extra overhead and may not

4For MT-Bench, the standard deviation also accounts for variations across different tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

be perfectly parallelized, especially when the memory overhead exceeds the GPU memory capacity.
Meanwhile, MTAD has the best block efficiency without causing any extra overhead, hence it is
significantly more efficient.

Table 5: Average number of tokens
generated at each iteration across all
datasets.

Llama-2 OPT

spec 2.02±0.05 2.60±0.06
BiLD 1.83±0.10 2.68±0.36
Spectr 2.73±0.43 3.45±0.42

SpecInfer 2.74±0.46 3.45±0.40
MTAD 3.17±0.43 4.30±0.03

Next, we compare the output perplexity of different algo-
rithms. The perplexity scores of vanilla speculative decod-
ing, SpecInfer, and Spectr are close since their sampling
distributions are equivalent. Meanwhile, BiLD approxi-
mates the sampling distribution of single-token multino-
mial sampling but yields better perplexity. It is because we
set a strict acceptance threshold for BiLD, which lowers
the acceptance rate but ensures every token has a high
probability in the large model, thus improving the overall
likelihood. More importantly, there is a significant gap
between MTAD and other baselines. On average, the per-
plexity of MTAD is 21.2% lower than that of speculative
decoding. Table 6: Downstream task scores of spec-

ulative decoding and MTAD. All the
scores are higher the better.

spec MTAD

CD Rouge-L 0.114 0.118

SP EA 11.5 13.0

MT

Humanities 2.95 3.15
Extraction 1.80 2.50
Roleplay 3.10 3.80

Math 1.10 1.00
Coding 1.25 1.10

Reasoning 3.80 3.15
STEM 2.85 3.10
Writing 3.80 3.65
Average 2.58 2.68

In addition, to show MTAD indeed improves the down-
stream effectiveness, we compare the performance metrics
of speculative decoding and MTAD on CNNDM, Spi-
der, and MT-Bench datasets.5 We exclude the other two
datasets as they lack explicit downstream metrics. And we
exclude the results of OPT models due to their consistently
poor performance across all evaluated datasets. As illus-
trated in Table 6, MTAD outperforms speculative decod-
ing across all three datasets, thereby validating our claim
that MTAD achieves superior effectiveness compared to
conventional decoding methods that rely on single-token
distributions.

5.2 ABLATION STUDY

5.2.1 NUMBER OF BEAMS

First, we investigate how the number of beams used in the beam decoding of the small model
affects the inference performance. Table 7 shows the results. Increasing the number of beams im-
proves the quality of the draft tokens, which not only improves the output perplexity but also
increases the average acceptance length and hence leads to better efficiency. But we can see
that the increment slows down when the number of beams is large enough. In addition, when
the number of beams is too large, the inference cost of the small model will become too high.

Table 7: Effect of number of beams to the inference
performance on ChatGPT-Prompts dataset.

beams 2 4 6 8

speed (token/s) ↑ 55.9 59.9 60.2 61.3
Llama-2 energy (J/token) ↓ 2.43 2.25 2.22 2.20

perplexity ↓ 2.44 2.12 2.14 2.10

speed (token/s) ↑ 51.0 54.1 54.3 55.9
OPT energy (J/token) ↓ 2.50 2.32 2.36 2.30

perplexity ↓ 3.63 3.16 3.42 3.19

5.2.2 ACCEPTANCE THRESHOLD

Next, we evaluate the effect of acceptance
threshold τ . Intuitively, when we increase τ
from 0 to 1, the acceptance criterion becomes
more strict, the efficiency drops while the output
perplexity increases. Surprisingly, this expec-
tation is only partially correct. As shown in
Figure 3, the efficiency indeed drops when τ in-
creases. However, the perplexity increases when
τ is close to 1. When τ = 1, all the draft tokens are rejected, which makes MTAD equivalent to
multinomial sampling. Similarly, when τ is close to 1, the advantage of multi-token joint decoding
on effectiveness disappears, hence the perplexity becomes close to the perplexity of multinomial
sampling. Another surprising observation is that the perplexity of MTAD is good when τ = 0. When
τ = 0, MTAD is equivalent to generating γ tokens using beam decoding with the small model, then

5All speculative baselines are equivalent to multinomial sampling

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

generating an additional token with the large model. The fact that MTAD achieves good perplexity
when τ = 0 can be explained by the fact that “even when a small model is an order of magnitude
smaller than a large model, only a small fraction of the small model’s predictions deviate from those
of the large model” (Kim et al., 2023; Leviathan et al., 2023). Moreover, when τ ranges from 0.1
to 0.9, the performance of MTAD is relatively stable, suggesting that MTAD is not sensitive to the
acceptance threshold.

6 RELATED WORK

Figure 3: Effect of acceptance threshold
on output perplexity and decoding speed.

EFFICIENT DECODING INFERENCE. There are exten-
sive studies on improving large model inference efficiency.
Well-known methods include model quantization (Frantar
et al., 2022; Lin et al., 2023), model pruning (Gale et al.,
2019; Sanh et al., 2020), and model distillation (Hinton
et al., 2015). Despite achieving significant speed-ups, a
common drawback of these methods is that they have to
sacrifice the model’s effectiveness.

A direction closer to our work is non-autoregressive de-
coding. It is first proposed by (Gu et al., 2017) to generate
multiple tokens in parallel. That is, the model simultane-
ously predicts p(xt+k|x1:t) (k = 1, 2, . . .). Subsequent studies further improved the performance
of parallel decoding by incorporating additional information (Wang et al., 2019; Sun et al., 2019;
Li et al., 2019) or using additional iterations to refine predictions (Ghazvininejad et al., 2019; Lee
et al., 2018; Guo et al., 2020). However, these works require continuous training of the model and
usually either compromise the model effectiveness or require task-dependent techniques to achieve
comparable performance (Kim et al., 2023).

SPECULATIVE DECODING. Speculative decoding was recently proposed in (Leviathan et al.,
2023; Chen et al., 2023) as a way to accelerate LLM inference. Spectr (Sun et al., 2023) enhances
speculative decoding by letting the small model generate multiple i.i.d. draft sequences. While
speculative decoding and Spectr use the large model to verify all the tokens drafted by the small model,
BiLD (Kim et al., 2023) only calls the large model when the probability output by the small model
is below a pre-defined threshold τ1. The large model rejects a token if its negative log-likelihood is
larger than threshold τ2. SpecInfer (Miao et al., 2023) uses one or multiple small models to generate
a draft token tree to increase the average acceptance length for each iteration. All these methods can
be perceived as exact or approximate versions of sampling tokens from the conditional distribution
p(xt|x<t). Therefore, their output perplexity is bounded by greedy decoding.

An orthogonal direction to improve speculative decoding is to improve the effectiveness of the small
draft model. It is obvious that if more draft tokens are accepted, the overall inference speed will
increase. BiLD (Kim et al., 2023) uses a model prediction alignment technique to better train the
small model. Liu et al. (Liu et al., 2023) propose online speculative decoding to continually update
the draft model based on observed input data. Instead, Rest (He et al., 2023) uses a retrieval model to
produce draft tokens. An alternative way is to train additional heads in the large model to predict
future tokens. Representative works include EAGLE (Li et al., 2024) and MEDUSA (Cai et al., 2024).
Importantly, these works are orthogonal to speculative decoding techniques, including our proposed
method. This orthogonality means that the improvements offered by more accurate draft tokens could
be combined with our method for better effectiveness.

7 CONCLUSION

We introduce multi-token assisted decoding that significantly enhances output quality along with
better time and energy efficiency. A distinctive aspect of our work is the exploration of speculative
decoding’s impact on inference energy consumption, an often neglected area in existing studies. This
research contributes not only a novel decoding approach but also valuable insights for optimizing
LLM deployment in real-world applications where considerations of both quality and efficiency are
crucial.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tyler Allen and Rong Ge. Characterizing power and performance of gpu memory access. In 2016
4th International Workshop on Energy Efficient Supercomputing (E2SC), pp. 46–53. IEEE, 2016.

Feifei Bear. Llmspeculativesampling. https://github.com/feifeibear/
LLMSpeculativeSampling, 2024. Accessed: 2024-05-19.

Ning Bian, Hongyu Lin, Yaojie Lu, Xianpei Han, Le Sun, and Ben He. Chatalpaca: A multi-turn dia-
logue corpus based on alpaca instructions. https://github.com/cascip/ChatAlpaca,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, and Jih-kwon Peir. Tree structured analysis on gpu
power study. In 2011 IEEE 29th International Conference on Computer Design (ICCD), pp. 57–64.
IEEE, 2011.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive
neural machine translation. arXiv preprint arXiv:1711.02281, 2017.

Junliang Guo, Linli Xu, and Enhong Chen. Jointly masked sequence-to-sequence model for non-
autoregressive neural machine translation. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 376–385, 2020.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

11

https://github.com/feifeibear/LLMSpeculativeSampling
https://github.com/feifeibear/LLMSpeculativeSampling
https://github.com/cascip/ChatAlpaca

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B Jablin, George
Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten lessons from three generations
shaped google’s tpuv4i: Industrial product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pp. 1–14. IEEE, 2021.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Jean-Baptiste Lespiau, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding beyond beam
search. arXiv preprint arXiv:2104.05336, 2021.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural sequence
modeling by iterative refinement. arXiv preprint arXiv:1802.06901, 2018.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024.

Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Liwei Wang, and Tie-Yan Liu. Hint-based training for
non-autoregressive machine translation. arXiv preprint arXiv:1909.06708, 2019.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 1(2):4, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Mohamed Rashad. Chatgpt-prompts, 2023. URL https://huggingface.co/datasets/
MohamedRashad/ChatGPT-prompts.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones, William
Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts: Benchmark-
ing the energy costs of large language model inference. In 2023 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–9. IEEE, 2023.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456–17472, 2022.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1073–1083, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL https:
//www.aclweb.org/anthology/P17-1099.

12

https://huggingface.co/datasets/MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/MohamedRashad/ChatGPT-prompts
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. arXiv preprint arXiv:2402.06925,
2024.

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, and Zhihong Deng. Fast structured decoding
for sequence models. Advances in Neural Information Processing Systems, 32, 2019.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.
Spectr: Fast speculative decoding via optimal transport. arXiv preprint arXiv:2310.15141, 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive
machine translation with auxiliary regularization. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5377–5384, 2019.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie-yan Liu. A survey
on non-autoregressive generation for neural machine translation and beyond. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023.

Zeyu Yang, Karel Adamek, and Wesley Armour. Part-time power measurements: nvidia-smi’s lack
of attention. arXiv preprint arXiv:2312.02741, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF

A.1 PROOF OF THEOREM 3.2

Proof.

PPL(x1:ΓN
) = exp

(
− 1

ΓN

ΓN∑
i=1

log p(xi|x1:i−1)

)

= exp

(
− N

ΓN

1

N

N∑
i=1

log p(xΓi−1:Γi |x1:Γi−1)

) (10)

When N → ∞, ΓN

N → γ̄, and 1
N

∑N
i=1 log p(xΓi−1:Γi

|x1:Γi−1
) →

Ex1:t∈X
∑

γ

∑
xt+1:t+γ

P (γ)p̃(xt+1:t+γ |x1:t) log p(xt+1:t+γ |x1:t) = EγLp(γ, p̃)

A.2 PROOF OF COROLLARY 3.3

Proof. For deterministic multi token sampling, p̃multi = argmax ◦p, so we have

Lp(γ, p̃multi) = Ex1:t∈X max
xt+1:t+γ

log p(xt+1:t+γ |x1:t) (11)

Notice that deterministic greedy sampling can be seen as a special case of MJGD where
p̃single(xt+1:t+γ |x1:t) = 1 if and only if xt+i = argmaxx p(x|x1:t+i−1) for i = 1, . . . , γ.
Let x∗

t+1:t+γ be the tokens generated by deterministic MJGD and let x′
t+1:t+γ be the to-

kens generated by deterministic greedy decoding. For any fixed γ and x1:t, we have
log p(x′

t+1:t+γ |x1:t) ≤ maxxt+1:t+γ log p(xt+1:t+γ |x1:t) = log p(x∗
t+1:t+γ |x1:t). Therefore,

Lp(γ, p̃single) ≤ Lp(γ, p̃multi). Then with Theorem 3.2, we know that the perplexity of greedy
decoding will be higher.

A.3 PROOF OF LEMMA 3.4

We first prove the following Lemma.
Lemma A.1. Let PPLp and PPLq denote the perplexity of tokens under distribution p and q. When
N →∞, we have

PPLp(x1:ΓN
)

PPLq(x1:ΓN
)
≤ τ−

1
γ̄ (12)

where τ is the verification threshold.

Proof. In the i-th iteration, the first γi − 1 tokens are the accepted draft tokens and the last token is
sampled from p. Based on our verification criteria, we know that for the accepted draft tokens, we
have

p(xΓi−1+1:Γi−1+γi−1|x1:Γi−1)

q(xΓi−1+1:Γi−1+γi−1|x1:Γi−1
)
≥ τ. (13)

So,
p(x1:ΓN

)

q(x1:ΓN
)
≥ τN

N∏
i=1

p(xΓi
|x1:Γi−1)

q(xΓi |x1:Γi−1)
(14)

Notice that (
N∏
i=1

p(xΓi
|x1:Γi−1)

q(xΓi
|x1:Γi−1)

) 1
N

= exp

(
1

N

N∑
i=1

log

(
p(xΓi

|x1:Γi−1)

q(xΓi
|x1:Γi−1)

))
(15)

When N →∞, since the last token at each iteration is sampled from p, we have

1

N

N∑
i=1

log

(
p(xΓi

|x1:Γi−1)

q(xΓi
|x1:Γi−1)

)
→ Ep log

(
p(xΓi

|x1:Γi−1)

q(xΓi
|x1:Γi−1)

)
= KL(p, q) ≥ 0 (16)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

So (
N∏
i=1

p(xΓi
|x1:Γi−1)

q(xΓi |x1:Γi−1)

) 1
N

≥ 1 (17)

Therefore,
p(x1:ΓN

)

q(x1:ΓN
)
≥ τN (18)

Thus,
PPLp(x1:ΓN

)

PPLq(x1:ΓN
)
=

(
p(x1:ΓN

)

q(x1:ΓN
)

)− 1
ΓN

≤ τ
− N

ΓN → τ−
1
γ̄ (19)

Now, we prove Lemma 3.4.

Proof.

− logPPLq(x1:ΓN
) =

1

ΓN

N∑
i=1

(log q(xΓi−1+1:Γi−1|x1:Γi−1) + log q(xΓi |x1:Γi−1)) (20)

When N →∞, since the first γi − 1 tokens are sampled with beam decoding, we have

1

N

N∑
i=1

log q(xΓi−1+1:Γi−1|x1:Γi−1
))→ EγEx1:t∈X log q(xt+1:t+γ−1|x1:t

)

≥ (1− ϵ)EγEx1:Γi−1
∈X max

xΓi−1+1:Γi−1

q(xΓi−1+1:Γi−1|x1:Γi−1
))

= (1− ϵ)EγLq(γ − 1, argmax ◦q)
(21)

Since the last token at each iteration is sampled from p, we have

1

N

N∑
i=1

log q(xΓi
|x1:Γi−1))→ Ex1:t∈XEp log q(xt+1|x1:t) = −H(p, q) (22)

So

− logPPLq(x1:ΓN
) ≥ 1− ϵ

γ̄
Eγ,x1:Γi−1

∈X max
xt+1:t+γ

q(xt+1:t+γ |x1:t))−
H(p, q)

γ̄
(23)

PPLq(x1:ΓN
) ≤ exp

(
H(p, q)

γ̄
− 1− ϵ

γ̄
EγLq(γ − 1, argmax ◦q)

)
(24)

A.4 PROOF OF THEOREM 3.5

Proof. We have

lim
N→∞

PPLp(x1:ΓN
)

PPLp(x∗
1:ΓN

)
≤ τ−

1
γ̄ lim

N→∞

PPLq(x1:ΓN
)

PPLp(x∗
1:ΓN

)
(LemmaA.1)

= τ−
1
γ̄

limN→∞ PPLq(x1:ΓN
)

exp
(
− 1

γ̄EγLp(γ, argmax ◦p)
) (Theorem3.2)

≤ τ−
1
γ̄

exp
(

H(p,q)
γ̄ − 1−ϵ

γ̄ EγLq(γ − 1, argmax ◦q)
)

exp
(
− 1

γ̄EγLp(γ, argmax ◦p)
) (Lemma3.4)

= τ−
1
γ̄ exp

(
H(p, q)

γ̄
− 1− ϵ

γ̄
EγLq(γ − 1, argmax ◦q) + 1

γ̄
EγLp(γ, argmax ◦p)

)
(25)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Notice that Lp(γ, argmax ◦p) ≥ Lp(γ + 1, argmax ◦p) for any
γ. This is because for any x1:t, maxxt+1:t+γ

log p(xt+1:t+γ |x1:t) ≥
maxxt+1:t+γ+1

(log p(xt+1:t+γ |x1:t) + log p(xt+γ+1|x1:t+γ)) =
maxxt+1:t+γ+1

log p(xt+1:t+γ+1|x1:t).

So

lim
N→∞

PPLp(x1:ΓN
)

PPLp(x∗
1:ΓN

)

≤τ−
1
γ̄ exp

(
H(p, q)

γ̄
+

ϵ

γ̄
EγLp(γ, argmax ◦p) + 1− ϵ

γ̄
(EγLp(γ, argmax ◦p)− EγLq(γ, argmax ◦q))

)
(26)

Since ϵ ≤ 0, and Lp(γ, argmax ◦p) is the maximum log-likelihood, which is larger than the expected
log-likelihood (i.e., negative entropy), we have

ϵ

γ̄
EγLp(γ, argmax ◦p)

=
ϵ

γ̄
EγEx1:t∈X max

xt+1:t+γ

log p(xt+1:t+γ |x1:t)

≤ ϵ

γ̄
EγEx1:t∈X

∑
xt+1:t+γ

p(xt+1:t+γ |x1:t) log p(xt+1:t+γ |x1:t)

=− ϵH(p)

(27)

In addition
EγLp(γ, argmax ◦p)− EγLq(γ, argmax ◦q)

=Eγ(Lp(γ, argmax ◦p)− Lq(γ, argmax ◦q))

=Eγ

(
Ex1:t∈X max

xt+1:t+γ

log p(xt+1:t+γ |x1:t)− Ex1:t∈X max
xt+1:t+γ

log q(xt+1:t+γ |x1:t)

)
=EγEx1:t∈X

(
max

xt+1:t+γ

log p(xt+1:t+γ |x1:t)− max
xt+1:t+γ

log q(xt+1:t+γ |x1:t)

)
≤ EγEx1:t∈X max

xt+1:t+γ

(log p(xt+1:t+γ |x1:t)− log q(xt+1:t+γ |x1:t))

= EγEx1:t∈X max
xt+1:t+γ

(
γ∑

i=1

log p(xt+i|x1:t+i−1)− log q(xt+i|x1:t+i−1)

)
≤ EγEx1:t∈XUγ (because ∥ log p(x|x1:t)− log q(x|x1:t)∥∞ ≤ U)

= Uγ̄

(28)

And H(p, q) = H(p) +KL(p∥q).
KL(p∥q) = Ex1:t∈X

∑
x

p(x|x1:t)(log p(x|x1:t)− log p(x|x1:t))

≤ Ex1:t∈X
∑
x

p(x|x1:t)U ≤ U
(29)

So H(p, q) ≤ H(p) + U . Therefore,

lim
N→∞

PPLp(x1:ΓN
)

PPLp(x∗
1:ΓN

)
≤ τ−

1
γ̄ exp

(
(1− ϵγ̄)H(p) + (1− ϵ+ γ̄)U

γ̄

)
(30)

A.5 PROOF OF THEOREM 3.6

Proof. Recall that we accept xt+1:t+j if and only if log p(xt+1:t+j |x1:t) − log q(xt+1:t+j |x1:t) ≥
log τ . Since ∥ log p(x|x1:t)− log q(x|x1:t)∥∞ ≤ U , we have

log p(xt+1:t+j |x1:t)− log q(xt+1:t+j |x1:t) ≥ −jU (31)

Therefore xt+1:t+j is always accepted if j ≤ | log τ |
U . So γ̄ ≥ | log τ |

U

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B PSEUDOCODE OF MJSD

See Algorithm 1.

Algorithm 1 One Iteration of MTAD Algorithm

1: Input: draft model Mq , target model Mp, input, threshold τ
2: # Sample draft sequences from Mq with beam sample.
3: x, q ← beamSample(Mq , input) # xi is the i-th draft token. qi = q(x1:i|input)
4: P ←Mp(input,X) # P ∈ R(γ+1)×|V |, Pi,j = p(x = j|x1:i−1, input)
5: # Select the longest accepted draft sequence
6: p← 1, η ← −1
7: for i = 1 to γ do
8: j ← xi

9: p← p ∗ Pi,j , q ← qi
10: if τ < min(1, p

q) then
11: η ← j # longest accepted prefix so far
12: end if
13: end for
14: # Sample the next token using results of Mp

15: p′ ← Pη+1

16: t ∼ p′

17: return [x1, . . . ,xη, t]

Table 8: Dataset Statistics

Dataset Task Avg. Input Len

ChatGPT-Prompt Instruction 25.2
ChatAlpaca Chat 277.7
CNNDM Summarization 3,967.1

Spider Text-to-SQL 347.68
MT-Bench Various1 N/A2

C ADDITIONAL EXPERIMENTS

C.1 MULTI-TOKEN JOINT DECODING (MTJD) HAS BETTER OUTPUT QUALITY

While most decoding approaches focus on inference speed-up, we aim to design approaches that
can also improve inference quality. We propose multi-token joint decoding (MTJD, Section 3.1) to
achieve this goal, as it achieves lower perplexity and higher likelihood compared to single-token
multinomial sampling. To validate that MTJD improves output quality, we evaluate MTJD (k = 4)
and multinomial sampling on Spider (Yu et al., 2018), MTBench (Zheng et al., 2023), and HumanEval
(Pass@1) (Chen et al., 2021) using the Llama-3 series models. We follow the implementation details
introduced in Section 3.1 for MTJD. The results in Table 9, where higher scores indicate better
performance, demonstrate a clear advantage of MTJD in terms of output quality. We will merge the
results in the main paper in future versions.

Since MTJD is computationally expensive (slower than greedy decoding), we propose MTAD
to approximate MTJD, inheriting its benefits while achieving significantly better efficiency. The
performance of MTAD is discussed below.

1The tasks of MT-Bench cover humanities, extraction, roleplay, math, coding, reasoning, stem, writing, and
STEM.

2MT-Bench contains multi-turn tasks where the input includes the responses of LLMs, so the input length is
not fixed.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 9: Performance comparison of single-token multinomial sampling and MTJD. Higher scores
indicate better output quality.

Llama-3-8B and Llama-3-1B Llama-3-8B-Instruct and Llama-3-1B-Instruct
Dataset Spider MTBench HumanEval Spider MTBench HumanEval

multinomial score 22.0 3.40 15.9 36.0 4.11 28.0
ppl 2.58 2.40 2.09 2.23 1.91 1.85

MTJD score 52.5 3.77 36.6 60.5 4.40 49.4
ppl 1.16 1.32 1.26 1.18 1.27 1.15

C.2 COMPREHENSIVE EVALUATION OF MTAD

To further validate MTAD’s effectiveness, we conducted additional evaluations as per reviewers’
requests:

1. We use Llama-3 models (Llama-3.1-8B and Llama-3.1-8B-Instruct as target models, and
Llama-3.2-1B and Llama-3.2-1B-Instruct as draft models).

2. We include three datasets: Spider, HumanEval, and MT-Bench, to ensure rigorous metrics
and a variety of tasks.

3. We add Medusa’s decoding algorithm, typical sampling, as an additional baseline.

The results, shown in Table 10, demonstrate that MTAD consistently achieves the best output quality
and the fastest speed across all datasets and models. We will merge the results in the main paper
in future versions.

Table 10: Performance comparison of MTAD and other decoding methods across different datasets
and metrics for both Llama-3-Instruct and Llama-3 models.

lossy methods lossless methods ours
Dataset Model Metric BiLD Typical (Medusa) spec spectr specinfer MCSS MTAD

Spider

Llama-3-Instruct
tokens/s 20.1 22.3 19.6 22.4 21.1 21.7 23.5
J/token 10.2 9.5 10.5 9.6 10.2 10.0 9.2

Acc 35.0 42.0 36.0 35.5 37.0 35.0 44.0

Llama-3
tokens/s 23.3 32.3 31.1 32.1 32.6 32.7 33.3
J/token 8.2 7.9 7.5 7.1 8.1 8.0 7.8

Acc 30.5 29.5 21.5 23.0 21.5 24.0 35.0

MT-Bench

Llama-3-Instruct
tokens/s 25.9 23.4 26.0 26.2 26.3 26.8 29.8
J/token 10.8 12.2 10.0 9.9 10.0 9.9 9.2
score 4.15 4.26 4.1 4.11 4.01 4.02 4.40

Llama-3
tokens/s 24.5 22.3 24.1 24.5 24.5 25.7 28.2
J/token 11.5 12.4 11.0 11.6 11.7 11.1 10.0
score 3.41 3.24 3.39 3.41 3.35 3.36 3.75

HumanEval

Llama-3-Instruct
tokens/s 17.4 21.7 22.2 23.8 22.8 23.7 24.8
J/token 10.0 8.1 7.8 7.8 7.9 7.8 7.6
pass@1 37.8 35.9 32.9 32.9 31.0 32.0 38.4

Llama-3
tokens/s 19.6 22.5 22.2 24.4 22.5 23.8 25.6
J/token 9.7 8.9 8.9 8.9 8.1 7.9 7.6
pass@1 19.5 20.0 15.9 16.0 17.7 17.0 22.0

C.3 RESUTLTS WITH OPT-30B AND LLAMA-2-70B

Here we report the performances of different methods for OPT (350M and 30B) and Llama-2-Chat
(7B and 70B). Table 11 shows the average performances across all datasets. MTAD always achieves
the lowest perplexity and the best efficiency.

C.4 ABLATION STUDY OF TOP-K AND TOP-P SAMPLING

Here we conduct an ablation study to show how the value of k and p in top-k and top-p warping
affects our method. Table 12 shows the results. We can see that when changing the value of k and p,
MTAD consistently achieves significantly better performances.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 11: Inference efficiency and output perplexity of different methods with OPT (350M,30B) and
Llama-2-Chat (7B,70B). The mean and standard deviation are computed across all datasets. Bold
numbers mark the best result, underlined numbers mark the second best.

speculative BiLD Spectr SpecInfer MTAD

Llama-2
speed (token/s) ↑ 8.37±3.07 8.64±3.50 9.11±3.03 8.87±2.82 9.53±3.29
energy (J/token) ↓ 138±87.7 142±99.7 122±66.4 125±65.4 119±67.7

perplexity ↓ 1.77±0.22 1.69±0.25 1.73±0.24 1.73±0.24 1.52±0.19

OPT
speed (token/s) ↑ 15.3±1.64 14.5±1.96 17.0±4.14 17.4±4.00 19.5±4.11
energy (J/token) ↓ 72.4±11.5 79.6±3.03 68.2±16.7 62.4±10.3 60.0±12.8

perplexity ↓ 4.74±1.96 3.50±1.42 4.55±1.93 4.49± 1.95 2.74±0.87

Table 12: Ablation study of k and p in top-k and top-p sampling

K P Greedy Speculative MJSD
PPL Tokens/sec PPL Tokens/sec PPL Tokens/sec

20 0.9 3.74 22.6 3.64 36.8 2.06 63.0
20 0.8 3.06 22.7 3.10 38.5 1.93 58.8
10 0.9 3.03 22.7 3.22 38.5 1.95 62.5
10 0.8 2.56 22.7 2.53 40.0 1.80 62.5

C.5 ADDITIONAL EXPERIMENTS ON CNNDM AND SPIDER

We also report the downstream effectiveness of our method on CNNDM and Spider when the small
model and large model are fine-tuned on the dataset. Table 13 and Table 14 show the results. We can
see that MTAD consistenly achieve better effectiveness as well as faster decoding speed.

Table 13: Comparison of ROUGE-L Scores and Tokens per Second under Different Fine-Tuning
Conditions on CNNDM

No Fine-Tune Fine-Tune 68M Fine-Tune Both

Method ROUGE-L Tokens/sec ROUGE-L Tokens/sec ROUGE-L Tokens/sec

Speculative 0.114 37.7 0.114 20.4 0.164 24.3
MJSD 0.118 44.2 0.121 25.0 0.168 27.1

C.6 VISUALIZATION OF PERPLEXITY AND OUTPUT QUALITY

To further illustrate the relationship between perplexity and downstream performance, we present a
scatter plot in Figure 4. The plot shows the correlation between relative downstream scores (normal-
ized by the score of multinomial sampling) and relative perplexity (normalized by the perplexity of
multinomial sampling) across 7 decoding algorithms, 3 datasets, and 2 model configurations. The
results confirm that lower perplexity generally correlates with higher output quality.

C.7 CORRELATION BETWEEN ENERGY AND SPEED

We observed there is a correlation between speed and energy as shown in the Figure 5 newly added to
the appendix C, whether considering the entire table or focusing on a specific dataset and model. For
fairness,all methods for a given dataset and model were run on the same machine nodes. However,
for a fixed method (e.g., Spectr), experiments on different datasets and models might be conducted
on different nodes (all equipped with L40 GPUs). We did notice that the same configuration run on
different machines may have varied energy consumption. This variation introduces some randomness,
which could make the correlation appear less consistent across datasets and models.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 14: Comparison of Execution Accuracy (EA) and Tokens per Second under Different Fine-
Tuning Conditions on Spider

No Fine-Tune Fine-Tune 68M Fine-Tune Both

Method EA Tokens/sec EA Tokens/sec EA Tokens/sec

Speculative 11.5 28.5 11.5 27.8 16.3 25.6
MJSD 13.0 30.3 14.8 32.3 18.3 29.4

Figure 4: Relationship between relative perplexity (normalized by multinomial sampling’s perplexity)
and relative performance score (normalized by multinomial sampling’s score).

(a) group by dataset and model (b) group by methods

Figure 5: Correlation between speed and energy

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D ENERGY CONSUMPTION MEASUREMENT

We use the command "nvidia-smi -query-gpu=power.draw -format=csv" to get
GPU power every second, and sum them up as the total energy consumption. We use average
energy consumption per token to measure energy efficiency. There is a recent study pointing out the
measurement error using nvidia-smi (Yang et al., 2023). We follow the three principles proposed
in (Yang et al., 2023) to minimize the error.

E CONFIGURATION

The experiments are conducted on a machine with 1 Nvidia L40 GPU (48 GB), 4 CPUs, and 50 GB
main memory, using a batch size of 1, which is common for online serving (Schuster et al., 2022).
We set the maximum running time to be an hour for each baseline. We use average tokens/second to
measure the inference speed and use perplexity (exponentiated average negative log-likelihood) based
on the probability of the large model to measure the output quality. Because different methods might
finish different numbers of inputs, we only calculate the perplexity of the first M inputs, where M is
the number of inputs finished by greedy decoding. We use average energy consumption per token to
measure energy efficiency. The details of energy measurement are illustrated in the Appendix.

F HYPER-PARAMETER DETAILS

In the experiments, we follow the default settings in (Bear, 2024) to warp the sampling distribution
p and q with the following steps, which are the default warpping operations in a public speculative
decoding implementation.

1. Keep the probabilities of top 20 tokens unchanged, and set the probabilities of other tokens
to 0, then normalize the distribution.

2. Sort the tokens based on their distributions descendingly. Keep the first K tokens such that
their cumulative probabilities is larger than 0.9, while set the probabilities of other tokens to
0.

For different methods, we choose their hyper-parameters by using a small validation set. We select
the set of hyper-parameters that make the corresponding method have best output perplexity. Table
15 shows the hyper-parameters used in the experiments.

Table 15: Hyper-parameters of different methods for different models and datasets. L: Llama, O:OPT,
CP: ChatGPT-Prompts, CA: ChatAlpaca, CD: CNNDaily.

L,CP O,CP L,CA O,CA L,CD O,CD L,SP O,SP L,MT O,MT

speculative step len γ 4 4 4 4 4 4 4 4 4 4

Spectr&SpecInfer step len γ 4 4 4 4 4 4 4 4 4 4
num seq m 4 4 2 2 4 2 2 2 2 2

BiLD
step len γ 10 10 10 10 10 10 10 10 10 10

fallback thres τ1 0.9 0.9 0.9 0.3 0.9 0.3 0.9 0.9 0.9 0.9
rollback thres τ2 2 2 1 2 3 2 1 1 1 1

MTAD

step len γ 4 4 4 4 4 4 4 4 4 4
num beams 8 8 8 8 8 8 8 8 8 8

acc/rej thres τ 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.1 0.9 0.1

G LICENSE OF DATASETS AND MODELS

Datasets:

• ChatGPT-Prompts: Non (https://huggingface.co/datasets/MohamedRashad/ChatGPT-
prompts)

• ChatAlpaca: Apache-2.0 License
• CNN Dailymail: Apache-2.0 License

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Models

• OPT-125M and OPT-13B: Model License (https://github.com/
facebookresearch/metaseq/blob/main/projects/OPT/MODEL_
LICENSE.md)

• Llama-68M: Apache-2.0 License
• Llama-2-13B: Llama-2 Community License Agreement

Codes

• LLMSpeculativeSampling (https://github.com/feifeibear/
LLMSpeculativeSampling)

22

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
https://github.com/feifeibear/LLMSpeculativeSampling
https://github.com/feifeibear/LLMSpeculativeSampling

	Introduction
	Preliminaries
	Decodings of LLMs
	Vanilla Speculative Decoding

	Methodology
	Multi-Token Joint Decoding
	Multi-Token Assisted Decoding

	Energy Efficiency Analysis
	Experiments
	Comparison with Baselines
	Ablation Study
	Number of Beams
	Acceptance Threshold

	Related Work
	Conclusion
	Proof
	Proof of Theorem 3.2
	Proof of Corollary 3.3
	Proof of Lemma 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6

	Pseudocode of MJSD
	Additional Experiments
	Multi-Token Joint Decoding (MTJD) Has Better Output Quality
	Comprehensive Evaluation of MTAD
	Resutlts with OPT-30B and Llama-2-70B
	Ablation study of top-k and top-p sampling
	Additional Experiments on CNNDM and Spider
	Visualization of perplexity and output quality
	Correlation between Energy and Speed

	Energy Consumption Measurement
	Configuration
	Hyper-parameter Details
	License of Datasets and Models

