
FiPPiE: A Computationally Efficient Differentiable method for Estimating
Fundamental Frequency From Spectrograms

Lev Finkelstein, Chun-an Chan, Vincent Wan, Heiga Zen, Rob Clark

Google
{finklev, cachan, vwan, rajclarck}@google.com

Abstract

In this paper we present FiPPiE, a Filter-Inferred Pitch Poste-
riorgram Estimator – a method of estimating fundamental fre-
quency from spectrograms, either linear or mel, by applying a
special kind of filter in the spectral domain. Unlike other works
in this field, we developed a procedure for training an optimized
filter (or kernel) for this type of estimation. FiPPiE, based on
this optimized filter, demonstrated itself as a reliable fundamen-
tal frequency estimator that is computationally efficient, differ-
entiable, and easily implementable. We demonstrate the per-
formance of the method both by the analysis of its behavior on
human recordings, and by the stability analysis with help of an
automated system.
Index Terms: text-to-speech, pitch tracking, frequency estima-
tion, signal processing

1. Introduction
Modeling fundamental frequency (F0) plays an important role
in the text-to-speech (TTS) field, since it reflects the melodic
pitch pattern at which speech is spoken. In some TTS models
we would like to have F0 a part of the loss function. However, if
such a system is not directly designed to predict prosodic char-
acteristics including F0, then such F0 estimators should be both
differentiable and fast enough for training purposes.

We introduce FiPPiE, a Filter-inferred Pitch Posteriorgram
Estimator – a method of estimating F0 from spectrograms, ei-
ther linear or mel, by applying a special kind of filter in the
spectral domain. While other works on pitch extraction in the
spectral domain like PEFAC [1] and SWIPE [2] use analytically
derived filters, we developed a procedure to train an optimized
filter based on a set of potentially imperfect frequency trackers.
The resulting filter has a form that is different from the analyti-
cal models, and we have demonstrated that the optimized filter
can be approximated as a combination of Gaussian peaks of
different amplitudes. Note that we describe F0 estimation only;
prediction of the voiced-unvoiced decision is beyond the scope
of this paper.

In this paper we describe the methodology for training
the optimized filter, alternatives for modeling the best filter
shape, and finally we present FiPPiE that is developed using
this methodology. FiPPiE is computationally efficient, differ-
entiable, can be easily implemented, and also importantly can
be easily debugged. Also, similar to extractors using spectral
methods, it may be applied when only spectral information is
accessible, i.e., where no time-domain waveform is available.

FiPPiE’s performance is evaluated using two different types
of experimentation. First, we perform a series of evaluations on
a proprietary corpus of human recordings. In addition we use

the TUSK automated framework [3] to show FiPPiE’s robust-
ness to various types of speech and noise.

2. Related Work
There are multiple approaches available for estimation of F0.
Some of them are based on the analysis in the audio do-
main. Examples include YIN [4], its probabilistic modification
PYIN [5], RAPT [6] and REAPER [7] that are widely used in
the TTS field. However, there is no differentiable version of
those, which makes them inapplicable for being used during the
training process.

Some methods are using deep learning for detecting the
fundamental frequency from audio signals, e.g., CREPE [8],
which is a convolution neural network used for F0 estimation.
However, precise models contain a large number of parameters,
which makes them less computationally efficient.

Our approach belongs to the methods of estimating the fun-
damental frequency in the power-spectrum domain. One of
the advantages of these methods is not requiring audio signal.
For example, Tacotron-based systems [9] produce an output in
power-spectrum domains, which makes it impossible to use an
audio-based F0 estimator as a loss function. There are few
approaches that are simultaneously efficient, differentiable and
applicable on spectral-only input. Some other high-precision
methods like, for example, Harvest [10], do not fit these re-
quirements.

Our work is very close to PEFAC [1] that, in addition to
other signal processing techniques, uses a filter with a spe-
cially chosen impulse response. Another close comparison is
SWIPE [2,11], which uses a similar approach based on a modi-
fied cosine mask. There are also methods that explore harmon-
ics behavior, e.g., subharmonic summation [12] that uses an ex-
ponentially decreasing factor for harmonics weights, or summa-
tion of residual harmonics (SRH) [13] that is both lightweight
and provides a voicing decision.

Similarly to PEFAC and SWIPE, FiPPiE seeks for the F0

that optimizes a response to some filter applied to the spectro-
gram. Unlike these works, however, we do not assume any hy-
pothesis on the filter’s form, except that it should reflect the har-
monics nature of the speech signal. Our setup contains two very
important features: (1) we use weights that play the role of pri-
ors in the analysis, (2) we use an optimized filter and optimized
weights. We also show that the optimized kernel has a different
form than the theoretical kernels used in these methods.

3. Methodology
The fundamental frequency in speech can be observed in the
periodic pattern in the frequency analysis along the frequency



axis. We formulate the F0 extraction task as an optimization
of the response to a convolution-like operator with the kernel
reflecting the harmonic structure of the signal. We use minimal
assumptions on how this kernel (or filter) should look. We start
with the most general formulation, and show how the filter may
be trained using real data.

3.1. Formal setup

Let S be a linear spectrogram, St(i) be the signal value on the
frame level defined on the set of the spectrogram bins, hz(i)
be the value corresponding to the i-th bin in hertz, and t be the
frame number in the time domain. Let h1, h2, h3, . . . , hL be
the fundamental frequency (F0) hypotheses in hertz – for ex-
ample, a linearly spaced set of hypotheses. We adopt a poste-
rior approach, meaning that we are looking for a set of masks
gh : R ⇒ R, such that the dot product St(i) · gh(hz(i))
reaches its maximum for h corresponding to the real F0 value.
Intuitively, extremum points of gh providing the best response
should fit to the extremum points of St.

To model a harmonics signal, we assume the existence of
a unit mask, or a kernel, gu : R ⇒ R, such that every gh(x)
shares the same form of gu(x) with stretched frequency axis1,
i.e. gh(x) = gu(x/h). We assume nothing on the nature of
gu(x), but since higher frequencies are often noisier, we set
gu(x) to 0 starting at a certain point. As a rule of thumb, if we’re
interested in M first harmonics, gu(x) should be 0 starting x =
M + 0.5.

Response Z(h) per hypothesis h can be represented as

Z(h) =
∑
i

St(i)gu(hz(i)/h), (1)

where the summation is performed over the spectrogram bins.
For the mel spectrogram case the problem formulation remains
exactly the same, up to a different bin-to-frequency transforma-
tion of the spectrogram bins in Equation (1):

Zmel(h) =
∑
i

St(i)gu(hzmel(i)/h), (2)

where St(i) is the mel spectrogram value at bin i, and hzmel(i)
is the value of the i-th mel bin in hertz.

Rather than looking for F0 by directly maximizing the re-
sponse, we take into account the fact that some of the hypothe-
ses are more meaningful than others. For example, if the hy-
potheses of 50Hz and 100Hz have similar responses, we should
prefer the one of 50Hz, since 100Hz is probably just its higher
harmonics. In addition, the F0 distribution has some priors in
the real world, that we would also like to take into account. To
reflect this preference, we introduce hypotheses weights w(h),
and our optimization criterion becomes2

F0 = argmax
h

[w(h)Z(h)] (3)

Instead of deriving kernel gu(x) and weights w(h) analyti-
cally, we train them on real data as shown in the following sec-
tions.

1Alternatively, we may switch to the log domain and use a convo-
lution representation like in PEFAC, but the current formulation was a
better fit for our model and usage mode.

2argmax function is not differentiable, so for differentiability, we
use the standard argmax approximation using the softmax function.

3.2. Spectrogram setup and preprocessing

In our setup we targeted mel spectrograms with 128 mel bins
with a 50ms spectrogram window. In addition, we (1) removed
low-order DCT components (in our case, the 3 lowest compo-
nents) to filter the corresponding noise, and (2) considered only
the first 40 mel bins, since higher frequencies were noisy and
had no significant impact on determining F0.

3.3. Training the optimized kernel and weights

We used two proprietary read speech corpora in US English,
C1 and C2, by professional voice actors3. C1 contained English
speech, read in a natural style, by 58 speakers with different
accents (mostly North American accent), while C2 contained
the utterances of 40 speakers in North American accent only.

We randomly collected 1000 training and 1000 test utter-
ances from C1. Only voiced frames were collected, resulting
in approximately 180K frames for training and a similar num-
ber for testing. Since we didn’t have groundtruth data for this
type of training, we used a combination of a modified PYIN [5]
and REAPER [7] trackers to set F0 values. In our experi-
ments we observed that PYIN was more reliable in low pitch
voices, but was underperforming for high pitch voices, so we
used PYIN’s value for 200Hz or below, and REAPER’s value
for above 200Hz. REAPER was used for the voicing decision.
In addition, we collected 1000 utterances from C2, to be used
for validation on unseen speakers.

The training was performed as a regression task, while we
validated various filter and weight setups. The fundamental fre-
quency was defined by Equation 3 using the mel-based response
described by Equation 2. We optimized the mean absolute er-
ror (MAE) loss, but other types of loss functions demonstrated
similar behavior. The hypotheses hi were linearly spaced from
50Hz to 600Hz with the step of 5Hz, overall L = 111 hypothe-
ses4. We considered a kernel gu(x) to be a vector of values
from 0 to 5.5 with the step 0.01 (up to 5 harmonics, N = 551
of non-zero elements; linear interpolation used for the rest of
the values). The weights w(h) were a vector of L elements,
one per hypothesis hi.

We considered different forms of constraints on the filter
and the weights. We started with a free-form kernel optimiza-
tion with no constraints at all. This type of a task requires
N = 551 kernel and L = 111 weight parameters mentioned
above. The results, shown in Figure 1, demonstrate a harmonic
trend in the optimized kernel. Decreasing the weights is also in-
tuitive – lower F0 hypotheses are typically preferred over their
harmonics. They also reflect the priors of the general F0 distri-
bution.

To explicitly emphasize the harmonic nature of the opti-
mized kernel, we introduced a piecewise-monotonic constraint
where the kernel function is monotonically non-decreasing in
[i − 0.5, i], and monotonically non-increasing in [i, i + 0.5].
The number of the parameters is the same, and the results are
shown in Figure 2. It is possible to see that there is no negative
component in this type of a kernel, and that was very consistent
in all the similar experiments.

We also tested a special piecewise-cosine kernel that be-
haved as cosine functions a2i cos(2πx)+b2i in each half-period
[i − 0.5, i] and as a2i+1 cos(2πx) + b2i+1 in [i, i + 0.5], with

3The corpora meet the Google AI Principles https://ai.
google/principles/.

4A further increase of the resolution to 1Hz did not have any signif-
icant impact on the performance.



0 1 2 3 4 5 6 7 8
x

2

1

0

1

2

g u
(x

)

100 200 300 400 500 600
Hypothesis (Hz)

0

1

2

3

4

5

W
ei

gh
t

Figure 1: Optimized kernel (left) and optimized weights (right)
for the free-form optimization

0 1 2 3 4 5 6 7 8
x

0

1

2

3

4

g u
(x

)

100 200 300 400 500 600
Hypothesis (Hz)

0

1

2

3

4

W
ei

gh
t

Figure 2: Optimized kernel (left) and optimized weights (right)
for the piecewise-monotonic constraints

amplitudes ak and bias bk differing between harmonics. We
imposed constraints on these parameters to ensure continuity
between the segments. The number of kernel parameters for 5
harmonics is 11 (including half-harmonics at 0), and the results
are shown in Figure 3.

0 1 2 3 4 5 6 7 8
x

0.3

0.2

0.1

0.0

0.1

0.2

g u
(x

)

100 200 300 400 500 600
Hypothesis (Hz)

0

2

4

6

8

10

12

W
ei

gh
t

Figure 3: Optimized kernel (left) and optimized weights (right)
for the piecewise-cosine constraints

Finally, driven by the results of the piecewise-monotonic
optimization, we used a kernel that was a combination of Gaus-
sian masks with the same deviation and different amplitudes,
centered at i, and the results are shown in Figure 4. Only 7 pa-
rameters (one for deviation, and 6 for amplitudes) are required
in this case.

The results of the loss of each one of the methods5 are
shown in Table 1. While the free-form optimization provided
the best results, more general models prevent overfitting. We
can see that the Gaussian mask version was very close to the
piecewise-monotonic version, while the piecewise-cosine’s per-
formance was worse. This was an evidence to a (maybe non-
intuitive) observation that the optimized kernel does not gain
from the negative component of the filter, meaning that for hu-
man speech this component is probably less important.

3.4. Practical model for FiPPiE

The number of speakers in the training dataset was limited, so to
prevent overtuning, we decided to reduce the number of param-
eters as much as possible and not to use the free-form kernel. On

5The numbers are taken from a specific run.

0 1 2 3 4 5 6 7 8
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g u
(x

)

100 200 300 400 500 600
Hypothesis (Hz)

0

1

2

3

4

5

W
ei

gh
t

Figure 4: Optimized kernel (left) and optimized weights (right)
for the Gaussian masks constraints

Table 1: MAE loss for different types of constraints

Train set Test set Validation set
Free-form 3.38 3.44 3.93
Piecewise-monotonic 3.69 3.68 4.24
Piecewise-cosine 4.11 4.07 4.69
Gaussian mask 3.85 3.77 4.35

the other hand, the second-best model (piecewise-monotonic)
was only slightly better than the Gaussian mask kernel with a
smaller number of parameters, so we decided to adopt the latter
as the kernel model. However, it still used L = 111 parameters
for the weight representation, which was too large to rule out a
possibility of potential overtuning, especially given the lack of
the representation for some pitch values.

In order to stay on the safe side, we decided to parameter-
ize the weight curve as well. The weight shape resembled the
lognormal distribution (see Figure 4), which requires only 4 pa-
rameters, that we trained together with the kernel. Such a repa-
rameterization led to some performance degradation, but the
very small amount of parameters (7 parameters for kernel, and
4 parameters for weights) justified that change. Further work of
finding a better fit for the hypothesis weights is in process.

4. Experimentation
To demonstrate the performance of FiPPiE, we conducted two
sets of experiments. The first set performed a qualitative anal-
ysis of F0 tracking on the proprietary corpora C1 and C2. The
second set used the TUSK framework [3] to automatically com-
pare the characteristics of F0 trackers.

FiPPiE was applied to mel spectrograms. While the train-
ing was done on spectrogram windows of 50ms, the best per-
formance during the experimentation was obtained by using the
window size of 100ms, due to a higher robustness to low-pitch
voices. There was no significant impact on retraining the kernel
on 100ms spectrograms. See more in Section 5.

4.1. Comparative performance

In this set of experiments we compared the performance of dif-
ferent algorithms on C1 and C2. These corpora contain a large
variety of voices collected under different conditions, so this
type of comparison is very informative for evaluating a sys-
tem that is (presumably) optimized for real data. Note that the
speakers of C1 were used in the training, while the speakers
from C2 were not.

We randomly selected 1000 utterances from each one of the
corpora, and compared the performance of PYIN, REAPER,
PEFAC, SWIPE, SRH, and FiPPiE. Since FiPPiE doesn’t have
its own voice decision algorithm, we decided to use REAPER’s
voicing decision verdict across all the algorithms since in our



experiments it was the most stable. We considered Gross Pitch
Error (GPE) to be a mismatch measurement. GPE is the per-
centage of voiced frames with the relative mismatch is 20%
or more, and it is common in pitch estimation (see, for exam-
ple, [14], [15]).

Since we don’t have a groundtruth F0, we compared the
estimated F0 versus a consensus (median) of all 6 algorithms.
Besides, since the median is not the real groundtruth, we pro-
vide two comparisons against PYIN and SWIPE respectively
to better understand the behavior of different algorithms. The
results are shown in Table 2. It is possible to see that the first

Table 2: Gross Pitch Error for different pitch trackers on differ-
ent corpora vs. different reference algorithms.

Corpus C1 C2 C1+ C2 C1+ C2 C1+ C2

Reference median median median PYIN SWIPE

FiPPiE 4.5% 1.4% 3.0% 2.1% 5.4%
PYIN 5.0% 1.8% 3.4% - 5.7%
REAPER 6.0% 4.0% 5.0% 3.3% 6.7%
SWIPE 5.8% 1.6% 3.7% 5.7% -
PEFAC 7.8% 4.0% 5.9% 8.1% 4.9%
SRH 7.9% 4.0% 5.9% 8.2% 5.0%

corpus has a high level of mismatches. The reason is that this
corpus is very diverse, the number of utterances is not balanced
per speaker, plus different algorithms have different strengths
and weaknesses. As the result, the median may not always be a
reliable baseline. To make the results more focused, we picked
5 US English speakers with different characteristics from C1, 8
speakers from C2, randomly sampled 100 utterances for each,
and repeated the experiment. The results are shown in Table 3

Table 3: Gross Pitch Error for different pitch trackers on differ-
ent corpora vs. different reference algorithms for the limited set
of speakers.

Corpus C1 C2 C1+ C2 C1+ C2 C1+ C2

Reference median median median PYIN SWIPE

FiPPiE 1.4% 1.1% 1.2% 2.0% 1.76%
PYIN 1.7% 1.3% 1.5% - 2.02%
REAPER 3.7% 3.2% 3.4% 3.1% 3.45%
SWIPE 1.6% 1.2% 1.4% 2.0% -
PEFAC 10.3% 2.8% 6.3% 7.1% 6.74%
SRH 10.6% 2.9% 6.5% 7.3% 6.91%

From the two experiments we can observe:
• The performance of FiPPiE vs. the median on these datasets

is slightly better than the performance of PYIN and of
SWIPE, while REAPER, SRH and PEFAC have a higher er-
ror.

• While the speakers from C1 have been seen during training,
FiPPiE’s results on the two corpora are close enough for the
second test (note that all the algorithms demonstrated better
performance on C2).

• Despite a similar error rate vs. the median, the estimations
provided by FiPPiE, PYIN, and SWIPE are suggesting dis-
agreement between them.

• PEFAC and SRH had a high GPE rate on C1, especially in the
second experiment. In-depth analysis showed that the reason
was a vulnerability to a certain kind of low-pitch speech.

Overall, the experiments show that performance of FiPPiE
on this dataset is at least as good as the performance of PYIN
and SWIPE, and is better than that of REAPER, PEFAC, and
SRH. Note, however, that this comparison is imperfect since
we lack the groundtruth, and since we compare the performance
only on the voiced frames marked by REAPER.

4.2. Automated performance analysis

In this section, we used the TUSK framework [3] for the analy-
sis of FiPPiE behavior and its comparison with other F0 estima-
tors. TUSK was designed to analyze the behavior of F0 trackers
for different types of the target speech, thus removing the de-
pendency on the differences in the datasets used for the compar-
ison. TUSK considered six major parameters—temporal fluc-
tuations, varying amplitudes and phases of harmonic compo-
nents, white and pink noise, and reverberation—and analyzed
the tracker behavior by modifying these parameters in some
artificial signal. Due to the lack of varied groundtruth in F0

tracking, using an automated framework permits comparison
between different systems in a more objective way.

In this experiment, we compared FiPPiE with two other
spectrogram-based methods – PEFAC and SWIPE. The original
TUSK analysis is based on the “basic” fundamental frequency
of 440Hz that is not typical for speech, so instead, we performed
the analysis for the basic frequencies of 100Hz, 200Hz, and
300Hz. Due to the lack of space, we show graphs for only some
of the findings.

Figure 5 shows the reconstruction abilities of the three
methods for different frequencies on the clean signal6. We can

200 400 600 800
F0 (Hz)

100

101

102

103

RM
SE

FiPPiE
SWIPE
PEFAC

Figure 5: General performance estimation

see that SWIPE’s performance on a clean signal is the best ex-
cept for very low frequencies, while FiPPiE outperforms PE-
FAC.

Figure 6 shows the influence of temporal fluctuation in the
F0 contour (vibrato intensity) for the basic frequency of 200Hz.
While SWIPE slightly outperforms FiPPiE at the beginning, its
performance degrades rapidly. FiPPiE’s behavior is better than
PEFAC’s as well. This trend is even stronger for the basic fre-
quency of 100Hz, but for the high-frequency signal of 300Hz,
FiPPiE’s performance is also degraded by this parameter. This
vulnerability of FiPPiE for higher frequencies is observed in
other experiments as well, so it is possible that this is an inher-
ent feature. We discuss it more in Section 5.

In Figure 7 we can see the impact of amplitude and phase.
FiPPiE becomes less stable when the amplitude and phase start
to increase, which is consistent with the idea of the kernel op-

6In the TUSK framework, the clean signal contour is built using the
basic frequency with some additional fluctuation based on the model
Klatt [16].



0 5 10 15 20 25
Vibrato intensity

100

101

102

RM
SE

FiPPiE
SWIPE
PEFAC

Figure 6: Influence of vibrato intensity for F0 = 200Hz

timization – when the harmonics become ”unnatural”, FiPPiE
fails. As before, its relative behavior improves for the low-
frequency signal of 100Hz, but worsens for the high-frequency
signal of 300Hz.

0 10 20 30 40 50 60
Amplitude randomization (dB)

100

101

102

RM
SE

FiPPiE
SWIPE
PEFAC

0 1 2 3 4 5 6
Phase randomization (rad)

100

101

102

RM
SE

FiPPiE
SWIPE
PEFAC

Figure 7: Influence of the amplitude randomization (top) and of
the phase randomization (bottom) for F0 = 200Hz.

Figure 8 show the robustness of the systems to white and
pink noise. PEFAC is noise-robust, while SWIPE requires a
pretty clean signal, especially for the low-frequency base signal.
FiPPiE demonstrates good robustness for 100Hz and 200Hz ba-
sic frequency, but its behavior becomes closer to SWIPE’s when
this basic frequency is increased.

Finally, the vulnerability to reverberation is shown in Fig-
ure 9. In this experiment, FiPPiE’s performance is worse than
for the two other algorithms. For the lower basic frequency, this
weakness disappears.

Overall, we can see that FiPPiE demonstrated a solid per-
formance for the frequencies typical for the average human
speaker. It outperformed PEFAC in the general evaluation,
vibrato intensity experiment, and the low-level amplitude and
phase randomization, and even had a close robustness to white
and pink noise (PEFAC is considered very robust). If compared
to SWIPE, FiPPiE was not as precise for the high-pitch signal,
but behaved much better in the presence of noise, and was more
stable in its response to the vibrato intensity parameter. FiP-

0 10 20 30 40 50 60
White noise SNR (dB)

100

101

102

RM
SE

100Hz: FiPPiE
100Hz: SWIPE
100Hz: PEFAC
200Hz: FiPPiE
200Hz: SWIPE
200Hz: PEFAC

0 10 20 30 40 50 60
Pink noise SNR (dB)

100

101

102

RM
SE

100Hz: FiPPiE
100Hz: SWIPE
100Hz: PEFAC
200Hz: FiPPiE
200Hz: SWIPE
200Hz: PEFAC

Figure 8: Impact of the white noise (top) and of the pink noise
(bottom) for F0 = 100Hz and F0 = 200Hz.

0 200 400 600 800 1000
Reverberation parameter (ms)

100

101

102

RM
SE

FiPPiE
SWIPE
PEFAC

Figure 9: Impact of the reverberation for F0 = 200Hz

PiE’s major weakness is apparently robustness to reverberation
and some vulnerability when the basic frequency is high.

One of the important advantages of FiPPiE is its ability to
work reliably in low-frequency voices. It is also interesting to
mention that FiPPiE’s precision is not affected by the fact that
it operates on the mel spectrogram level, that already assumes
some precision loss.

5. Discussion
In this paper we presented a computationally efficient differen-
tiable method for estimating fundamental frequency from spec-
trograms. During the development, we observed a few very
challenging questions that we present in this section.
• Linear vs. mel spectrograms: Our method is oriented to-

wards mel spectrograms. The motivation was its usage in
Tacotron-like systems [9] that use mel spectrograms as an
intermediate representation. The question rises, whether we
could get more if we used linear spectrograms instead. When
we tried to tune the method to process linear spectrograms,
the topological shape of the optimal kernel and the weights
remained almost the same. We were able to apply the same
kernel and weights to the linear spectrograms without actual
performance loss, presumably because of the similarity of



mel and linear spectrograms in the range of interest.
• Low-pitch voices: Low-pitch voices often have a somewhat

unclear spectrogram structure in lower bins, which makes it
difficult to get a good resolution. However, choosing a long
window length (100ms in our case) helped to overcome this
problem. A similar observation was done in other works as
well – PEFAC paper [1] used a 90ms window, and SRH pa-
per [13] used a 100ms window. It is interesting though that
there was almost no difference between the kernels trained
for 50ms and 100ms windows, so we didn’t need to retrain
the kernel. There are, however, specific low-pitch speakers
that may cause FiPPiE to have isolated glitches.

• High-pitch voices: High-pitch voices of about 300Hz and
higher are less stable for FiPPiE. We believe this may be
caused by the lack of the training data in these voice ranges.
This is also supported by the alternating weight function for
optimized weights, see Figures 1, 2, 4 in the area near 300Hz.

• Voices without a clear harmonic structure. Some of the
voices, like creaky voices (see different variations of them
in [17]), often lack a clear harmonic structure and are there-
fore represent an inherent challenge for this family of meth-
ods. FiPPiE was able to handle many of such examples suc-
cessfully, but glitches happened occasionally.

• Other languages: We did a limited evaluation with pitch
tracking on other languages, however, we were not able to es-
tablish a stable reference since the experimentation suffered
from two major issues: first, the voiced-unvoiced decision
in these corpora turned out to be less reliable than that for
US English, thus leading to incorporating unvoiced segments
into the statistics, and second, there was too great a mismatch
between the pitch trackers, so the median could not be used
as a stable reference. Evaluating FiPPiE performance in other
languages is ongoing research.

• Voiced-unvoiced decision: The decision on voiced vs. un-
voiced segments is very important for the pitch tracker. How-
ever, the current research is devoted to a different aspect
of analysis, namely to finding F0 in voiced frames, so the
voiced-unvoiced decision is beyond the scope of this paper.

6. Conclusions
In this paper we presented FiPPiE, a Filter-inferred Pitch Poste-
riorgram Estimator, that is capable of estimating the fundamen-
tal frequency in spectrograms, either linear or mel. FiPPiE is
based on training the optimized filter and the optimized weights;
we describe the training procedure and show that the optimized
kernel, trained on real speech samples, is well approximated by
a combination of Gaussian masks, which differs from the exist-
ing models that use filters that exploit the negative component
as well (e.g., cosine-like filters).

FiPPiE demonstrated strong performance versus other F0

trackers, despite that in our experiments it was applied to mel
spectrograms. Experiments on the real database and experi-
ments using an automated system showed FiPPiE’s ability to
be a reliable F0 estimator in a variety of voices and conditions.

FiPPiE is computationally efficient, differentiable, and eas-
ily implemented, which makes it a good candidate to be a part
of a loss function. It even can be used as a light-weight F0

tracker, instead of potentially more precise, but either non-
differentiable, or too computationally heavy methods.



7. References
[1] S. Gonzalez and M. Brookes, “PEFAC - a pitch estimation algo-

rithm robust to high levels of noise,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 22, no. 2, pp. 518–
530, 2014.

[2] A. Camacho, “SWIPE: A sawtooth waveform inspired pitch es-
timator for speech and music,” Ph.D. dissertation, University of
Florida, Gainesville, FL, USA, 2007.

[3] M. Morise and H. Kawahara, “TUSK: A framework for overview-
ing the performance of F0 estimators.” in INTERSPEECH, 2016,
pp. 1790–1794.

[4] A. Cheveigné and H. Kawahara, “YIN, a fundamental frequency
estimator for speech and music,” The Journal of the Acoustical
Society of America, vol. 111, pp. 1917–30, 05 2002.

[5] M. Mauch and S. Dixon, “PYIN: A fundamental frequency esti-
mator using probabilistic threshold distributions,” in 2014 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014, pp. 659–663.

[6] D. Talkin, “A robust algorithm for pitch tracking (RAPT),” Speech
coding and synthesis, vol. 495, p. 518, 1995.

[7] ——, “REAPER: Robust Epoch And Pitch EstimatoR,” 2015.
[Online]. Available: https://github.com/google/REAPER

[8] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “Crepe: A convo-
lutional representation for pitch estimation,” in 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 161–165.

[9] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss,
N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le,
Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous, “Tacotron:
Towards End-to-End Speech Synthesis,” in Proc. Interspeech
2017, 2017, pp. 4006–4010.

[10] M. Morise et al., “Harvest: A high-performance fundamental fre-
quency estimator from speech signals.” in INTERSPEECH, 2017,
pp. 2321–2325.

[11] A. Camacho and J. G. Harris, “A sawtooth waveform inspired
pitch estimator for speech and music,” The Journal of the Acous-
tical Society of America, vol. 124, no. 3, pp. 1638–1652, 2008.

[12] D. J. Hermes, “Measurement of pitch by subharmonic summa-
tion,” The Journal of the Acoustical Society of America, vol. 83,
no. 1, pp. 257–264, 1988.

[13] T. Drugman and A. Alwan, “Joint robust voicing detection and
pitch estimation based on residual harmonics,” in Proc. Inter-
speech 2011, 2011, pp. 1973–1976.

[14] P. C. Bagshaw, S. M. Hiller, and M. A. Jack, “Enhanced pitch
tracking and the processing of F0 contours for computer aided
intonation teaching,” 3rd European Conference on Speech Com-
munication and Technology (Eurospeech 1993), 1993.

[15] W. Chu and A. Alwan, “Reducing F0 frame error of F0 track-
ing algorithms under noisy conditions with an unvoiced/voiced
classification frontend,” in 2009 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE, 2009, pp.
3969–3972.

[16] D. H. Klatt and L. C. Klatt, “Analysis, synthesis, and perception
of voice quality variations among female and male talkers,” the
Journal of the Acoustical Society of America, vol. 87, no. 2, pp.
820–857, 1990.

[17] P. A. Keating, M. Garellek, and J. Kreiman, “Acoustic properties
of different kinds of creaky voice.” in 18th International Congress
of Phonetic Sciences, vol. 2015, no. 1, 2015, pp. 2–7.


	 Introduction
	 Related Work
	 Methodology
	 Formal setup
	 Spectrogram setup and preprocessing
	 Training the optimized kernel and weights
	 Practical model for FiPPiE

	 Experimentation
	 Comparative performance
	 Automated performance analysis

	 Discussion
	 Conclusions
	 References

