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Abstract001

Despite the remarkable capabilities of large002
language models (LLMs) in natural language003
understanding and reasoning, they often dis-004
play undesirable behaviors, such as generating005
hallucinations and unfaithful reasoning. A006
prevalent strategy to mitigate these issues is007
the use of reflection, which refines responses008
through an iterative process. However, while009
promising, reflection heavily relies on high-010
quality external feedback and requires iterative011
multi-agent inference processes, thus hindering012
its practical application. In this paper, we013
propose Meta-Reflection, a novel feedback-free014
reflection mechanism that necessitates only a015
single inference pass without external feedback.016
Motivated by the human ability to remember017
and retrieve reflections from past experiences018
when encountering similar problems, Meta-019
Reflection integrates reflective insights into020
a codebook, allowing the historical insights021
to be stored, retrieved, and used to guide022
LLMs in problem-solving. To thoroughly023
investigate and evaluate the practicality of024
Meta-Reflection in real-world scenarios, we025
introduce an industrial e-commerce benchmark026
named E-commerce Customer Intent Detection027
(ECID). Extensive experiments conducted on028
both public datasets and the ECID benchmark029
highlight the effectiveness and efficiency of030
our proposed approach. Project is available031
at https://anonymous.4open.science/r/Meta-032
Reflection-62F5/033

1 Introduction034

Large Language Models (LLMs) (Achiam et al.,035

2023; Yang et al., 2024; Dubey et al., 2024) have036

demonstrated exceptional proficiency in diverse037

natural language processing tasks, e.g., general lan-038

guage understanding (Wei et al., 2022a), genera-039

tion (Pu and Demberg, 2023), and reasoning (Wei040

et al., 2022b; Yao et al., 2024). However, recent041

quantitative analyses revealed that contemporary042

frontier LLMs frequently exhibit undesirable and043

(a) Vanilla Reflection

(b) Meta-Reflection

Each bird eats 12 
beetles per day, 
each snake eats 3 
birds per day, and 
each jaguar eats 5 
snakes per day. If 
there are 6 jaguars 
in a forest, how 
many beetles are 
eaten each day?
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Figure 1: Illustration of different reflection mechanisms.
(a) Vanilla reflection requires multi-agent inference
and external feedback. (b) Meta-Reflection achieves
feedback-free reflection in a single inference pass.

inconsistent behaviors, including unfaithful rea- 044

soning (Turpin et al., 2024) and the production 045

of seemingly plausible yet inaccurate hallucina- 046

tions (Rawte et al., 2023), especially when apply- 047

ing for intricate tasks. Such flawed outputs sig- 048

nificantly undermine trust in LLMs and pose sub- 049

stantial obstacles to their widespread adoption in 050

real-world applications. 051

The undesirable phenomenon of LLMs is some- 052

what similar to human problem-solving, i.e., we 053

humans do not always generate the best answer on 054

our first try in complex real-life scenarios. While 055

dealing with complex problems, individuals has the 056

capacity to actively refine their answers through a 057

cycle of trial, inspection and correction (Pan et al., 058

2023). This capacity called Reflection, enables 059

us to perform better than machines in high-level 060

reasoning and would be the most precious capac- 061

ity for modern AI. To simulate this ability, LLMs’ 062

Reflection (Madaan et al., 2024; Shinn et al., 2023) 063

is devised to mitigate the flawed outputs of LLMs, 064

which utilizes feedback from external sources (e.g., 065

the environment or other LLMs) to prompt the 066

models to adapt their responses. This approach, 067

as shown in Figure 1(a), enables the models to 068

iteratively improve their performance by incorpo- 069

rating new information and adjusting their outputs 070

based on external input, thereby enhancing their 071
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accuracy and reliability over time. Upon reflec-072

tion, however, contemporary approaches heavily073

rely on high-quality external feedback or ground-074

truth golden labels (Huang et al., 2024; Dou et al.,075

2024), which are often unavailable during inference076

scenarios. Besides, reflection typically requires it-077

erative multi-agent inference processes (Du et al.,078

2023), which are resource-intensive. These afore-079

mentioned issues significantly constrain the practi-080

cal deployment of LLMs in real-world scenarios.081

In this paper, we propose Meta-Reflection, a082

novel reflection mechanism that operates without083

external feedback and requires only a single in-084

ference pass. Drawing inspiration from human085

cognitive processes (Kolodner, 1992), where indi-086

viduals leverage past experiences and reflections to087

address similar questions without additional trials,088

we introduce a learnable meta-reflection codebook089

to store and retrieve reflective insights, as shown090

in Figure 1(b). During optimization, reflections091

are constructed using the vanilla reflection mecha-092

nism and integrated into the meta-reflection code-093

book. At inference, question-specific insights are094

retrieved from the codebook to guide the LLM in095

solving problems. This method enables LLMs to096

produce high-quality responses in a single pass,097

effectively mimicking how humans utilize prior098

experiences in analogous situations. Extensive ex-099

periments are conducted with open-source LLMs100

on diverse benchmarks, including programming,101

mathematical reasoning, and customer intent detec-102

tion in E-commerce Intelligent Customer Service103

(ICS) for industry-specific scenarios. To evaluate104

our method in the ICS domain, we introduce E-105

commerce Customer Intent Detection (ECID), a106

new Chinese dataset designed to identify users’107

core intents, critical for enhancing service quality.108

Results across domains validate the efficiency and109

effectiveness of our approach. Key contributions110

of this work include:111

• We propose Meta-Reflection, an innovative ap-112

proach that achieves reflection in a single pass113

without iterative trials and feedback through114

well-designed codebook-based storage and re-115

trieval mechanisms.116

• We present a new dataset for E-commerce117

Customer Intent Detection (ECID) in the intel-118

ligent customer service domain, comprising119

1,170 cases from real-world application.120

• Extensive experiments across various domains121

and models demonstrate the effectiveness and 122

robustness of our proposed method. 123

2 Method 124

In this section, we first present the process of LLM- 125

based reflection generation in Section 2.1. Next, 126

we describe our proposed implicit feedback-free re- 127

flection approach in Section 2.2. Subsequently, we 128

introduce the concept of adaptive meta-reflection 129

alignment in Section 2.3. Finally, the overall op- 130

timization stage and inference stage are outlined 131

in Section 2.4. The pipeline of Meta-Reflection is 132

illustrated in Figure 2. 133

2.1 LLM-based Reflection Generation 134

Formally, consider a dataset U = {(x, y)}Ni=1, 135

where x represents a question and y represents its 136

corresponding answer. An actor LLM agent M 137

is used to generate an initial output ŷact = M(x). 138

However, this process may lead to unfaithful rea- 139

soning or hallucination (Pan et al., 2023). To ad- 140

dress these issues, reflection methods (Shinn et al., 141

2023; Madaan et al., 2024) propose leveraging 142

feedback from external environment or golden la- 143

bels (Huang et al., 2024) to refine the initial out- 144

put ŷact. This feedback, denoted as e = E(x, ŷact) 145

where E represents the environment, provides com- 146

prehensive assessment of the initial output. For 147

instance, in programming tasks, feedback typi- 148

cally includes interpreter information or execution 149

results, while for mathematical problems, it in- 150

volves comparing outputs against correct answer y. 151

Based on the feedback e, a reflector LLM agent 152

R generates reflections r = R(x, e), which guide 153

the actor model M to produce refined responses 154

ŷref = M(x, r). As shown in Figure 2(a), this 155

iterative process of generation, reflection, and re- 156

finement aims to enhance the quality and accu- 157

racy of the actor model M’s outputs, mitigat- 158

ing potential errors and improving overall perfor- 159

mance (Pan et al., 2023). Throughout the reflec- 160

tion generation process, we systematically curate 161

a new dataset Dt = {(x, r, ŷref)}N
′

i=1 containing 162

reflection-question-answer triplets. Details and cor- 163

responding prompts are provided in the Appendix. 164

2.2 Implicit Feedback-free Reflection 165

As discussed in Section 1, reflection methodologies, 166

while promising, are limited by their reliance on ex- 167

ternal feedback (Huang et al., 2024) and computa- 168

tionally intensive multi-agent inference processes, 169

hindering practical deployment. Inspired by the 170
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Figure 2: Overview of the Meta-Reflection framework: (a) LLM-based reflection generation through iterative
processes; (b) Implicit feedback-free reflection, storing and retrieving reflective insights in a codebook; (c) Adaptive
Meta-Reflection Alignment, incorporating reflective insights into the codebook.

adage "One never falls into the same ditch twice,"171

which suggests that people learn from past mis-172

takes without repeated feedback, we propose im-173

plicit feedback-free reflection. As shown in Figure174

2(b), this approach uses a learnable meta-reflection175

codebook to store and retrieve reflective insights,176

enabling efficient, feedback-free inference.177

Meta-Reflection Codebook. The meta-178

reflection codebook consists of implicit reflective179

units P ∈ RK×C , where K and C denote180

codebook length and feature dimension, respec-181

tively. The question x serves as the query to182

retrieve the relevant reflective units from the183

codebook. Previous studies have demonstrated that184

intermediate layer features can provide sufficient185

preliminary understanding of input samples (Xin186

et al., 2020; Zhang et al., 2024b). Leveraging this187

insight, we utilize query representations from inter-188

mediate LLM layers, which contain rich semantic189

information for effective retrieval. Specifically, we190

position the meta-reflection codebook at the L-th191

layer (0 < L < N ), where N is the total layers192

of the LLM, serving as a repository of reflective193

insights. To retrieve relevant reflective insights,194

the query is processed through the initial L layers,195

transforming it into hidden states HL
query. We196

subsequently employ mean pooling Pmean to derive 197

sentence-level representation as follows: 198

h = Pmean(H
L
query) ∈ R1×C (1) 199

The representation of the query is utilized to com- 200

pute relevance score through: 201

s = σ(
g(h)f(P T )√

K
) ∈ R1×K , (2) 202

where σ denotes the softmax function, and g(·) 203

and f(·) represent transformation functions imple- 204

mented as two-layer MLPs, which serve to stabilize 205

the training process (Liu et al., 2022). The result- 206

ing score s quantifies the relevance between the 207

question and reflective units from codebook, with 208

higher scores indicating more applicable reflective 209

units for the given query. Based on the score s, 210

we select the top-k relevant reflection units from 211

the codebook to form the sequence P̂ref ∈ Rk×C , 212

maintaining their relative positions in the codebook. 213

The concatenated sequence {HL
query; P̂ref} is fed 214

into the remaining (N − L) layers, incorporating 215

question-specific reflective insights that guide the 216

LLM’s solution approach and enhance its perfor- 217

mance. Notably, during the training phase, only 218

the meta-reflection codebook is tunable while the 219

backbone model remains frozen. 220
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Sampling Strategy. To address the non-221

differentiable top-k function that impedes gradient222

back-propagation during training, and to enhance223

the sampling diversity, we employ straight-through224

Gumbel-Softmax (Jang et al., 2017; Bengio et al.,225

2013) to derive the sampling process:226

ŝ = σ(log(s) + ϵgumbel) ∈ R1×K ,227

I = 1i∈topk(ŝ) − sg[ŝ] + ŝ ∈ R1×K , (3)228

where ϵgumbel ∈ R1×K represents the Gumbel229

noise, sg[·] denotes the stop gradient operator230

and 1i∈topk(ŝ) indicates whether an index belongs231

to the top-k indices. The resulting indicator vec-232

tor I identifies the selected reflective units. This233

strategy ensures both differentiability during train-234

ing and diverse sampling of reflective units.235

2.3 Adaptive Meta-Reflection Alignment236

After acquiring the dataset Dt as outlined in237

Section 2.1, our objective is to effectively lever-238

age the information encapsulated within reflec-239

tion r. As depicted in Figure 2(c), we employ240

a same frozen LLM but with different input as the241

teacher model Mref, to process the input sequence242

{x, r} and extract the hidden states for each layer,243

{P l
que,P

l
ref}Nl=1, where P l

que and P l
ref denote the244

hidden states of query and reflection sequences, re-245

spectively. The reflective units selected from the246

codebook are integrated into the final N−L layers,247

yielding {P̂ l
ref}Nl=L, with the purpose of aligning248

{P l
ref}Nl=L and thereby embedding valuable infor-249

mation into the meta-reflection codebook. How-250

ever, the dimensional variations and semantic mis-251

alignment between the ground-truth reflection P l
ref252

and the reflective units P̂ l
ref pose challenges for253

precise alignment between these sequences. To254

overcome this, we employ the optimal transport255

(OT) algorithm (Rubner et al., 2000; Liu et al.,256

2020; Zhang et al., 2020), which applies the earth257

mover’s distance (EMD) to gauge the semantic dis-258

crepancy between these two sequences.259

OT for Meta-Reflection Alignment. The EMD260

quantifies the distance between two discrete dis-261

tributions as the minimum cost of transporting262

piles of dirt from "suppliers" to "demanders" (Zhu263

et al., 2022), framed as a linear optimization prob-264

lem. Specifically, at the l-th (L < l < N)265

layer, we measure the distance required to trans-266

form P̂ l
ref ∈ Rk′×C to P l

ref ∈ Rk×C . Let each267

unit p̂i ∈ P̂ l
ref possesses a total of ri quantities268

to transport, and each unit pj ∈ P l
ref requires cj 269

quantities, forming the transport prototype: 270

Π(r, c) = {Γ ∈ Rk′×k|Γ1k = r,ΓT1k′ = c},
(4)

271

where r ∈ Rk′ and c ∈ Rk are marginal weights 272

for transportation matrix Γ respectively. 1 is all- 273

one vector with corresponding size, and Π(r, c) is 274

the set of all possible distributions whose marginal 275

weights are r and c. 276

We define the cost per unit transported from sup- 277

plier token p̂i to demander token pj as: 278

Dij = 1− p̂T
i pj

||p̂i||||pj ||
, (5) 279

where tokens with similar representations incur 280

lower transport costs. Given this, we can define the 281

linear optimization problem as follows: 282

ROT(r, c) = min
Γ∈Π(r,c)

k′∑
i

k∑
j

DijΓij (6) 283

However, The exact minimization over Γ is 284

solved in polynomial time and can be computa- 285

tionally intractable (Arjovsky et al., 2017; Genevay 286

et al., 2018). Therefore, to find the optimal Γ̃, we 287

utilize Sinkhorn Algorithm (Cuturi, 2013) as an 288

efficient approximation method. The detailed al- 289

gorithm and the optimization process are shown in 290

Appendix B. With optimal transportation matrix Γ̃, 291

the corresponding alignment loss for layer l is: 292

Ll
OT = ⟨Γ̃,D⟩F, (7) 293

and the overall alignment loss is calculated as the 294

mean across the last N − L layers: 295

LOT =

∑N
l=L Ll

OT
N − L

(8) 296

The alignment loss quantifies the semantic 297

gap (Li et al., 2020) between the reflective units 298

from the meta-reflection codebook and the tex- 299

tual ground-truth reflection. In our scenario, 300

minimizing LOT encapsulates textual reflections 301

into reusable reflective insights, enhancing the 302

model M’s capacity to handle complex tasks and 303

improve overall performance. 304

2.4 Optimization and Inference 305

We delineate the overall optimization and inference 306

stages as follows: 307
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Progressive Optimization Stage. We employ308

a progressive optimization paradigm to enhance309

model performance. Initially, we utilize LOT310

to align the reflective units from codebook with311

ground truth reflections, infusing reflective infor-312

mation into the codebook of the model M. Sub-313

sequently, we leverage labels from dataset Dt to314

fine-tune the codebook using the vanilla supervised315

learning loss LSFT. This optimization paradigm316

ensures stable training progression and effective317

incorporation of reflective information, enhancing318

the model’s ability to capture and utilize this knowl-319

edge while maintaining overall learning stability.320

Inference Stage. During the inference stage, the321

input question x serves as query to retrieve perti-322

nent reflective units from the meta-reflection code-323

book, guiding the LLM in addressing complex324

tasks. Leveraging the characteristics of causal lan-325

guage models, this inference stage can also utilize326

KV caching (Pope et al., 2023) to mitigate compu-327

tational overhead. Detailed steps of the inference328

process are provided in Appendix G.329

3 Experiments330

In this section, we first introduce the datasets in331

Section 3.1, followed by the experimental setup in332

Section 3.2. The main results are presented in Sec-333

tion 3.3, while inference efficiency is evaluated in334

Section 3.4. Section 3.5 assesses the cross-domain335

transferability of our method. Sensitivity analy-336

sis, ablation study, and visualization are covered337

in Section 3.6, 3.7, and 3.8, respectively. A case338

study and training efficiency analysis are provided339

in Appendix J and H.340

3.1 Datasets341

We assess our method on diverse datasets across342

different domains: programming (i.e., MBPP, Hu-343

manEval), mathematical reasoning (i.e., GSM8K),344

and E-commerce customer intent detection (i.e.,345

ECID). Details can be found in Appendix C and D.346

Programming. We evaluate our approach347

on two Python code generation benchmarks348

(MBPP (Austin et al., 2021) and HumanEval (Chen349

et al., 2021)), using Pass@k metric to measure the350

percentage of problems that successfully pass all351

unit tests within k attempts (Dou et al., 2024).352

Mathematical Reasoning. For mathematical rea-353

soning task, We employ the Grade School Math 8K354

(GSM8K) dataset (Cobbe et al., 2021) for evaluat- 355

ing Meta-Reflection. We utilize the Exact Match 356

(EM) metric between the generated response and 357

the correct answer (Madaan et al., 2024). 358

E-commerce Customer Intent Detection (ECID). 359

Intelligent Customer Service (ICS) in e-commerce 360

is a key application of large language models (Ko- 361

lasani, 2023). However, no public dataset exists to 362

evaluate their performance in this area. To address 363

this, we introduce the E-commerce Customer Intent 364

Detection (ECID) dataset, featuring 1,170 metic- 365

ulously cleaned and labeled Chinese-language en- 366

tries from Taobao customer service interactions. 367

Details of the ECID can be found in Appendix C. 368

3.2 Experimental Setup 369

Models. We evaluate Meta-Reflection across var- 370

ious open-source LLMs. For the actor mod- 371

els, we utilize Qwen-2-7B-Instruct (Yang et al., 372

2024), Llama-3.1-8B-Instruct (Dubey et al., 373

2024), and CodeLlama-7B-Instruct (Roziere 374

et al., 2023). Qwen-2-72B-Instruct serves as the 375

reflector model. 376

Baselines. To evaluate the effectiveness of our 377

proposed method, we compare it with three types 378

of baselines: Common reasoning: including Zero- 379

Shot and Few-Shot approaches. PEFT meth- 380

ods: Adapter-based approaches such as LoRA (Hu 381

et al., 2021) and Llama-Adapter (Zhang et al., 382

2023), as well as Prompt-based methods like P- 383

Tuning (Liu et al., 2022). Reflection-based meth- 384

ods: Re-ReST (Dou et al., 2024) for reflection- 385

enhanced training. Additionally, we implement 386

Reflection-RAG, which generates reflections on 387

training data and employs Retrieval-Augmented 388

Generation (RAG) (Gao et al., 2023) during infer- 389

ence to select the most relevant question-specific 390

reflections. The details are in the Appendix E. 391

3.3 Main Results 392

Tables 1, 2, and 3 present the experimental results 393

across three distinct domains: programming, math- 394

ematical reasoning, and ECID. 395

Our empirical investigation reveals fundamental 396

limitations in base LLMs’ domain-specific capa- 397

bilities, as demonstrated by CodeLlama’s modest 398

40.4% performance on MBPP under the Pass@1 399

metric. This deficiency primarily stems from these 400

models’ insufficient domain knowledge and ca- 401

pabilities. While tuning with PEFT methods like 402

LoRA demonstrate potential for improvement, the 403
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MBPP HumanEval

LLaMA-3.1 CodeLlama LLaMA-3.1 CodeLlama

Methods ref Pass @ 1 Pass @ 3 Pass @ 1 Pass @ 3 Pass @ 1 Pass @ 3 Pass @ 1 Pass @ 3

Zero-Shot ✗ 58.8 68.0 40.4 49.2 62.7 68.3 41.0 47.8
Few-Shot ✗ 59.6 68.6 41.4 50.6 63.4 70.8 42.2 48.5

LoRA ✗ 60.4 69.0 41.6 54.2 62.1 72.1 43.5 52.8
P-Tuning ✗ 59.4 68.8 42.8 55.6 62.1 73.3 42.9 52.2
Llama-Adapter ✗ 59.6 68.2 45.4 56.0 62.7 73.3 42.9 53.4

Re-ReST ✓ 60.2 69.6 42.4 55.2 63.4 73.9 42.2 53.4
Reflection(RAG) ✓ 58.6 67.2 41.2 51.2 62.7 67.1 35.4 46.6

Ours ✓ 63.4 70.4 46.8 57.6 64.6 75.2 45.3 55.9

Table 1: The experimental results on two programming benchmarks: MBPP (Austin et al., 2021) and Hu-
manEval (Chen et al., 2021) datasets. We report the performance using Pass@1 and Pass@3 metrics. Here,
ref indicates the utilization of reflection mechanism. The boldface and underline fonts denote the best and second-
best performance, respectively.

Methods ref LLaMA-3.1 Qwen-2

Zero-Shot ✗ 78.4 78.1
Few-Shot ✗ 80.4 79.5

LoRA ✗ 80.7 80.0
P-Tuning ✗ 79.4 79.6

Re-ReST ✓ 82.4 84.8
Reflection(RAG) ✓ 77.7 76.7

Ours ✓ 85.3 86.7

Table 2: The experimental results on a mathematical
reasoning benchmark: GSM8K (Cobbe et al., 2021).

Methods ref LLaMA-3.1 Qwen-2

Zero-Shot ✗ 83.5 89.8
Few-Shot ✗ 85.5 90.8

LoRA ✗ 86.9 91.1
P-Tuning ✗ 85.5 90.9

Re-ReST ✓ 85.5 90.9
Reflection(RAG) ✓ 81.8 86.6

Ours ✓ 89.7 92.9

Table 3: The experimental results on ECID dataset in
E-commerce domain.

gains remain incremental—yielding mere 1.2% and404

0.2% improvements in Zero-Shot and Few-Shot set-405

tings respectively. This suggests that current super-406

vised learning paradigms, while domain knowledge407

internalization during finetuning, fail to address408

the critical need for guidance during inference.409

Recent advances in reflection-based methodolo-410

gies, particularly Re-ReST, have shown promise411

by implicitly incorporating reflective guidance412

through refined self-training data, evidenced by413

LLaMA-3.1’s 1.7% performance improvement414

over LoRA on GSM8K. However, these ap-415

proaches still neglect the crucial aspect of ex-416

plicit, granular guidance during the inference417

phase. Although leveraging RAG-retrieved reflec-418

tions as explicit guidance appears promising, em-419

pirical results on benchmarks like GSM8K and420

ECID demonstrate suboptimal performance even421

compared to common reasoning approaches. This422

degradation occurs because retrieved reflections,423

though relevant to source problems, often lack pre-424

cise applicability to similar cases and may in-425

troduce noise, particularly in mathematical tasks426

requiring fine-grained guidance. Comprehensive 427

case studies supporting these findings are presented 428

in Appendix J. Our proposed methodology ad- 429

dresses these limitations by providing explicit, fine- 430

grained reflective guidance during inference, signif- 431

icantly outperforming existing approaches across 432

all baseline metrics. 433

3.4 Inference Efficiency Analysis 434

Methods First Token Latency (↓) Overall (↓)
Retrieve LLM Total

Zero-shot − 149 ms 149 ms 5380 ms
Few-Shot − 545 ms 545 ms 5841 ms
Reflection(RAG) 642 ms 309 ms 951 ms 6114 ms

Ours 93 ms 153 ms 246 ms 5593 ms

Table 4: We analyze inference efficiency on the ECID
dataset by measuring first token latency and total gen-
eration time (Overall), with the first token latency split
into retrieval and LLM layer processing times.

We evaluate the inference efficiency of Meta- 435

Reflection, with results presented in Table 4. Com- 436

pared to existing reflection-based methods like 437
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Figure 3: Sensitivity analysis of three critical hyper-parameters: Left: Insertion layer position of the codebook;
Middle: Total number of reflective units in codebook; Right: Number of reflective units selected per inference.

Reflection-RAG that require separate encoders and438

knowledge base retrieval, our approach leverages439

LLM’s intermediate layer representations for re-440

trieval. Furthermore, RAG-based methods store441

knowledge in a discrete format, necessitating a442

large-scale knowledge base. In contrast, Meta-443

Reflection captures knowledge and reflective in-444

sights in a dense format, enabling the construc-445

tion of a smaller, more compact knowledge base,446

thereby reducing computational overhead. Our447

method achieves comparable efficiency to common448

reasoning approaches while maintaining the ben-449

efits of reflection-based reasoning, demonstrating450

its practicality for real-world applications.451

3.5 Cross-domain Transferability Analysis452

Domains Zero-Shot LoRA Ours
Source Target

Math Programming 58.8 59.8 60.6
Programming ECID 83.5 84.1 84.7
Programming Math 78.4 80.4 81.2

Table 5: Experimental results of transferability analysis.

We further conduct transferability analysis. The453

results, as presented in Table 5, demonstrate the454

robust transferability of Meta-Reflection across di-455

verse scenarios.This is primarily attributed to dif-456

ferent domains often share common knowledge,457

enabling the transfer of reflective insights. Our458

method effectively captures, stores, and leverages459

these shared insights, significantly enhancing per-460

formance during adaptation to new domains.461

3.6 Sensitive Analysis462

We perform sensitivity analysis on three critical463

hyper-parameters of Meta-Reflection: position and464

number of inserted layers, codebook size, and num-465

ber of reflective units. The experimental results are466

presented in Figure 3 and Table 6.467

Position and Number of Inserted Layers. The 468

positioning of the meta-reflection codebook layer 469

critically influences the balance between retrieval 470

quality and reflective information integration. Anal- 471

ysis from Figure 3 (Left) reveals that early-layer 472

insertion results in insufficient semantic query en- 473

coding, while late-layer placement constrains the 474

processing of retrieved reflective components. Our 475

empirical results demonstrate that an intermediate- 476

posterior position (e.g., layer 26) achieves optimal 477

performance. 478

Furthermore, Table 6 evaluates the impact of 479

varying the number of inserted layers. It shows that 480

inserting the codebook into a single layer, as in the 481

original method, outperforms multi-layer insertion. 482

Multi-layer insertion introduces instability by re- 483

trieving unprocessed reflective units at each layer, 484

limiting performance. 485

MBPP GSM8K

Single-layer Insertion (26) 63.4 85.3

Multi-layers Insertion
Layers 26-32 60.6 83.2
Layers 26,28,30,32 61.2 83.8
Every Layer 58.8 80.1

Table 6: Experiments on single-layer and multi-layers
insertion strategies.

Codebook Size. The codebook size, which rep- 486

resents the total number of reflective units, deter- 487

mines the capacity of the codebook. As shown 488

in Figure 3 (Middle), we observe that a codebook 489

size of 1024 yields optimal performance. Smaller 490

sizes may lead to underfitting, while larger sizes 491

can result in a sparse codebook, potentially causing 492

training instability. 493

Number of Reflective Units. As illustrated in 494

Figure 3 (Right), the optimal number of reflective 495

units varies proportionally with task complexity. 496
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Figure 4: Results of ablation study, examining four
key variants: ‘w/o Codebook’ (no meta-reflection code-
book), ‘w/o Sampling Strategy’ (no sampling strategy
defined in Equation 3), ‘w/o Alignment’ (no alignment
mechanism described in Equation 8), and ‘Random
Sampling’ (random sampling units instead of retrieval).

Notably, while base LLaMA-3.1 achieves a sub-497

stantial 78.4% performance on GSM8K, the in-498

herently more challenging MBPP dataset requires499

additional reflective insights to provide compre-500

hensive guidance. This observation underscores501

the relationship between task complexity and the502

requisite quantity of reflective support.503

3.7 Ablation Study504

In this section, we conduct a comprehensive abla-505

tion study to evaluate the impact of various compo-506

nents in Meta-Reflection.507

As shown in Figure 4, the meta-reflection code-508

book is highly effective in storing and retrieving re-509

flective units that guide LLMs through the problem-510

solving process. The analysis further reveals that511

both the sampling strategy and meta-reflection512

alignment mechanism are essential for maintaining513

solution diversity and integrating reflective insights,514

respectively, thus enhancing overall performance.515

Additionally, random sampling of reflective units516

significantly underperforms our original method,517

likely due to the noise introduced by the randomly518

selected units, which hinders performance.519

3.8 Visualization520

We visualize the selection frequency distribution521

of reflective units within the meta-reflection code-522

book. As shown in Figure 5, the selection patterns523

of reflective units vary significantly. Notably, cer-524

tain units exhibit higher selection frequencies, po-525

tentially reflecting commonly applicable insights,526

whereas others are selected less frequently, suggest-527

ing their specialized nature. Additional visualiza-528

tion results are provided in Appendix K.529
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Figure 5: Visualization of reflective unit selection fre-
quencies distribution in the ECID dataset. The x-axis
represents the unit indices, while the y-axis shows their
cumulative selection counts during inference.

4 Related Work 530

4.1 Reflection for Large Language Models 531

Large language models (LLMs) (Achiam et al., 532

2023; Yang et al., 2024; Dubey et al., 2024), de- 533

spite their exceptional performance, still exhibit 534

undesired behaviors such as unfaithful reasoning 535

(Turpin et al., 2024), hallucination (Rawte et al., 536

2023), and toxic generation (Zhang et al., 2024a). 537

Reflection techniques (Pan et al., 2023; Shinn et al., 538

2023; Madaan et al., 2024) address these issues 539

by utilizing feedback to guide LLMs in refining 540

their outputs. Details of reflection techniques is in 541

Appendix A.1. 542

4.2 Parameter-Efficient Fine-Tuning (PEFT) 543

PEFT methods enable adaptation of large pre- 544

trained models to downstream applications while 545

avoiding the computational costs of full parameter 546

fine-tuning (Hu et al., 2023). These methods can be 547

broadly categorized into two primary approaches: 548

adapter-based and prompt-based methods. Details 549

of these methods is in Appendix A.2. 550

5 Conclusion 551

In this paper, we introduce Meta-Reflection, a 552

novel feedback-free reflection mechanism that op- 553

erates with a single inference pass without requir- 554

ing external feedback. Our approach incorporates 555

reflective insights within a codebook structure, fa- 556

cilitating efficient storage, retrieval, and utilization 557

of historical insights to guide LLMs in problem- 558

solving tasks. To validate the practical applica- 559

bility of our method, we propose a new indus- 560

trial benchmark: E-commerce Customer Intent De- 561

tection (ECID). Comprehensive experiments con- 562

ducted across diverse domains and the ECID bench- 563

mark demonstrate the effectiveness and efficiency 564

of Meta-Reflection. 565
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6 Limitations566

This work introduces Meta-Reflection, a novel567

feedback-free reflection mechanism that operates568

with a single inference pass without requiring ex-569

ternal feedback. However, Meta-Reflection is pri-570

marily applicable to parameter-accessible LLMs571

(e.g., Qwen and LLaMA) and cannot be extended to572

models where parameters are inaccessible through573

API-only interfaces (e.g., ChatGPT and Claude).574
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A Related Work824

A.1 Reflection for Large Language Models825

Large language models (LLMs) (Achiam et al.,826

2023; Yang et al., 2024; Dubey et al., 2024), de-827

spite their exceptional performance, still exhibit828

undesired behaviors such as unfaithful reasoning829

(Turpin et al., 2024), hallucination (Rawte et al.,830

2023), and toxic generation (Zhang et al., 2024a).831

Reflection techniques (Pan et al., 2023; Shinn et al.,832

2023; Madaan et al., 2024) address these issues by833

utilizing feedback to guide LLMs in refining their834

outputs. For instance, Self-Refine (Madaan et al.,835

2024) uses a single LLM to generate, critique, and836

refine outputs, while Reflexion (Shinn et al., 2023)837

employs memory mechanisms and LLM agents to838

reflect on generations and feedback. Renze and839

Guven (2024) demonstrated the effectiveness of840

various reflection types across different domains.841

Nevertheless, reflection techniques often require842

high-quality external feedback or golden labels,843

typically unavailable during deployment (Huang844

et al., 2024; Dou et al., 2024), and frequently in-845

volve multi-agent inference processes, incurring846

significant computational costs. While Dou et al.847

(2024) incorporates reflective information through848

self-training, its implicit incorporation leads to sub-849

optimal results. In this work, we propose Meta-850

Reflection, which incorporates reflective informa-851

tion into a learnable codebook, enhancing perfor-852

mance across various tasks.853

A.2 Parameter-Efficient Fine-Tuning (PEFT)854

Parameter-Efficient Fine-Tuning (PEFT) methods855

enable adaptation of large pretrained models to856

downstream applications while avoiding the com-857

putational costs of full parameter fine-tuning (Hu858

et al., 2023). These methods can be broadly catego-859

rized into two primary approaches: adapter-based860

and prompt-based methods. Adapter-based meth-861

ods introduce additional trainable parameters to a862

frozen pretrained model, with notable implementa-863

tions including LoRA (Hu et al., 2021) and Llama-864

Adapter (Zhang et al., 2023). Prompt-based meth-865

ods transform the discrete optimization of identi-866

fying optimal hard prompts into a continuous opti-867

mization problem using soft prompts, exemplified868

by Prefix-Tuning (Li and Liang, 2021), Prompt-869

Tuning (Lester et al., 2021), and P-Tuning (Liu870

et al., 2022). In this work, we propose a lightweight871

learnable codebook module capable of storing and872

retrieving question-specific reflections, thereby en-873

hancing LLM performance across diverse tasks. 874

B Sinkhorn Algorithm and Optimal 875

Transport 876

The vanilla optimization problem of optimal trans- 877

port, as formulated in Equation 6, aims to find 878

the optimal transportation matrix Γ̃. Neverthe- 879

less, the exact minimization over Γ̃ is generally 880

computationally intractable (Arjovsky et al., 2017; 881

Genevay et al., 2018; Li et al., 2020). To address 882

this, the Sinkhorn Algorithm (Cuturi, 2013) is uti- 883

lized to approximate Γ̃. Specifically, the algorithm 884

introduces a regularization term: 885

min
Γ∈Π(r,c)

⟨Γ,D⟩F +
1

λ
Γ(logΓ− 1)︸ ︷︷ ︸

regularization term

, (9) 886

where ⟨, ⟩F denotes Frobenius inner product, and 887

λ is a hyper-parameter that controls the strength of 888

regularization. 889

With this regularization term, the optimal Γ̃ can 890

be approximated as: 891

Γ̃ = diag(v)Qdiag(u), (10) 892

where Q = e−λD, and v, u are two coefficient 893

vectors whose values can be iteratively updated as: 894

vt+1
i =

ri∑k
j=1Qijut

j

, 895

ut+1
j =

cj∑k′

i=1Qijv
t+1
i

(11) 896

The critical aspect then lies in determining the 897

marginal weights r and c, which control the to- 898

tal supplying and demanding units, respectively. 899

A larger weight indicates that the reflective unit 900

exhibits semantic similarity to the ground truth 901

reflection tokens. We define the weight as dot prod- 902

uct between its embedding and the mean pooling 903

embedding from the other set: 904

ri = max{p′T
i ·

∑k
j=1 pj

k
, 0}, 905

cj = max{pT
j ·

∑k′

i=1 p
′
i

k′
, 0} (12) 906

After obtaining the approximated optimal trans- 907

portation matrix Γ̃, we can compute the loss as 908

defined in Equation 7. 909
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C E-commerce Customer Intent910

Detection (ECID) Benchmark911

In the domain of Intelligent Customer Service912

(ICS) for e-commerce, effectively and efficiently913

discerning customers’ core intentions when they914

contact ICS for assistance is critical to enhancing915

service quality (Cheng et al., 2024; Kolasani, 2023).916

In this work, we introduce an industrial bench-917

mark, named E-commerce Customer Intent Detec-918

tion (ECID) to evaluate our proposed method. This919

dataset is in Chinese, focusing on customer interac-920

tions within major Chinese e-commerce platforms.921

The following sections detail the construction of922

this dataset and elaborate on its specific tasks.923

Task. The primary objective of the ECID dataset924

is to infer the core intention of customers seeking925

ICS assistance, based on previous communication926

records between customers and customer service927

platforms, customer purchase histories, and order928

information. The core intention refers to the cus-929

tomer’s current concern or the problem they wish to930

resolve. Specifically, each data point in the dataset931

comprises input information from five fields:932

• Customer Question. The specific issue or933

obstacle encountered by the customer.934

• Customer Request. Customer requirements,935

encompassing all objectives or desired out-936

comes expressed during interactions with the937

ICS, sellers, and platform customer service938

representatives, as well as any proactively ini-939

tiated request.940

• Solution. Proposals offered by the platform941

or sellers to address the customer’s issue.942

• Customer Attitude. The customer’s attitudes943

towards the proposed solutions, as expressed944

during communication.945

• Processing status. PThe current state of the946

customer’s submitted request.947

ECID aims to match the aforementioned input948

information with the most appropriate intention949

from a predefined list. In real-world applications,950

we categorize intentions into 36 distinct types, each951

representing a specific issue customers seek to re-952

solve. For the ECID dataset, a condensed list of953

six intentions is provided, from which the most954

relevant core intention must be selected. An illus-955

trative example is presented in the accompanying956

Figure 6.957

Question:
1. ⽤户遇到的问题：1天前⽤户反馈收到的落地⾐
帽架质量太差，太薄。

2. ⽤户的诉求：1天前⽤户因质量问题申请退货退
款，⾦额为*元，29分钟前⽤户询问退货运费承
担者。

3. 平台或商家给出的解决⽅案：商家最初提出*元
的补偿⽅案，随后建议⽤户调整置物架看看，并
告知⽤户⼚家品控不同。在⽤户坚持退货后，商
家表示会加强品控并告知⽤户运费需要⾃⾏承担。

4. ⽤户对解决⽅案表达的态度：⽤户对商家最初*
元补偿的解决⽅案表示不满，并明确表示不接受，
坚持要退货。在商家告知需要⾃⾏承担运费后，
⽤户表示强烈不满，并表示将把实际情况反馈在
评价⾥，必要时请平台介⼊处理。

5. 处理状态：当前状态卖家已经同意退款，等待买
家退货，运费卖家承担。1天前发货包裹已签收。

诉求清单列表：['A 退运费', 'B 争议处理规则', 'C 预
约上⻔取件', 'D 退货款', 'E 填写退货快递单号', 'F 
投诉物流服务问题’]

Answer: A 

Figure 6: An example of the ECID dataset.

Data Processing. The ECID dataset is derived 958

from customer service system records of the 959

Taobao e-commerce platform, collected over a sin- 960

gle day. From this collection, we randomly sam- 961

pled 30,000 data points in an unbiased manner. 962

Each data point comprises information from vari- 963

ous sources, including customer-service represen- 964

tative chat logs, customer-seller communications, 965

customer order details, and ongoing request pro- 966

cessing records. We employed a fine-tuned LLM, 967

specifically Qwen2-7B-Instruct, to extract the 968

aforementioned five fields of information from the 969

diverse sources. 970

We initially applied a rule-based method to elimi- 971

nate incomplete or inconsistent data (such as newly 972

registered users without any purchase history), re- 973

sulting in approximately 4,000 refined data points. 974

Subsequently, we utilized GPT-4-turbo-128k and 975

Qwen2-72B-Instruct for data labeling. Using a 976

voting system, we selected the most appropriate 977

intention from a predefined list of 36 intentions, 978

along with five secondary matching intentions, to 979

create a set of candidate intentions and answers for 980

each data point. To ensure high data quality, we dis- 981

carded instances where the highest voting rate was 982

below 80%. We also implemented human evalua- 983

tion, randomly sampling and verifying the accuracy 984

of answers. This rigorous process yielded 1,170 985
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high-quality data points, each accompanied by a986

Chain-of-Thought (CoT) reasoning process. The987

dataset was partitioned into a 7:3 ratio for training988

and testing.989

We conducted data anonymization to remove990

sensitive information from the dataset. Personal991

identifiable information, including customer names,992

addresses, and contact details, was redacted. Ad-993

ditionally, all monetary values within the dataset994

were masked using asterisks (*) to ensure confiden-995

tiality.996

D Public Datasets997

We evaluate our method across three public998

datasets spanning diverse domains: two program-999

ming benchmarks (MBPP and HumanEval) and1000

one mathematical reasoning dataset (GSM8K).1001

Programming. For evaluating our method on1002

programming tasks, we utilize two Python code1003

programming benchmarks: MBPP (Austin et al.,1004

2021) and HumanEval (Chen et al., 2021). The1005

MBPP dataset consists of approximately 1,0001006

Python programming problems, while HumanEval1007

encompasses 161 problems, each accompanied by1008

comprehensive unit test cases. We adhere to the1009

official train-test split for MBPP, employing its1010

training set for model training. As HumanEval1011

provides only a test set, we use it exclusively for1012

evaluation purposes. Following Dou et al. (2024),1013

we employ the Pass@k metric, which quantifies the1014

percentage of problems where the model success-1015

fully passes all unit tests within k attempts. During1016

the code generation process, in line with previous1017

work by Roziere et al. (2023), the actor model is1018

provided with the unit test cases.1019

Mathematical Reasoning. For mathematical rea-1020

soning evaluation, we employ the Grade School1021

Math 8K (GSM8K) dataset (Cobbe et al., 2021),1022

a comprehensive benchmark containing approxi-1023

mately 8,000 grade school mathematics word prob-1024

lems. This dataset is particularly valuable due to1025

its linguistic diversity and high-quality annotations,1026

featuring detailed human-curated solution trajecto-1027

ries and precise answers for each problem (Madaan1028

et al., 2024). Following standard practices, we1029

strictly adhere to the official train-test split (7,4731030

for training, 1,319 for testing) in our experimental1031

setup. Performance is evaluated using the Exact1032

Match (EM) metric, which assesses the precise cor-1033

respondence between model-generated responses1034

and ground-truth answers (Madaan et al., 2024), 1035

providing a rigorous measure of mathematical rea- 1036

soning capabilities. 1037

E Baselines 1038

We evaluate our method against three categories 1039

of baselines: Common Reasoning, Parameter- 1040

Efficient Fine-Tuning (PEFT), and Reflection- 1041

Based approaches. The specifics of these baseline 1042

implementations are detailed below: 1043

Common Reasoning Approaches. For common 1044

reasoning approaches, we evaluate both Zero-Shot 1045

and Few-Shot (2-shots) (Brown et al., 2020) strate- 1046

gies. In both settings, we employ the Chain- 1047

of-Thought (CoT) (Wei et al., 2022b) reasoning 1048

methodology to facilitate structured generation pro- 1049

cesses. 1050

Parameter-Efficient Fine-Tuning (PEFT) Ap- 1051

proaches. We implement three widely-adopted 1052

PEFT methods for model tuning: LoRA (Hu et al., 1053

2021), P-Tuning (Liu et al., 2022), and Llama- 1054

Adapter (Zhang et al., 2023). Through exten- 1055

sive hyper-parameter grid search: For LoRA, we 1056

augment the query, key, and value matrices with 1057

adapter matrices of rank {8, 16}. For P-Tuning, 1058

we experiment with prompt lengths of {16, 32, 64} 1059

and implement the MLP-based re-parameterization 1060

function (Liu et al., 2022). For Llama-Adapter, we 1061

explore adapter lengths of {32, 64} and position 1062

them within the final 15 layers of the LLM (Zhang 1063

et al., 2023). 1064

Reflection-Based Approaches. We implement 1065

two reflection-based approaches as our primary 1066

baselines: 1067

Re-ReST (Dou et al., 2024) implements a self- 1068

reflection mechanism to optimize self-training data 1069

quality. The method operates in two phases: first 1070

refining the training dataset through reflective in- 1071

corporation, then conducting model fine-tuning on 1072

the enhanced data. This approach enables implicit 1073

integration of reflective insights, allowing for im- 1074

proved performance during single-pass inference. 1075

We employ their official implementation1, adapting 1076

it to our experimental settings with corresponding 1077

datasets and base LLMs. 1078

Reflection-RAG implements a Retrieval Aug- 1079

mented Generation (RAG) framework (Gao et al., 1080

2023) for reflection-based reasoning. The method 1081

1https://github.com/PlusLabNLP/Re-ReST
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stores reflections generated from the training1082

dataset as described in Section 2.1. During infer-1083

ence, it retrieves relevant reflections based on ques-1084

tion similarity, leveraging the intuition that similar1085

questions often share comparable solution strate-1086

gies and hints. The retrieval process consists of1087

two phases for enhanced accuracy: First, we em-1088

ploy BGE-m32, a widely-adopted text embedding1089

model for RAG systems, to identify the top-6 sim-1090

ilar question-reflection pairs. Subsequently, we1091

utilize BGE-reranker-v2-m33 to re-rank these can-1092

didates and select the reflection whose associated1093

question exhibits the highest relevance to the in-1094

put query. The selected reflection then serves as1095

guidance for the LLM’s problem-solving process.1096

To optimize retrieval efficiency, we cache question1097

embedding matrices in GPU memory, significantly1098

reducing retrieval latency.1099

F Implementations Details1100

Models. To evaluate our proposed approach, we1101

employ three widely used base LLMs as Ac-1102

tor LLMs: Qwen-2-7B-Instruct4 (Yang et al.,1103

2024), Llama-3.1-8B-Instruct5 (Dubey et al.,1104

2024), and CodeLlama-7B-Instruct6 (Roziere1105

et al., 2023). Additionally, we utilize Qwen-2-72B-1106

Instruct7 as the Reflector Model in our experi-1107

ments.1108

Implementations Details. In the reflection gen-1109

eration phase, we set a maximum of 4 iteration1110

steps, discarding data that fails to solve the prob-1111

lem correctly after 4 action-reflection loops. To1112

ensure certainty, we set the reflector LLM’s tem-1113

perature to 0, eliminating sampling variability.1114

For codebook tuning, we employ grid search to1115

identify optimal hyper-parameters across various1116

tasks. The codebook size is selected from {512,1117

1024}, positioned at either the last 3rd, 6th, or 9th1118

layer. The number of selected reflective units is1119

chosen from {16, 32, 64}.1120

We implement a progressive optimization1121

paradigm to enhance model performance. Dur-1122

ing meta-reflection alignment, we set the epoch1123

to either 1 or 2 with a learning rate of 1e-4. We1124

2https://huggingface.co/BAAI/bge-m3
3https://huggingface.co/BAAI/bge-reranker-v2-m3
4https://huggingface.co/Qwen/Qwen2-7B-Instruct
5https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct
6https://huggingface.co/meta-llama/CodeLlama-7b-

Instruct-hf
7https://huggingface.co/Qwen/Qwen2-72B-Instruct

utilize the Sinkhorn Algorithm to approximate the 1125

transportation matrix, with 10 iterations to ensure 1126

accurate approximation (details in Appendix B). 1127

For supervised fine-tuning (SFT), we explore 1128

either 2 or 3 epochs with learning rates selected 1129

from {1e-4, 5e-5, 1e-5} for tuning. 1130

All experiments are conducted on servers 1131

equipped with Intel(R) Xeon(R) Platinum 8163 1132

CPUs @ 2.50GHz and NVIDIA Tesla V100 GPUs. 1133

G Inference Details 1134

In this section, we outline the inference process 1135

step by step, specifically for generating the first 1136

output token: 1137

First: The input question x is served as the input 1138

and processed by the first L layers of the LLM 1139

to generate a sequence of token representations, 1140

denoted as HL
query = [qL1 , q

L
2 , ..., q

L
m] ∈ Rm×C , 1141

where m represents the sequence length and C 1142

denotes the dimension. 1143

Second: Mean-pooling Pmean is applied to 1144

HL
query to derive the question representation h ∈ 1145

R1×C . This representation is used to retrieve k 1146

relevant reflective units ri ∈ R1×C (token-level 1147

representations enriched with reflective insights), 1148

forming the sequence P̂ref = [r1, r2, ..., rk] ∈ 1149

Rk×C . The reflection sequence is then con- 1150

catenated with the original sequence HL
query, 1151

resulting in the reflective-enhanced sequence 1152

[qL1 , q
L
2 , ..., q

L
m, r1, r2, ..., rk] ∈ R(m+k)×C . 1153

Finally: The reflective-enhanced sequence is 1154

processed through the remaining N − L layers to 1155

generate the first output token. 1156

It is important to note that the above process is 1157

executed only once at the generation of the first 1158

token. After the initial token is generated, the sub- 1159

sequent token generation follows the same process 1160

as a standard causal language model. 1161

H Training Efficiency Analysis 1162

We evaluate the training cost of Meta-Reflection. 1163

As shown in Table 7, the training cost of 1164

Meta-Reflection slightly increases compared to 1165

LoRA, primarily due to the additional alignment 1166

stage. However, this tradeoff is justified by 1167

Meta-Reflection’s superior performance and effi- 1168

cient inference capabilities, as demonstrated in Ta- 1169

bles 1, 2, 3 and Table 4, respectively. These benefits 1170

collectively make this tradeoff highly worthwhile. 1171
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Methods Time Cost (↓) Memory Cost (↓)
Alignment SFT Total

LoRA − 30.9 s 30.9 s 19.6 GB
Ours 21.9 s 17.6 s 39.5 s 20.9 GB

Table 7: We evaluate training efficiency on the MBPP
dataset by measuring both time and memory costs. The
epochs and batch size are set to 1 for each stage.

I Prompts1172

In this section, we present the domain-specific1173

prompt templates utilized in our approach for var-1174

ious task domains. We emphasize that the ‘{re-1175

flection}’ component is only integrated into the1176

prompt after the actor LLMs’ first attempt. Initial1177

trials are executed without any reflective guidance1178

to establish baseline performance.1179

I.1 Prompts for Programming Tasks1180

Prompt for Actor LLMs:
You are an AI that only responds with
python code, NOT ENGLISH. You will be
given a function signature and its docstring
by the user. Write your full implementa-
tion (restate the function signature, the class
definition, or the necessary libraries).
[Function signature]: {func_sign}
[Your code should pass these tests]: {unit
tests}
[Hint or past experience that may guide
you]: {reflection}

1181

Prompt for Reflector LLMs:
You are a Python programming assistant,
your task is to instruct a student on correct-
ing a mistake in a programming question.
You will be given:
1. A function signature.
2. The student’s implementation
3. A series of unit tests for the implementa-
tion.
Your goal is to write a few sentences to pro-
vide a corrective solution that can solve not
only this question but also a series of similar
questions. Remember point out the common
pitfalls or easily misunderstood aspects of
this problem based on the student’s incor-
rect implementation. Then the student need
this as a hint when he/she try again later.

1182

Only provide the few sentence description
in your answer, not the implementation.
Example output: ‘The hint to this program-
ming problem is ...’
[Function signature]: {func_sign}
[Function impl]: {fun_impl}
[Unit test results]: {test results}

1183

I.2 Prompts for Mathematical Reasoning 1184

Task 1185

Prompt for Actor LLMs:
You are an AI assitant, you are required to
solve mathematical question.
[Question]: {question}
[Hint or past experience that may guide
you]: {reflection}

1186

Prompt for Reflector LLMs:
You are a mathematical expert, your task is
to instruct a student on correcting a mistake
in a math question. Note that you should
ONLY provide a corrective solution that
can solve not only this question but also a
series of similar questions, and you must
not reveal the answer to prevent leaking.
Your output should only contain the solu-
tion without any explanation.
Example output: ‘For this question, you
should first calculate...‘
[Question]: {question}
[Student response]: {response}

1187

I.3 Prompts for E-commerce Customer Intent 1188

Detection Task 1189

Prompt for Actor LLMs:
你是一个来自电商平台的AI客服智能助
手，你的输入分为两部分：
##用户需求以及订单的信息，分为以下
五个字段内容： 1. 用户遇到的问题，
即用户遭遇到的异常情况或障碍； 2.用
户的诉求，即用户所有的在与助手、商
家和平台人工客服沟通过程中表达的想
要实现的目的或达成的内容以及主动发
起的申请，包括退款申请、投诉申请、
赔偿申请等； 3. 平台或商家给出的解
决方案； 4. 用户对解决方案表达的态
度； 5. 处理状态；

1190
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## 定义好的诉求清单，用列表作为输
入，其中一共有6个诉求，诉求由字
母+诉求文字表示（比如 ’B退运费’）
##你现在需要根据以上信息从诉求清单
列表中选择出最匹配的用户诉求，你的
输出应该包括： 1.你的思考过程 2.诉求
清单中最为匹配的诉求对应的字母，有
且仅有一个。
[问题]：{question}
[一些可能对你有用的提示和来自过去
的错误经验]：{reflection}

1191

Prompt for Reflector LLMs:
你是一个智能AI助手，现在需要你解决
一些电商智能助手在推断用户诉求时存
在的问题。目前输入分为三部分内容：
##用户需求以及订单的信息，分为以下
五个字段内容： 1. 用户遇到的问题，
即用户遭遇到的异常情况或障碍； 2.用
户的诉求，即用户所有的在与客服、商
家和平台人工客服沟通过程中表达的想
要实现的目的或达成的内容以及主动发
起的申请，包括退款申请、投诉申请、
赔偿申请等； 3. 平台或商家给出的解
决方案； 4. 用户对解决方案表达的态
度； 5. 处理状态；
## 定义好的诉求清单，用列表作为
输入，其中一共有6个诉求，诉求由
字母+诉求文字表示（比如 ’A 退运
费’），核心任务是根据用户需求和订
单信息选择出最匹配的诉求
##一段错误的匹配过程，其中包括思考
过程和预测的诉求
现在需要你对上述错误的匹配过程的进
行反思，并提供正确的解决方案，以指
导再次遇到类似订单情况下能够找出最
匹配的诉求。注意，你的输出不应该包
括正确答案（防止出现答案泄漏），应
该给出如何思考从而指导下一次的匹配
过程，并且保证通用性（对相似问题也
可以提供帮助）。”’
[问题]: {question}
[匹配过程]: {response}

1192

J Case Study1193

We conduct a case study on the GSM8K dataset.1194

As illustrated in Figure 7, we compare three distinct1195

methodologies. The base LLM, under Zero-Shot1196

settings, demonstrates a lack of domain-relevant1197

knowledge and fails to solve the problem without1198

external guidance. The Reflection-RAG approach 1199

retrieves similar problems from the training knowl- 1200

edge base and leverages their associated reflections 1201

as guidance. However, despite the high similarity 1202

of retrieved problems, their reflection guidance pro- 1203

cesses often deviate significantly from the required 1204

reasoning path of the given problem. This misalign- 1205

ment prevents fine-grained guidance and introduces 1206

noise, resulting in suboptimal performance. In con- 1207

trast, our proposed method achieves superior per- 1208

formance by incorporating reflective insights into 1209

the codebook and retrieving question-specific re- 1210

flective insights during inference, enabling precise 1211

step-by-step guidance for the LLM to successfully 1212

solve the problem. 1213

K Visualization 1214

We visualize the selection frequency distribution 1215

of reflective units in the meta-reflection codebook 1216

across three additional benchmark datasets from 1217

programming and mathematical reasoning domains. 1218

As shown in Figure 8, the reflective units exhibit 1219

significant variations, consistent with the findings 1220

in Section 3.8. This distribution pattern indicates 1221

that the retrieval process adaptively selects differ- 1222

ent reflective units based on the specific questions, 1223

thereby providing tailored guidance for LLMs in 1224

problem-solving tasks. 1225

Additionally, we visualize the feature distributions 1226

of reflective units in the meta-reflection codebook. 1227

Each reflective unit is first reduced to one dimen- 1228

sion through dimensionality reduction and subse- 1229

quently normalized. As shown in Figure 9, the 1230

results demonstrate diverse distributions across re- 1231

flective units, indicating their ability to capture var- 1232

ied semantic information without feature space col- 1233

lapse (Jing et al.). 1234
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Every 2 miles a car drives the tires rotate 725 times. Jeremy drives 400 miles a month. If 
each tire can undergo 10,440,000 rotations how many years before the tire needs to be 
replaced?

Question

Zero-Shot
To find out how many years before the tire needs to be replaced, we need to calculate the 
total number of rotations the tire will undergo in a year, and then divide that by the total 
number of rotations the tire can handle       ...      Now, let's divide the total number of 
rotations the tire can handle (10,440,000) by the number of rotations per year 
(2400):10,440,000 rotations / 2400 rotations/year = 4346.67 years. So, the tire will need to 
be replaced in approximately 4347 years.

Reflection-RAG

[Reflection]: For this question, you should first calculate the total distance Nina travels 
in one month and then consider the pattern of her travel distance every second month. After 
that, calculate the total distance she would travel in 2 years by considering the pattern of 
her travel distance.
To solve this problem, we need to follow these steps: ##Step 1: Calculate the total 
distance Jeremy travels in one month. Jeremy drives 400 miles a month. ## Step 
2:         ...      The number of years before the tire needs to be replaced is 10440000 / 
3480000 = 3. The final answer is: 3.

Meta-Reflection
To solve this problem, we need to follow these steps: 1. Calculate the total number of 
rotations per mile. 2. Calculate the total number of rotations per 400 miles.3. Calculate 
the total number of years before the tire needs to be replaced. Step 1: Calculate the total 
number of rotations per mile. The car drives the tires 725 times every 2 miles. To find the 
number of rotations per mile, we divide 725 by 2:725 / 2 = 362.5 rotations per mile. Step 2: 
Calculate the total number of rotations per 400 miles. Since Jeremy drives 400 miles a 
month, we multiply the number of rotations per mile by 400:362.5 * 400 = 145,000 rotations 
per month. Step 3: Calculate the total number of years before the tire needs to be replaced. 
We know that each tire can undergo 10,440,000 rotations. To find the number of months 
before the tire needs to be replaced, we divide the total number of rotations by the number 
of rotations per month:10,440,000 / 145,000 = 72 months. To convert the number of months to 
years, we divide by 12:72 / 12 = 6 years. Therefore, the tire needs to be replaced in 6 
years. #### 6.

[Similar Question]: Nina loves to travel. She tries to travel at least 400 kilometers in one 
month outside of her home country. Every second month she does twice that distance. If she 
were able to keep up with her resolution, how many kilometers would she travel during 2 
years?

Figure 7: A case study on the GSM8K dataset.

18



0 100 200 300 400 500
Units Index

0
7

14
21
28

Se
le
ct
ed

 C
ou

nt mean = 15.62

(a) MBPP

0 100 200 300 400 500
Units Index

0
3
6
9

12

Se
le
ct
ed

 C
ou

nt mean = 5.03

(b) HumanEval

0 100 200 300 400 500
Units Index

0
15
30
45
60

Se
le
ct
ed

 C
ou

nt mean = 41.22

(c) GSM8K

Figure 8: Visualization of reflective unit selection frequency distributions across three benchmark datasets in
programming and mathematical reasoning domains. A meta-reflection codebook of size 512 is uniformly maintained,
with 16 units uniformly selected per inference.
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Figure 9: Visualization of feature distributions for reflective units in the meta-reflection codebook.
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