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ABSTRACT

Self-attention has been widely used in convolutional neural networks for com-
puter vision tasks. Previous approaches usually use fixed channels to compute
feature affinity for self-attention, which limits the capability of selecting the most
informative channels for computing such feature affinity and affects the perfor-
mance of downstream tasks. In this paper, we propose a novel attention module
termed Differentiable Channel Selection (DCS). In contrast with the conventional
self-attention, DCS searches for input-dependent locations and key dimensions of
channels in a continuous space by a novel differentiable searching method. Our
DCS module is compatible with either fixed neural network backbone or learnable
backbone with Differentiable Neural Architecture Search (DNAS), leading to DCS
with Fixed Backbone (DCS-FB) and DCS-DNAS respectively. We apply DCS-FB
and DCS-DNAS to three computer vision tasks, person Re-IDentification methods
(Re-ID), object detection, and image classification, with competitive results on
standard benchmarks and compact architecture compared to competing methods,
revealing the advantage of DCS.

1 INTRODUCTION

Self-attention, with its success in natural language processing, has recently drawn increasing interest
beyond the NLP literature. Efforts have been made to introduce self-attention to deep convolutional
neural networks (CNNs) for computer vision tasks with compelling results. The success of self-
attention in computer vision is arguably attributed to its capability of capturing fine-grained cues
and important parts of objects in images, which is particularly helpful for downstream tasks such as
person Re-IDentification methods (Re-ID) and image classification. For example, non-local neural
network (Wang et al., 2018) employs self-attention to aggregate input features to attention enhanced
features by weighted summation of the input features. The weights in the weighted summation are
the pairwise feature affinity, which is computed as the dot product between input features. Lacking
an effective way of selecting channels, previous works (Wang et al., 2018; Li et al., 2020) use fixed
channels to computer such feature affinity, and such fixed channels are selected by handcrafted
pooling and sampling. As a result, the selected channels may not be the most informative ones for
the downstream tasks.

We argue that more informative channels should be selected in the attention modules to calculate
more meaningful affinities among the features. In this paper, we propose a novel Differentiable
Channel Selection (DCS) module which searches for the most informative channels in a differentiable
manner. Figure 2 illustrates the difference between the vanilla self-attention and the proposed DCS
module. The main contributions of this paper are as follows.

First, we propose the Differentiable Channel Selection (DCS) module. In contrast with conventional
self-attention where fixed channels are used to compute pairwise similarity between input features,
DCS selects the most informative channels to compute task-oriented feature affifinity, which out-
performs the vanilla self-attention modules by extensive empirical study. DCS employs a novel
differentiable searching algorithm which learns the position and key dimension of the most infor-
mative channels in the input features. In contrast with Gumbel-softmax based searching limited to
a fixed number of options, DCS searches for the locations and key dimensions of the channels for
feaure affinity computation in a continuous space. While locations and key dimensions are integers
with respect to which the loss function of the neural network is not differentiable, we extend these
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two parameters to real value domain by a carefully designed bilinear interpolation which enables
differentiable optimization. The selected channels lie in multiple windows, and the locations and key
dimensions are the locations and size of these windows.

Second, DCS modules are incorporated into either Fixed neural network Backbone or learnable
backbone with Differentiable Neural Architecture Search (DNAS) algorithm, leading to DCS-FB and
DCS-DNAS respectively. DCS-DNAS is a new neural architecture search method jointly learning the
network backbone and the architecture of DCS, that is, the location and key dimension of channels.
We apply DCS to two computer vision tasks, person Re-ID and image classification with extensive
empirical study. DCS-FB and DCS-DNAS not only outperform current state-of-the-art, but also
render much more compact architecture compared to competing methods. Notably, DCS achieves
the mean Average Precision and top-1 accuracy of 61.2% and 82.7% with only 12.8% of the FLOPs
of the model with best precision so far. We also have interesting findings which are of independent
interest. For example, we find DCS tends to be more selective in channel selection in higher layers
than it does in bottom layers, reflecting the fact that only a few channels have the useful semantic
information for prediction. By pruning unselected channels, neural networks with DCS enjoys smaller
parameters than their counterparts with vanilla self-attention.

1.1 RELATED WORK

Integrating attention mechanism into CNN models also achieved great success in person Re-ID
and image classification. Existing works in Re-ID (Li et al., 2018a; 2014b) enforce the attention
mechanism using convolutional operations with small receptive fields on feature maps. There are
also works (Zhao et al., 2017; Zheng et al., 2019) exploring external clues of human semantics
(pose or mask) as attention or to use them to guide the learning of attention. The explicit semantics
which represent human structures is helpful for determining the attention. However, the external
annotation or additional model for pose/mask estimation is usually required. Following the success of
self-attention in natural language processing (Vaswani et al., 2017) and its adaption to computer vision
tasks (Wang et al., 2018), recent studies (Zhang et al., 2020; Chen et al., 2019; Quan et al., 2019) in
Person Re-ID also adopted self-attention modules and non-local blocks, which aims at enhancing the
features of the target position via aggregating information from all positions. Self-attention is also
used to enhance CNNs for image classification and recognition (Woo et al., 2018; Zhao et al., 2020).
To the best of our knowledge, all attention modules are confined to the regime of fixed channels for
computing feature affinity. The proposed DCS module focuses attention on the most informative
channels of input features.

Our DCS module falls in the class of Neural Architecture Search (NAS) methods in the sense
that the architecture of attention modules, i.e. the channels used to compute feature affinity, is
learned. Existing NAS methods can be grouped into two categories by optimization scheme, namely
Differentiable NAS (DNAS) and Non-differentiable NAS. NAS methods heavily rely on controllers
based reinforcement learning (Zoph & Le, 2016) or evolution algorithms (Real et al., 2019) to
discover better architecture. The search phase of such methods usually cost thousands of GPU hours.
Recently, DNAS have shown promising results with improved efficiency. DNAS frameworks are able
to save a huge amount of GPU hours in the search phase. So far all the DNAS methods (Liu et al.,
2018; Shin et al., 2018; Liu et al., 2018) search for optimal options for architecture in a handcrafted
and finite option set. They transform the discrete network architecture space into a continuous space
over which differentiable optimization is feasible, and use gradient descent techniques to search the
continuous space. However, the continuous space is for the coefficients used to interpolating finite
architecture options, not for architecture itself. For example, DARTS (Liu et al., 2018) relaxes the
originally discrete optimization problem of NAS to a continuous problem in terms of the option
interpolation coefficients, enabling efficient optimization by Stochastic Gradient Descent (SGD).
In a similar manner, almost all the other DNAS methods (Wan et al., 2020; Wu et al., 2019) adapt
Softmax or Gumbel Softmax to search among a finite set of candidate operations. For example, to
search for the best filter numbers at different convolution layers, FBNet (Wu et al., 2019; Wan et al.,
2020), models each option as a term with a Gumbel Softmax mask. In contrast with existing DNAS
methods, DCS searches for the architecture of attention modules in a continuous architecture space
with uncountably many options for the location and key dimension of channels.
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Figure 1 shows the feature affinity of a particular query to all the other features in two real images.
DCS tends to give higher affinity value to more semantically similar features because only the
informative channels of the query are selected and used to compute its affinity to other features.

DCS

Figure 1: Illustration of feature affinity by the vanilla Self-Attention (SA) and Differentiable Channel
Selection (DCS). The query is marked with a white square inside a red circle on each of the two
real images. In the heatmap of the feaure affinity for SA and DCS, a redder pixel indicates a higher
feature affinity value. It can be observed that DCS renders high feature affinity for features which are
more semantically similar to the query, while SA often finds irrelevant features with high affinity to
the query.

The rest of this paper is organized as follows. We first revisit the vanilla self-attention in Section 2.1.
Then we introduce our proposed Differentiable Channel Selection (DCS) module and its differentiable
searching method in Section 2.2. We then introduce how we integrate DCS into fixed neural network
backbones and learnable backbones, with extensive experimental results in Section 3. The right figure
of Figure 2 illustrates the overview of a deep neural network with a DCS module.

2 PROPOSED APPROACH

Enhanced
Representation

X 1
g XX 4
. Cony| ; : I .Loss
hsss: S
1% Input Affinity Attention X
Input E ' _I Affinity  Attention Feature Map ‘ l T Enhanced Attention
Feature Map i ] " Enhanced i Input Input oo X Feature Map Output Enhanced
e | X Feature Maj Image Tensor S Tensor  Representation vGradl-C.ltM
P Vanilla Self-Attention isualization
! Key Dimension
ottt o 1
Position - /7
Cony| Reshape| ST . .Loss
Differentiable Attention: key dimensions and
positions of channels are to be learned Input K ' Affinity At
Feature Map i ttention
sl |

i Input e

H Image

Input
Tensor

Output
Tensor

Grad-CAM
Visualization

Differentiable Attention

Figure 2: Left: the proposed Differentiable Channel Selection (DCS). Two different features select
different channels (red boxes) to compute their affinity to all the other features. DCS automatically
searches for informative channels to compute task-oriented feature affinity for each input feature,
and please refer to Section 2.1 and Section 2.2 for more details. Right: Deep neural networks with
the vanilla self-attention (top) and DCS (bottom) for the Re-ID task. Fixed channels are used in
the vanilla self-attention to compute feature affinity for all the input features. As illustrated by the
visualization of the output feature representation with Grad-CAM, DCS captures more accurate parts
of human body than the vanilla self-attention. Figure 3 illustrate more visualization results.
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Figure 3: Grad-CAM visualization results For each image, the leftmost sub-figure is the original
image, the other sub-figures are the attention visualization heatmaps generated by the Grad-CAM
visualization tool. From left to right, the heatmaps are for the original MobileNetV2, MobileNetV?2
with baseline self-attention, MobileNetV2 with our Single-Window Differentiable Channel Selection,
and MobileNetV2 with our Differentiable Channel Selection.

2.1 REVISIT SELF-ATTENTION

Vanilla Self-Attention The self-attention module applied in Transformer (Vaswani et al., 2017) is
in the form of a scaled dot-product. Suppose X is an input feature which is reshaped as a matrix
X € R"*¢, The vanilla self-attention module applies three projections to X to obtain key (K),
query (@), and value (V') representations. The output is computed as a weighted sum over the value

V by Attention(Q, K,V) = softmax(%)V. Following the success of self-attention in natural
language processing, the non-local attention module (Wang et al., 2018; Li et al., 2020) produces
attention-enhanced feature map by using dot-product to model the correlation between features

according to

1
Attention = X XXT' X, (D)
Feature Affinity

where C'(X) is a normalization factor. In previous non-local attention module designs (Wang et al.,
2018; Li et al., 2020; Real et al., 2019), the channels used to compute the affinity between input
features are usually selected by handcrafted pooling (Wang et al., 2018) or sampling (Li et al., 2020).
As a result, the feature affinity matrix is expressed as

ro) (X) = X(IU)X(IO)T’ )

where X (10) is a submatrix of X formed by aggregating columns of X with column indices in a set
I,. For example, LightNL (Li et al., 2020) compresses X by setting I to {1,2,..., [r X ¢|}, where
7 is a fixed ratio, such as 0.5. Such X (o) is the channels marked in red in the right figure of Figure 2
for the vanilla self-attention.

2.2 DIFFERENTIABLE CHANNEL SELECTION AND ITS DIFFERENTIAL SEARCHING METHOD

Clearly, different channels of the input features encode different information. For example, an
informative input feature, corresponding to an important part of an object, usually incur strong
response in particular channels, and using these particular channels for feature affinity computation
would let that input feature select more semantically similar keys to render better attention-enhanced
feature as the output. In contrast, fixed channels for feature affinity computation risk overlooking
key channels important for feature affinity and using uninformative channels to generate the feature
affinity matrix.
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Figure 4: Interpolation process in Differentiable Channel Selection. Suppose an input feature selects
channels in a window [s, [], and the channel values with the fractional indices in this window are
denoted by x(s, 1) The left figure illustrates the forward and backward processes for the key dimension
I in DCS. The right figure illustrates these processes for the position s in DCS.

To solve this problem, we put forward a novel differentiable searching algorithm to search for the
the most important channels to compute the feature affinity. For each input feature ¢ in the input
feature X, the indices of its channels for feature affinity computation, I; C {1,2,...,c} where cis

the channel number, are a union of windows. That is, I; = U%Zl [Sims Sim + lim] with M being the

number of windows, and {s;,, lim}ﬁl are the locations and key dimensions for the input feature
i, which are the output of a 1 x 1 convolution layer with feature ¢ as the input. It is noted that
[Sims Sim + lim] = {Sims Sim + 1, -+, Sim + Lim }» {Sim, lim}f\il are fractional values which are
normalized so that s;,, > 0 and s;,,, + 1, < cC.

We now explain how the channels with fractional indices in I; can be computed by a bilinear
interpolation process. For the illustration purpose, we assume that the I; only has one window
which is [s,1]. We let Sipe = | S], Sdec = s — | $].and line = [1] , lgec = | — |1] are integral part and
decimal part of s and [ respectively, where |« | denotes the greatest integer less than or equal to z.
Figure 4 illustrates how a bilinear interpolation can be used to compute the selected channel values
in the fractional indices [s, [] for the forward process in a neural network with one or more DCS
modules. Formally, let x(s, ) denotes the selected channel values, then (s, ) can be computed by
the equations (3)-(5) below.

x(sinh l) = (1 - ldec)w(sinb lint) + ldecm(sinlz line + 1)7 3)
x(sint +1, l) = (1 - ldec)x(sinl +1, linl) + ldecx(sint + 1, b + 1)7 4)
2(5,1) = (1 — 5dec)T(Sint, 1) + Sdec®(Sine + 1,1). )

In the equations (3)-(5), sin and li, are indices for slicing the input feature ¢ to compute spatial
correlation. Our key observation is that, while the network loss function is not differentiable with
respect to sip and iy, it is indeed differentiable with respect to sgec and lgec based on our calculation.
Therefore, we can apply regular SGD to optimize the 1 x 1 convolution layer which generates s
and [/, and update s;, and i, whenever the decimal values of sge. and l4e. are out of the range of
(0,1). Figure 4 also illustrates the backward process for updating sqe. and lge.. Training a neural
network with DCS using the proposed differentiable searching algorithm is described in Algorithm 1.
It is important to note that for illustration purpose Algorithm 1 involves the optimization of only
one window. The same optimization process can be performed for all the windows of all the input
features.

2.3 DCS WITH FIXED BACKBONE AND LEARNABLE BACKBONE

With our novel differentiable searching method for DCS in in Algorithm 1, the searching for the
architecture of DCS can be performed by regular SGD. As a result, DCS can be incorporated into
arbitrary neural network backbone, and the weights of the backbone and the architecture of DCS
modules can be jointly trained by SGD. To evaluate the performance of DCS for person Re-ID, we
designed two models where DCS is incorporated into popular feature extraction backbones, such as
MobileNetV2, and the learnable backbone by FBNetV2 (Wan et al., 2020), leading to DCS-FB and
DCS-DNAS respectively.
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Algorithm 1 Training a Deep Neural Network with Differentiable Channel Selection

Input: Maximum iterations 7", mini-batch of training samples { X1, X, ..., Xn }, network learning rate 7,
DCS learning rate -, and the loss function of the network L(X, 2, convix1), the percentage p used for the
search of DCS in each mini-batch.
Output: The network parameters (2, the parameters of the convyx1 which generates DCS location s and key
dimension [.
fort=1,2,...,T do
fori=1,2,..,|N x (1 —p)| do
Compute the loss L(X;, €2, Sdec, laec)
Obtain the gradient of Q denoted by Vo L(X;, Q, convix1)
QO — HVQL(X“ Q, Sdec, ldec)
end for
fori=|Nx(1—-p)|]+1,..,Ndo
Compute the loss L(X;, 2, Sdec, laec)
Compute the gradient of seec denoted by V. L(X;, 2, convix1)
Update the weights of the convi 1 using Vs, . L(X;, 2, convix1)
if 0 < Sgec < 1 then
continue
else
Sdec < Sdec — |_5decj
Sint € Sint + LsdecJ
end if
Compute the loss L(X, €2, Sdec, ldec)
Compute the gradient of ls.c denoted by Vi, L(X;, 2, convixi)
Update the weights of the convy 1 using V;,  L(X;, 2, convixi)
if 0 < lgee < 1 then
continue
else
ldec <~ ldec - UdecJ
lint — lim + I_ldecj
end if
end for
end for

3 EXPERIMENTS

In this section, we demonstrate the performance of DCS for the Re-ID task in Section 3.1, the object
detetion task in Section 3.2, and the image classification task on the ILSVRC-12 dataset (Russakovsky
et al., 2015) in Section 3.3.

Table 1: Performance of DCS-FB with comparisons to state-of-the-art Re-ID models

Market1501  DukeMTMC-reID  MSMT17

Methods Backbones Input Size  Params(M) FLOPs(G) AP RI  mAP Ri mAP Rl
Trained from scratch

HACNN (Li et al., 2018b) Inception 160 x 64 4.5 0.55 799 923 638 80.5 - -
OSNet (Zhou et al., 2019) OSNet 256 x 128 22 0.98 81.0 936 686 84.7 433 71.0

Auto-RelD (Chen et al., 2019) ResNet50 384 x 128 13.1 2.05 746 90.7 - - - -

RGA (Zhang et al., 2020) MobileNetV2 256 x 128 5.13 2.63 81.5 929 - - - -

Baseline (ours) MobileNetV2 256 x 128 222 0.380 789 920 - - - -
DCS-FB (ours) MobileNetV2 256 x 128 2.23 0.382 845 939 736 85.5 369 63.6
DCS-FB (ours) MobileNetV2 -200 256 x 128 5.09 0.884 873 951 7712 88.6 459 723

Pre-trained on ImageNet

AANet (Tay et al., 2019) ResNet50 256 x 128 >23.5 - 853 947 753 84.0 - -

CAMA (Yang et al., 2019) ResNet50 256 x 128 >235 - 845 947 729 85.8 - -

BAT-Net (Fang et al., 2019) ResNet50 256 x 128 >23.5 - 874 951 713 87.7 - -
ABD-Net (Chen et al., 2019) ResNet50 384 x 128 69.17 14.1 88.28 95.6 7859 89.0 60.8 823
Auto-RelD (Quan et al., 2019) ResNet50 384 x 128 13.1 2.05 85.1 945 - - 525 782
OSNet (Zhou et al., 2019) OSNet 256 x 128 22 0.98 849 948 735 88.6 529 787
RGA (Zhang et al., 2020) ResNet50 256 x 128 28.3 - 87.5 96.0 - - 575 803
DCS-FB (ours) MobileNetV2 256 x 128 223 0.382 850 947 752 86.7 527 782
DCS-FB (ours) MobileNetV2 -200 256 x 128 5.09 0.884 87.1 95.1 786 89.1 548 785
DCS-FB (ours) OSNet 256 x 128 22 0.98 864 946 754 88.7 546 793
DCS-FB (ours) MobileNetV2 384 x 128 2.23 0.571 863 950 764 88.2 562 79.9
DCS-FB (ours) MobileNetV2 -200 384 x 128 5.09 1.32 883 953 793 90.1 57.8 80.5
DCS-FB (ours) ResNet50 384 x 128 23.5 6.55 884 96.0 763 88.4 56.2 803
DCS-DNAS(ours) - 384 x 128 24.5 1.809 883 957 798 91.1 61.2 827
DCS-DNAS(ours) - 384 x 128 13.2 1.239 882 956 795 90.6 61.0 825
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3.1 DCS wWITH FIXED BACKBONES AND LEARNABLE BACKBONES FOR PERSON RE-ID

Datasets and Evaluation Metrics. we evaluate our proposed DCS modules on three public person
Re-ID datasets, i.e., Market-1501 (Zheng et al., 2015a), DukeMTMC-reID (Ristani et al., 2016),
MSMT17 (Wei et al., 2018). Market-1501 (Zheng et al., 2015a) consists of 32, 668 annotated person
images of 1,501 identities, in which 12,936 images of 751 identities are used for training and
19, 732 images of 750 identities are used for testing. All images are shot from 6 different cameras.
DukeMTMC-relID (Ristani et al., 2016) was originally proposed for video-based Re-ID. It has 16, 522
training images of 702 identities. The other 2, 228 query images of 702 identities and 17, 661 gallery
images are in the test set. MSMT17 (Wei et al., 2018) is the largest and the most challenging public
person re-ID dataset, which includes 126, 441 person images of 4, 101 identities detected by Faster
R-CNN (Ren et al., 2015). The training set has 32, 621 person images of 1, 041 identities, and the test
set has 93, 820 images of the other 3, 060 identities. CUHKO3 (Li et al., 2014a) consists of 13, 164
person images of 1,467 identities, of which images of 767 identities are in the training set and the
remaining 700 identities are in the test set.

Standard Re-ID metrics top-1 accuracy (R1), and the mean Average Precision (mAP) are used to
evaluate the performance of DCS and baseline models. Note that for the fairness of comparison,
re-ranking (Zhong et al., 2017) and multi-query fusion (Zheng et al., 2015b) were not used.

DCS modules are compatible with popular manually designed feature extraction CNN backbones,
such as InceptionNet (Szegedy et al., 2015), ResNet (He et al., 2016b), and MobileNetV2 (Sandler
et al., 2018). In our experiments, we evaluate the performance of DCS modules on widely used
lightweight CNN backbone, MobileNetV2, with width 1.0. Similar to ResNet, MobileNetV2 is also
built upon bottleneck structures. Following the common practices in person Re-ID (Zhang et al.,
2020; Chen et al., 2019), the attention modules are added after each convolution stage. Table 1
shows the performance of DCS-FB and competing baselines on the three person Re-ID datasets.
The fixed backbone can be pre-trained on the ImageNet dataset (Russakovsky et al., 2015) or not.
It can be observed that DCS-FB outperforms the corresponding baseline network with the same
manually designed backbone, reflecting the advantage of searching for the location and key dimension
of attention models automatically in a continuous space. Notably, with pre-training on ImageNet,
DCS-FB with the backbone of MobileNetV2-200 leads to a model of only 5.09M parameters and
1.32G FLOPs achieving mAP and R1 of 79.3% and 90.1% on DukeMTMC-relD. This model is so far
the most compact model with best performance on this dataset, to the best of our knowledge. Table 1
also shows that DCS-FB achieves state-of-the-art performance on Market1501 when pre-trained on
ImageNet. To integrate learnable backbone with DCS, we adopt the supergraph proposed in FBNetV2
(Wan et al., 2020) and jointly train the network backbone and DCS modules following Section A.1.
The learned backbone is a subgraph of the supergraph learned by the DNAS algorithm. The inverted
residual bottleneck with 3 x 3 convolution kernel is used as the basic building block of the supergraph.
DNAS algorithm is used to search the channel number of each convolution layer. On MSMT17,
DCS-DNAS achieve the best mAP and R1 with only 12.8% of the FLOPs required by the second
best model in accuracy, ABD-Net (Chen et al., 2019). For each neural backbone, a DCS module is
inserted after each of its four stages. Section A.2 of the appendix includes the detailed architecture
of MobileNetV2,MobileNetV2-200 and the supergraph of FBNetV2 used in the experiments. For
DCS-FB and DCS-DNAS, the architecture of DCS, which includes location and key dimension of
channels, and the architecture of the neural backbone (if applicable) are learned during the search
phase, and the learned architecture is then trained again to obtain the final performance.

3.1.1 TRAINING DETAILS OF DCS WITH FIXED BACKBONES AND LEARNABLE BACKBONES

DCS with Fixed Backbones. During the search phase, we use input size of 256 x 128 with a
batch size of 64. Momentum SGD is used to optimize both the architecture parameters and network
parameters for 300 epochs. In each epoch, the network weights are trained with 80% of training
samples, and the parameters for positions and key dimensions of all DCS modules are trained with
the remaining 20% of training samples. The initial learning rate for architecture parameter is set
to 0.3, and cosine schedule is applied. The initial learning for network parameters is set to 0.035,
and we decay it by 10 at the 150-th and 240-th epoch. The architecture parameters and network
parameters are updated iteratively during the search phase.
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In the training phase, the size of input images is 256 x 128 for all datasets. Following common
practice, we also use random cropping, horizontal fiipping, and random erasing to augment the data.
Both identification loss with label smoothing (Szegedy et al., 2016) and triplet loss with hard mining
(Hermans et al., 2017) are used to supervise the training. All models are trained with momentum
SGD for 600 epochs. The momentum for SGD is set as 0.9. The initial learning rate is set to 0.035,
and we decay the learning rate by 10 at the 300-th and 500-th epoch. We set the weight decay of
SGD to 0.0005.

The experiment results of DCS with fxied backbone is shown in Tabel 1 of the main paper, where
DCS-FB denotes our model. In the experiments, DCS is integrated into multiple CNN backbones
including OSNet, MobileNetV2, and ResNet50. We compare the performance of our model with
other state-of-the-art methods on three datasets. For fair comparisons with some state-of-the-art
methods like Auto-RelD, we have also tried input size of 384 x 128.

DCS with Learnable Backbones. During the search phase, we use input size of 384 x 128 with a
batch size of 64. Both the architecture parameters and network parameters are trained for 300 epochs.
In each epoch, the network weights are trained with 80% of training samples by SGD. The Gumbel
Softmax sampling parameters in the supergraph and the parameters for positions and key dimensions
of all DCS modules are trained with the remaining 20% using Adam. The initial learning rate for
optimizing architecture parameters is set to 0.03, and cosine learning rate schedule is applied. The
initial learning rate for network parameters is set to 0.035, and it is decayed by 10 at the 150-th and
240-th epoch.

After the search phase, we pre-train the model on ImageNet. Then we fine-tune the model on the
Re-ID datasets. During the fine-tuning process, the input images are augmented by random horizontal
fiip, normalization, random erasing, and mixup. Adam is used to fine-tune the network. The initial
learning rate is set to 0.00035. A warmup strategy is used in the fine-tune process. In the beginning,
the backbone weights are frozen and only the weights associated with classifiers are trained. After 10
epochs, all layers are freed for training for the remaining 390 epochs. The learning rate is decayed by
10 after 200 and 300 epochs.

3.2 DCS FOR OBJECT DETECTION

We evaluate the performance of DCS for the task of object detection. Following (Liu et al., 2022),
we choose Cascade Mask R-CNN (Cai & Vasconcelos, 2018) with ConvNeXt backbones for object
detection on COCO. We insert the DCS block after the four convolutional stages of the ConvNeXt
backbones. In the search phase of the experiment, we train our model with AdamW optimizer for
50 epochs. The weight decay is 0.05. The batch size is set to 16. The initial learning rate is 0.001,
which is divided by 10 at epochs 25, 35, and 45. In each epoch, the network weights are trained with
50% of the training samples, and the architecture parameters are trained with the remaining 50% of
the training samples. After the search finished, we pre-train the backbone with searched DCS on
ImangeNet, following the same settings for the training of ConvNeXt on ImageNet in (Liu et al.,
2022). Next, we finetune our model on the COCO dataset with AdamW optimizer for 70 epochs. The
weight decay is 0.05. The batch size is set to 16. The initial learning rate is 0.0001, which is divided
by 10 at epochs 35, 50, and 60. The mAP of the detection and the architecture details are shown in
Table 2. It should be emphasized that DCS usually leads to better mAP with a compact architecture.
For example, ConvNeXt-S+DCS achieves the same mAP as the larger ConvNeXt-B model while
maintaining the smaller architecture of ConvNeXt-S, evidencing the advantage of DCS.

Table 2: Performance of DCS for Object Detection. SA stands for the vanilla self-attention

Methods FLOPs(M)/#Params(M) mAP on COCO

ConvNeXt-T (Liu et al., 2022) 86.43/741.6 50.4
ConvNeXt-T+SA 86.79/741.7 51.0
ConvNeXt-T+DCS 86.91.1/741.7 514
ConvNeXt-S (Liu et al., 2022) 108/827 51.9
ConvNeXt-S+SA 109.45/827.8 52.2
ConvNeXt-S+DCS 110.53/828.9 52.7
ConvNeXt-B (Liu et al., 2022) 146/964 52.7
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3.3 DCS FOR IMAGE CLASSIFICATION ON IMAGENET

We also evaluate DCS for the task of large-scale image classification. In the searching phase, we
randomly sample 100 classes from the original 1000 classes of the ImageNet dataset as the training
data. Both the architecture parameters and the regular network weights are trained for 100 epochs
with a batch size of 128. In each epoch, the network weights are firstly trained with 80% of training
data. Then, the architecture parameters are trained on the rest 20% of training data. For the series
of models with MobileNetV2 backbone, Adam is used to optimize both the network weights and
architecture parameters. The initial learning rate for network weights and architecture parameters is
set to 0.05 and 0.01, and it decays following a cosine decaying schedule. For the series of models
with FBNetV2 backbone, SGD is used to optimize the network weights with an initial learning rate
of 0.1, and Adam is used to optimize the architecture parameters with an initial learning rate of 0.01.

In the training phase, the series of models with MobileNetV2 backbone are trained with Adam with a
batch size of 128 for 150 epochs. The initial learning rate is set to 0.05, and it decays following a
cosine decaying schedule. The series of models with FBNetV2 backbone are trained with SGD with
a batch size of 128 for 350 epochs. We set the initial learning rate to be 0.05, and it is divided by 10
at 100, 200, and 300 epochs. We demonstrate the performance of DCS with a larger supergraph of
FBNetV2, which is denoted by FBNetV2-L, in Table 3. It can be observed that FBNetV2-L with
DCS still improves the performance of FBNetV2-L with the vanilla self-attention.

Table 3 shows the performance of DCS with two neural backbones, MobileNetV2 and FBNetV2, on
the ILSVRC-12 dataset (Russakovsky et al., 2015). The architecture of the MobileNetV2 and the
supergraph of FBNetV?2 and the location where the vanilla Self-Attention (SA)/DCS (DCS) modules
are inserted into the corresponding neural backbones are the same as that used for the Re-ID task,
expect for slight adjustment in the last layer for classification purpose. It can be observed that while
SA improves the accuracy of the corresponding baseline, DCS further improves the Top-1 accuracy
of SA. Notably, such accuracy improvement of DCS over SA is promising, as the resultant model
even enjoys slightly less FLOPs by removing the redundant channels not selected by DCS.

Table 3: Performance of DCS for Image Classification on ImageNet. SA stands for the vanilla
self-attention

Methods FLOPs(M)/#Params(M) Top-1  Top-5
MobileNetV?2 327.7/3.51 71.8 90.5
MobileNetV2+SA 330.2/3.51 72.1 91.1
MobileNetV2+DCS 329.6/3.51 72.5 91.5
FBNetV2 330.3/7.50 75.7 92.5
FBNetV2+SA 333.2/7.50 75.9 92.9
FBNetV2+DCS 331.7/7.50 76.4 93.0
FBNetV2-L+DCS 626/9.99 78.1 94.0

4 CONCLUSION

We presented Differentiable Channel Selection (DCS), which searches for the informative channels
when computing the feature affinity matrix in attention modules. In contrast with conventional self-
attention modules, DCS searches for the location and key dimension of channels in a continuous space
comprising uncountably infinite options. DCS with fixed or learnable neural backbones outperforms
other competing methods for three computer vision tasks, person Re-IDentification methods (Re-ID),
object detection, and image classification, with compact neural architectures with the help of neural
architecture search methods.
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A MORE DETAILS ABOUT EXPERIMENTS

n
Operator ¢ ["MobileNetV2 | MobileNetv2-200 | *
conv2d 32 1 1 2
bottleneck 16 1 1 1
bottleneck 24 2 3 2
DCS Module Inserted
bottleneck 32 ] 3 21 2
DCS Module Inserted
bottleneck 64 4 19 2
bottleneck 96 3 18 1
DCS Module Inserted
bottleneck 160 3 3 2
bottleneck 320 1 1 1
DCS Module Inserted
conv2d 1280 1 1 1
avgpool - 1 1 -
conv2d - - -

Table 4: The backbone structure of MobileNetV2 and MobileNetV2-200  Each line describes a
sequence of 1 or more identical layers, repeated n times. All layers in the same sequence have the
same number c of output channels. The first layer of each sequence has a stride s and all others use
stride 1. The expansion factor ¢ is always applied to the input feature.

A.1 DCS wiTH FIXED BACKBONES AND LEARNABLE BACKBONES

We introduce the details about the architecture of MobileNetV2, MobileNetV2-200 and the supergraph
of FBNetV2 used in the experiments of the main paper.
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n

Operator e f FBNetv2 | FBNetv2-Large | °

conv2d 1 16 1 1 2

bottleneck 1 (12,16, 4) 1 1 1

bottleneck | (0.75, 3.25, 0.5) (16, 28, 4) 1 1 2

bottleneck | (0.75, 3.25, 0.5) (16, 28, 4) 2 6 1
DCS Module Inserted

bottleneck | (0.75, 3.25, 0.5) (16, 40, 8) 1 3 2

bottleneck | (0.75, 3.25, 0.5) (16, 40, 8) 2 6 1
DCS Module Inserted

bottleneck | (0.75, 3.25, 0.5) (48, 96, 8) 1 3 2

bottleneck | (0.75, 3.25, 0.5) (48, 96, 8) 2 6 1

bottleneck | (0.75,4.5,0.75) | (72,128, 8) 4 12 1
DCS Module Inserted

bottleneck | (0.75,4.5,0.75) | (112, 216, ) 1 3 2

bottleneck | (0.75,4.5,0.75) | (112,216, 8) 3 3 1
DCS Module Inserted

conv2d - 1984 1 1 1

avgpool - - 1 1 1

fc - - 1 - -

Table 5: The supergraph of FBNetV2 and FBNetV2-Large (3 x depth), with block expansion rate
e, number of filters f, number of blocks n, and stride of first block s Tuples of three values in the
column of expansion rate ¢ and number of filters f represent the lowest value, highest, and steps
between options (low, high, steps).

Operator e f n | s

conv2d 1 16 1 2

bottleneck 1 (12, 16, 4) 1|1

bottleneck | (0.75, 6.25, 0.5) (16, 28, 4) 1 ]2

bottleneck | (0.75, 6.25, 0.5) (16, 28, 4) 12 |1
DCS Module Inserted

bottleneck | (0.75, 6.25, 0.5) (16, 40, 8) 6 |2

bottleneck | (0.75, 6.25, 0.5) (16, 40, 8) 12 |1
DCS Module Inserted

bottleneck | (0.75, 6.25, 0.5) (48, 96, 8) 6 |2

bottleneck | (0.75, 6.25, 0.5) (48, 96, 8) 12 |1

bottleneck | (0.75,7.5,0.75) | (72,128,8) | 24 | 1
DCS Module Inserted
bottleneck | (0.75,7.5,0.75) | (112,216,8) | 6
bottleneck | (0.75,7.5,0.75) | (112,216,8) | 6 | 1
DCS Module Inserted

conv2d - 1984 1|1
avgpool - - 1|1
fc - - - -

Table 6: The supergraph of FBNetV2-Large (6 x depth), with block expansion rate e, number of
filters f, number of blocks n, and stride of first block s Tuples of three values in the column of
expansion rate e and number of filters f represent the lowest value, highest, and steps between options
(low, high, steps).

MobileNetV2 (Howard et al., 2017; Sandler et al., 2018) is an efficient neural network model
with depthwise separable convolution and inverted residual block as building blocks. The original
MobileNetV2 has 53 convolution layers. Following the convention of incorporating non-local
attention blocks into neural networks (Wang et al., 2018; Zhang et al., 2020), we insert DCS modules
to the end of each convolution stage of MobileNetV2. To further explore the potential of DCS with
deeper backbone, we designed a deeper variant of MobileNetV2 with 200 layers termed MobileNetV2-
200, which is inspired by the design of 200-layer ResNet (He et al., 2016a). Table 4 shows the
structure of MobileNetV2 and MobileNetV2-200 as well as the positions of DCS modules.

We also combined DCS modules and the supergraph of FBNetV2 (Wan et al., 2020) to propose
DCS-DNAS where the neural network backbone and the DCS modules are jointly trained. FBNetV2
employs Differentiable Neural Architecture Search (DNAS) algorithm to learn the backbone archi-
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tecture by choosing options in a supergraph. FBNetV2 designs a search space with building blocks
inspired by the design of MobileNetV2. It features a masking mechanism based on Gumbel Softmax
for feature map reuse so that it can efficiently search for the number of filters of each convolution
layer. We insert DCS modules into the supergraph of FBNetV2, and the supergraph of FBNetV2 and
the positions of DCS modules are shown in Table 6.

The backbone architecture of FBNetV2 is learned in a differentiable manner by SGD, therefore,
the searching for the backbone architecture and the architecture of our DCS modules can be jointly
performed by SGD. The proposed DCS-DNAS jointly searches for the backbone architecture and
the architecture of DCS modules. Similar to the design of MobileNetV2-200, we also designed a
deeper search space for FBNetV2, termed as FBNetV2-Large. The depth of FBNetV2-Large is 3
times the depth of the original FBNetV2. The structure of FBNetV2-Large is also shown in Table 5.
Combining our DCS module with DNAS algorithm, we are able to search for models of different
size. To test the performance of our DCS module with larger backbone, we also designed a deeper
version of FBNetV2-Large, which is approximately 6x the depth of the original FBNetV2. Table 6
shows the supergraph of the deeper FBNetV2-Large.

A.2 COMPONENT ANALYSIS AND ABLATION STUDY OF DCS

To diagnose the effectiveness of our DCS module, we perform the ablation studies on Market1501.

Differentiable Channel Selection vs. Baselines To verify the effectiveness of the search of position
and key dimension in DCS, we perform a step-by-step ablation study. Various attention searching
mechanisms are incorporated into the conventional attention module on MobileNetV2 with the same
training setting used before. The conventional self-attention module serves as the baseline, which
is termed as SA in Tabel 7. As shown in Table 7, either the search of position or key dimension
improves the performance compared to the baseline. The proposed DCS module, which combines
the search of position and key dimension, leads to the best result in Tabel 7.

Table 7: Ablation study of differentiable attention

Model Search Options Market-1501

mAP Rl
MobileNetV2 baseline 789 92.0
MobileNetV2+SA baseline 823 928
MobileNetV2+DCS position 829 93.1
MobileNetV2+DCS key dimension 832 930
GSA-FB position + key dimension ~ 83.1  93.2
DCS-FB position + key dimension  83.6  93.6
DCS-DNAS position + key dimension  87.1  94.7

Differentiable Channel Selection vs. Attention Search by Gumble Softmax based DNAS

Market-1501 DukeMTMC-reID MSMT17

Model Backbone  — 5 R T AP R1 mAP _ RI
MobileNetV2+SA  MobileNetV2 823 928 714 844 362 628
GSA-FB MobileNetV2  83.1 932 725 85.3 363 62.7
DCS-FB MobileNetV2 83.6 93.6 733 85.5 365  63.0

Table 8: Ablation study of differentiable attention

To further demonstrate the advantage of our novel differentiable searching algorithm over the
existing Gumbel Softmax based DNAS algorithm. We designed a baseline attention module that
searches for the position and key dimension with the Gumbel Softmax based DNAS algorithm
proposed in FBNetV2(Wan et al., 2020), which is termed Gumbel Softmax Attention (GSA). We
designed 4 candidate downsampling ratios, {1,1/2,1/4,1/8}, for the key dimension of GSA. For
each downsampling ratio r € {1,1/2,1/4,1/8}, we set the candidate start positions to {0, [¢ X
7], ..., le x (2 = 1)r]}, where c is the number of channels. As a result, there are 15 options for each
GSA module.
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The comparison between GSA-FB (GSA with Fixed Backbones) and DCS-FB on all the three public
person Re-ID benchmarks are shown in Table 8, and DCS-FB always outperforms GSA-FB. As shown
in Table 8, DCS-FB outperforms GSA-FB, which reveals the advantage of our novel differentiable
searching algorithm over the existing Gumbel Softmax based DNAS algorithm. SA standards for
Self-Attention in Table 8.

B RUNNING TIME

We performed our experiments on four Tesla-V100 GPUs. The batch size is set to 64 for both search
and training phase. We searched for the architecture for 300 epochs and fine-tuned the model for
another 600 epochs. Table 9 shows the GPU hours of searching and fine-tuning on the Market1501
data set with the input size of 256 x 128.

Model Backbone Searching Training
DCS-FB MobileNetV2 3.6 5.1
DCS-FB MobileNetV2-200 6.2 8.3

DCS-DNAS FBNetV2 9.6 10.1

Table 9: Running time of different models on Market1501

C DIFFERENTIABILITY

We explained in Section 2.2 of the main paper that the loss function L of the neural network is
differentiable with respect to the decimal parts of the location s and the key dimension /, namely
Sdec and lgec. In fact, L is differentiable with respect to sqec When 0 < sqec < 1. In practice, we can
always slightly adjust the learning rate + in Algorithm 1 so as to avoid the case that sgec is 1 or 0. The
same argument is applied to l4... Moreover, as one could expect, we never observed that Sqe O lge 18
exactly 1 or O throughout our experiments, and such cases are almost surely impossible in practice.
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