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Abstract

Understanding how animals learn is a central challenge in neuroscience, with
growing relevance to the development of animal- or human-aligned artificial in-
telligence. However, existing approaches tend to assume fixed parametric forms
for the learning rule (e.g., Q-learning, policy gradient), which may not accurately
describe the complex forms of learning employed by animals in realistic settings.
Here we address this gap by developing a framework to infer learning rules di-
rectly from behavioral data collected during de novo task learning. We assume
that animals follow a decision policy parameterized by a generalized linear model
(GLM), and we model their learning rule—the mapping from task covariates to
per-trial weight updates—using a deep neural network (DNN). This formulation
allows flexible, data-driven inference of learning rules while maintaining an in-
terpretable form of the decision policy itself. To capture more complex learning
dynamics, we introduce a recurrent neural network (RNN) variant that relaxes the
Markovian assumption that learning depends solely on covariates of the current
trial, allowing for learning rules that integrate information over multiple trials.
Simulations demonstrate that the framework can recover ground-truth learning
rules. We applied our DNN and RNN-based methods to a large behavioral dataset
from mice learning to perform a sensory decision-making task and found that they
outperformed traditional RL learning rules at predicting the learning trajectories
of held-out mice. The inferred learning rules exhibited reward-history–dependent
learning dynamics, with larger updates following sequences of rewarded trials.
Overall, these methods provide a flexible framework for inferring learning rules
from behavioral data in de novo learning tasks, setting the stage for improved
animal training protocols and the development of behavioral digital twins.

1 Introduction

The study of animal learning has a long history, beginning with foundational work such as Pavlov’s
classical conditioning and the Rescorla–Wagner model of associative learning [1, 2]. Uncovering the
mechanisms that underlie learning and decision-making is crucial for understanding and predicting
animal behavior [3]. This knowledge has wide-reaching applications, including benefits for human
health and medicine [4–7], informing conservation efforts by anticipating how animals respond to
environmental change [8–12], and potentially guiding the development of biologically aligned AI
systems, which have garnered increasing interest in recent years [13, 14].

While inference of learning rules is gaining traction, prior studies have key limitations. For example,
many leverage reinforcement learning (RL) paradigms with normative approaches that assume reward
maximization [15–17] or weight update under a parametric learning rule (e.g., Q-learning [18],
REINFORCE [19, 20]). Although these approaches have provided clear insights into animal learning,
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they may lack the flexibility to capture the detailed structure of real learning rules, which are often
unknown and may not align with parametric forms conceived by human researchers. As a result,
existing models may span only a small subset of the space of possible learning strategies animals
actually use. Recent work has proposed more flexible quantitative models of learning based on
recurrent neural networks (RNNs) [21–24] or mechanisms proposed by large language models [25].
However, these studies have generally focused on “bandit” style tasks, in which animals adapt their
behavior to time-varying rewards in a fixed task structure, as opposed to learning a novel task or
behavior from scratch [26, 27]. De novo learning is common in experimental neuroscience, as
animals are routinely trained to acquire novel input–output mappings from scratch, yet comparatively
understudied. Finally, a variety of descriptive models have been developed to characterize trial-by-
trial changes in weights that govern an animal’s policy as it evolves over learning, but do not identify
any rules governing these weight updates [28, 29].

To address these shortcomings, we propose a new approach with the following main contributions.
To our knowledge, this is the first approach to infer nonparametric, non-Markovian learning rules
directly from behavior in de novo tasks.

1. Inferring flexible learning rules using DNNs. We develop a deep neural network (DNN)
modeling approach to infer flexible animal learning rules from de novo task learning data
(Figs. 1 and 2).

2. Non-Markovian learning rules. Many classic learning rules are Markovian or “memory-
less”, meaning that the learning update depends only on the input, action, and reward on
the current time step. Such rules, including our own DNN approach, thus fail to capture
“non-Markovian” learning, where updates depend on multiple time steps of trial history.
To overcome this limitation, we incorporate a recurrent neural network (RNN) to capture
arbitrary dependencies of learning on trial history (Fig. 3).

3. Improved held-out prediction on real data. We apply our methods to mouse training
data from the International Brain Laboratory (IBL) and observe significantly higher log-
likelihood on held-out data compared to existing approaches (Fig. 4).

4. Insights into animal learning strategies. We analyze the inferred learning rules and
identify several departures from classic policy gradient learning, including non-Markovian
reward history dependencies lasting multiple trials (Fig. 5).

2 Model and methods

Model of decision-making. We begin with a dynamic Bernoulli generalized linear model (GLM) of
an animal’s time-varying behavior during learning [19, 20, 28, 30]. This provides an interpretable
model of an animal’s decision-making policy in terms of a set of weights that evolve dynamically
over the course of learning. This differs from recent work in which the animal’s policy is directly
parametrized by an RNN [21, 22], which offers increased flexibility but may be challenging to
interpret.

On trial t, a sensory stimulus st ∈ [−1, 1] appears on the left or right side of the screen, where st > 0
indicates the fractional contrast of a right-side stimulus and st < 0 indicates the (negative) fractional
contrast of a left-side stimulus. The mouse makes a binary choice yt ∈ {0, 1} by turning a wheel,
where 0 corresponds to a leftward and 1 to a rightward choice, respectively (Fig. 1A). The true label
of the stimulus is denoted as zt = 1[st > 0], representing the correct response according to the task.

We assume the animal’s policy on trial t is governed by a weight vector wt ∈ Rd, which describes
how task covariates, denoted xt ∈ Rd, influence the animal’s choice. Unless otherwise specified, we
will define the input vector to be x = [st, 1]

⊤, consisting of the signed stimulus intensity st and a
constant or “bias” term [30]. This input interacts linearly with the weight vector wt, determining the
probability that the animal selects the “rightward” choice on trial t:

p(yt = 1 | xt,wt) =
1

1 + e−x⊤
t wt

. (1)

The reward function is given by rt = 1[yt = zt], which corresponds to a positive reward of 1 if the
animal makes a correct decision (yt = zt) and a reward of 0 otherwise.
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Figure 1: Task schematic and learning rule inference methods. (A) We examine learning of a
sensory decision-making task, in which mice must learn to report which side of the screen contains a
visual stimulus by turning a wheel [31]. (B) In our framework, decision-making is governed by the
weights of a Bernoulli generalized linear model (GLM), which evolve across trials according to an
unknown learning rule. (C-D) To infer the learning rule, we approximate the weight update function
∆wt using either (C) a deep neural network (DNN) that maps the current trial covariates to a weight
change; or (D) a recurrent neural network (RNN) that integrates information from previous trials
before feeding into the DNN. We optimized the neural network model parameters θ by maximizing
the log-probability of the animal choice data under the dynamic Bernoulli GLM (see Methods and
Algorithm 1). We refer to our approaches as DNNGLM or RNNGLM depending on the model used
to parametrize the learning rule.

DNNs for learning rule inference. Learning in this paradigm is captured by updates to the decision
weights w. We first model the weight update function using a feedforward neural network (Fig. 1C):

∆wt = fθ(wt,xt, yt, rt), (2)

where fθ is a feedforward network with two hidden layers and trainable parameters θ (see Supp. C
for architecture details). The next weight is given by:

wt+1 = wt +∆wt. (3)

Initial weights w0 can be treated as trainable parameters, initialized via psychometric curve estimates
(Supp. C). The inferred weights wt parameterize the GLM response distribution (Eq. 1), and network
parameters θ are optimized to maximize the log-likelihood of observed choices:

ℓt(wt;xt) = yt log p(yt = 1 | xt,wt) + (1− yt) log(1− p(yt = 1 | xt,wt)), (4)

which corresponds to minimizing binary cross-entropy loss.

RNNs for learning rule inference. Since feedforward networks are memoryless, we also consider a
recurrent parameterization using a GRU [32] to encode history. The same inputs {wt,xt, yt, rt} are
passed into a GRU gθ to produce a hidden state ht, which is then passed to the feedforward network:

ht = gθ(ht−1,wt,xt, yt, rt), (5)
∆wt = fθ(ht). (6)

The model is trained using the same objective and procedure as above (see also Supp. C).

By combining a GLM for choice modeling with neural network–based learning rules, we balance
interpretability and flexibility. We refer to the two models as DNNGLM and RNNGLM, depending
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on whether the learning rule is parameterized with a feedforward or recurrent network. Cross-
validation, together with the implicit regularization properties of neural networks, helps mitigate
overfitting; further details regarding our model and data processing can be found in Supp. C. The full
procedure is outlined in Algorithm 1.

Algorithm 1 Learning Rule Inference from Trial-by-Trial Behavior
1: Inputs: Trial sequence {st, yt, rt}Tt=1
2: for trial t = 1 to T do
3: Construct input vector: ut = [st, yt, rt,wt]
4: Compute weight updates: ∆wt ← NN(ut)
5: Update the inferred GLM weights: wt+1 ← wt +∆wt

6: Predict choice probability: Pyt
= σ(w⊤

t xt)
7: Accumulate binary cross-entropy loss: Lt = − [yt logPyt

+ (1− yt) log(1− Pyt
)]

8: end for
9: Objective: Minimize total loss L =

∑T
t=1 Lt using gradient descent

3 Simulation results: recovery of ground-truth learning rules
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Figure 2: Recovering ground-truth learning rules in simulated data. We simulated animal
learning using a policy gradient method known as “REINFORCE” [33]. (See Supp. Fig. 6 for an
alternative ground-truth learning rule). This rule is Markovian in that the weight update ∆wt depends
only on current-trial variables. (A) Simulated trajectory for stimulus weight wstim for an example
simulated mouse (green) and the inferred weights using the DNNGLM (blue). (B) Left: Heatmap
showing the ground-truth stimulus weight change ∆wstim following a correct choice, as a function
of wstim and stimulus s. Horizontal dashed lines indicate wstim or w slices shown in middle and
right panels. Middle: slices showing stimulus weight change ∆wstim as a function of the stimulus
s, for different values of the true weight wstim, after both correct (solid) and incorrect (dashed)
decisions. (The REINFORCE algorithm exhibits no learning after incorrect trials for this setting
of rule parameters). Right: corresponding slices through the weight update function inferred using
the DNNGLM. Note that the model successfully captures key characteristics of the learning rule,
such as the slowing of learning at higher weights, increased learning with stimulus amplitude, and
the asymmetry in learning after correct and incorrect choices. (See Supp. Fig. 7 for analogous plots
for bias parameter updates and Supp. Fig. 6 for a comparison to other learning rules.) (C) Error in
recovered learning rule as a function of dataset size, indicating that the DNNGLM converges to the
true REINFORCE learning rule with increasing amounts of data.
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Non-Markovian learning rule: 
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Figure 3: Simulated example with a non-Markovian learning rule. The RNNGLM recovered
the reward history dependence present in the ground truth: larger weight updates occur when the past
3 trials were rewarded (black) versus unrewarded (red). Such differences were absent in DNNGLM,
as it can only account for Markovian learning rules, where weight updates depend on current trial
information. The ability of RNNGLM to capture these effects reflects its greater flexibility. Minor
deviations from the ground truth are likely due to finite data effects (Fig. 2C). To keep the figure
simple, we only plotted with the learning rule given stimulus weight wstim = 0 and after correct
choices, but we observed similar phenomena for other parameter settings.

To begin our investigation, we first consider simulated data where the ground truth is known. We
consider two types of learning rules: Markovian and non-Markovian. By Markovian learning
rules, we mean that weight updates depend only on current-trial variables and are thus conditionally
independent of stimuli, choices, and rewards on previous trials. In contrast, non-Markovian learning
rules allow weight updates on the current trial to exhibit arbitrary dependencies on task history.

For Markovian learning rules, we considered a classic policy gradient learning rule known as
REINFORCE [33], which is defined by:

∆wt ∝ rt∇w log p(yt | xt,wt)

= rtϵyt
(1− pyt

)xt, ϵyt=R = +1, ϵyt=L = −1, (7)

where pyt
:= p(yt | xt,wt), the probability of the choice yt given input xt under the animal’s current

policy. REINFORCE is a policy gradient method that uses Monte Carlo integration to evaluate the
gradient of the policy with respect to reward (details in Supp. B.1).

We first validated our framework on synthetic data where the ground truth learning rule is known
(Fig. 2). When simulating animal learning under REINFORCE [33], our method (DNNGLM)
recovered the weight trajectory and key properties of the learning rule, including dependencies on
decision outcome, stimulus contrast, and current weight. Reconstruction accuracy—measured as the
log base 10 of RMSE between the ground-truth ∆w and the model-predicted ∆w on the training
data—also improves with increasing data (Fig. 2C).

We then simulated a non-Markovian learning rule in which weight updates depended on trial history
(Fig. 3). Specifically, we consider a modified REINFORCE rule with an eligibility-trace–like factor
derived from a non-Markovian task setting (see Supp. B.2 for details):

∆wt ∝ rt
∑
s

ϵyt−s(1− pyt−s)xt−s. (8)

A key property of this rule is that a correct and rewarded past trial contributes a nonnegative term
to the sum — since ϵyt−s

and xt−s share the same sign and the remaining terms are nonnegative —
while an incorrect trial contributes a nonpositive term. Thus, conditioning on several past trials being
rewarded (versus unrewarded) leads to larger weight updates under the ground truth learning rule.
This history-dependent effect is successfully captured by the fitted RNNGLM (Fig. 3).

In this case, the DNNGLM model fails to recover the correct learning dynamics; RNNGLM recovers
the reward-history dependence in the learning rule. This demonstrates the need for recurrent architec-
tures in modeling non-Markovian, history-dependent learning processes. In principle, the weights
w could carry some history even in DNNs, since w← w +∆w integrates past updates. However,
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the learned update function ∆w itself does not explicitly depend on past trial information and thus
cannot capture history-dependent learning dynamics (see Fig. 3). While expanding the DNN input to
include historical information is possible, this would require manual feature engineering and reduce
the model’s ability to automatically determine which past inputs are relevant.
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Figure 4: Application to IBL mouse learning data. (A) Predicted stimulus (top) and bias (bottom)
weight trajectories for a held-out animal — using DNNGLM trained on other animals and applied
to this animal’s stimulus and choice sequence — plotted along the weight trajectories inferred by
PsyTrack [28], which is a learning-agnostic and reliable method for tracking psychometric weights
from behavioral time series. (Supp. Fig. 15 shows additional weight trajectories.) Similar traces were
observed for RNNGLM as well. (B) Our methods (DNNGLM and RNNGLM) achieved significantly
higher test log-likelihood (LL) on held-out data. Here we plot LL relative to the REINFORCE model.
Notably, the RNNGLM model also out-performed the DNNGLM extended to include the previous
trial input (“DNNGLM- history”). Error bars reflect standard deviation across cross-validation seeds.

We also add more results in the Supp. Material demonstrating that our main findings are robust across
a variety of conditions: (i) a learning rule without the decision outcome asymmetry (Supp. Fig. 6);
(ii) recovery of an in-between learning rule when mixing update functions across individuals (Supp.
Fig. 11); (iii) different initial stimulus weights (Supp. Fig. 9); (iv) longer trial lengths (Supp. Fig. 10).
While the initial policy weights are typically unknown, we estimated them from the psychometric
curve (Supp. C) and demonstrated recovery in Supplementary Fig. 10. For faster simulations in the
main text, and to allow multiple repetitions for robustness testing, we used shorter trial sequences.
These shorter sequences make it difficult to estimate the initial weight due to fewer samples at the
beginning, so we initialized with a known initial weight in this case. Robustness tests showing
recovery with incorrect W0 are provided in Supplementary Table 5. We also show sensitivity to the
initial weight estimate (Supp. Table 3) and degradation of reconstruction under added noise (Supp.
Table 4).

4 Application to mouse learning data

For real data, we used the publicly available International Brain Laboratory (IBL) dataset [31],
following the same preprocessing as in [19]. We first fit the learning rule on a pool of training
animals. We then took the stimulus and choice sequence from a held-out test animal and applied
the fitted DNNGLM or RNNGLM to predict the evolution of its stimulus and bias weights. We
compared the predicted weight trajectories to those inferred by PsyTrack [28], a learning-agnostic
and reliable method for tracking psychometric weights from behavior, and observed close agreement
(Fig. 4A). Furthermore, using the predicted weights to compute the choice log-likelihood on held-out
animals, both DNNGLM and RNNGLM outperformed REINFORCE-based models (Fig. 4B and
Table 1). We also assessed temporal generalization on future held-out data and observed similar
trends (Supp. 2). Notably, RNNGLM also outperformed history-augmented DNNGLM, in which
previous-trial information was added as an additional regressor to the GLM.

Moreover, our methods revealed empirical features of mouse learning that deviate from classical
learning rules (Fig. 5A). These include the presence of a “negative baseline” (coined in [20] but
also observed in our flexible framework), where weight updates following incorrect trials actually
decreased task accuracy — even though a positive update would aid learning in this particular task.
We also observed asymmetries in update magnitude based on decision correctness, with distinct
updates following correct (solid lines) versus incorrect (dashed lines) choices, as well as asymmetries
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Figure 5: Properties of inferred learning rules. (A) For the dataset in Fig. 4, DNNGLM reveals
negative weight updates following errors (coined as ‘negative baseline’ in [20], which was also
observed in our flexible framework). Bias weight plot is provided in Supp. Fig. 8; note w is fixed at
positive weights because the training data mainly involved positive w. We follow the same plotting
convention in Fig. 2; since RNNGLM depends on additional historical variables, we plot the mean
∆wstim averaged across these historical dimensions. (B) RNNGLM suggests non-Markovianity
(history dependence) in learning: larger weight updates are observed when all past trials were
rewarded (black) versus unrewarded (red). This gap widens as we condition on history beyond just
the previous trial, suggesting that the history dependency extends beyond the most recent past
trial. We note that plotting up to four past trials was intended only as an illustrative example, not
a fundamental limit of RNNGLM; as shown in Supp. Fig. 13, the model suggests longer history
dependencies. To keep the figure simple, we only plotted with stimulus w fixed at 0, but similar
trends are observed elsewhere.

across stimulus sides (i.e., different update functions for left vs. right choices). Notably, such side
asymmetries have also been reported in prior work [34].

In addition, the fitted RNNGLM — achieving the best held-out log-likelihood — showed higher
updates following sequences of rewarded trials (Fig. 5B), suggesting sensitivity to reward history
spanning multiple trials (see also Supp. Fig. 11B). Together, these findings highlight the framework’s
ability to improve predictive accuracy while uncovering mechanistic insights into animal learning.

Because inferring flexible learning rules from binary choices is an under-constrained inverse problem,
multiple parameterizations can fit the data similarly well. We therefore repeated inference for each
model (DNNGLM, RNNGLM) across multiple random seeds, holding data splits and hyperparame-
ters fixed. Across seeds, log-likelihoods were similar, while the recovered update functions showed
modest variation. To visualize this, we now plot mean and standard deviation across weight updates
across seeds (Supp. Fig. 12). Despite some variability, the key characteristics are consistent
across seeds—a negative baseline, side asymmetry, and multi-trial (non-Markovian) dependence on
reward/stimulus history. Moreover, the elimination of these features suggests they are functionally
meaningful: enforcing a non-negativity constraint on the baseline reduces held-out predictive perfor-
mance (Table 1). Additionally, to assess fairness, we matched parameter counts between DNNGLM
and RNNGLM, and observed that RNNGLM still outperformed (p = 5.53e− 4), indicating the gap
is not due to just model size.
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Comparison Heldout LL p-val
REINFORCE vs. DNNGLM −60576 vs. −60360 1.57e−2
DNNGLM vs. RNNGLM −60360 vs. −59892 1.79e−8
REINFORCE vs. nonnegative base −60576 vs. −68532 1.25e−5
tinyRNN vs. RNNGLM −60564 vs. −59892 2.12e−3
REINFORCE (history) vs. RNNGLM −60504 vs. −59892 7.73e−7
DNNGLM (history) vs. RNNGLM −60168 vs. −59892 3.84e−6

Table 1: Animal-level held-out log-likelihoods (higher is better) for Fig. 4B, except that we report
total log-likelihood (summed across animals) instead of relative log-likelihood. We show p-values
from paired t-tests across mice, comparing different learning rule models on the IBL dataset. Each
entry shows two values (one per model in the comparison), reported as mean ± standard error across
cross-validation seeds. For the interpretable RNN baseline — which predicts behavior directly rather
than parameterizing weights or weight updates — we used tinyRNN [21] with 8 GRUs, more than
the 1–4 GRUs used in their original paper, which performed even worse in our tests. Results for
held-out future data also show consistent trends (Supp. Table 2).

5 Related Work

Previous studies have shown that artificial neural networks provide a more accurate description of
animal learning behavior than classical learning models [35–52]. Several recent works have taken
steps to enhance the interpretability of inferred learning strategies — for example, by regularizing
the latent space or parameterizing in low-dimensional or human-interpretable forms [21–23, 25], but
they have not addressed de novo learning, i.e., learning to perform a new sensory-motor task behavior
structure (input–output mappings) from scratch.

Methods for inferring learning rules during the acquisition of new task structures remain sparse.
Those that do exist typically assume a predefined functional form [18–20, 34], limiting their ability to
capture learning strategies that differ from hand-designed models. In addition, many are memoryless
or ’Markovian’, assuming that weight updates depend only on the task variables encountered on the
current trial; this stands in contrast to biological learning, where history plays a prominent role —
such as through eligibility traces [53, 54] or the influence of trial history on decision-making [30, 55–
57]. In this work, we focus on inferring learning rules from behavioral data, motivated by the
broad availability of behavioral datasets and the potential for large-scale inference without requiring
simultaneous neural recordings. In parallel, several studies have proposed approaches to infer
synaptic-level plasticity rules [58–66], which offer detailed insights into neural mechanisms. While
some of these approaches can also be applied to behavioral data (e.g., [62]), their focus has largely
been on neural-level inference and often requires neural activity recordings or handcrafted functional
bases for interpretation. Our method instead emphasizes flexible inference directly from behavior,
improving weight recovery via psychometric-curve initialization and extending flexibility with
recurrent networks to capture multi-trial history beyond bandit tasks.

Beyond neuroscience, our work is also related to the meta-learning literature. A prominent line
of work learns optimizers or update rules via gradient-based meta-learning [67], with extensions
to reinforcement learning [44, 68]; several computational neuroscience studies likewise meta-learn
synaptic plasticity rules within interpretable frameworks [41, 63, 69, 70]. In contrast to meta-learning
approaches that optimize agents to learn well across tasks, we address a fundamentally different goal:
inferring, from behavior alone and in de novo tasks, the learning rule that a biological agent used
to learn from scratch. This poses distinct challenges: (i) animals often exhibit suboptimal or biased
strategies that violate normative reward-maximization assumptions [57, 71], enlarging the solution
space and introducing history-dependence and other idiosyncrasies; (ii) updates must integrate
external stimuli—not just reward histories—going beyond classic bandit settings; and (iii) many prior
approaches fix feature representations, use static policy forms, or rely on hand-designed rules that
do not adapt during training. These factors call for flexible yet interpretable models with minimal
structural priors; under these conditions, prior baselines underperform relative to ours (Table 1). Our
approach thus helps bridge structured neuroscience models with black-box meta-learning in this de
novo inference setting.
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6 Discussion

Understanding how animals learn from experience—particularly in de novo settings where in-
put–output mappings must be acquired from scratch—remains a central challenge. Prior work has
largely relied on predefined parametric models or focused on simpler settings like bandit tasks that
do not require learning a new task structure from scratch. Here we instead infer, from behavior alone,
the trial-by-trial learning rule used by the animal, confronting three challenges highlighted in Related
Work: suboptimal or biased updates, the need to integrate external stimuli and multi-trial history, and
the limits of fixed rule forms or static policy features. We demonstrate that our framework recovers
ground-truth rules in simulation, extends to non-Markovian dynamics via recurrent architectures,
improves held-out prediction accuracy on real behavioral data, and yields analyzable insights into
animal learning. Together, these results support a data-driven framework for uncovering learning
processes.

To our knowledge, this is the first study to infer the learning rule function in de novo learning settings
without assuming a specific model class. While neural network–based approaches have been proposed
in non-de novo settings such as bandit tasks [21–25], structured sensory inputs and the need to learn
new input–output mappings introduce additional challenges. Prior work has also modeled behavior
by having RNNs directly output cognitive states or choices, but such models often act as black boxes
that are difficult to interpret [21, 22]. Although recent studies have sought to balance flexibility and
interpretability by using RNNs to represent classical model parameters [52], we find that directly
modeling parameter updates ∆w leads to better ground truth reconstruction (Supp. Fig. 14). This
advantage likely stems from the implicit regularization of neural networks, which biases learning
dynamics toward smoother functions first in the feature learning regime [72–84]. That said, it remains
unclear whether the inductive bias of our setup generalizes across various learning systems — an
open question we highlight as a future direction (see below). One promising result supporting our
approach is that, in a sense, implicitly regularizing weight updates aligns with the philosophy behind
PsyTrack, which also acts at the level of weight changes [28].

Broader outlook for neuroscience and AI. By inferring learning rules directly from behavior without
assuming a fixed model structure, our approach offers a data-driven framework for understanding
how animals learn de novo. This has several implications. First, interpreting the inferred learning
rules could offer insights into learning behavior (e.g., suboptimal or history-dependent patterns),
which may point to additional variables—such as trial history, internal states, or reward timing—that
are worth tracking in future behavioral learning studies. In turn, more accurate behavioral learning
models could inform applications in health and conservation—e.g., anticipating how animals respond
to environmental changes or interventions [4–12]. This also lays a foundation for more challenging
settings with richer task structures and scaling to more expressive architectures. Second, de novo
learning is ubiquitous in experimental neuroscience, where animals are often trained from scratch on
novel tasks, yet remains understudied. By revealing structure in how animals learn during this phase,
our method can inform experimental design and training protocols, supporting more efficient task
training [19, 20].

From an AI perspective, our work contributes to the growing interest in biologically-aligned learning
systems [13, 14]. By uncovering suboptimality and history dependence in animal learning, we
reveal deviations from standard artificial agents that could inform the design of more human- or
animal-aligned AI. Relatedly, our approach may support the development of behavioral digital
twins—AI models that mimic individual learning processes for simulation, personalization, or real-
time prediction [85]. Finally, by leveraging the implicit regularization of neural networks to infer
learning rules, our work raises new questions about how such inductive biases interact with neural
network–based system identification (see below).

Limitations and future directions. Pooling across animals. Neural network–based approaches
are often data hungry, and reconstruction accuracy improves with more data (Fig. 2C). To address
this, we pool across animals rather than fitting individual subjects. While pooling is common
in neuroscience [86–88], it can obscure individual variability and inherit known limitations [89].
Nonetheless, learning rule inference from behavior alone is underconstrained in low-data regimes,
and pooling offers a practical mitigation strategy. This population-level approach aligns with broader
trends in neuroscience and AI toward large-scale behavioral datasets.
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Static vs. dynamic learning rules. Our current model assumes a static weight update function. While
RNNs may implicitly capture temporal changes—perhaps explaining why fitting separate RNNGLMs
to the first and second halves of training did not yield improvement—future work could explicitly
model dynamic learning rules to better disentangle non-Markovian dependencies from nonstationarity.
An important direction is to investigate whether the observed suboptimal negative baseline arises
from specific cognitive mechanisms — such as choice perseverance or forgetting [90] — or from
model mismatch. More broadly, suboptimal learning is common in the literature [91, 92], especially
in pathological populations [93, 94], where applying our approach could be interesting.

Stochasticity. Our current learning model is deterministic. Capturing stochasticity in learning would
be a valuable extension.

Generalization across datasets, tasks, and architectures. We evaluated our method using the same
preprocessed IBL dataset as [19]. This focus on a relatively simple task was intentional: it mirrors
widely used de novo learning paradigms in laboratory neuroscience, where animals are introduced
to novel tasks with minimal prior structure. Such simplified tasks capture key hallmarks of biolog-
ical learning—history dependence, biases, and suboptimal strategies—while providing a tractable
platform for reverse-engineering learning dynamics. In this sense, our work should be viewed as
a stepping stone toward broader generalization: establishing validity in a controlled setting before
extending to richer tasks and datasets. Indeed, to demonstrate potential scalability, we tested higher-
dimensional inputs and found that our approach continues to recover core qualitative features of
learning rules, with performance improving as data availability increases (Supp. Table 6). These
results indicate that our framework can extend beyond the simple tasks considered here.

Beyond extending to diverse tasks and datasets, another future avenue would be to investigate how
different architectures—and their associated inductive biases—affect inference accuracy, particularly
under data limitations. Our framework currently fixes the decision model (e.g., standard models
such as GLMs), which aids interpretability and follows common neuroscience practice but limits
expressivity. In fact, for multiplicative decision processes, this assumption leads to a significant
performance degradation (Supp. Table 7). We view this modular approach—using a standard decision
model while focusing on trial-by-trial weight updates—as a principled first step, consistent with
strategies in neuroscience and machine learning where components are studied separately before joint
inference. Extending the framework to jointly infer both the decision model and the learning rule is
an important direction for future work.

Overall, we introduce a flexible framework for inferring learning rules directly from behavior, without
assuming a predefined form. By capturing non-Markovian dynamics and uncovering insights into
de novo learning, we hope this approach opens new avenues for studying how animals learn in rich,
structured environments.
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• The authors should state which version of the asset is used and, if possible, include a
URL.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
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or other labor should be paid at least the minimum wage in the country of the data
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
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scientific rigorousness, or originality of the research, declaration is not required.
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discussion and found that our initial literature review was already comprehensive.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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for what should or should not be described.
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A Theoretical justifications

To gain theoretical insights into why this approach could work, we consider two key questions:
(1) Do neural networks have the capacity to approximate the learning rule, i.e., the weight update
function? (2) Since weight updates are not directly observable, can they be identified from behavioral
data? Question (1), assuming well-behaved weight update functions, is addressed by universal
approximation theorems [95–101]. For question (2), we start by considering a very simple idealized
setting in the proposition below and leave comprehensive theoretical investigations into identifiability
for future work.

Proposition 1. For simplicity, let wt ∈ R for t ∈ {0, 1}, and assume yt ∼ Bernoulli(Pyt
), where

Pyt := P[yt = 1 | wt, xt] = σ(wtxt), with σ(z) =
1

1 + e−z
denoting the sigmoid function.

We further make the following simplifying assumptions: (1) ∆wt = wt+1 −wt depends only on
(wt, xt, yt). (2) For each t, inputs x(i)

t ∈ {−1, 1} are drawn i.i.d. across samples from the uniform
distribution over this set, i.e., P(xt = −1) = P(xt = 1) = 1

2 . (3) The same initial weight w0 is
used across N independent repetitions. (4) For all sample i, we assume P

(i)
yt ∈ [ϵ, 1− ϵ] for some

arbitrary 0 < ϵ < 1. (5) The prior on wt is smooth, strictly positive, and does not concentrate near
the boundary of the parameter space. Then, as N approaches infinity, the standard error (SE) of
∆w0 = w1 − w0 across samples approaches 0.

Proof. The log-likelihood for a single observation at time t is:

ℓt(wt) = yt logPyt
+ (1− yt) log(1− Pyt

).

By taking the second derivative, we arrive at:

∂2ℓt(wt)

∂w2
t

= −Pyt
(1− Pyt

)x2
t

= −Pyt(1− Pyt),

where x2
t is dropped due to the assumption that x ∈ {−1, 1}.

Summing over N independent observations, the Fisher information for wt is:

I(wt) =

N∑
i=1

P (i)
yt

(1− P (i)
yt

).

By the Bernstein-von Mises (BvM) theorem (see [102]), the posterior distribution of wt given the
data is asymptotically normal:

π(wt | data) d−→ N
(
ŵt,

1

I(wt)

)
,

where ŵt is the MLE of wt.

Thus, by BvM theorem, in the limit as N →∞, the posterior variance is asymptotically equal to:

Var(wt) =
1∑N

i=1 P
(i)
yt (1− P

(i)
yt )

.

and applying assumption (4):

Var(wt) ≤
1

Nϵ(1− ϵ)
,

and

SE(wt) ≤

√
1

Nϵ(1− ϵ)
.
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Since ∆w0 = w1 − w0, the variance of ∆w0 can be expressed as:

Var(∆w0) = Var(w1) + Var(w0)− 2 · Cov(w1, w0).

Using the Cauchy-Schwarz inequality, the covariance term is bounded:

|Cov(w1, w0)| ≤
√

Var(w1) · Var(w0).

Thus, we have:

Var(∆w0) ≤ Var(w1) + Var(w0) + 2
√

Var(w1) · Var(w0).

Substituting the variance bounds:

Var(∆w0) ≤
1

Nϵ(1− ϵ)
+

1

Nϵ(1− ϵ)
+ 2

√
1

Nϵ(1− ϵ)
.

This simplifies to:

Var(∆w0) ≤

(√
1

Nϵ(1− ϵ)
+

√
1

Nϵ(1− ϵ)

)2

Taking the square root to get the SE:

SE(∆w0) ≤

√
1

Nϵ(1− ϵ)
+

√
1

Nϵ(1− ϵ)
.

As N →∞, both terms approach 0, so SE(∆w0)→ 0.

Despite the restrictive assumptions, this proposition demonstrates (1) identifiability in highly simple
settings to motivate future theoretical work and (2) identifies factors that contribute to the Fisher
information. These factors include the number of animals pooled, N (see Fig. 2C) and initial weights,
w0 (see Supp. Table 3). We also note that the third assumption could be approximately achieved by
pretraining animals to a common performance level or by pooling animals that exhibit similar initial
behavior.
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B Learning rules considered for simulated data

In simulated data, we model weight updates as follows:

wt+1 = wt +∆wt, (9)

where ∆wt is determined by a specific ground truth learning rule. We remind readers that variables
were defined in Section 2.

For Markovian learning rules, we consider the classical REINFORCE [33] (more details in Supp.
B.1):

∆wt ∝ r(yt, zt)∇w log p(yt | xt,wt)

= r(yt, zt)ϵyt
(1− pyt

)xt, ϵyt=R = +1, ϵyt=L = −1, (10)

where pyt := p(yt | xt,wt).

Results for simulated data using the classical REINFORCE rule were shown in Fig. 2. A key property
of this rule—captured well by our method—is the clear difference in weight updates following correct
versus incorrect choices. To further test our approach, we considered an alternative rule that lacks
this characteristic: a maximum likelihood rule (Supp. Fig. 6). This can be viewed as analogous to
supervised learning, where the correct label is known and the weight update aims to increase the
probability of choosing the correct action:

∆wt ∝ ∇wt log p(zt | xt,w)

= ϵzt(1− pzt)xt, ϵzt=R = +1, ϵzt=L = −1, (11)

which doesn’t depend on the action and reward.

For non-Markovian learning rule in Fig. 3, we consider a modified REINFORCE with an "elibility-
trace-like" factor (see Supp. B.2):

∆wt ∝ r(yt, zt)
∑
s

ϵyt−s
(1− pyt−s

)xt−s. (12)

B.1 REINFORCE

We present the classical REINFORCE [33]:

∆wt ∝ rt(yt, zt)∇wt logP (yt|xt,wt), (13)

which is derived as follows.

We want to maximize the expected reward (expectation across the agent’s stochastic behavior) by
computing its gradient:

∇wt
EP (yt|xt,wt)[r(yt, zt)] = ∇wt

∫
r(yt, zt)P (yt|xt,wt)dyt

(a)
=

∫
r(yt, zt)∇wtP (yt|xt,wt)dyt

(b)
=

∫
r(yt, zt)P (yt|xt,wt)∇wt

logP (yt|xt,wt)dyt

= EP (yt|xt,wt)[r(yt, zt)∇wt logP (yt|xt,wt)], (14)

where (a) is because r(yt, zt) is independent of wt once yt is given, and (b) is from the log-derivative
trick. We can evaluate the right-hand-side with a Monte Carlo integral by assuming the animal’s
choice yt is sampled according to its policy P (yt|xt,wt), which results in Eq. 13.
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B.2 REINFORCE with "eligibility trace"

Suppose we change the task setting and the reward rt now depends up to past S data points, i.e.
rt = rt(yt−S:t, zt−S:t), then:

∇wtEP (yt−S:t|xt−S:t,wt−S:t)[r(yt−S:t, zt−S:t)]

= ∇wt

∫
r(yt−S:t, zt−S:t)P (yt−S:t|xt−S:t,wt−S:t)dyt−S:t

(a)
=

∫
r(yt−S:t, zt−S:t)∇wt

P (yt−S:t|xt−S:t,wt−S:t)dyt−S:t

(b)
=

∫
r(yt−S:t, zt−S:t)P (yt−S:t|xt−S:t,wt−S:t)∇wt

logP (yt−S:t|xt−S:t,wt−S:t)dyt−S:t

= EP (yt−S:t|xt−S:t,wt−S:t)[r(yt−S:t, zt−S:t)∇wt
logP (yt−S:t|xt−S:t,wt−S:t)],

(c)
≈ EP (yt−S:t|xt−S:t,wt−S:t)[r(yt−S:t, zt−S:t)

S∑
s=0

∇wt−s
logP (yt−s|xt−s,wt−s)], (15)

where (a) is because r(yt−S:t, zt−S:t) is independent of w once yt−S:t is given, and (b) is
from the log-derivative trick; (c) we assume wt−s ≈ wt and also P (yt−S:t|xt−S:t,wt−S:t) =
ΠS

s=0P (yt−s|xt−s,wt−s) from the task setup. Again, we apply Monte-Carlo approximation:

∆wt ∝ rt

S∑
s=0

∇wt−s
logP (yt−s|xt−s,wt−s). (16)

For Fig. 3, we used S = 10 and defined rt = rt(yt−S:t, zt−S:t) as 1 if at least half of the recent S
trials are correct and 0 otherwise; we found similar results for other choices too. We refer to it as
’eligibility-trace-like’, although it may not arise from eligibility traces, since the reward is combined
with an input/output-dependent factor that accumulates over multiple time steps.

27



C Additional details on model and data

Simulated data. We simulate a pool of animals, each following the same underlying learning rule.
In Supp. Fig. 11, we also explore populations with mixed weight update functions, where pooling
tends to recover an in-between weight update function. Even when animals follow the same rule,
their learning trajectories differ due to the stochasticity of received inputs and behavior.

For each simulated animal, the learning process unfolds over trials t = 0, 1, . . . , T as follows. Each
stimulus st is drawn uniformly from discrete values in [−2, 2] with 0.25 increments, excluding 0
(except for Fig. 2, which includes 0); varying the increment size did not affect our conclusions. The
correct label or answer is defined as zt = 1[st > 0]. Decision weights are updated according to
wt+1 = wt +∆wt, where ∆wt is computed from the ground-truth learning rule being tested (see
Supp. B). The agent’s binary choice yt ∈ {0, 1} is sampled from a Bernoulli GLM parameterized
by wt, as described in Section 2. A reward is given if the choice matches the correct answer:
rt = 1[yt = zt].

For the total number of trials T , we use T = 500 by default (to speed up simulations), but also
demonstrate that our conclusions hold for longer T (T = 8000) in Supp. Fig. 10. We set the learning
rate α such that the animal’s performance reaches a saturation regime — typically when the stimulus
weight approaches a value of 3 for this task. The GLM includes a stimulus weight that is updated over
trials, and a fixed bias weight sampled randomly at the start of each simulation from {−1, 0, 1}. We
simulate a pool of 10 to 1000 animals to observe the influence of data availability on reconstruction
accuracy in Fig. 2C. We evaluate model performance using 5-fold cross-validation, where each fold
holds out a subset of animals entirely. This ensures generalization across individuals, consistent with
the underlying assumption of pooling — that animals share commonalities which can be learned
from a subset and applied to held-out animals.

IBL data. We use the publicly available International Brain Laboratory (IBL) dataset [31], and
follow the same preprocessing pipeline as [19], with details available in their accompanying code.
For dataset details and learning curves, refer to Supp. C and Fig. S1 in [19]. In other words, we used
the same preprocessed dataset as [19] (N = 12), for benchmarking purposes. For evaluation, we
adopt two cross-validation strategies, and both led to similar trends (Tables 1 and 2). First, under
the pooling assumption that a shared learning model generalizes across animals, we use K-fold
cross-validation with animal-held-out splits. We fit the model using the first 10000 trials per animal
to capture the full learning trajectory, including the saturation phase. For each fold, we report the
average validation log-likelihood across four random seeds and conduct paired t-tests across matched
animals to obtain the p-values reported in Table 1. The paired design accounts for variability in
individual animals’ performance: animals who learn well are easier to predict, while animals who
have not learned the task are harder to model (see Fig. S1 in [19]). Second, to assess temporal
generalization, we adopt a future-data holdout strategy [103]. We train up to the point where the
learning curve inflects (around trial 5500), ensuring that the evaluation data reflect ongoing learning
rather than the saturation regime. This also avoids cutting off training too early, where little learning
signals are present. We then evaluate performance on the next 500 trials beyond that point, although
similar trends were observed when using 200 or 1000 trials instead. As above, we compute paired
t-tests on animal-matched log-likelihoods to assess significance.

Learning model, initial GLM weights, and hyperparameters. Our learning rule model is depicted
in Fig. 1C. The network takes as input the current trial stimulus st, choice yt, reward rt, and the
current weight wt. For the IBL data, we additionally include binary inputs indicating daybreak and
stimulus side; the trends in Table 1 remain unchanged when these inputs are omitted. The network
then outputs inferred weight update. For choice and reward, we input the animal’s actual choice
and reward rather than those generated by the model, since these are the signals the animal would
have access to when updating its weights; this approach is also consistent with previous studies. The
DNN architecture consists of two hidden layers with 32 units each, while the RNN uses a single
recurrent layer with 32 hidden units. All architectural components and training settings are treated as
hyperparameters and tuned via cross-validation by animal held-out. All neural network weights and
biases were treated as trainable parameters.

To estimate the initial decision weights w0, we treat them as trainable parameters but initialize
them using a psychometric curve fit to the first 100 trials. Specifically, we compute the empirical
probability of choosing y = 1 as a function of stimulus value, which defines a psychometric curve.
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Since we model the choice probability as σ(w⊤x), where σ is the logistic sigmoid, we apply
the inverse-sigmoid (logit) transformation to the empirical probabilities, yielding a linear target
b = logit(p(y = 1|x)). We then fit w0 via a least-squares regression to the equation w⊤x = b using
the stimulus values. We investigate the sensitivity of performance to incorrect w0 in Table 5. As
mentioned, to enable faster simulations and repeated robustness tests, we used shorter trial sequences.
Because these provide fewer early samples, we initialized with a known initial weight. That said,
applying our method to unknown initial weight still led to accurate recovery (Supp. Fig. 10). For
IBL data, however, we instead initialize w0 = 0⃗, following [19], since animals typically start at
chance-level performance; we also verified that training w0 did not significantly impact our results
on IBL data.

We tune hyperparameters, including the number of hidden units, number of layers, learning rate,
and number of training epochs. We used a batch size of 1 for simulated data. For real IBL data, we
trained on all animals jointly; using a batch size of 1 instead did not affect our conclusions. Cross-
validation ensures generalization and helps mitigate overfitting, in addition to the fact that neural
networks in feature learning regime inherently favor smooth function approximators via implicit
regularization (see Discussion). These implicit biases are themselves controlled by architectural
choices and training regimes (e.g., depth, width, and training duration) [84, 104], which justifies
the need for hyperparameter tuning. While we do not apply any explicit regularization in this work,
exploring the interplay between explicit and implicit regularization on learning rule identifiability
remains an interesting direction for future research. Validation-driven model selection is crucial to
avoid recovering an incorrect learning rule that merely overfits the training data — achieving high
training log-likelihood but poor generalization to held-out data.

Computational details. Our code is available https://github.com/Helena-Yuhan-Liu/
InferLearningANNGLM. We implemented our models in PyTorch v1.13.1 [105]. Simulations
were run on a machine equipped with a 12th Gen Intel(R) Core(TM) i7-12700H processor (14 cores,
20 threads) with a maximum clock speed of 2.30GHz. Training averages to around 2 hours per run.
We used the Adam optimizer with a default learning rate of 1e− 3, and binary cross-entropy loss,
which corresponds to the negative log-likelihood under a Bernoulli model. For statistical analysis and
significance testing, we used tools from the SciPy package [106].
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D Additional results

Fig. 7 repeats Fig. 2 for additional bias weight values. Fig. 8 shows the fitted bias weight updates
for the IBL dataset. Table 2 echoes the trends in Table 1 with future data heldout instead of animal-
level heldout. Additionally, we also demonstrate our main findings are robust across a variety of
conditions: (i) a learning rule without the decision outcome asymmetry (Supp. Fig. 6); (ii) recovery
of an in-between learning rule when mixing update functions across individuals (Supp. Fig. 11); (iii)
different initial stimulus weights (Supp. Fig. 9); (iv) longer trial lengths (Supp. Fig. 10). We also show
sensitivity to the initial weight estimate (Supp. Table 3) and degradation of recovery under added
noise and incorrect initial weight estimates (Supp. Table 4 and 5). Comparisons for parameterizing
the weights w versus the updates ∆w are provided in Fig. 14. Finally, we show the uncovered weight
trajectories in Fig. 15 and 16.

During initial rebuttal experiments, we observed slightly higher performance for the Transformer
variant compared to the RNN under limited training epochs. In the final analysis with full training
epochs, this trend no longer holds — performance across architectures is comparable (p = 7.44e−1).
We note that RNN-Transformer comparison is not central to our main contribution. We hypothesize
that the comparable performance may be due to the small sample size (12 animals, as in [19]). We
anticipate that the scalability advantages of Transformer and state-space models (e.g. Mamba) will
become increasingly important as we extend to larger datasets.
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Figure 6: Similar to Fig. 2 but repeated for Max. Likelihood as the ground truth in simulated
data. Again, we see that the reconstruction successfully captures key characteristics: the slowing of
learning at higher weights, the increase with stimulus amplitude, and the lack of clear separation
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Figure 9: Different initial stimulus weight w0. (A) In our main results for simulated data, we
initialized with stimulus weight w0 = −2 so that the animal starts with poor performance and learns
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randomly initialize w0 ∼ U [−2, 2] (so different animals begin with different initial weights) and
observe similar overall trends in the learned weight update function. Plotting convention follows that
of Fig. 2.
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Figure 10: Trends observed in Fig. 2 hold for longer trial sequences (T = 8000). Plotting conventions
are identical to those in Fig. 2 for simulated data.

Comparison Heldout LL p-val
REINFORCE vs. DNNGLM −2924.4 vs. −2905.8 1.41e−2
DNNGLM vs. RNNGLM −2905.8 vs. −2881.2 2.24e−3
REINFORCE vs. nonnegative base −2924.4 vs. −3272.4 1.08e−9
REINFORCE (history) vs. RNNGLM −2914.8 vs. −2881.2 5.61e−4
DNNGLM (history) vs. RNNGLM −2890.2 vs. −2881.2 3.52e−2
tinyRNN vs. RNNGLM −2893.8 vs. −2881.2 3.38e−2

Table 2: Future-data prediction log-likelihoods (higher is better) for different learning models, along
with p-values from paired t-tests matched across mice. These results mirror the trends observed in
Table 1.

Initial stimulus weight w0 RMSE of reconstructed ∆w
−2 0.0130
0 0.0244
2 0.0287

Table 3: Impact of initial stimulus weight w0 on reconstruction accuracy. We measure reconstruc-
tion RMSE of the inferred ∆w when varying the ground truth initial weight w0 in simulated data,
keeping all other factors fixed. Initializing with w0 = −2 yields the lowest error, while w0 = 2 leads
to saturation and poor identifiability. This pattern is consistent with Fisher Information analysis (Supp.
A): having more datapoints around weight values near w = 0 correspond to choice probabilities
near 0.5, which maximize Fisher Information and enhance identifiability of learning rules. Starting
from w0 = −2 ensures the learning trajectory passes through this region, enabling more accurate
recovery of the update function. This trend holds even in light of the fact that the value of ∆w would
be smaller for higher w in REINFORCE. This analysis suggests that having animals initially perform
poorly on the task, even below chance level, could potentially provide more information for learning
rule identification.
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Figure 11: Pooling with mixed weight update functions. (A) Following the plotting convention in
Fig. 2, we simulate a mixed population where half the animals learn with REINFORCE using a higher
learning rate (top row) and the other half with a lower learning rate (middle row). The fitted function
(bottom row) recovers an intermediate update rule that lies between the two subpopulations. (B) To
test whether the reward-history dependence observed in Fig. 5 is merely a result of faster-learning
animals in the pool contributing more recently rewarded trials, we train RNNGLM on a population
with mixed learning rates. Reward-conditioned weight update plots — where past trial rewarded
(black) and unrewarded (red) — do not consistently show the reward history dependence in this
setting. This suggests that the history dependence learned by RNNGLM in IBL data is not merely
due to faster learners receiving more recent rewards; this makes sense as in both this plot and Fig. 5,
the learning stage is controlled by fixing the stimulus weight w.
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Noise Level RMSE (Reconstructed ∆w vs. Ground Truth)

σ = 1
4α 0.0216

σ = 1
2α 0.0349

σ = 1α 0.0652
Table 4: Reconstruction accuracy degrades with increasing white Gaussian noise in simulated data.
We add zero-mean white Gaussian noise to the ground truth REINFORCE learning rule for simulated
data, with the noise standard deviation σ expressed as a fraction of the learning rate α. In other
words, the ground truth weight changes are now driven by two components: a learning component
and a noise component, as in [19], whereas our fitted model remains deterministic. We report RMSE
between the reconstructed and true ∆w. As expected, higher noise leads to worse recovery accuracy.

w0 correctness RMSE
Default 0.0130
+0.5 perturb 0.0270
+1.0 perturb 0.0453
+2.0 perturb 0.1519

Table 5: Effect of initial weight w0 correctness on reconstruction accuracy in simulated data. We test
the following scenarios: default, and w0 offset by +0.5, +1.0, +2.0 after the estimation. Deviations
from the true w0 can substantially degrade the accuracy of learning rule recovery, underscoring the
importance of accurately estimating w0.

Additional Input Dim Default Sample Size 3× Samples

1 1.00 0.59
3 1.09 0.62
10 1.35 0.7
30 1.58 1.20
100 X 1.67

Table 6: Recovery performance (relative RMSE) of the inferred learning rule across increasing
input dimensionality. Each row corresponds to an input dimensionality setting; additional inputs are
distractor streams added to the default task in Fig. 2. An “X” marks failure to capture the qualitative
features in Fig. 2; features remain captured at higher-D task settings, and reconstruction accuracy
improves with more data. Relative RMSE is normalized to the baseline (1 additional input, default
sample size).

Condition Relative RMSE

Decision model known 1.00
Model mismatch 1.62

Table 7: Performance degradation with decision model mismatch. We examine a multiplicative
decision structure as the ground-truth model. The first row corresponds to the case where the inference
framework knows the true multiplicative decision structure, logit(P (right)) = wL · c ·xL+wR · (1−
c) ·xR, for rightward cumulative cue and context variable c between 0 and 1, and leftward cumulative
cue between 0 and -1. The second row represents model mismatch, where the inference framework
still assumes a GLM model, logit(P (right)) = ŵL · xL + ŵR · xR + ŵc · c.
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Figure 12: Robustness of inferred learning rules across random seeds. We ran all inference
procedures with three different random seeds, each achieving similar test log-likelihoods, and
show the mean ± standard deviation across seeds as shaded regions. (A) follows the plotting
convention of Fig. 5A, showing stimulus- and choice-dependent weight updates. (B) follows the
plotting convention of Fig. 5B, showing reward-history–conditioned updates. While some variation
is present, the essential qualitative features—such as side bias, negative baseline, and reward-history
dependence—are consistently recovered across seeds.
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Figure 13: Longer history effects observed in the model. In Fig. 5B, we conditioned on up to four
consecutive rewarded or unrewarded trials, since more consecutive trials risk extrapolation. Here
we bypass this issue by still conditioning on four consecutive rewarded/unrewarded trials, but taken
from further back in the trial history, to test whether the model can capture dependencies beyond the
immediate past. (A) conditioned on trials 7 to 10 trials ago, (B) 17 to 20 trials ago, and (C) 27–30
trials ago. History effects are still detectable beyond just four trials, but decay with distance. Plotting
conventions are the same as in Fig. 5B.
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Figure 14: Parameterizing ∆w directly (as opposed to w) improves weight trajectory recovery.
(A) On simulated data, using a neural network to directly represent the weight update ∆w yields more
accurate recovery of the weight trajectory compared to directly parameterizing w using an RNN. The
RNN-based w trajectory is overly smooth, likely due to implicit regularization that biases the model
toward simpler solutions in the weight trajectory rather than the weight update function; in contrast,
regularizing the weight changes (via ∆w) provides a more appropriate inductive bias (see Discussion).
(B) As expected, the effect of implicit regularization is more pronounced in underconstrained settings
(e.g., low-data regimes), and becomes less critical as more data or constraints are introduced; since
with sufficient data, both models should approximate the learning trajectory well as per the universal
approximation results. (C) On IBL data, this distinction is also evident: when training on just one
example animal, parameterizing ∆w leads to more realistic weight trajectories than using an RNN to
represent w directly.
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Figure 15: Extended version of Fig. 4A, showing both stimulus and bias weight trajectories across
more animals. The decision weights recovered by DNNGLM closely resemble those inferred by
PsyTrack.
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Figure 16: Similar to Supp. Fig. 15, but showing the decision weights recovered by REINFORCE
(with the nonnegative baseline constraint), which was previously shown to yield worse log-likelihoods
(Tables 1 and 2). We see here that it leads to greater discrepancies from the weights inferred by
PsyTrack.
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Figure 17: The inferred update function for the bias weight, using RNNGLM, qualitatively matches
the fitting in Fig. 8.
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Figure 18: Similar to Fig. 15 but for RNNGLM, where recovered weights also closely resemble
those inferred by PsyTrack.
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