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Abstract. Recent works have introduced methods to estimate segmen-
tation performance without ground truth, relying solely on neural net-
work softmax outputs. These techniques hold potential for intuitive out-
put quality control. However, such performance estimates rely on cali-
brated softmax outputs, which is often not the case in modern neural
networks. Moreover, the estimates do not take into account inherent un-
certainty in segmentation tasks. These limitations may render precise
performance predictions unattainable, restricting the practical applica-
bility of performance estimation methods. To address these challenges,
we develop a novel approach for predicting performance ranges with sta-
tistical guarantees of containing the ground truth with a user specified
probability. Our method leverages sampling-based segmentation uncer-
tainty estimation to derive heuristic performance ranges, and applies split
conformal prediction to transform these estimates into rigorous predic-
tion ranges that meet the desired guarantees. We demonstrate our ap-
proach on the FIVES retinal vessel segmentation dataset and compare
five commonly used sampling-based uncertainty estimation techniques.
Our results show that it is possible to achieve the desired coverage with
small prediction ranges, highlighting the potential of performance range
prediction as a valuable tool for output quality control1.

1 Introduction

Image segmentation is a crucial step for various medical tasks such as disease
detection, treatment planning or anatomical studies [4]. In ophthalmology, seg-
menting the retinal vessels in fundus photography images provides insights into
1 Code available at https://github.com/annawundram/PerformanceRangePrediction
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Fig. 1. Overview. (a) Given a fundus image, we predict a vessel segmentation, the
expected Dice-Sørensen Coefficient (DSC), as well as upper and lower bounds for the
expected DSC. (b) Conformal prediction allows us to set the performance range such
that at most α = 10% percent of the test cases have a DSC outside the predicted
interval. We show a confident case with low DSC prediction uncertainty (green), as
well as a case with high DSC prediction uncertainty due to poor image quality (red).

clinical conditions such as Glaucoma or Diabetic Retinopathy [15]. However,
manual segmentation of the retinal vasculature is prohibitively time-consuming,
taking up to five hours per image [15]. In recent years, machine learning models
have shown excellent performance on many segmentation problems [14, 7]. De-
spite this, machine learning methods can fail unexpectedly, and even the best
algorithms have limited performance on images that are inherently challenging
to segment. As manual verification of all algorithmic outputs is in itself time-
consuming and sometimes infeasible, developing strategies for automatically en-
suring the quality of segmentation outputs is becoming increasingly important.

Ensuring segmentation quality can be approached through input or output
quality control. Input quality control aims to automatically identify images that
are likely to be poorly segmented by the model. Commonly used strategies in-
clude automatic prediction of image quality [32] or out-of-distribution (OOD)
detection [23, 8]. However, input quality control methods may misjudge the al-
gorithm’s actual performance on a specific image. For instance, as demonstrated
in this work, an image may be within the support of the training distribution
yet difficult for the model to segment, or it may be of poor quality but still easy
to segment (see Fig. 1). Such cases might either go undetected by input quality
control, or could be flagged unnecessarily.

Output quality control methods instead aim to directly verify that the output
of a model is of sufficient quality. Most commonly, output uncertainty is used as
a proxy for quality (e.g. [22, 24, 25]). However, these approaches require choos-
ing a heuristic threshold for acceptable quality. To address this, a number of
methods directly estimate the expected performance on previously unseen data
points. This allows setting more intuitive performance thresholds such as “a Dice-
Sørensen Coefficient (DSC) of at least 0.8”. In one of the first works on medical
segmentation performance prediction, [18] trained a regressor to directly predict
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segmentation accuracy. Later, Valindra et al. [29] introduced Reverse Classifi-
cation Accuracy, which trains a reverse segmentation model on the test image
and its segmentation output, then applies it to reference images to estimate the
DSC. However, this approach requires training a second model.

Recent studies have demonstrated that segmentation performance measures
can be predicted from softmax outputs alone [31, 9, 28, 13, 26, 12, 19, 21]. Assum-
ing perfect calibration, the softmax outputs indeed describe the probability of
a pixel having a certain label. As detailed in Sec. 2.1, this interpretation allows
for the computation of various performance measures, including the DSC [21,
19]. However, the quality of this performance estimator heavily relies on proper
calibration [19]. Unfortunately, modern neural networks frequently exhibit poor
calibration [11]. Although post-hoc methods like temperature scaling can en-
hance calibration [19, 11], these solutions are often insufficient for achieving the
desired level of reliability. Moreover, inherent segmentation uncertainty arising
from low image quality or other factors, may further limit precise performance
estimation. As a result, the performance estimates obtained through these meth-
ods lack guarantees, raising concerns about their usefulness for quality control.

In this work, we propose to predict performance ranges instead of point es-
timates. Our approach offers statistical guarantees that the true performance
of any test image falls within the predicted range with a certain probability.
We achieve this by estimating a heuristic performance range using sampling-
based uncertainty quantification methods. We then apply split conformal pre-
diction [30, 1] to conformalize prediction ranges extracted from those uncertainty
estimates. We demonstrate the effectiveness of our approach on the challenging
problem of retinal vessel segmentation in fundus images.

2 Methods

Given an input image x our goal is to predict a segmentation ŝ along with a
performance estimate ŷ predicting the model’s segmentation performance (e.g.
the DSC) for that image. We additionally predict a performance range [ŷl, ŷu]
with a statistical guarantee that the true DSC, i.e. y = DSC(ŝ, s), is contained in
this interval with a user specified probability of 1− α. Note that while we focus
on the DSC, alternative measures can be easily investigated in our framework.

In the following, we first review how a DSC performance estimate can be
derived from the softmax outputs of a segmentation model (Sec. 2.1). Next, we
introduce our method for obtaining heuristic performance ranges using sampling-
based segmentation uncertainty estimation approaches (Sec. 2.2). Lastly, we de-
scribe our strategy for converting heuristic performance ranges, into performance
ranges with statistical guarantees using split conformal prediction (Sec. 2.3).

2.1 Background: Estimating the DSC from softmax outputs

Given a calibrated segmentation model, the softmax output pi for each pixel i
can be interpreted as the probability of that pixel being of the predicted class.
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In the binary case, summing the positively predicted (i.e. pi > 0.5) foreground
probabilities for all pixels yields the expected number of true positives (TP) in
the image. Following a similar reasoning the expected number of false positives
(FP) and false negatives (FN) can be calculated [21]:

TP =

n∑
i=1

1[pi>0.5]pi; FP =

n∑
i=1

1[pi>0.5] − TP; FN =

n∑
i=1

1[pi<0.5]pi . (1)

Here, 1[·] denotes the indicator function and 0.5 is a heuristically chosen decision
threshold. The DSC is defined in terms of those quantities as follows

DSC =
2TP

2TP + FP + FN
. (2)

Thus, for a given test image x, a DSC performance estimate ŷ can be calculated
using the estimators for TP, FP, and FN (Eq. 1), and plugging them into Eq. 2.

In practice neural networks are never perfectly calibrated, resulting in over-
or underestimation of the true DSC. Instead of relying on the possibly faulty
performance prediction ŷ, in the following, we show how to obtain bounds that
contain the true performance with high probability.

2.2 Heuristic performance bounds from segmentation uncertainty

To obtain heuristic lower and upper performance bounds ȳl and ȳu, we rely
on probabilistic segmentation techniques that are capable of producing samples
from the distribution p(s|x). Given an input image x these techniques allow us
to sample N plausible segmentation samples ŝn. A performance estimate ŷn can
be obtained from each segmentation sample ŝn as described in Sec. 2.1.

The samples ŷn characterize the distribution p(ŷ|x) =
∫
p(s|x)p(ŷ|s)ds. From

these samples, we can calculate an estimator for the standard deviation σ. We
can then define our heuristic upper and lower bounds for an input image x as:

ȳl(x) = ŷ(x)− σ(ŷ(x)); ȳu(x) = ŷ(x) + σ(ŷ(x)) . (3)

We compare five commonly used probabilistic segmentation techniques to
obtain segmentation samples for performance range prediction:

– The probabilistic U-Net [17] is a combination of the conditional VAE [27]
approach with a U-Net architecture. This formulation allows to sample an
infinite number of segmentation samples consistent with the input image x.

– PHiSeg [6] extends the probabilistic U-Net by a hierarchical latent space
and was shown to provide closer approximations of p(s|x).

– Test-time augmentation (TTA) [3] augments the test image N times
to obtain N segmentation samples sn. The deviations between the samples
sn have been shown to be indicative of segmentation uncertainty. Following
[3], we used the following eight types of augmentations: brightness, hue,
saturation, contrast, vertical and horizontal flip, Gaussian blur.
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– Ensembles [20] consist of N independently trained segmentation models
initialized with different random seeds. In order to improve calibration, tem-
perature scaling [11] on the calibration set was applied to each individual
network. Note that temperature scaling is not directly applicable to any of
the other explored methods.

– Monte Carlo (MC) Dropout [10] produces probabilistic segmentation
samples by repeatedly predicting segmentations for the same image with
dropout enabled. We use a dropout rate of 0.2 on the activation maps for
training and testing. Dropout is applied to all layers except the final four
segmentation layers.

We use the enhanced U-Net architecture introduced in [17] as a base architecture
for all methods except PHiSeg. While PHiSeg also uses the same U-Net encoder,
it employs a unique decoder. We use N = 100 for Prob. U-Net, PHiSeg and
MC Dropout, N = 20 for TTA, and N = 10 for Ensembles. For all approaches,
a final segmentation ŝ is obtained by averaging the samples. The probabilistic
U-Net, PHiSeg, and TTA estimate aleatoric uncertainty, while Ensembles and
MC Dropout estimate epistemic uncertainty (see [16] for definitions of aleatoric
and epistemic).

2.3 From heuristic to principled bounds using conformal prediction

We employ split conformal prediction [30, 1] to convert the heuristic bounds
ȳl, ȳu into principled bounds ŷl, ŷu. Specifically, we desire that the performance
range [ŷl, ŷu] includes the true DSC y with a user set probability of at least 1−α:

P (y ∈ [ŷl(x), ŷu(x)]) ≥ 1− α . (4)

We set α = 0.1 in all our experiments.
For our performance range to statistically fulfill the above requirement, we

adjust the heuristic bounds with a corrective factor q̂:

ŷl(x) = ŷ(x)− q̂σ(ŷ(x)); ŷu(x) = ŷ(x) + q̂σ(ŷ(x)) . (5)

This corrective factor q̂ is determined using the split conformal procedure [30,
1]. We first define a score function as

S(x, y) = |y − ŷ(x)|
σ(ŷ(x))

. (6)

The adjusting factor q̂ is then calculated as the ⌈(1 − α)(M + 1)⌉/M quantile
on the calibration set scores, where M is the number of calibration samples. As
shown in [30], this results in the following guarantee for the test set, assuming
the calibration set is representative of the test distribution:

P[S(x, y) ≤ q̂] ≥ 1− α ⇒ P[|y − ŷ(x)| ≤ σ(ŷ(x))q̂] ≥ 1− α , (7)

thereby fulfilling our requirement in Eq. 4. The right-hand side of this equation
follows from the definition in Eq. 6. We finally clamp the prediction range to be
within [0, 1] as DSC values outside this range are not possible.
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Fig. 2. Quantitative analysis. (a) performance prediction absolute error, (b)
marginal and conditional coverage for very small (0, 0.1], small (0.1, 2], large (0.2,
5], very large (0.5, 1] interval sizes, and (c) interval sizes for all investigated methods

2.4 Data and training

We evaluated our method on the FIVES [15] fundus dataset for retinal vessel seg-
mentations. The dataset comprises 800 images and manual segmentations with
an official split into 600 training and 200 test images. We further split each fold
using a ratio of 80/20 to obtain train/validation as well as test/calibration sets.
Following [19], we preprocessed the data by applying contrast limited adaptive
histogram equalization (CLAHE) and resized the images to 320×320 pixels. We
used the provided image quality labels for model inspection and visualization.
We considered an image to be low quality if at least one out of three quality
issues (illumination and color distortion, blur and low contrast) were reported.

All segmentation models were trained with maximum number of epochs of
1000 on a NVIDIA GeForce RTX 2080 Ti with a batch size of four for all
probabilistic models and a batch size of 16 for all U-Nets. Model selection was
performed on the validation set using the DSC as metric.

3 Experiments and results

3.1 Evaluation of segmentation performance and DSC prediction

We first verified that all compared models performed adequately at the un-
derlying segmentation task. We observed high mean test DSC for Prob. U-Net
(0.918), MC Dropout (0.918) and Ensemble (0.913), with PHiSeg (0.888) per-
forming slightly worse, though still acceptably, and in line with previous results
on the FIVES dataset [19]. TTA (0.811) performed substantially worse than the
rest of the evaluated techniques.

Next, we turned to the analysis of the performance prediction. PHiSeg and
TTA were the most accurate at predicting the DSC, achieving mean absolute
errors (MAE) of 0.027 and 0.025, respectively (see Fig. 2). Ensembles performed
worst with a MAE of 0.072. This can be confirmed qualitatively by comparing
the predictions to the ground truth line in Fig. 3.
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3.2 Evaluation of coverage and interval sizes

As we argue in this paper, a point estimate of the predicted performance is in-
sufficient because poor calibration of the segmentation models lead to inaccurate
scores, and because some cases carry inherent uncertainty in their performance
prediction (e.g. due to low image quality).

In our central evaluations, we therefore investigated the quality of the perfor-
mance ranges obtained using our proposed method. We adopted the approach
of [2] and used coverage as our main evaluation criterion. In our case, coverage
measures the proportion of images for which the actual DSC falls within the pre-
dicted performance range. Marginal coverage describes the coverage for a random
test point. PHiSeg, Ensembles, and MC Dropout reach the specified marginal
coverage, meaning that ≥ 90% of all test ground truth DSC values lie in the
predicted interval (Fig. 2b). We note that Prob. U-Net and TTA did not quite
achieve marginal coverage. We hypothesize that this is due to a combination of
poor uncertainty estimation and a slight violation of the exchangeability between
calibration and test set assumption. The coverage of the studied segmentation
models can also be analyzed qualitatively in Fig. 3 by verifying that the majority
of ground truth DSC scores (black line) lie withing the gray prediction range.

While split conformal prediction only guarantees marginal coverage, it is cru-
cial for practical applications that coverage holds across different interval sizes.
Therefore, in Fig. 2b, we also evaluated conditional coverage for four different
interval sizes. This denotes the coverage for a test point belonging to a spe-
cific class (here: the interval size). All methods achieved the desired coverage for
small (0.1, 0.2], large (0.2-0.5] and very large (0.5-1] intervals. PHiSeg achieved
the best coverage for very small (0-0.1] interval sizes, but fell slightly short of
the desired 90%. Note that the bar for very small interval sizes is missing for
Ensembles because no intervals of this size were predicted by the method.

Assuming coverage is fulfilled, it is desirable to have interval sizes that are as
small as possible. Overly large interval sizes resulting from poor DSC estimation
or poor uncertainty estimation, may detract from the usefulness of the method
in practice. It is therefore desirable to have interval sizes that are as small as
possible. PHiSeg produced the tightest intervals (Fig. 2c), which can also be
confirmed visually in Fig. 3 by inspecting the size of the gray prediction ranges.

Since the uncertainty in our task stems largely from irreducible ambiguities
in the vessel segmentation, aleatoric uncertainty quantification methods should
perform the best. Indeed, the top-performing approach, PHiSeg, falls into this
cateogry. However, the overall picture is less clear, as the epistemic Ensemble
and MC Dropout approaches perform similarly to the aleatoric Prob. U-Net. We
concur with Kahl et al. [16] that the distinction between aleatoric and epistemic
uncertainty quantification methods is not always clear cut.

3.3 Performance prediction analysis of low- vs. high-quality images

To better understand the influence of image quality on the performance predic-
tion, we colored all points in Fig. 3 by high-quality (green) and poor-quality (red)
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Fig. 3. Visualisation of performance ranges. Performance predictions ŷ
(green/red), ground truth DSC scores y (black), and performance ranges [ŷl, ŷl] (gray)
for all images in the test set. The images are sorted by ground-truth performance.

using the quality labels provided by the FIVES dataset. Firstly, as expected, we
observed that most images with poor segmentation performance were of low
quality. Secondly, overall performance prediction was worse for low-quality im-
ages compared to high-quality images. Thirdly, we observed that the size of the
prediction performance range correlated with the ground truth DSC, indicating
that harder-to-segment images also had higher uncertainty in their performance
predictions. The low-quality, low DSC images on the left side of the plots in
Fig. 3 were typically characterized by large performance ranges. For the best-
performing method, PHiSeg, although the performance estimation was poor in
these cases, the intervals consistently contained the true DSC. This illustrates
that for these highly uncertain cases a single performance prediction is insuffi-
cient. It underscores that the statistically valid prediction performance ranges
proposed here offer a promising approach for output quality control.

We note that all low-quality images used in this evaluation are in-distribution
as the training set also contained similar low-quality images. This highlights the
fact that OOD approaches would likely not be able to identify these cases where
performance is low. An alternative strategy would be to train an image quality
classifier to detect images with low-quality before feeding them to the model.
However, there are also examples in Fig. 3 of low-quality images that achieve
high DSC. An image quality classifier would falsely flag these images potentially
resulting in unnecessary re-scans. Our proposed output quality control approach
using performance ranges effectively addresses both these issues.

4 Discussion and conclusion

In this work, we demonstrated that performance prediction point estimates may
be insufficient for robust quality control due to suboptimal calibration of neural
networks, and high performance uncertainty in low-quality images. To address
this problem, we developed a method that can compute performance ranges with
statistical guarantees for coverage, and compared five different sampling-based
uncertainty quantification methods to estimate those range.



Conformal Performance Range Prediction for Output Quality Control 9

The aleatoric PHiSeg method produced the best performance predictions, as
well as the performance ranges with the best coverage and tightest interval sizes.
We conclude that this method is highly suitable for use in conformal performance
prediction.

A limitation of our work is that it is only applicable under the assumption of
exchangeability of the test and calibration sets. The method is thus not directly
applicable to the OOD setting. In future work, we will pursue an extension
of our approach that takes advantage of novel research directions in conformal
predictions under domain shifts [5].
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