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Abstract

We present an image keypoint-based morphological signature that can be used to efficiently
assess the pair-wise whole-brain similarity for large MRI datasets. Similarity is assessed
via Jaccard-like measure of set overlap based on the proportion of keypoints shared by an
image pair, which may be evaluated in O(N log N) computational complexity given a set of
N images using nearest neighbor indexing. Image retrieval experiments combine four large
public neuroimage datasets including the Human Connectome Project (HCP) (Van Essen
et al., 2013), the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack Jr et al., 2008)
and the Open Access Series of Imaging Studies (OASIS) (Marcus et al., 2007), for a total
of N = 7536 T1-weighted MRIs of 3334 unique subjects. Our method identifies all pairs
of same-subjects images based on a simple threshold, and revealed a number of previously
unknown subject labeling errors
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1. Introduction

Increasingly large neuroimaging datasets and GPU-based machine learning algorithms offer
the opportunity to study links between neuroanatomy and covariates such as genetic prox-
imity. The primary challenge is the algorithmic complexity of this task, which is O(N2)
for a set N images and quickly becomes intractable for large datasets. A secondary chal-
lenge is data sparsity, there are typically very few data per subject (ex. one MRI), which
makes it challenging to investigate the variability of individuals or family member labels
via GPU-based machine learning algorithms. In this work, we present an efficient keypoint-
based neuromorphological signature to investigate individual identification from multiple
public well known large databases, as first described in (Chauvin et al., 2020). This ap-
proach, based on a 3D implementation of highly successful scale invariant feature transform
(SIFT) (Lowe, 2004) from computer vision, has several advantages including robustness to
global image transforms (avoiding the need of a computationally expensive image to image
registration), occlusions (due to the local nature of keypoints), and efficient in identify-
ing correspondances between generic intensity patterns in large image sets, due to highly
efficient K-nearest neighbor (KNN) keypoint indexing algorithms operating O(NlogN) com-
plexity. The workflow used in this work is summarized in Figure 1.

2. Material & Methods

Data used in this experiment consist in T1w MR images from 4 datasets: HCP Q4, ADNI
1, OASIS 1 and OASIS 3, for a total of 8152 images. To focus our analysis on cortical and
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I. Keypoint Detection
(3D SIFT-Rank)

II. Keypoint Matching 
(Nearest Neighbors)

III. Set Similarity Measurement 
(Jaccard Overlap)
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Figure 1: The workflow for computing the Jaccard overlap J(A,B) similarity score between
two images A and B. Step I. SIFT-Rank keypoints are extracted from skull-
stripped MRI data. Step II. Similar keypoints are identified between images
using a K-nearest neighbor search. Step III. The Jaccard overlap is computed
as ratio of the intersection vs. the union of keypoint sets

subcortical structures, images were skullstripped using FreeSurfer v6.0. 616 images failed
the pre-processing pipeline due to artefacts or low signal-to-noise ratio, resulting in a dataset
of 7536 images of 3334 unique subjects. Each image is represented by a neuromorphological
signature, a set of local keypoints f̄i, extracted and encoded using the 3D SIFT-Rank
algorithm (Toews and Wells, 2013) with an average of 2130 keypoints/image. A GPU
implementation of the algorithm in CUDA allows extraction in ¡ 2 seconds for typical 1mm
resolution brain MRIs. Once keypoints are extracted, nearest neighbor indexing requires
0.35 seconds per image on an Intel Xeon Silver 4110@2.10Ghz via KD-tree lookup (Muja
et al., 2009). Pairwise brain image similarity can be defined as the Jaccard overlap with
soft set equivalence between keypoints in different images, or bag-of-features, based on
the set intersection in equation (1). To account for the variable sampling density in the
keypoint descriptor space, an adaptative kernel bandwidth α has been used for each keypoint
descriptor f̄i, set to the squared distance to the closest nearest neighbor keypoint within
the entire training set.

|A ∩B| =
∑
f̄i∈A

max
f̄j∈NNk(f̄i)∩B

exp{−d2(f̄i, f̄j)/2α
2
i }. (1)

where d(f̄i, f̄j) the Euclidean distance between descriptors f̄i and f̄j , and NNk(f̄i) a set
defined as the Kth most similar descriptors to fi in the entire training set, identified with
a k-nearest neighbor approach to reduce algorithmic complexity to O(NlogN). To study
the correlation between neuromorphological signatures and genetic proximity, each of the
N(N − 1)/2 = 28, 391, 880 pairs of signatures have been associated with a label according
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to their possible relationship: same subject (SM), monozygotic twins (MZ), dizygotic twins
(DZ), full-sibling (FS) and unrelated (UR), with labels of pairs across databases naively
being assumed to be unrelated.

3. Results

As seen in Figure 2, the distribution of Jaccard-like distances, i.e. dT (A,B) = −log J(A,B),
is highly unique for images of the same subjects (SM), with no overlap with other distri-
butions. This particularity allowed us to classify images of the same subjects using their
neuromorphological signatures with a simple threshold, revealing at the same time a num-
ber of outliers (see Figure 2). A thorough visual examination confirmed these outliers
were mislabeled, and could be categorized into two groups: within database outliers and
across databases outliers, containing respectively mislabeled images from the same database,
and mislabeled images across databases, due to the naive assumption that subjects across
databases were not related. Although it was expected to find shared subjects between OA-
SIS 1 and 3 datasets, we also identified, more surprisingly, shared subjects between ADNI
and OASIS databases. These results show that our neurmorphological signature succeeds
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Figure 2: Distributions of the pairwise Jaccard-like distances dT (A,B)conditional on rela-
tionship labels. Dots indicate data labeling inconsistencies automatically flagged
by unexpected Jaccard-like distance.

in capturing the individual variability in brain morphology on MR images, even with few
samples per label. Its computational efficiency also allow our method to be used to study
the impact of multiple factors, such as neurodegenerative diseases, aging, etc, on brain mor-
phology across large populations, but also proved to be a powerful tool for curating large
neuroimaging datasets.
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