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Abstract

Dynamic graph neural networks (dynamic GNNs) have demonstrated remarkable effective-
ness in analyzing time-varying graph-structured data. However, their black-box nature
often hinders users from understanding their predictions, which can limit their applications.
In recent years, there has been a surge in research aimed at explaining GNNs, but most
studies have focused on static graphs, leaving the explanation of dynamic GNNs relatively
unexplored. Explaining dynamic GNNs presents a unique challenge due to their complex
spatial and temporal structures. As a result, existing approaches designed for explaining
static graphs are not directly applicable to dynamic graphs because they ignore temporal
dependencies among graphs. To address this issue, we propose DGExplainer, which of-
fers a reliable explanation of dynamic GNN predictions. DGExplainer utilizes the relevance
back-propagation technique both time-wise and layer-wise. Specifically, it incorporates tem-
poral information by computing the relevance of node representations along the inverse of
the time evolution. Additionally, for each time step, it calculates layer-wise relevance from
a graph-based module by redistributing the relevance of node representations along the
back-propagation path. Quantitative and qualitative experimental results on six real-world
datasets demonstrate the effectiveness of DGExplainer in identifying important nodes for
link prediction and node regression in dynamic GNNs.

1 Introduction

Dynamic GNNs have achieved significant success in practical applications such as social network analysis (Zhu
et al., 2016), transportation forecasting (Bui et al., 2022), pandemic forecasting (Kapoor et al., 2020), and
recommender systems (Zhang et al., 2022). However, since most of the dynamic GNNs (Ma et al., 2020;
Li et al., 2017; Nguyen et al.; Goyal et al., 2018; Yu et al., 2018a; Seo et al., 2018; Hajiramezanali et al.,
2019) are developed without interpretability, they are treated as black-boxes. Without understanding the
underlying mechanisms behind their predictions, dynamic GNNs cannot be fully trusted, preventing their
use in critical applications. In order to safely and trustfully employ dynamic GNN models, it is important
to provide both accurate predictions and human-understandable explanations.

The explanation techniques for static GNNs have been extensively explored by recent studies. These tech-
niques include approximation-based methods (Baldassarre & Azizpour, 2019; Pope et al., 2019), which
use gradients or surrogate functions to approximate the output of a local model. Perturbation-based ap-
proaches (Ying et al., 2019; Luo et al., 2020) explain static GNNs by masking specific features to observe their
impact on the model’s output. Gradient-based methods (Sundararajan et al., 2017; Selvaraju et al., 2017)
adopt the additive assumption of feature values or gradients to measure the importance of input features.
Further relevant research on explaining static GNNs can be found in Section 4.5.2. However, these meth-
ods do not account for the unique temporal information essential for explaining dynamic GNNs. Directly
applying existing explanation frameworks for static graphs to dynamic graphs is impractical, as it leads to
discrete explanations for a graph sequence, with each graph snapshot being explained independently.

Explaining dynamic GNNs can be challenging. We illustrate this process in Figure 1. The prediction task,
shown in Figure 1a, aims to forecast future traffic flows (denoted by dashed lines) at different locations based
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(b) Explaining traffic-flow prediction of dynamic GNNs.
Figure 1: The diagram of the explanation task of dynamic GNNs on traffic flow data.

on historical observations (denoted by solid lines). This spatial-temporal data is modeled as a dynamic graph,
represented in Figure 1b, where each graph snapshot records traffic flows at different time steps (e.g., 12:00
PM, 3:00 PM, and 9:00 PM). In each graph snapshot, a dashed line between two nodes indicates a commute
between locations, and an arrow represents traffic flows, contributing to the prediction for the target location
(denoted by a yellow triangle). The explanation task aims to determine the influence of other locations on
the prediction of the target location. The polarity of the influence is denoted by the color of the arrows:
blue indicates a positive correlation, while red indicates a negative correlation, with the darkness of the color
indicating the strength of the influence. The complexity of dynamic graph data necessitates both temporal
and spatial module designs in dynamic GNNs. This makes the explanation task challenging, as it requires
identifying the influence of the input based on the output from these dynamic GNNs.

To integrate unique temporal and spatial information in explaining dynamic GNNs, we propose using layer-
wise relevance propagation (LRP). Originally introduced by Bach et al. (2015) for image classifiers, LRP
computes the relevance of each pixel in predicting an instance. Applying LRP to dynamic GNNs offers
two key benefits. First, unlike most explanation techniques for static GNNs, it does not require learning
a surrogate function or running any optimization procedure. Second, LRP evaluates the importance of
sequences of edges or walks in the graph, rather than focusing solely on individual nodes or edges, making
it particularly well-suited for explaining dynamic GNNs.

To address this challenge, we propose a framework called DGExplainer (Dynamic Graph Neural Network
Explainer). The framework operates in three main steps. First, it decomposes the prediction of a dynamic
GNN and computes the relevance in a time-related module using relevance back-propagation. Second, it
calculates the relevance of the input features by back-propagating through the graph-related modules (e.g.,
a GCN module) layer by layer at each time step. Finally, by aggregating the relevance from the previous
steps, we obtain the final relevance of node features, which represents their importance to the prediction.
The contributions of our work are as follows:

• This work aims to explain the predictions of dynamic graph neural networks, marking one of the pioneering
efforts to tackle this challenge.

• We propose a novel framework, DGExplainer, designed to generate explanations for dynamic GNNs from a
decomposition perspective. DGExplainer effectively calculates relevances that represent the contributions
of each component in a dynamic graph.

• We demonstrate the effectiveness of DGExplainer on six real-world datasets. Quantitative experiments
across three evaluation metrics show that our method provides faithful explanations. Furthermore, qualita-
tive experiments demonstrate that DGExplainer offers significant advantages over other baseline methods
in effectively explaining dynamic GNNs.
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2 Problem Definition

This paper focuses on explaining dynamic GNNs by computing the relevances of input features. Our approach
first redistributes the prediction from the last layer to the relevances of hidden representations. Then, we
use Layer-wise Relevance Propagation (LRP) to back-propagate the relevances through time-related and
graph-related modules, finally reaching the input layer to obtain the relevances of input features of each
node. Our method considers both the structural and temporal information of the dynamic graphs. The
relevant notations will be introduced in the following sections.

We study a series of input graphs G = {Xt, At}T
t=1, where T is the length of the sequence. Each graph at

time t, Gt = {Xt, At}, consists of a feature matrix Xt ∈ RN×D and an adjacency matrix At ∈ RN×N . Here,
N = |Vt| denotes the number of nodes, and D is the feature dimension. The feature vector for node i at
time t is xi

t = (X(i,:)
t )⊤ ∈ RD, which corresponds to the i-th row of Xt. Without loss of generality, A(i,j)

denotes the entry at the i-th row and j-th column of the adjacency matrix A, and x(i) denotes the i-th entry
of the vector x. The relevance of an element k, which can be a node, an edge, a feature, etc., is represented
by Rk. Additionally, Rk1←k2 denotes the relevance of k1 distributed from k2. The problem of explaining
dynamic GNNs involves identifying the subgraph within G, which consists of nodes and edges that are most
important at a specific time step t, given a dynamic GNN model f(G).

3 Explaining dynamic GNNs via DGExplainer

This section introduces our proposed method, DGExplainer, which explains the prediction of dynamic GNNs
by back-propagating relevances through both time-varying and message-passing reverse paths. DGExplainer
computes the relevance of each input feature by considering both the structural and temporal information
of the dynamic graphs.

3.1 Preliminaries

In the following subsections, we present the preliminaries relevant to our proposed method. We begin with
an overview of Dynamic Graph Neural Networks in Section 3.1.1, followed by an introduction to Layer-wise
Relevance Propagation in Section 3.1.2.

3.1.1 Dynamic Graph Neural Networks

Dynamic GNNs (Skarding et al., 2021; Zhang et al., 2022) take a sequence of graphs as input and output
representations of topology, nodes, and/or edges. A notable approach involves co-training a GNN with a
recurrent neural network (RNN), referred to as a GNN-RNN model. Examples include GCN-GRU (Zhao
et al., 2019), ChebNet-LSTM (Seo et al., 2018), and GCN-RNN (Pareja et al., 2020). Detailed related work
about dynamic GNNs can be found in Section 4.5.1. Despite the introduction of various methods, recent
approaches still do not consistently outperform the GCN-GRU model (Pareja et al., 2020). Therefore, in
this work, we choose to use the GCN-GRU model as the basis for elaborating our method. In addition to
explaining the GCN-GRU model, we also apply DGExplainer to other dynamic GNNs that utilize different
GNN or RNN architectures. Detailed results of these experiments can be found in Appendix A.5.

The GCN-GRU Model–Forward Pass: In the GCN-GRU model, the GCN module first encodes input
features of the current time step, capturing dependencies between nodes. These encoded features are then
passed to the GRU module, which captures temporal dependencies across different time steps. Below, we
outline the forward process of the GCN-GRU.

(a) The Graph Convolutional Network (GCN) module: GCNs represent a node using local informa-
tion from its surrounding neighbors (Kipf & Welling, 2016). This graph convolution process is formulated
as follows:

F(l+1)
t = σ(VtF(l)

t W(l)
t ). (1)

Here, Vt := D̃−
1
2

t ÃtD̃
− 1

2
t is the normalized adjacency matrix, where Ãt = At + IN and D̃t = Dt + IN . The

matrix Dt is the degree matrix, defined as D(i,i)
t =

∑
j A(i,j)

t , and IN is an identity matrix of size N . The
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output at the l-th layer is denoted as F(l)
t , with the initial layer output F(0)

t = Xt. Assuming the GCN has
L layers, the final node representation at time step t, which contains the graph structural information, is
denoted as X̂t = F(L)

t . The GCN-encoded features from all time steps {X̂t}T
t=1 are then fed into a GRU.

(b) The Gated Recurrent Unit (GRU) module: GRU is a variant of the RNN designed to learn
long-term dependencies using two selective gates (Cho et al., 2014). In the GRU, each cell processes an
input x̂t = (X̂(i,:)

t )⊤ and a hidden state ht = (H(i,:)
t )⊤. The update rule for a GRU cell is as follows:

r = σ (Wirx̂t + bir + Whrht−1 + bhr) , (2a)
z = σ (Wizx̂t + biz + Whzht−1 + bhz) , (2b)
n = tanh (Winx̂t + bin + r ⊙ (Whnht−1 + bhn)) , (2c)
ht = (1 − z) ⊙ ht−1 + z ⊙ n, (2d)

where Wir, Whr, Whz, Win, Whn, bir, bhr, bhz, bin, bhn are learnable parameters in GRU, σ(·) denotes the
activation function, and ⊙ stands for an element-wise product operation.

3.1.2 Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) was first proposed to explain image classifiers by inferring the
pixel-wise relevance of an input image (Bach et al., 2015). This method can be extended to other neural
networks, such as GNNs. In the following sections, we introduce the original concept of LRP.

Given an image x and a classifier f(·) the aim of layer-wise relevance propagation is to assign each pixel p

of x a pixel-wise relevance R
(1)
p such that:

f(x) ≈
∑

p

R(1)
p . (3)

Pixels p with R
(1)
p < 0 contain evidence against the presence of a class, while R

(1)
p > 0 is considered as

evidence for the presence of a class. These pixel-wise relevances can be visualized as an image called a
heatmap. Obviously, many possible decompositions exist that satisfy Equation (3). One work yields pixel-
wise decompositions that are consistent with evaluation measures and human intuition.

The objective described in Equation (3) can be easily extended to tasks beyond image classification. For
instance, in this paper, we study the node classification task where f(·) represents a GNN or dynamic GNN.
Here, the goal is to compute the relevance of each feature p for every node x as specified in Equation (3).
Further details on applying Equation (3) to other tasks are provided in Appendix A.4.

3.2 The Proposed DGExplainer for Explaining Dynamic Graphs

With the aim of identifying the important subset of node features that contribute to the prediction of dynamic
GNNs, we propose the DGExplainer. This method explains dynamic GNNs using the Layer-wise Relevance
Propagation (LRP) technique introduced in Section 3.1.2. Similar to many backward-based explanation
methods (Schnake et al., 2021; Bach et al., 2015; Pope et al., 2019), it calculates relevances within the range
of (−1, 1) to determine the extent to which each component of the model influences the prediction.

In this paper, we consider neural networks consisting of layers of neurons. The output xk2 of a neuron k2 is
a non-linear activation function g as given by:

xk2 = g

(∑
k1

wk1k2xk1 + b

)
(4)

Assume that we know the relevance R
(l+1)
k2

of a neuron k2 at network layer (l + 1) for the classification
decision f(x), then we like to decompose this relevance into messages R

(l,l+1)
k1←k2

sent to those neurons k1 at
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Figure 2: The network structure of the GCN-GRU model and the back-propagation of the relevances.
Note that the GRU cells and GCN cells share the same parameters. {Ht}T +1

t=1 , {Xt}T
t=1, {X̂t}T

t=1, {At}T
t=1

represent the hidden states, input features, GCN-encoded features, and adjacency matrices at different time
steps, respectively.

the layer l which provide inputs to neuron k2 such that Equation (5) holds.

R
(l+1)
k2

=
∑

k1∈(l)

R
(l,l+1)
k1←k2

. (5)

We can then define the relevance of a neuron k1 at layer l by summing all messages from neurons at layer
(l + 1) as in Equation (6):

R
(l)
k1

=
∑

k2∈(l+1)

R
(l,l+1)
k1←k2

, (6)

The propagation of relevance from layer (l + 1) to layer l is defined in Equation (5) and Equation (6). The
relevance of the output neuron at layer M is R

(M)
1 = f(x). The pixel-wise scores are the resulting relevances

of the input neurons R
(1)
d . To AE

QYEs: Q1DGExplainer includes two stages. Stage 1: Compute the Relevances in GRU. In this stage, the relevances
are back-propagated in the time-related module (GRU) along the time-varying reverse paths. This stage
aims at computing the relevances of the GCN-encoded features for all time steps. Stage 2: Back-Propagate
the Relevances in GCN. In this stage, the relevances obtained from Stage 1 are taken as input. These
relevances are then back-propagated in the graph-related module along the message-passing inverse path.
The objective of this stage is to determine the relevance of the input features across all time steps, providing
an explanation for the input dynamic graphs. We elaborate on the DGExplainer framework in Figure 2.

3.2.1 Stage 1: Compute the Relevances in GRU

Stage 1 focuses on deriving the relevances of the inputs from the relevance of the output for each GRU cell
along the inverse time path. Specifically, DGExplainer first computes the relevance of the output for the last
GRU cell’s prediction. Then, at each time step t, DGExplainer derives the relevances of the inputs based on
the relevance of the current cell’s output. The inputs to each GRU cell are: 1) the GCN-encoded feature,
and 2) the hidden state. The detailed process is shown below.

Given the final hidden state for a node, RhT
, where hT = (H(i,:)

T )⊤, the objective is to compute the relevances
of the inputs, Rht−1 and Rx̂t−1 , from the relevance of the output, Rht

, for each GRU cell at time t. As
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described in Section 3.1.2, relevance back-propagation redistributes the activation of a descendant neuron to
its predecessor neurons, with the relevance being proportional to the weighted activation value. Based on
the dependencies among different components in the final step of the GRU, as shown in Equation (2d), we
derive the relevance back-propagation for this step as follows:

Rht−1 = Rht−1←ht
+ Rht−1←n + Rht−1←z + Rht−1←r. (7)

Note that neurons r and z only receive messages from neuron ht−1, as shown in Equations (2a) and (2b).
Consequently, their contribution to ht can be merged into the contribution from ht−1, and their relevances
can be regarded as constants. Notice that ht−1 is used to compute both n in Equation (2c) and ht in
Equation (2d). This reveals that the relevance Rht−1 has two sources: n and ht. Based on the contributions
from Rht−1←n and Rht−1←ht , we can define Rht as follows:

Rht
= Rht−1 + Rn, (8)

Given that the relevance of a neuron is proportional to its activation at the same layer, i.e., Rk←k1 : Rk←k2 =
a

(l)
k1

: a
(l)
k2

, we can derive the following based on Equation (2d):

Rht−1

Rn
=

aht−1

an
= z ⊙ n

(1 − z) ⊙ ht−1
. (9)

We can conclude that if we derive Rht−1←ht and Rht−1←n, we can then obtain Rht . Therefore, we break
down this problem into three steps: computing Rht−1←ht , Rht−1←n, and Rht−1 , as formulated below:

(a) Compute Rht−1←ht : Solving for Equations (8) and (9) obtains:

Rht←n = z ⊙ n
ht + ϵ

⊙ Rht
, Rht−1←ht

= (1 − z) ⊙ ht−1

ht + ϵ
⊙ Rht

, (10)

where ϵ > 0 is a constant introduced to keep the denominator non-zero. Notice that the only ancestor neuron
of n is ht, so here Rn←ht is actually Rn, so in the following left of section, we use Rn for simplicity.

(b) Compute Rht−1←n: From Equation (2c) we can calculate:

n1 := Winx̂t, n2 := r ⊙ (Whnht−1) = Wrnht−1, bn := bin + r ⊙ bhn. (11a)

Then their relevance satisfies:

Rn = Rn1 + Rn2 + Rbn
, Rn1 : Rn2 : Rbn

= n1 : n2 : bn. (12)
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Figure 3: An illustration of DGExplainer for com-
puting relevances in a backward manner. The fea-
ture relevance is computed by first back-propagating
the prediction through the GRU and then the GCN.

Hence, Rn1 and Rn2 can be obtained.

Rx̂t←n1 =
∑

k

W(k,j)
in x̂(j)

t

ϵ +
∑

i W(k,i)
in x̂(i)

t

R(k)
n1

. (13)

Since ht−1 only influences n2 among the three parts of
n, we obtain Rht−1←n using ϵ-rule for Equation (12):

R
(j)
ht−1←n =

∑
k

W(k,j)
rn h(j)

t−1

ϵ +
∑

i W(k,i)
rn h(i)

t−1
R(k)

n2
. (14)

(c) Compute Rht−1 : Rht−1 can be computed by
adding Equations (10) and (14) together: Rht−1 =
Rht−1←ht +

∑
j R

(j)
ht−1←n. Notice that Rx̂t

is the rel-
evance of a node feature x̂t, which is a row in X̂t.
By computing the set of relevances {Rx̂i

t
}N

i=1 for all
nodes, we can obtain the overall relevance matrix RX̂t

,
by concatenating the individual node relevances, i.e.,
RX̂t

= [Rx̂1
t
; Rx̂2

t
; . . . ; Rx̂N

t
].
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3.2.2 Stage 2: Back-Propagate the Relevances in
GCN

To find the relevance of the input data in a GCN, we start with the relevance of the output and backtrack
through the network layers. We calculate the relevance of each layer’s nodes using specific equations that
distribute relevance from one layer to the previous. By repeating this process, we determine the relevance of
the original input features. Finally, we average the absolute values of these relevances across all features to
identify the importance of each node at a specific time. In the following, we show the concrete process:

Then we backtrack in the GCN to get RXt
from RX̂t

. Note that the RX̂t
is the relevance of the output X̂

of the GCN at the time step t and RF(L)
t

= RX̂t
. We can rewrite Equation (1) as:

F(l+1)
t = σ(P(l)

t W(l)
t ); P(l)

t := VtF(l)
t . (15)

Let (F(l+1)
t )(k,:), (P(l)

t )(k,:), (P(l)
t )(:,k), (F(l)

t )(:,k) denote the k-th row of F(l+1)
t , the k-th row of P(l)

t , the k-th
column of P(l)

t , the k-th column of F(l)
t , respectively. We have

(F(l+1)
t )(k,:) = σ((P(l)

t )(k,:)W(l)
t ), (P(l)

t )(:,k) := Vt(F(l)
t )(:,k). (16)

Leveraging the ϵ rule, we assign the relevance by:

R(F(l)
t )(j,k) =

∑
b

V(b,j)(F(l)
t )(j,k)

ϵ +
∑

a V(b,a)
t (F(l)

t )(a,k)
R(P(l)

t )(b,k) , (17)

where (W(l)
t )(j,k) represents the entry at the j-th row and k-th column of W(l)

t , and V(b,j)
t denotes the entry

at the b-th row and j-th column of V(k,j)
t . And the R(P(l)

t )(k,j) can be obtained similarly as R(F(l)
t )(j,k) . The

relevance RF(l)
t

can be obtained from RF(l+1)
t

using equation Equation (17), and R(P(l)
t )(k,j) . Finally, the

relevance RF(0)
t

can be determined. Notice that RF(0)
t

= RXt
, so we have RF(0)

t
= RXt

, thus completing the
backward process for obtaining relevance in the GCN. To further identify important nodes at a specific time
step, we take the absolute values of the relevances and average them along the feature dimension to get the
relevance of a node at time t: Rxi

t
=
∑D

j=1 |(Rxi
t
)(j)|/D.

Algorithm 1 DGExplainer

Input: The input {Xt}T
t=1 and {At}T

t=1, the final relevance {Rhj
T

}N
j=1, the pre-trained model f(·).

Output: The relevances {RXt }T
t=1

1: // Forward process:
2: for each t ∈ [1, T ] do
3: Compute X̂t via F(l+1)

t = σ(VtF(l)
t W(l)

t ) with F(0)
t = Xt, F(L)

t = X̂t.
4: for each j ∈ [1, N ] do
5: Compute the hidden state ht for the j-th sample
6: X̂(j,:)

t via Equation (2) with ht−1.
7: end for
8: end for
9: // Backward process:

10: for each t = T, T − 1, . . . , 1 do
11: for each j ∈ [1, N ] do
12: Compute Rn, Rn1 , Rn2 via Equation (12), Rht−1 via Equations (10) and (14), and Rx̂t for the j-th sample

X̂(j,:)
t via Equation (13) and hence obtain Rx̂j

t
.

13: end for
14: Stack {Rx̂j

t
}N

j=1 to get RX̂t
.

15: Calculate RXt by iteratively applying Equation (17) with RX̂t
= RF(L)

t

.
16: end for
17: return {RXt }T

t=1.
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Table 1: Comparison with baseline methods in terms of fidelity (τ1 = 0.8), fidelity+ (τ1 = 0.8), sparsity
(τ2 = 3×10−4), and stability (r = 20%). The methods compared are GNNExplainer (GNNE), PGExplainer
(PGE), SubgraphX (SubX), T-GNNExplainer (T-GNNE), and DyExplainer. ‘Ours’ refers to DGExplainer.
For each metric, the best results are highlighted in bold, and the runner-up results are underlined.

Dataset Metric SA GNN-GI GradCAM GNNE PGE SubX GCN-SE T-GNNE DyExplainer Ours

R
ed

di
t Fidelity ↑ 0.35 0.34 0.33 0.29 0.28 0.24 0.32 0.39 0.35 0.42

Fidelity+ ↑ 0.19 0.23 0.22 0.16 0.12 0.10 0.21 0.24 0.27 0.27
Sparsity ↑ 0.79 0.86 0.53 0.67 0.75 0.34 0.71 0.86 0.84 0.87
Stability ↓ 0.29 0.17 0.26 0.25 0.27 0.30 0.21 0.15 0.18 0.13

Pe
M

S0
4 Fidelity ↑ 0.30 0.29 0.26 0.24 0.19 0.18 0.33 0.44 0.37 0.39

Fidelity+ ↑ 0.21 0.19 0.17 0.16 0.13 0.14 0.24 0.25 0.30 0.29
Sparsity ↑ 0.99 0.99 0.95 0.92 0.90 0.87 0.91 0.97 0.98 0.99
Stability ↓ 0.18 0.22 0.25 0.22 0.23 0.27 0.23 0.17 0.19 0.15

Pe
M

S0
8 Fidelity ↑ 0.26 0.25 0.20 0.19 0.15 0.13 0.26 0.27 0.28 0.30

Fidelity+ ↑ 0.19 0.16 0.12 0.11 0.09 0.08 0.20 0.21 0.26 0.25
Sparsity ↑ 0.94 0.94 0.95 0.91 0.92 0.90 0.92 0.94 0.94 0.95
Stability ↓ 0.15 0.16 0.18 0.14 0.15 0.23 0.16 0.13 0.16 0.12

En
ro

n

Fidelity ↑ 0.20 0.19 0.16 0.09 0.09 0.08 0.19 0.21 0.19 0.23
Fidelity+ ↑ 0.14 0.15 0.11 0.06 0.07 0.05 0.13 0.15 0.17 0.18

Sparsity ↑ 0.84 0.83 0.79 0.75 0.74 0.70 0.83 0.81 0.82 0.85
Stability ↓ 0.13 0.15 0.17 0.15 0.16 0.19 0.11 0.19 0.17 0.15

FB

Fidelity ↑ 0.29 0.22 0.19 0.16 0.15 0.10 0.33 0.31 0.33 0.36
Fidelity+ ↑ 0.18 0.14 0.13 0.11 0.09 0.07 0.17 0.20 0.22 0.23

Sparsity ↑ 0.94 0.93 0.91 0.90 0.86 0.80 0.92 0.98 0.95 0.96
Stability ↓ 0.13 0.15 0.17 0.16 0.14 0.18 0.22 0.16 0.18 0.12

C
O

LA
B Fidelity ↑ 0.50 0.45 0.39 0.27 0.26 0.25 0.43 0.55 0.51 0.53

Fidelity+ ↑ 0.32 0.30 0.25 0.19 0.18 0.20 0.28 0.33 0.29 0.35
Sparsity ↑ 0.96 0.95 0.94 0.93 0.93 0.90 0.94 0.99 0.96 0.96
Stability ↓ 0.18 0.25 0.27 0.16 0.19 0.25 0.24 0.21 0.24 0.18

Figure 3 illustrates the LRP process for a time step of these two states. Specifically, DGExplainer redis-
tributes the relevance of the output hidden state, RHt

, to 1) the relevance of the input hidden state, RHt−1 ,
and 2) the relevance of the GCN-encoded feature, RX̂t

. It then back-propagates the latter through the
GCN and finally obtains the relevance of the input feature at this time step, RXi

t−1
. The entire algorithm is

summarized in Algorithm 1.

4 Experiments

We conduct quantitative and qualitative experiments on six real-world graphs to address the following
research questions:

• RQ1: Can the proposed DGExplainer learn high-quality explanations for the GCN-GRU model?

• RQ2: What are the benefits of DGExplainer in explaining dynamic GNNs compared to static methods?

• RQ3: How do the hyperparameters affect DGExplainer?

Unless otherwise specified, we present the performance of DGExplainer on the GCN-GRU model in our
experiments. Additionally, in Appendix A.5, we demonstrate the performance of DGExplainer across various
other dynamic GNN models.

8
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4.1 Experiment Settings

Datasets. We evaluate the proposed framework on six real-world datasets. For the link prediction tasks, we
use four datasets: Reddit Hyperlink (Reddit) (Kumar et al., 2018), Enron (Klimt & Yang, 2004), Facebook
(FB) (Trivedi et al., 2019), and COLAB (Rahman & Al Hasan, 2016). For the node regression tasks, we
use two datasets: PeMS04 and PeMS08 (Guo et al., 2019)1. The statistics of these datasets and the initial
performance of GCN-GRU on them are presented in Appendix A.1.

Baselines. We assess our proposed method against eight baseline explanation methods. These include
two general explanation methods: (a) Sensitivity Analysis (SA) (Baldassarre & Azizpour, 2019) and (b)
GradCAM (Pope et al., 2019). Additionally, we compare our method with six GNN explanation methods:
(c) GNN-GI (Schnake et al., 2020), (d) GNNExplainer, (e) PGExplainer, (f) SubgraphX, (g) GCN-SE, (h)
T-GNNExplainer, and (i) DyExplainer. Detailed descriptions of these baseline methods are provided in To
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Appendix A.2.

Evaluation. We compare the quality of each explanation baseline and our proposed method using four
quantitative metrics: confidence, sparsity, stability, and fidelity. Details of these evaluation metrics are
elaborated in Appendix A.3. Following the experimental setup of a previous work (Pareja et al., 2020), we
conduct experiments on link prediction and node classification.

• Link prediction: For this task, we concatenate the feature embeddings of nodes u and v as
[(hu

T )⊤; (hv
T )⊤]⊤ and use a multi-layer perceptron (MLP) to predict the link probability by optimizing

the cross-entropy loss. We experiment with the Reddit, Enron, FB, and COLAB datasets and use the
Area Under the Curve (AUC) as the evaluation metric. Following a previous study (Pareja et al., 2020),
in the implementation of the MLP, we use a rectified linear unit (ReLU) as the activation function for all
layers except the output layer, where we apply the softmax function. To
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• Node regression: To predict the value for a node u at time t, we apply a softmax activation function
to the last layer of the GCN, resulting in the probability vector hu

t . We use the PeMS04 and PeMS08
datasets for this task and evaluate the performance using the mean absolute error (MAE) metric.

Implementation Details. We conducted all our experiments on a Linux machine equipped with four
NVIDIA RTX A4000 Ti GPUs, each with 16GB of RAM. We used a two-layer GCN and trained the model
for 1000 epochs using the Adam optimizer (Kingma & Ba, 2014), with an initial learning rate of 0.01. We
use the ReLU as the activation function for all layers, except for the output layer for the GCN-GRU model,
where the softmax function is applied. For the link prediction task, we employed a two-layer MLP with To
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64 hidden units. We tested the stabilizer ϵ with values {1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 2}, and finally choose
ϵ = 0.1 to implement the proposed method. In stability experiments, we set r to {5%, 10%, 15%, 20%, 30%}.
The model performance results are based on the average analysis of 10 runs. The output embedding of a
node u produced by the GCN-GRU model at time t is represented by hu

t .

4.2 Prediction and Explanation Performance

To address RQ1, we conducted a comprehensive comparison of our proposed method, DGExplainer, against
several baseline methods. Our evaluation focused on two key aspects: prediction accuracy and the quality
of explanations in identifying important nodes. The results demonstrate that DGExplainer outperforms the
baselines in terms of fidelity and sparsity, providing more accurate and concise explanations. Additionally,
our method exhibits good stability, ensuring consistent explanations even in the presence of minor pertur-
bations, although on some datasets, it slightly underperforms SA and GradCAM. These results establish
the effectiveness and reliability of our proposed method in capturing important nodes and providing reliable
explanations in the context of link prediction and node regression tasks.

Results on fidelity, fidelity+ and sparsity. Fidelity measures a method’s ability to accurately capture
important nodes. A high-fidelity explanation method is desirable. Fidelity+ is a surrogate version of fidelity,
where a graph is sampled from the explanation subgraph by retaining each edge with probability α and
erasing it with probability 1 − α. To assess fidelity, we ranked the nodes based on their importance and
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Figure 4: Illustration of the proposed method applied to the PeMS04 dataset. In this figure, warm colors
indicate positive effects, while cold colors denote negative effects. The intensity of the color corresponds to
the magnitude of the effect. From left to right, the subfigures represent the visualization results of GNN-GI,
GNNExplainer, and the proposed method.

conducted occlusion experiments by selectively occluding a fraction of the top nodes while keeping 80% of the
nodes unchanged (τ1 = 0.8). For fidelity+, we define the explanation subgraph as the subgraph consisting
of nodes with relevance greater than τ1. The proposed method consistently outperformed the baselines in
terms of both fidelity, fidelity+, and sparsity across most datasets, as shown in Table 1. In the remaining To
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datasets, our method achieved comparable results. The Fidelity+ gap between the proposed method and
the baselines is larger than the Fidelity gap, further demonstrating DGExplainer’s effectiveness in assigning
higher relevance to important nodes.
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Results on stability. A stability evaluation was conducted to assess how well the explanation method
handles perturbations in the input graph. We introduced random perturbations by adding additional edges
to the original graph at a ratio of r = 20% and evaluated the resulting changes in the relevances generated by
the model. A stable explanation method should provide consistent explanations when the input undergoes
minor perturbations, resulting in lower stability scores. As presented in Table 1, our proposed method
generally exhibited good stability, although it did not outperform SA and GNNExplainer. These findings
indicate that our method demonstrates relative robustness to small perturbations in the input graph.

4.3 Qualitative Analysis

To address RQ2, we conducted quantitative experiments and visualizations of the generated explanations
using DGExplainer and baseline methods on the PeMS04 dataset, which represents traffic flow on a highway
network. The results, presented in Figure 4, indicate that DGExplainer generates the most reasonable and
detailed explanations compared to the GNN-GI and GNNExplainer approaches. Our analysis revealed several
key findings: (a) GNN-GI tends to assign equally extreme relevances to every individual node, suggesting
that each node has a strong correlation with the prediction. In contrast, GNNExplainer generates average
scores for all the identified nodes. (b) GNN-GI identifies nearly all nodes as important, while GNNExplainer
only identifies a few nodes as significant, disregarding the correlations of other nodes with the target variable.

These disparities in the visualization results are due to the fact that the comparison methods fail to capture
the temporal patterns of dynamic graphs, treating each time step independently and considering only spatial
information. In contrast, DGExplainer excels in generating comprehensive and context-aware explanations
by effectively incorporating temporal dynamics into the analysis. By considering both spatial and temporal
information, DGExplainer provides a more accurate understanding of the underlying relationships within
the dynamic GNNs.

4.4 Parameter Sensitivity Analysis

To address (RQ3), we investigate fidelity across various threshold values, denoted as τ1 =
{0.5, 0.6, 0.7, 0.8, 0.9}. The fidelity analysis is presented in Figure 5. Our observations are as follows: (a)
With smaller τ1 values, the fidelity is high. This is because a larger number of nodes are occluded when
their relevance surpasses the threshold, resulting in a substantial change in accuracy. (b) As τ1 increases, the
fidelity gradually decreases, with a steeper decline observed in the range of [0.8, 0.9]. Overall, our proposed
method consistently achieves the highest fidelity across all thresholds and datasets, affirming the robustness
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Figure 5: Comparison of different methods with the fidelity of similar levels of thresholds.

of our framework. These findings provide substantial insights into the relationship between fidelity and the
chosen threshold values, reinforcing the efficacy of our approach.

4.5 Related Work

We review previous studies related to our work, focusing first on the recent advances in dynamic graph
neural networks and then on existing explainability methods for static GNNs.

4.5.1 Dynamic Graph Neural Networks

Dynamic graph neural networks (Dynamic GNNs) consider both temporal and graph-structural informa-
tion to tackle dynamic graphs. These networks are commonly applied in social media, citation networks,
transportation networks, and pandemic networks. DANE (Li et al., 2017) is an efficient dynamic GNN that
updates node embeddings using the eigenvectors of the graph’s Laplacian matrix, based on the graph from
the previous time step. CTDANE (Nguyen et al.) and NetWalk (Yu et al., 2018b) extend random walk-
based approaches by enforcing temporal rules on the walks. Additionally, embedding methods aggregate
neighboring node features. For example, DynGEM (Goyal et al., 2018) and Dyngraph2vec (Goyal et al.,
2020) use deep autoencoders to encode snapshots of dynamic graphs.

A prevalent category of approaches combines GNNs with recurrent architectures, where the GNNs extract
graph-structural information and the recurrent units handle sequential flows. GCRN (Seo et al., 2018)
leverages GCN layers to obtain node embeddings and feeds them into recurrent layers to track dynamism.
STGCN (Yu et al., 2018a), which stacks ST-Conv blocks, proposes a sophisticated architecture that effectively
captures complex localized spatial-temporal correlations. Instead of directly integrating RNNs into the
entire structure, EvolveGCN (Pareja et al., 2020) uses RNNs to update the weights of GCNs. Another
approach (Hajiramezanali et al., 2019) introduces variational autoencoder versions for dynamic graphs,
VGRNN and SI-VGRNN. Both models use a GCN integrated into an RNN as an encoder to track the
temporal evolution of the graph. The GCN-GRU model used to demonstrate the proposed method has
wide applications (Gui et al., 2020; Yang et al., 2020; Zhao et al., 2018). The two modules are co-trained
to capture the spatial-temporal information in dynamic graphs. For example, in traffic flow prediction, the
GCN models the dynamics of traffic as an information dissemination process. Meanwhile, the GRU captures
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dependencies across different time steps through gate units that are trained to manage inputs and memory
states, enabling the retention of information over longer periods (Zhao et al., 2018). To
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4.5.2 Explainability on GNNs

Existing explainability approaches for GNNs are mostly focused on static GNNs and can be categorized into
four main directions. The first direction focuses on highlighting the importance of various input features by
analyzing feature gradients and relevances. For instance, Sensitivity Analysis (Baldassarre & Azizpour, 2019)
assigns importance scores to different input features using the squared values of their gradients. GNN-GI
employs the Grad⊙Input method (Shrikumar et al., 2016; Sanchez-Lengeling et al., 2020), which calculates
feature contribution scores as the element-wise product of the input features. GNN-LRP (Schnake et al.,
2021) assigns a relevance score to each walk, representing a message flow path within the graph. This rele-
vance score is determined using the T-order Taylor expansion of the model with respect to the incorporation
operator. A recent study (Xiong et al., 2023) introduces two novel relevant walk search algorithms based
on max-product message passing, reducing the computational complexity of GNN-LRP from exponential to
polynomial time. Additionally, GradCAM (Pope et al., 2019) adapts the Class Activation Mapping (CAM) To
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approach (Pope et al., 2019) for general graph classification models by removing the requirement for a global
average pooling layer.

The second research direction focuses on accumulating local effects to create a locally faithful approximation.
For example, GraphLime (Huang et al., 2022) utilizes neighboring nodes as perturbed inputs and employs a
nonlinear surrogate model. This model is capable of assigning significant weights to features that are crucial
for inference. In addition, PGM-Explainer (Vu & Thai, 2020) leverages an interpretable Bayesian network
to approximate the predictions needed for explanation.

The third line of research examines perturbation-based interpretation methods, which identify key compo-
nents affecting model predictions by perturbing nodes, edges, or features. Specifically, GNNExplainer (Ying
et al., 2019) and PGExplainer (Luo et al., 2020) identify key features by maximizing mutual information
between the perturbed and input graphs. Graphsvx (Duval & Malliaros, 2021) and SubgraphX (Yuan et al.,
2021) use the Shapley value (Shapley, 1953) to assess the importance of features and nodes in Graphsvx and
subgraphs in SubgraphX. TempME (Chen & Ying, 2023) samples temporal motifs around the interaction
between two nodes’ predictions, assigning importance scores while balancing explanation accuracy and infor-
mation compression by maximizing mutual information with the target prediction and minimizing it with the
original temporal graph. SubMT (Chen et al., 2024) introduces an interpretable subgraph learning method
that identifies the subgraph multilinear extension as a factorized distribution. The extracted subgraph is
considered interpretable and faithful when its prediction strongly correlates with the subgraph’s sampling
probability. GraphMask (Schlichtkrull et al., 2020) trains a classifier to generate edge masks for each GNN To
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layer, identifying edges that can be removed without altering the model’s predictions.

The final direction focuses on model-level explanations, offering a broader understanding of how the model
operates as a whole. This method provides general insights into the overall functioning of the model, rather
than focusing on individual predictions. For example, XGNN (Yuan et al., 2020) offers a global explanation
of GNNs by training a graph generator to create patterns that maximize the predictions of a given model. To
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Despite the success of existing explainability methods, they primarily focus on static GNNs and cannot be
directly applied to explain dynamic GNNs because they overlook the temporal or dynamic aspects of graphs.
Recently a dynamic GNN explainer, DyExplainer (Wang et al., 2023), has been proposed. Specifically, Dy-
Explainer trains a dynamic GNN to produce node embeddings and uses structural and temporal attention
by capturing both pivotal relationships within snapshots and temporal dependencies across long-term snap-
shots. While explaining dynamic GNNs remains a critical challenge, only a limited number of approaches To
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have been proposed to address this issue. This motivates us to fill this gap by proposing our method.

5 Conclusion

In this paper, we present DGExplainer, a novel and efficient framework that utilizes both layer-wise and
time-wise relevance back-propagation to explain the predictions of dynamic Graph Neural Networks (GNNs).
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To evaluate DGExplainer’s performance, we conduct both quantitative and qualitative experiments. The
results demonstrate the framework’s effectiveness in identifying crucial nodes for link prediction and node
regression tasks, outperforming existing explanation methods. This research pioneers the exploration of
dynamic GNNs, offering insights into their intricate structures, which is a significant challenge due to the
complexity of inference in time-varying modules. Unlike existing static GNN explainers, DGExplainer does
not require learning a surrogate function or executing any optimization procedures. Additionally, it can be
extended to other advanced dynamic GNNs.
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A Appendix

In this appendix, we provide a more detailed introduction to the datasets, describe the evaluation metrics for
baselines, explain the LRP method in detail, and show additional experiments to demonstrate the superiority
of the proposed method, DGExplainer.

A.1 Datasets

The statistics of the datasets and the initial performance of GCN-GRU on these datasets are summarized
in Table 2.

Table 2: Dataset statistics and performance metrics of the GCN-GRU model. We report the AUC (%) for
the Reddit, Enron, FB, and COLAB datasets, and the MAE for the PeMS04 and PeMS08 datasets.

Dataset Reddit PeMS04 PeMS08 Enron FB COLAB
# Nodes 55,863 307 170 184 663 315
# Edges 858,490 680 340 266 1068 308
# Train/Test 122/34 45/14 50/12 8/3 6/3 7/3
# Time Step 6 4 4 4 4 4
Performance 0.702 55.29 59.35 0.951 0.870 0.879

• Reddit is a directed network extracted from posts that generate hyperlinks connecting one subreddit to
another. It includes various features, such as the source post, target URL, post title, and comment text,
along with metadata like the number of upvotes and downvotes each post and comment received. The
Reddit Hyperlink dataset comprises hyperlink information from over 3 million posts and their associated
comments on the social media platform Reddit, spanning from 2008 to 2016.

• PeMS04 and PeMS08 are real-time traffic flow datasets providing traffic information for the state of
California, USA. The PeMS04 dataset includes traffic flow data from over 39,000 sensors, while the PeMS08
dataset includes data from over 40,000 sensors. These sensors are located on freeways and arterial roads
throughout California. The datasets cover the periods from January 1, 2018, to December 31, 2018, and
from January 1, 2020, to December 31, 2020, respectively. Both datasets are collected at 5-minute intervals
and include information on traffic speed, occupancy, and volume, resulting in 288 data points per detector
per day. Additionally, the datasets include weather information and incident reports, which can be used
to analyze the impact of weather and incidents on traffic flow. The data are transformed using zero-mean
normalization to ensure the average is 0.
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• Enron, FB, and COLAB: These datasets are dynamic graphs constructed from different types of in-
teractions: email messages exchanged between employees, co-author relationships among authors, and
Facebook wall posts, respectively. The Enron dataset represents the email communication network of
employees at the Enron Corporation, where nodes represent individuals and edges represent email mes-
sages sent between them over time. The FB dataset captures the social network of Facebook users, where
nodes represent users and edges represent friendship connections. Finally, the COLAB dataset contains
transcripts of meetings held by community organizations, where nodes represent participants and edges
represent their interactions during the meetings. We collected and processed these three datasets following
the methodology described in (Hajiramezanali et al., 2019).

A.2 Baselines

We provide detailed descriptions of the baselines used for comparison in our experiments in the follows:

• (a) Sensitivity Analysis (SA) (Baldassarre & Azizpour, 2019) computes importance scores using
squared gradients of input features through back-propagation. It assumes that higher absolute gradi-
ent values indicate greater importance, but it fails to accurately represent importance and is prone to
saturation issues (Shrikumar et al., 2017).

• (b) GradCAM (Selvaraju et al., 2017) extends the Class Activation Mapping (CAM) (Zhang et al., 2018)
method to graph classification by removing the global average pooling layer constraint and mapping the
final node embeddings to the input space for measuring node importance. It uses gradients as weights to
combine different feature maps, computed by averaging the gradients of the target prediction with respect
to the final node embeddings.

• (c) GNN-GI (Schnake et al., 2021) adopts Grad⊙Input (GI) (Shrikumar et al., 2017), which quantifies the
contribution of features by computing the element-wise product of the input features and the gradients of
the decision function with respect to those features. As a result, GI takes into account both the sensitivity
of features and the scale of their values.

• (d) GNNExplainer (Ying et al., 2019) generates explanations for predictions in the form of subgraphs and
feature masks that highlight the relevant parts of the input data. It provides explanations by generating a
compact subgraph from the input graph, along with a select subset of node features that greatly influence
the prediction.

• (e) PGExplainer (Luo et al., 2020) leverages a deep neural network parameterized explainer to generate
global explanations that highlight important subgraphs influencing a model’s predictions. This method
endows PGExplainer with a natural capacity to deliver multi-instance explanations.

• (f) SubgraphX (Yuan et al., 2021) identifies important subgraphs measured by Shapley values. It employs
the Monte Carlo tree search algorithm for efficiently exploring various subgraphs within a given input
graph.

• (g) GCN-SE (Fan et al., 2021) computes the importance of different graph snapshots by measuring the
change in accuracy after masking the attention in that timestep.

• (h) T-GNNExplainer (Xia et al., 2022) finds a subset of historical events that lead to the prediction,
given a temporal prediction of a model. This method regards a temporal graph as a sequence of temporal
events between nodes.

A.3 Evaluation Metrics

We present a comprehensive overview of the four key quantitative metrics that have been instrumental in our
analysis: confidence, sparsity, stability, and fidelity. The subsequent sections provide a detailed exposition
of each metric.

• Fidelity characterizes whether the explanations are faithfully important to the model predic-
tions (Sanchez-Lengeling et al., 2020). In the experiment, we measure fidelity by calculating the dif-
ference in classification accuracy or regression errors obtained by occluding all nodes with importance
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values greater than a threshold τ1 on a scale of (0, 1). We averaged the fidelity across classes for each
method. This approach is equivalent to the Fidelity+ metric proposed by Zheng et al. (2023).

• Surrogate Fidelity (Zheng et al., 2023) addresses the Out Of Distribution (OOD) problem in the resul-
tant subgraphs caused by removing edges from the original graph and introduces surrogate fidelity metrics
to mitigate this issue. Specifically, for the fidelity+ metric defined earlier, the surrogate version employs
a function Eα that stochastically samples a graph by retaining each edge with probability α and erasing
it with probability 1 − α. It has been shown in practice that choosing α < 1 provides a more appropriate
fidelity measure, as this approach helps to alleviate the OOD problem. To
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• Sparsity measures the fraction of nodes selected for an explanation (Yuan et al., 2021; Pope et al., 2019).
It evaluates whether the model efficiently marks the most contributive part of the dataset. High sparsity
scores indicate that fewer nodes are identified as important. In our experiment, we compute sparsity by
calculating the ratio of nodes with saliency values or relevances lower than a predefined threshold τ2 on a
scale of (0, 1).

• Stability assesses the consistency of explanations when small changes are applied to the input (Sanchez-
Lengeling et al., 2020). Good explanations should be stable, meaning they remain approximately the same
under small input perturbations. To evaluate stability, we randomly add more edges at a ratio of r% and
measure the change in relevances/importances produced by the model.

A.4 More Details About Layer-wise Relevance Propagation

Layer-wise relevance propagation (LRP) (Bach et al., 2015) is a technique for explaining the predictions of
deep neural networks. It operates on the assumption that a neuron’s relevance is proportional to its weighted
activation value. This follows the intuition that a larger output activation indicates that the neuron carries
more information and contributes more significantly to the final result.

The concept behind LRP assumes that the relevance, denoted as R
(l+1)
k2

, is known for a neuron in the
subsequent layer (l + 1). This assumption allows us to break down and distribute this relevance to the
neurons, denoted as k1, in the current layer l that contribute input to the neuron k2. This process enables
us to determine the relevance value for a neuron k1 in layer l by aggregating all the incoming messages from
neurons in layer (l + 1). A notable challenge in LRP is formulating an appropriate rule for redistributing
relevance across each layer. Drawing insights from prior studies (Bach et al., 2015; Binder et al., 2016;
Schnake et al., 2021), we describe the propagation rule as follows:

R
(l,l+1)
k1←k2

=
∑
k2

Wk1k2a
(l)
k1

ϵ +
∑

k1
Wk1k2a

(l)
k1

R
(l+1)
k2

, (18)

where Wk1k2 represents the connection weight between neurons k1 and k2. R
(l+1)
k2

is the relevance for neuron
k2 at layer (l + 1), and R

(l,l+1)
k1←k2

is the relevance for neuron k1 derived from k2 at layer l. a
(l)
k1

denotes the
activation of neuron k1 at layer l. The term ϵ is a predefined stabilizer that prevents the denominator
from being zero. Clearly, the connection between the relevance and the weighted activation Wk1k2a

(l)
k1

is
discernible. This relationship indicates that the relevance varies in proportion to the magnitude of the
weighted activation. Additionally, the nature of the contribution, whether positive or negative, depends on
the sign of the weighted activation. In our implementation, we use the softmax activation function, ensuring
that the weighted activations are in the range (0, 1). As a result, the denominator will always be non-zero
after adding ϵ. . To
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Epsilon Rule (LRP-ϵ) (Bach et al., 2015). A first enhancement of the basic LRP-0 rule consists of adding
a small positive term ϵ in the denominator: The work in (Bach et al., 2015) established two formulas for
computing the messages R

(l,l+1)
k1←k2

. The first formula called ϵ-rule is given by

R
(l,l+1)
k1←k2

= zk1k2

zk2 + ϵ · sign (zk2)R
(l+1)
k2

, (19)

with zij = (wijxi)p and zj =
∑

k:wkj ̸=0 zkj . The variable ϵ is a stabilizer term whose purpose is to avoid
numerical degenerations when zj is close to zero, and which is chosen to be small.
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Epsilon Rule (LRP-ϵ) (Bach et al., 2015). A first enhancement of the basic LRP-0 rule consists of adding a
small positive term ϵ in the denominator:

R
(l,l+1)
k1←k2

=
∑
k2

a
(l)
k1

Wk1k2

ϵ +
∑

k2,k1
a

(l)
k1

Wk1k2

R
(l+1)
k2

The role of ϵ is to absorb some relevance when the contributions to the activation of neuron k are weak or
contradictory. As ϵ becomes larger, only the most salient explanation factors survive the absorption. This
typically leads to explanations that are sparser in terms of input features and less noisy.

Therefore, by summing up the relevance over all neurons k2 in layer (l + 1), based on Equation (19). The
Equation (18) can be obtained from Equation (19).

R
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∑
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(l)
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ϵ +
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k Wkk2a
(l)
k

R
(l+1)
k2
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A.5 More Experiments on Dynamic GNN Architectures

We conducted additional experiments on diverse dynamic GNN architectures, including, Evolve-GCN (Pareja
et al., 2020), DySAT (Sankar et al., 2018), GC-LSTM (Chen et al., 2022), and ROLAND (You et al., 2022).

Table 3: Experimental results on other dynamic GNNs, in terms of fidelity (τ1 = 0.8), sparsity (τ2 = 3×10−4),
and stability (r = 20%). For each metric, the best results are highlighted in bold text.

Evolve-GCN DySAT GC-LSTM ROLAND
T-GNNE DyExplainer Ours T-GNNE DyExplainer Ours T-GNNE DyExplainer Ours T-GNNE DyExplainer Ours

R
ed

di
t Fidelity ↑ 0.27 0.30 0.32 0.22 0.28 0.31 0.18 0.26 0.27 0.33 0.43 0.42

Sparsity ↑ 0.74 0.86 0.88 0.72 0.84 0.85 0.78 0.91 0.90 0.75 0.80 0.81
Stability ↓ 0.25 0.19 0.14 0.23 0.16 0.15 0.22 0.20 0.18 0.27 0.25 0.21

Pe
M

S0
4 Fidelity ↑ 0.35 0.41 0.43 0.15 0.23 0.22 0.33 0.35 0.36 0.27 0.30 0.30

Sparsity ↑ 0.99 0.95 0.99 0.96 0.92 0.99 0.94 0.95 0.99 0.97 0.99 0.99
Stability ↓ 0.14 0.16 0.11 0.33 0.35 0.30 0.30 0.29 0.27 0.19 0.25 0.23

Pe
M

S0
8 Fidelity ↑ 0.21 0.26 0.31 0.15 0.20 0.22 0.16 0.21 0.21 0.28 0.31 0.32

Sparsity ↑ 0.98 0.94 0.95 0.87 0.86 0.90 0.88 0.89 0.91 0.85 0.91 0.90
Stability ↓ 0.18 0.22 0.16 0.21 0.20 0.17 0.19 0.20 0.15 0.18 0.14 0.11

En
ro

n Fidelity ↑ 0.21 0.23 0.24 0.17 0.19 0.20 0.22 0.25 0.24 0.24 0.25 0.27
Sparsity ↑ 0.78 0.83 0.87 0.80 0.79 0.83 0.76 0.81 0.82 0.70 0.76 0.79
Stability ↓ 0.24 0.22 0.16 0.22 0.19 0.11 0.20 0.23 0.19 0.11 0.15 0.08

FB

Fidelity ↑ 0.23 0.27 0.33 0.33 0.34 0.37 0.19 0.21 0.23 0.09 0.13 0.11
Sparsity ↑ 0.89 0.95 0.96 0.77 0.82 0.87 0.86 0.91 0.94 0.88 0.89 0.92
Stability ↓ 0.15 0.13 0.11 0.21 0.19 0.17 0.25 0.23 0.19 0.19 0.14 0.15

C
O

LA
B Fidelity ↑ 0.39 0.43 0.47 0.38 0.44 0.43 0.37 0.39 0.41 0.32 0.36 0.38

Sparsity ↑ 0.94 0.97 0.98 0.92 0.94 0.97 0.91 0.99 0.98 0.92 0.97 0.99
Stability ↓ 0.19 0.15 0.11 0.21 0.19 0.17 0.22 0.19 0.19 0.14 0.16 0.15

From the results in Table 3, we can observe that Evolve-GCN generally offers higher fidelity and is easier to
explain compared to other architectures. In contrast, other dynamic GNNs, such as ROLAND, show varying
levels of explainability difficulty; for instance, ROLAND is particularly challenging to explain on the FB
dataset. Overall, while other methods may produce more accurate and stable explanations, they do so with
higher fidelity and sparsity, but at the cost of lower stability. To
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A.6 Ablation Study

To demonstrate the importance of capturing temporal dependencies in explaining dynamic graphs, we per-
form an ablation study by treating the hidden representation Ht as the output of the GNN, denoted by

19



Under review as submission to TMLR

⋯

Figure 6: Heatmap of the relevance of eight nodes from time step 1 to 6 on Reddit. Darker colors indicate
higher node relevance at each time step.

X̂t−1, without backpropagating the relevance through the GRU layer. As illustrated in Figure 3, Stage 1 is
omitted, and the relevance of the hidden representation is directly used as the input for Stage 2. We apply
LRP only to the GNN modules at each time step to obtain the relevance of the input features, resulting in
RX̂t

= RX̂t−1
. This approach does not account for the relevance back-propagation process within the GRU

module, which removes the temporal information needed to explain the dynamic GNNs, specifically in the
GCN-GRU model.

Table 4: An ablation study comparing the proposed DGExplainer with the direct application of LRP, which
does not account for the temporal information in the GRU module. This experiment evaluates fidelity
(τ1 = 0.8), sparsity (τ2 = 3 × 10−4), and stability (r = 20%).

Method Metric Reddit PeMS04 PeMS08 Enron FB COLAB

DGExplainer
Fidelity ↑ 0.42 0.39 0.30 0.23 0.36 0.53
Sparsity ↑ 0.87 0.99 0.95 0.85 0.96 0.96
Stability ↓ 0.13 0.15 0.12 0.15 0.12 0.18

LRP
Fidelity ↑ 0.29 0.27 0.25 0.20 0.30 0.48
Sparsity ↑ 0.72 0.95 0.93 0.80 0.95 0.94
Stability ↓ 0.18 0.21 0.16 0.12 0.17 0.19

From the results in Table 4, we observe that, generally, LRP exhibits lower fidelity and sparsity compared
to DGExplainer. This suggests that DGExplainer, which back-propagates relevance through the GRU,
more accurately identifies important features for predictions. Additionally, the stability of DGExplainer
is comparable to that of directly applying LRP on the COLAB dataset, and is smaller than many of the
baselines in Table 1. This experiment validates the effectiveness of utilizing time-dependent information,
which reveals clearer relevance patterns compared to treating each graph independently. To
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A.7 Additional Baseline

We conducted additional experiments using GNN-LRP (Schnake et al., 2021), and the results are below:
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Table 5: Additional experiments on GNN-LRP evaluated for fidelity (τ1 = 0.8), fidelity+ (τ1 = 0.8), sparsity
(τ2 = 3 × 10−4), and stability (r = 20%).

Method Metric Reddit PeMS04 COLAB

GNN-LRP
Fidelity ↑ 0.37 0.35 0.49
Fidelity+ ↑ 0.25 0.27 0.31
Sparsity ↑ 0.82 0.99 0.74
Stability ↓ 0.15 0.19 0.20

From Table 5, we observe that, 1) GNN-LRP exhibits lower fidelity and sparsity compared to DGExplainer.
2) the stability of DGExplainer is higher than that of GNN-LRP, indicating that GNN-LRP is less stable. To
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A.8 Case Study

1 2 3 4 5 6
Time

0.2 0.3 0.4 0.5
Figure 7: Heatmap of node #67 over
six time steps in the Reddit dataset.

To demonstrate that the proposed DGExplainer can capture time-
varying dependencies among snapshots, we visualize the relevance of
several nodes across different time steps using the Reddit dataset,
as shown in Figure 6. From this figure, we observe that nodes #43,
#67, #80, and #91 maintain relatively consistent importance across
time steps 1 to 3, highlighting a continuity in node importance over
time within dynamic graphs. Furthermore, node #91 shows lower
importance in the earlier snapshots (1 to 3), but its significance
increases at time step 6, suggesting that node importance can change over time. To explore the evolution
of relevance further, we also visualize the temporal relevance of a specific node, #67, over six consecutive
time steps, as shown in Figure 7. We observe that node #67 reaches its peak relevance at time step 3. Its
relevance gradually increases before time step 3, begins to decrease at time step 4, and rebounds slightly at
time step 5. To
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