
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRANSFORMERS ARE DEEP OPTIMIZERS: PROVABLE
IN-CONTEXT LEARNING FOR DEEP MODEL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the transformer’s capability for in-context learning (ICL) to simulate
the training process of deep models. Our key contribution is providing a positive
example of using a transformer to train a deep neural network by gradient descent
in an implicit fashion via ICL. Specifically, we provide an explicit construction of a
(2N + 4)L-layer transformer capable of simulating L gradient descent steps of an
N -layer ReLU network through ICL. We also give the theoretical guarantees for
the approximation within any given error and the convergence of the ICL gradient
descent. Additionally, we extend our analysis to the more practical setting using
Softmax-based transformers. We validate our findings on synthetic datasets for 3-
layer, 4-layer, and 6-layer neural networks. The results show that ICL performance
matches that of direct training.

1 INTRODUCTION

We study transformers’ ability to simulate the training process of deep models. This analysis is not
only practical but also timely. On one hand, transformers and deep models (Brown, 2020; Radford
et al., 2019) are so powerful, popular and form a new machine learning paradigm — foundation
models. These large-scale machine learning models, trained on vast data, provide a general-purpose
foundation for various tasks with minimal supervision (Team et al., 2023; Touvron et al., 2023;
Zhang et al., 2022). On the other hand, the high cost of pretraining these models often makes them
prohibitive outside certain industrial labs (Jiang et al., 2024; Bi et al., 2024; Achiam et al., 2023). In
this work, we aim to advance the “one-for-many” modeling philosophy of foundation model paradigm
(Bommasani et al., 2021) by considering the following research problem:

Question 1. Is it possible to train one deep model with the ICL of another foundation model?

The implication of Question 1 is profound: if true, one foundation model could lead to many others
without pertaining. In this work, we provide an affirmative example for Question 1. Specifically,
we show that transformer models are capable of simulating the training of a deep ReLU-based
feed-forward neural network with provable guarantees through In-Context Learning (ICL). Our
analysis assumes that we have well-pretrained the transformer using the data generated by the deep
network. We require the deep network to maintain consistent hyperparameters (e.g., model width
and depth) during the pretraining and testing. However, during the testing, we vary the parameter
distribution and input data distribution of the deep network to generate data for the transformer.

In ICL, the models learn to solve new tasks during inference by using task-specific examples provided
as part of the input prompt, rather than through parameter updates (Wei et al., 2023; Bubeck et al.,
2023; Achiam et al., 2023; Bai et al., 2023; Min et al., 2022; Garg et al., 2022; Brown, 2020). Unlike
standard supervised learning, ICL enables models to adapt to new tasks during inference using only
the provided examples. In this work, the new task of our interest is algorithmic approximation via
ICL (Bai et al., 2023; Zhang et al., 2023; Wang et al.). Specifically, we aim to use transformer’s ICL
capability to replace/simulate the standard supervised training algorithms for N -layer networks. To
be concrete, we formalize the learning problem of how transformers learn (i) a given function and (ii)
a machine learning algorithm (e.g., gradient descent) via ICL, following (Bai et al., 2023).

(i) ICL for Function f . Let f : Rd → R be the function of our interest. Suppose we have a dataset
Dn := {(xi, yi)}i∈[n], where {xi}i∈[n] ⊆ Rd and {yi}i∈[n] ⊆ R are the input and output of f ,
respectively. Let xn+1 be the test input. The goal of ICL is to use a transformer, denoted by T , to
predict yn+1 based on the test input and the in-context dataset autoregresively: ŷn+1 ∼ T (Dn, xn+1).
The goal is for the prediction ŷn+1 to be close to yn+1 = f(x).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(ii) ICL for Gradient Descent of a Parametrized Model f(w, ·). Bai et al. (2023) generalize (i)
to include algorithmic approximations of Gradient Descent (GD) training algorithms and explore
how transformers simulate gradient descent during inference without parameter updates. They term
the simulated GD algorithm “In-Context Gradient Descent (ICGD).” In essence, ICGD enables
transformers to approximate gradient descent on a loss function Ln(w) for a parameterized model
f(w, ·) based on a dataset Dn. Traditional gradient descent updates w iteratively as wt+1 = wt −
η∇Ln(wt). In contrast, ICGD uses a transformer T to simulate these updates within a forward
pass. Given example data Dn and test input xn+1, the transformer performs gradient steps in an
implicit fashion by inferring parameter updates through its internal representations, using input
context without explicit weight changes. Please see Section 2 for explicit formulation.

In this work, we investigate the case where f(w, ·) is a deep feed-forward neural network. We defer
the detailed problem setting to Section 2. In comparison to standard ICGD (Bai et al., 2023), ICGD
for deep feed-forward networks is not trivial. This is due to two technical challenges:
(C1) Analytical feasibility of gradient computation for these thick networks.
(C2) Explicit construction capable of approximating ICGD for such layers and their gradients.
A work similar to ours is (Wang et al.). It demonstrates that the transformer implements multiple steps
of ICGD on deep neural networks. However, it requires more layers in the transformer model and
fails to consider the Softmax-transformer. We provide a more detailed comparison in Appendix B.1.
To this end, we present the first explicit expression for gradient computation of N -layer feed-forward
network (Lemma 1). Importantly, its term-by-term tractability provides key insights for the detailed
construction of a specific transformer to train this network via ICGD (Theorem 1).
Contributions. We offer a positive early investigation of Question 1. Our contributions are threefold:
• Approximation by ReLU-Transformer. For simplicity, we begin with the ReLU-based trans-

former. For a broad class of smooth empirical risks, we construct a (2N + 4)L-layer transformer
to approximate L steps of in-context gradient descent on the N -layer feed-forward networks with
the same input and output dimensions (Theorem 1). We then extend this to accommodate varying
dimensions (Theorem 5). We also provide the theoretical guarantees for the approximation within
any given error (Corollary 1.1) and the convergence of the ICL gradient descent (Lemma 14).

• Approximation by Softmax-Transformer. We extend our analysis to the Softmax-transformer to
better reflect realistic applications. The key technique is to ensure a qualified approximation error
at each point to achieve universal approximation capabilities of the Softmax-based Transformer
(Lemma 16). We give a construction of a 4L-layer Softmax transformer to approximate L steps of
gradient descent, and guarantee the approximation and the convergence (Theorem 6).

• Experimental Validation. We validate our theory with ReLU- and Softmax-transformers, specifi-
cally, ICGD for the N -layer networks (Theorem 1, Theorem 5, and Theorem 6). We assess the ICL
capabilities of transformers by training 3-, 4-, and 6-layer networks in Appendix G. The numerical
results show that the performance of ICL matches that of training N -layer networks.

Organization. We show our main results in Theorem 1 and the informal version in Appendix A.
Section 2 presents preliminaries. Section 3 presents the problem setup and ICL approximation to
GD steps of N -layer feed-forward network based on ReLU-transformer. The appendix includes the
related works (Appendix B.1), the detailed proofs of the main text (Appendix D), ICL approximation
to GD steps of N -layer network based on Softmax-transformer (Appendix F), the experimental
results (Appendix G), and the application to diffusion models (Appendix H).

Notations. We use lower case letters to denote vectors and upper case letters to denote matrices. The
index set {1, ..., I} is denoted by [I], where I ∈ N+. For any matrices A ∈ Rn×n, let ℓp norm of
A be induced by vector ℓp-norm, defined as ∥A∥p := sup{∥Ax∥p : x ∈ Rn with ∥x∥p = 1}. For
any function f and distribution P , we denote L2(P) norm of f as ∥f∥L2(P) = E1/2

P [||f ||22]. We use
A[i, j] to denote the element in i-th row and j-th column of matrix A. For any matrices A ∈ Rm×n

and B ∈ Rm×n, let ⊙ denotes the Hadamard product: (A ⊙ B)[i, j] := A[i, j] · B[i, j]. For any
matrices A ∈ Rm×n and B ∈ Rp×q , let ⊗ denote the Kronecker product:

A⊗B :=

[
A[1, 1]B · · · A[1, n]B

...
. . .

...
A[m, 1]B · · · A[m,n]B

]
.

2 PRELIMINARIES: ICL AND ICGD
We present the ideas we built upon: In-Context Gradient Descent (ICGD).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(i) ICL for Function f . Let f : Rd → R be the function of our interest. Suppose we have a dataset
Dn := {(xi, yi)}i∈[n], where {xi}i∈[n] ⊆ Rd and {yi}i∈[n] ⊆ R are the input and output of f ,
respectively. Let xn+1 be the test input. The goal of ICL is to use a transformer, denoted by T , to
predict yn+1 based on the test input and the in-context dataset autoregresively: ŷn+1 ∼ T (Dn, xn+1).
For convenience in our analysis, we adopt the ICL notation from (Bai et al., 2023). Specifically,
we shorthand (Dn, xn+1) into an input sequence (i.e., prompt) of length n+ 1 and represent it as a
compact matrix H ∈ RD×(n+1) := [h1, . . . , hn+1] in the form:

H :=

[
x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
q1 q2 · · · qn qn+1

]
∈ RD×(n+1), qi :=

[
0D−(d+3)

1
ti

]
∈ RD−(d+1). (2.1)

Here, we choose D := dimxi+dim yi+dim qi = Θ(d). We use qi to fill in the remain D− (d+1)
entries in addition to xi ∈ Rd and yi ∈ R. The last entry ti := 1(i < n + 1) of qi is the position
indicator to distinguish the n in-context examples and the test data. The problem of “ICL for f”
is to show the existence of a transformer T that, when given H , outputs T (H) ∈ RD×(n+1) of the
same shape, and the “(d+ 1, n+ 1) entry of T (H)” provides the prediction ŷn+1. The goal is for
the prediction ŷn+1 to be close to yn+1 = f(x) measured by some proper loss.

(ii) ICL for Gradient Descent of a Parametrized Model f(w, ·). In this work, we aim to use ICL to
replace/simulate the standard supervised training procedure for N -layer neural networks. To achieve
this, we introduce the concept of In-Context Gradient Descent (ICGD) for a parameterized model.

Consider a machine learning model f(w, ·) : RDw × Rd → Rd, parametrized by w ∈ RDw . Given
a dataset Dn := {(xi, yi)}i∈[n]

iid∼ P, a typical learning task is to find parameters w⋆ such that
f(w⋆, ·) becomes closest to the true data distribution P. Then, for any test input xn+1, we predict:
ŷn+1 = f(w⋆, xn+1). To find w⋆, Bai et al. (2023) configure a transformer to implement gradient
descent on f(w, ·) through ICL, simulating optimization algorithms during inference without explicit
parameter updates. We formalize this In-Context Gradient Descent (ICGD) problem: using a
pretrained model to simulate gradient descent on f(w, ·) w.r.t. the provided context (Dn, xn+1).

Problem 1 (In-Context Gradient Descent (ICGD) on Model f(w, ·) (Bai et al., 2023)). Let ϵ > 0
and L ≥ 1. Consider a machine learning model f(w, x) : RDw × Rd → Rd parameterized by
w ∈ RDw . Given a dataset Dn := {(xi, yi)}i∈[n]

iid∼ P with (xi, yi) ∈ Rd × Rd, define the empirical
risk function:

Ln(w) :=
1

2n

n∑
i=1

ℓ(f(w, xi), yi), where ℓ : Rd × Rd → R is a loss function. (2.2)

Let W ⊆ RDw be a closed domain, and ProjW denote the projection onto W . The problem of
“ICGD on model f(w, ·)” is to find a transformer T with L blocks, each approximating one step of
gradient descent using T layers. For any input H(0) ∈ RD×(n+1) in the form of (2.1), the transformer
T (H(0)) approximates L steps of gradient descent. Specifically, for l ∈ [L] and i ∈ [n + 1], the
output at layer T l is: h(Tl)

i = [xi; yi;w
(l);0; 1; ti], where, with w(0) = 0,

w(l) = ProjW

(
w(l−1) − η

(
∇Ln(w

(l−1)) + ϵ(l−1)
))

is updated recursively, (2.3)

and ∥ϵ(l−1)∥2 ≤ ϵ represents the approximation error at step l − 1.

Problem 1 aims to find a transformers T to perform L steps gradient descent on loss Ln(w) in an
implicit fashion (i.e., no explicit parameter update). More precisely, Bai et al. (2023) configure T
with L identical blocks, each approximating one gradient descent step using T layers. In this work,
we investigate the case where f(w, ·) is an “N -layer neural network.”

Transformer. We defer standard definition of transformer to Appendix C.1 due to the page limit.

3 IN-CONTEXT GRADIENT DESCENT ON N -LAYER NEURAL NETWORKS

We now show that transformers is capable of implementing gradient descent on N -layer neural
networks through ICL. In Section 3.1, we define the N -layer ReLU neural network and state its
ICGD problem. In Section 3.2, we derive explicit gradient descent expression for N -layer NN. In
Section 3.3, we show how transformers execute gradient descent on N -layer NN via ICL.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 PROBLEM SETUP: ICGD FOR N -LAYER NEURAL NETWORK

To begin, we introduce the construction of our N -Layer Neural Network which we aims to implement
gradient descent on its empirical loss function.

Definition 1 (N -Layer Neural Network). An N -Layer Neural Network comprises N − 1 hidden
layers and 1 output layer, all constructed similarly. Let r : R → R be the activation function. For the
hidden layers: for any i ∈ [n+ 1], j ∈ [N − 1], and k ∈ [K], the output for the first j layers w.r.t.
input xi ∈ Rd, denoted by predh(xi; j) ∈ RK , is defined as recursive form:

predh(xi; 1)[k] := r(v⊤1kxi), and predh(xi; j)[k] := r(v⊤jkpredh(xi; j − 1)),

where v1k ∈ Rd and vjk ∈ RK for j ∈ {2, . . . , N − 1} are the k-th parameter vectors in the first
layer and the j-th layer, respectively. For the output layer (N -th layer), the output for the first N
layers (i.e the entire neural network) w.r.t. input xi ∈ Rd, denoted by predo(xi;w,N) ∈ Rd, is
defined for any k ∈ [d] as follows:

predo(xi;w,N)[k] := r(v⊤Nk
predh(xi;N − 1)), (3.1)

where vNk
∈ RK are the k-th parameter vectors in the N -th layer and w ∈ R2dK+(N−2)K2

denotes
the vector containing all parameters in the neural network,

w :=
[
v⊤11 , . . . , v

⊤
1K , . . . , v⊤jk , . . . v

⊤
N−11

, . . . , v⊤N−1K
, v⊤N1

, . . . , v⊤Nd

]⊤
. (3.2)

Remark 1 (Prediction Function for j-th layer on i-th Data: pi(j)). For simplicity, we abbreviate the
output from the first j-th layer of the N -layer neural networks NN with input xi as pi(j),

pi(j) :=


xi ∈ Rd, for j = 0,

predh(xi; j) ∈ RK , for j ∈ [N − 1],

predo(xi;w,N) ∈ Rd, for j = N.

(3.3)

Additionally, we define pi := [pi(1); . . . ; pi(N)] ∈ R(N−1)K+d.

We formalize the problem of using a transformer to simulate gradient descent algorithms for training
the N -layer NN defined in Definition 1, by optimizing loss (2.2). Specifically, we consider the ICGD
(Problem 1) with the parameterized model f(w, ·) := predo(·;w,N).

Problem 2 (ICGD on N -Layer Neural Networks). Let the N -layer neural networks, activation
function r, and prediction function pi(j) for all layers follow Definition 1 and Remark 1. Assume we
under the identical setting as Problem 1, considering model f(w, ·) := predo(·;w,N) and specifying
W is a closed domain such that for any j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk] ∈ RDN : ∥vjk∥2 ≤ Bv

}
. (3.4)

The problem of “ICGD on N -layer neural networks” is to find a TL layers transformer T , capable of
implementing L steps gradient descent as in Problem 1. Specifically, for any L ∈ [L], i ∈ [n+ 1],
the T l-th layer outputs h(Tl)

i = [xi; yi;w
(l);0; 1; ti], where:

w(l) = ProjW

(
w(l−1) − η

(
∇Ln(w

(l−1)) + ϵ(l−1)
))

, w(0) = 0, (3.5)

and ∥ϵ(l−1)∥2 ≤ ϵ is the error term generated from the approximation in the l-th step.

Remark 2 (Necessary for bounded domain W). For using a sum of ReLU to approximate functions
like r, which illustrated in the consequent section, we need to avoid gradient exploding. Therefore,
we require W to be a bounded domain, and utilize ProjW to project w into bounded domain W .

3.2 EXPLICIT GRADIENT DESCENT OF N -LAYER NEURAL NETWORK

Intuitively, Problem 2 asks whether there exists a transformer capable of simulating the gradient
descent algorithm on the loss function of an N -layer neural network. We answer Problem 2 by
providing an explicit construction for such a transformer T in Theorem 1. To facilitate our proof, we
first introduce the necessary notations for explicit expression of the gradient ∇wLn(w).

Definition 2 (Abbreviations). Fix i ∈ [n+1], and consider an N -layer neural network with activation
function r and prediction function pi(j) as defined in Definition 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Let Dj ∈ R denote the total number of parameters in the first j layers. By (3.2), we have:

Dj =


0, j = 0

dK, j = 1

(j − 1)K2 + dK, 2 ≤ j ≤ N − 1

(N − 2)K2 + 2dK, j = N.

• The parameter vector w :=
[
v⊤11 , . . . , v

⊤
1K , . . . , v⊤N−11

, . . . , v⊤N−1K
, v⊤N1

, . . . , v⊤Nd

]⊤
follows (3.2).

Define ϕi :=
(

∂ℓ(pi(N),yi)
∂pi(N) · ∂pi(N)

∂w

)⊤
∈ RDN . For any j ∈ [N], let Ai(j) denote the derivative

of ℓ(pi(N), yi) with respect to the parameters in the j-th layer:Ai(j) = ϕi[Dj−1 : Dj], where
ϕi[a : b] selects elements from the a-th to b-th position in ϕi.

• For activation function r(t), let r′(t) be its derivative. Define r′i(j) ∈ RK as:

r′i(j)[k] := r′(v⊤j+1k
pi(j)).

• Define r′i := [r′i(0); . . . ; r
′
i(N − 1)] and Ri(j) as:

Ri(j) :=

{
diag{r′(v⊤j+11

pi(j)), . . . , r
′(v⊤j+1K

pi(j))} ∈ RK×K , j ∈ {0, 1, . . . N − 2}
diag{r′(v⊤j+11

pi(j)), . . . , r
′(v⊤j+1d

pi(j))} ∈ Rd×d, j = N − 1.

• For any j ∈ [N], let Vj denote the parameters in the j-th layer as:

Vj :=


[
v11 , . . . , v1K

]⊤ ∈ RK×d, j = 1[
vj1 , . . . , vjK

]⊤ ∈ RK×K , j ∈ 2, . . . , N − 1[
vN1

, . . . , vNd

]⊤ ∈ Rd×K , j = N.

Definition 2 splits the gradient of Ln(w) into N parts. This makes ∇wLn(w) more interpretable and
tractable, since all parts follows a recursion formula according to chain rule. With above notations,
we calculate the gradient descent step (3.5) of N -layer neural network as follows:

Lemma 1 (Decomposition of One Gradient Descent Step). Fix any Bv, η > 0. Suppose loss function
Ln(w) on n data points {(xi, yi)}i∈[n] follows (2.2). Suppose closed domain W and projection
function ProjW(w) follows (3.4). Let Ai(j), r

′
i(j), Ri(j), Vj be as defined in Definition 2. Then the

explicit form of gradient ∇Ln(w) becomes

∇Ln(w) =
1

2n

n∑
i=1

Ai(1)
...

Ai(N)

 , (3.6)

where Ai(j) denote the derivative of ℓ(pi(N), yi) with respect to the parameters in the j-th layer,

Ai(j) =

{
(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·

[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j ̸= N

(Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j = N.

Proof Sketch. Using the chain rule and product rule, we decompose the gradient as follows:
∇wLn(w) = 1

2n

∑N
i=1[

∂pi(N)
∂w]⊤ · [∂ℓ(pi(N),yi)

∂pi(N)]⊤. Thus, we only need to compute ∂pi(N)
∂w . By

Definition 1 and the chain rule, we prove that ∂pi(N)
∂w satisfies the recursive formulation (D.4). Com-

bining these, we derive the explicit form of gradient ∇wLn(w) , and the gradient step follows directly.
Please see Appendix D.1 for a detailed proof.

Since it is hard to calculate the elements in Ai(j) in a straightforward mannar, we calculate each
parts of it successively. Specifically, we define the intermediate terms si(j) and u as follows

Definition 3 (Definition of intermediate terms). Let Ai(j), r
′
i(j), Ri(j), Vj be as defined in Defini-

tion 2. By Lemma 1, the derivative of ℓ(pi(N), yi) w.r.t the parameters in the j-th layer follows,

Ai(j) =

{
(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·

[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j ̸= N

(Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j = N.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For any t, y ∈ Rd, we define vector function u(t, y) := (∂ℓ(t,y)∂t)⊤ : Rd × Rd → Rd. Moreover, for
any j ∈ [N], i ∈ [n+ 1], we define si(j) as

si(j) :=

{
Ri(j − 1)V ⊤

j+1 . . . Ri(N − 2)V ⊤
N ·Ri(N − 1) · u(pi(N), yi), ∈ RK , j ̸= N,

Ri(N − 1) · u(pi(N), yi), ∈ Rd, j = N.

Let ⊙ denotes hadamard product. For any j ∈ [N − 1], i ∈ [N + 1], Definition 3 leads to

si(j) = r′i(j − 1)⊙ (V ⊤
j+1 · si(j + 1)), (3.7)

Moreover, by Definition 3, it holds

Ai(j) =

{[
IK×K ⊗ pi(j − 1)

]
· si(j), j ̸= N,[

Id×d ⊗ pi(N − 1)
]
· si(N), j = N.

(3.8)

3.3 TRANSFORMERS APPROXIMATE GRADIENT DESCENT OF N -LAYER NEURAL NETWORKS
WITH ICL

For using neural networks to approximate (2.2), which contains smooth functions changeable, we
need to approximate these smooth functions by simple combination of activation functions. Our key
approximation theory is using a sum of ReLUs to approximate any smooth function (Bai et al., 2023).

Definition 4 (Approximability by Sum of ReLUs, Definition 12 of (Bai et al., 2023)). Let z ∈ Rk.
We say that a function g : Rk → R is (ϵapprox, R,H,C)-approximable by sum of ReLUs if there exist
a “(H,C)-sum of ReLUs” function fH,C(z) defined as

fH,C(z) =

H∑
h=1

chσ(a
⊤
h [z; 1]) with

H∑
h=1

|ch| ≤ C, max
h∈[H]

∥ah∥1 ≤ 1, ah ∈ Rk+1, ch ∈ R,

such that supz∈[−R,R]k |g(z)− fH,C(z)| ≤ ϵapprox.

Overview of Our Proof Strategy. Lemma 1 and Definition 4 motivate the following strategy:
term-by-term approximation for our gradient descent step (3.6).

Step 1. Given (xi, w), we use N attention layers to approximate the output of the first j layers
with input xi, pi(j) := predh(xi; j) ∈ Rk (Definition 1) for any j ∈ [N]. Then we use 1
attention layer to approximate chain-rule intermediate terms r′i(j−1)[k] := r′(v⊤jkpi(j−1))
(Definition 2) for any i ∈ [n], j ∈ [N] and k ∈ [K]: Lemma 2 and Lemma 3.

Step 2. Given (r′i, pi, w), we use an MLP layer to approximate u(pi(N), yi) (Definition 3), for
i ∈ [n], and use N element-wise multiplication layers to approximate si(j) (Definition 3),
for any j ∈ [N]: Lemma 4 and Lemma 5. Moreover, Lemma 6 shows the closeness result
for approximating si(j), which leads to the final error accumulation in Theorem 1.

Step 3. Given (pi, r
′
i, gisi(j), w), we use an attention layer to approximate w−η∇Ln(w). Then we

use an MLP layer to approximate ProjW(w). And implementing L steps gradient descent
by a (2N + 4)L-layer neural network NNθ constructed based on Step 1 and 2. Finally, we
arrive our main result: Theorem 1. Furthermore, Lemma 14 shows closeness results to the
true gradient descent path.

Step 1. We start with approximation for pi(j).

Lemma 2 (Approximate pi(j)). Let upper bounds Bv, Bx > 0 such that for any k ∈ [K], j ∈
[N] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N], i ∈ [n], define

Bj
r := max

|t|≤BvB
j−1
r

|r(t)|, B0
r := Bx, and Br := max

j
Bj

r .

Let function r(t) be (ϵr, R1,M1, C1)-approximable for R1 = max{BvBr, 1}, M1 ≤ Õ(C2
1ϵ

−2
r),

where C1 depends only on R1 and the C2-smoothness of r. Then, for any ϵr > 0, there exist N
attention layers Attnθ1 , . . . ,AttnθN such that for any input hi ∈ RD takes from (2.1), they map

hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]
Attnθj−−−−→ h̃i = [xi; yi;w; pi(1); . . . ; pi(j);0; 1; ti],

where pi(j) is approximation for pi(j) (Definition 1). In the expressions of hi and h̃i, the dimension
of 0 differs. Specifically, the 0 in hi is larger than in h̃i. The dimensional difference between these 0

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

vectors equals the dimension of pi(j). Suppose function r is Lr-smooth in bounded domain W , then
for any i ∈ [n+ 1], j ∈ [N], pi(j) such that

pi(j) = pi(j) + ϵ(i, j), ∥ϵ(i, j)∥2 ≤

{
(
∑j−1

l=0 Kl/2Ll
rB

l
v)
√
Kϵr , 1 ≤ j ≤ N − 1

(
∑N−1

l=0 Kl/2Ll
rB

l
v)
√
dϵr , j = N

. (3.9)

Additionally, for any j ∈ [N], the norm of parameters Bθj defined as (C.1) such that Bθj ≤ 1+KC1.

Proof Sketch. By Definition 1, we provide term-by-term approximations for pi(j) as forward prop-
agation. Specifically, we construct Attention layers to implement forward propagation algorithm.
Then we establish upper bounds for the errors ∥pi(j)− pi(j)∥2 inductively. Finally, we present the
norms (C.1) of the Transformers constructed. Please see Appendix D.2 for a detailed proof.

Notice that the form of error accumulation in Lemma 2 is complicated. For the ease of later
presentations, we define the upper bound of coefficient in (3.9) as

Er := max
j∈[N]

∥ϵ(i, j)∥2
ϵr

= max
j∈[N]

{(
j−1∑
l=0

Kl/2Ll
rB

l
v)
√
K, (

N−1∑
l=0

Kl/2Ll
rB

l
v)
√
d}, (3.10)

such that (3.9) becomes
pi(j) = pi(j) + ϵ(i, j), ∥ϵ(i, j)∥2 ≤ Erϵr. (3.11)

Moreover, we abbreviate pi := [pi(1); . . . ; pi(N)] ∈ R(N−1)K+d, such that the output of Attnθ1 ◦
· · · ◦AttnθN is

hi = [xi; yi;w; pi;0; 1; ti]. (3.12)
Then, the next lemma approximates r′i(j) base on pi(j) obtained in Lemma 2.

Lemma 3 (Approximate r′i(j)). Let upper bounds Bv, Bx > 0 such that for any k ∈ [K], j ∈
[N] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N], i ∈ [n], define

B′j
r := max

|t|≤BvB
j−1

r′

|r′(t)|, B0
r′ := Bx, and Br′ := max

j
Bj

r′ .

Suppose function r′(t) is (ϵr′ , R2,M2, C2)-approximable for R2 = max{BvBr′ , 1}, M2 ≤
Õ(C2

2ϵ
′−2
r), where C2 depends only on R2 and the C2-smoothness of r′. Then, for any ϵr > 0, there

exist an attention layer AttnθN+1
such that for any input hi ∈ RD takes from (3.12), it maps

hi = [xi; yi;w; pi;0; 1; ti]
AttnθN+1−−−−−−→ h̃i = [xi; yi;w; pi; r

′
i;0; 1; ti],

where r′i(j) is approximation for r′i(j) (Definition 2) and r′i := [r′i(0); . . . ; r
′
i(N−1)] ∈ R(N−2)K+d.

Similar to Lemma 2, in the expressions of hi and h̃i, the dimension of 0 differs. In addition, let Er

be defined in (3.11), for any i ∈ [n+ 1], j ∈ [N], k ∈ [K], r′i(j) such that
r′i(j − 1)[k] = r′i(j − 1)[k] + ϵ(i, j, k), |ϵ(i, j, k)| ≤ ϵr′ + Lr′BvErϵr, (3.13)

where ϵr denotes the error generated in approximating r by sum of ReLUs r follows (D.5). Addition-
ally, the norm of parameters BθN+1

defined as (C.1) such that BθN+1
≤ 1 +K(N − 1)C2.

Proof Sketch. By Lemma 2, we obtain pi(j), the approximation for pi(j) (3.3). Using pi(j), we
construct an Attention layer to approximate r′i(j). We then establish upper bounds for the errors
|r′i(j)[k]− r′i(j)[k]| by applying Cauchy-Schwarz inequality and Lemma 2. Finally we present the
norms (C.1) of the Transformers constructed. Please see Appendix D.3 for a detailed proof.

Let Attnθj (j ∈ [N]) be as defined in Lemma 2, then Lemma 3 implies that for the input takes from
Problem 2, the output of Attnθ1 ◦ · · · ◦AttnθN+1

is

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]. (3.14)

Step 2. Now, we construct an approximation for u(pi(N), yi) = (∂ℓ(pi(N),yi)
∂pi(N))⊤.

Lemma 4 (Approximate u(pi(N), yi)). Let upper bounds Bv, Bx, > 0 such that for any k ∈
[K], j ∈ [N] and i ∈ [n], ∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. For any k ∈ [d], suppose function
u(t, y)[k] be (ϵl, R3,M

k
3 , C

k
3)-approximable for R3 = max{BvBr, By, 1}, M3 ≤ Õ((Ck

3)
2ϵ−2

l),

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where Ck
3 depends only on Rk

3 and the C3-smoothness of u(t, y)[k]. Then, there exists an MLP layer
MLPθN+2

such that for any input sequences hi ∈ RD takes from (3.14), it maps

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]

MLPθN+2−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i; gi;0; 1; ti],

where gi ∈ Rd is an approximation for u(pi(N), yi). For any k ∈ [d], assume u(pi(N), yi) is Ll-
Lipschitz continuous. Then the approximation gi such that,

gi[k] = u(pi(N), yi)[k] + ϵ(i, k), with |ϵ(i, k)| ≤ ϵl + LlErϵr. (3.15)
Additionally, the parameters θN+2 such that BθN+2

≤ max{R3 + 1, C3}.

Proof Sketch. By Lemma 2, we obtain pi(N), the approximation for pi(N) (3.3). Using pi(N), we
construct an MLP layer to approximate u. We then establish upper bounds for the errors |gi[k]− u[k]|
and present the norms (C.1) of Transformers constructed. See Appendix D.4 for a detailed proof.

Let Attnθj (j ∈ [N + 1]) be as defined in Lemma 2 and Lemma 3, then for any input sequences
hi ∈ RD takes from (2.1), the output of Attnθ1 ◦ · · · ◦AttnθN+1

◦MLPθN+2 is

hi = [xi; yi;w; pi; r
′
i; gi;0; 1; ti]. (3.16)

Before introducing our next approximation lemma, we define an element-wise multiplication layer,
since attention mechanisms and MLPs are unable to compute self-products (e.g., output xy from
input [x; y]). To enable self-multiplication, we introduce a function γ. This function, for any square
matrix, preserves the diagonal elements and sets all others to zero.

Definition 5 (Operator Function γ). For any square matrix A ∈ Rn×n, define γ(A) :=
diag(A[1, 1], . . . A[n, n]) ∈ Rn×n.

By Definition 5, we introduce the following element-wise multiplication layer, capable of performing
self-multiplication operations such as the Hadamard product.

Definition 6 (Element-wise Multiplication Layer). Let γ be defined as Definition 5. An element-wise
multiplication layer with m heads is denoted as Attnθ(·) with parameters θ = {Qm,Km, Vm}m∈[M].
On any input sequence H ∈ RD×n,

EWMLθ(H) = H +

m∑
i=1

(VmH) · γ((QmH)⊤(KmH)). (3.17)

where Qm,Km, Vm ∈ RD×D and γ(·) is operator function follows Definition 5. In vector form, for
for each token hi ∈ RD in H , it outputs [EWMLθ(H)]i = hi +

∑M
m=1 γ(⟨Qmhi,Kmhi⟩) · Vmhi.

In addition, we define L-layer neural networks EWMLL
θ := EWMLθ1 ◦ · · · ◦ EWMLθL .

Remark 3 (Necessary for Element-Wise Multiplication Layer). As we shall show in subsequent
sections, element-wise multiplication layer is capable of implementing multiplication in hi. Specifi-
cally, it allows us to multiply some elements in hi in Lemma 5. By Definition 7, it is impossible for
transformer layers to achieve our goal without any other assumptions.

Similar to (C.1), we define the norm for L-layer transformer EWMLL
θ as:

Bθ := max
m∈[M],l∈[L]

{∥Ql
m∥1, ∥Kl

m∥1, ∥V l
m∥1}. (3.18)

Then, given the approximations for pi(j) and r′i(j), we use N element-wise multiplication layer
(Definition 6) to approximate si(j), the chain-rule intermediate terms defined as Definition 3.

Lemma 5 (Approximate st(j)). Recall that si(j) = r′i(j−1)⊙(V ⊤
j+1 ·si(j+1)) follows Definition 3.

Let the initial input take from (3.16). Then, there exist N element-wise multiplication layers:
EWMLθN+3

, . . . ,EWMLθ2N+2
such that for input sequences, j ∈ [N],

hi = [xi; yi;w; pi; r
′
i; gi; si(N); . . . ; si(j + 1);0; 1; ti],

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

they map EWMLθ2N+3−j
(hi) = [xi; yi;w; pi; r

′
i; gi; si(N); . . . ; si(j);0; 1; ti], where the approxi-

mation si(j) is defined as recursive form: for any i ∈ [n+ 1], j ∈ [N],

si(j) :=

{
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1)), j ∈ [N − 1]

r′i(N − 1)⊙ gi, j = N.
(3.19)

Additionally, for any j ∈ [N], BθN+2+j
defined in (C.1) satisfies BθN+2+j

≤ 1.

Proof Sketch. By Lemma 2 and Lemma 3, we obtain pi(j) and r′i(j), the approximation for pi(j)
(3.3) and r′i(j) respectively. Using pi(j) and r′i(j), we construct N element-wise multiplication
layers to approximate si(j). We then present the norms (3.18) of the EWMLs constructed. Please
see Appendix D.5 for a detailed proof.

Let Attnθj (j ∈ [N + 1]),MLPθN+2
be as defined in Lemma 2, Lemma 3 and Lemma 4 respectively.

Define si := [si(N); . . . ; si(1)] ∈ R(N−1)K+d, then for any input sequences hi ∈ RD takes from
Problem 2, the output of neural network

Attnθ1 ◦ · · · ◦AttnθN+1
◦MLPθN+2

◦ EWMLθN+3
◦ · · · ◦ EWMLθ2N+1

, (3.20)
is

hi = [xi; yi;w; pi; r
′
i; si;0; 1; ti]. (3.21)

For the sake of simplicity, we consider ReLU Attention layer and MLP layer are both a special kind
of transformer. In this way, by Definition 9, (3.20) becomes

TFN+2
θ ◦ EWMLN−1

θ .

Next we calculate the error accumulation |si(j)[k]− si(j)[k]| based on Lemma 3 and Lemma 4.

Lemma 6 (Error for si(j)). Suppose the upper bounds Bv, Bx > 0 such that for any k ∈ [K], j ∈
[N] and i ∈ [n], ∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. Let r′i(j) ∈ RK such that r′i(j)[k] :=
r′(v⊤j+1k

pi(j)) follows Definition 2. Let si(j) = Ri(j − 1)V ⊤
j+1 . . . Ri(N − 2)V ⊤

N · Ri(N − 1)u

follows Definition 3. Let r′i(j), gi, si(j) be the approximations for r′i(j), u(pi(N), yi), si(j) follows
Lemma 3, Lemma 4 and Lemma 5 respectively. Let Br′ be the upper bound of r′i(j)[k] and r′i(j)[k]
as defined in Lemma 3. Let Bl be the upper bound of gi and u(pi(N), yi) as defined in Lemma 4.
Then for any i ∈ [n+ 1], j ∈ [N], k ∈ [K],

si(j)[k] ≤ Bs, and |si(j)[k]− si(j)[k]| ≤ Er
s ϵr + Er′

s ϵr′ + El
sϵl, where,

P := max{
√
K,

√
d} (3.22)

Bs := max
j∈[N]

{(P ·Br′Bv)
N−jBr′Bl}, (3.23)

Er
s := max

j∈[N]
{Lr′ErPBsB

2
v [

N−j−1∑
l=0

(Br′BvP)l] + (Br′BvP)N−j(BlLr′BvEr +Br′LlEr)},

Er′

s := max
j∈[N]

{PBsBv[

N−j−1∑
l=0

(Br′BvP)l] + (Br′BvP)N−jBl},

El
s := max

j∈[N]
{(Br′BvP)N−jBr′}. (3.24)

Above, Bs is the upper bound of si(j)[k] and Er
s , E

r′

s , El
s are the coefficients of ϵr, ϵ′r, ϵl in the upper

bounds of |si(j)[k]− si(j)[k]|, respectively.

Proof Sketch. By Lemma 5, we manage to approximate si(j) by si(j). By triangle inequality,
we have |si(j)[k]− si(j)[k]| ≤ |r′i(n− 1)[k]− r′i(n− 1)[k]| ·

∣∣v⊤n+1k
si(n+ 1)

∣∣+ |r′i(n− 1)[k]| ·∣∣(v⊤n+1k
si(n+ 1))− (v⊤n+1k

si(n+ 1))
∣∣. We bound these four terms separately. By Lemma 3,

|r′i(n− 1)[k]− r′i(n− 1)[k]| is bounded by ϵr′ + Lr′BvErϵr. We then use induction to establish
upper bounds for si(j)[k] and |si(j)[k]− si(j)[k]|. See Appendix D.6 for a detailed proof.

Lemma 6 offers the explicit form of the error |si(j)[k]− si(j)[k]|, which is crucial for calculating
the error ∥∇wLn(w)−∇wLn(w)∥2 in Theorem 1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Step 3. Combining the above, we prove the existence of a neural network, that implements L
in-context GD steps on our N -layer neural network. And finally we arrive our main result: a neural
network T for Problem 2.
Theorem 1 (In-Context Gradient Descent on N -layer NNs). Fix any Bv, η, ϵ > 0, L ≥ 1. For
any input sequences takes from (2.1), their exist upper bounds Bx, By such that for any i ∈ [n],
∥yi∥2 ≤ By, ∥xi∥2 ≤ Bx. Assume functions r(t), r′(t) and u(t, y)[k] are Lr, Lr′ , Ll-Lipschitz
continuous. Suppose W is a closed domain such that for any j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk] ∈ RDN : ∥vjk∥2 ≤ Bv

}
,

and ProjW project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer
with hidden dimension Dw parameters ∥θ∥ ≤ Cw. If functions r(t), r′(t) and u(t, y)[k] are C4-
smoothness, then for any ϵ > 0, there exists a transformer model NNθ with (2N +4)L hidden layers
consists of L neural network blocks TFN+2

θ ◦ EWMLN
θ ◦ TF2

θ,

NNθ := TFN+2
θ ◦ EWMLN

θ ◦ TF2
θ ◦ . . . ◦ TF

N+2
θ ◦ EWMLN

θ ◦ TF2
θ,

such that the heads number M l, parameter dimensions Dl, and the parameter norms Bθl suffice

max
l∈[(2N+4)L]

M l ≤ Õ(ϵ−2), max
l∈[(2N+4)L]

Dl ≤ O(NK2) +Dw, max
l∈[(2N+4)L]

Bθl ≤ O(η) + Cw + 1,

where Õ(·) hides the constants that depend on d,K,N , the radius parameters Bx, By, Bv and
the smoothness of r and ℓ. And this neural network such that for any input sequences H(0), take
from (2.1), NNθ(H

(0)) implements L steps in-context gradient descent on risk Eqn (2.2): For every
l ∈ [L], the (2N + 4)l-th layer outputs h((2N+4)l)

i = [xi; yi;w
(l);0; 1; ti] for every i ∈ [n+ 1], and

approximation gradients w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

Proof Sketch. Let the first 2N + 2 layers of NNθ are Transformers and EWMLs constructed in
Lemma 2, Lemma 3, Lemma 4, and Lemma 5. Explicitly, we design the last two layers to implement
the gradient descent step (Lemma 1). We then establish the upper bounds for error ∥∇wLn(w)−
∇wLn(w)∥2, where ∇wLn(w), derived from the outputs of NNθ, approximates ∇wLn(w). Next,
for any ϵ > 0, we select appropriate parameters ϵl, ϵr and ϵr′ to ensure that ∥∇wLn(w

(l−1)) −
∇wLn(w

(l−1))∥2 ≤ ϵ holds for any l ∈ [L]. Please see Appendix D.7 for a detailed proof.

As a direct result, the neural networks NNθ constructed earlier is able to approximate the true gradient
descent trajectory {wl

GD}l≥0, defined by w0
GD = 0 and wl+1

GD = wl
GD − η∇wLn(w

l
GD) for any

l ≥ 0. Consequently, Theorem 1 motivates us to investigate the error accumulation under setting

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ represents error terms. Moreover, Corollary 1.1 shows NNθ constructed in
Theorem 1 implements L steps ICGD with exponential error accumulation to the true GD paths.

Corollary 1.1 (Error for implementing ICGD on N -layer neural network). Fix L ≥ 1, under the
same setting as Theorem 1, (2N + 4)L-layer neural networks NNθ approximates the true gradient
descent trajectory {wl

GD}l≥0 ∈ RDN with the error accumulation ∥wl −wl
GD∥2 ≤ L−1

f (1+nLf)
lϵ,

where Lf denotes the Lipschitz constant of Ln(w) within W .

Proof. Please see Appendix D.8 for a detailed proof.

4 DISCUSSION AND CONCLUSION
We provide an explicit characterization of the ICL capabilities of a transformer model in approxi-
mating the gradient descent training process of a N -layer feed-forward neural network. Our results
include approximation (Theorem 1) and convergence (Corollary 1.1) guarantees. We further extend
our analysis in two ways: (i) from N -layer networks with the same input and output dimensions
to scenarios with arbitrary dimensions (Appendix E); (ii) from ReLU-transformers (aligned with
(Bai et al., 2023)) to more practical Softmax-transformers for ICGD of N -layer neural network
(Appendix F). We support our theory with numerical validations in Appendix G, and apply our results
to learn the score function of the diffusion model through ICL in Appendix H. Please see the related
works, a detailed comparison with (Wang et al.), broader impact, and limitations in Appendix B.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Stanley H Chan. Tutorial on diffusion models for imaging and vision. arXiv preprint
arXiv:2403.18103, 2024.

Mingda Chen, Jingfei Du, Ramakanth Pasunuru, Todor Mihaylov, Srini Iyer, Veselin Stoyanov, and
Zornitsa Kozareva. Improving in-context few-shot learning via self-supervised training. arXiv
preprint arXiv:2205.01703, 2022.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference on
Machine Learning, pages 4672–4712. PMLR, 2023.

Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview of diffusion models: Ap-
plications, guided generation, statistical rates and optimization. arXiv preprint arXiv:2404.07771,
2024.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers. arXiv
preprint arXiv:2212.10559, 2022.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Pre-training to learn in context. arXiv preprint
arXiv:2305.09137, 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Funda-
mental limits of prompt tuning transformers: Universality, capacity and efficiency. arXiv preprint,
2024a. To appear.

Jerry Yao-Chieh Hu, Weimin Wu, Yi-Chen Lee, Yu-Chao Huang, Minshuo Chen, and Han Liu. On
statistical rates of conditional diffusion transformer: Approximation and estimation. arXiv preprint,
2024b. To appear.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
weight matrices universal approximators? In The Twelfth International Conference on Learning
Representations (ICLR), 2024.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and
weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages
11048–11064, 2022.

Abhishek Panigrahi, Sadhika Malladi, Mengzhou Xia, and Sanjeev Arora. Trainable transformer in
transformer. arXiv preprint arXiv:2307.01189, 2023.

Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-context learning through the bayesian prism.
arXiv preprint arXiv:2306.04891, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Itay Safran and Ohad Shamir. Depth-width tradeoffs in approximating natural functions with neural
networks. In International conference on machine learning, pages 2979–2987. PMLR, 2017.

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Victoria Lin, Noah A Smith,
Luke Zettlemoyer, Scott Yih, and Mike Lewis. In-context pretraining: Language modeling beyond
document boundaries. arXiv preprint arXiv:2310.10638, 2023.

Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim,
Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, et al. On the effect of pretraining
corpora on in-context learning by a large-scale language model. arXiv preprint arXiv:2204.13509,
2022.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pages 574–584. PMLR,
2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2020b.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151–35174. PMLR, 2023.

Zhijie Wang, Bo Jiang, and Shuai Li. In-context learning on function classes unveiled for transformers.
In Forty-first International Conference on Machine Learning.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. Advances in
Neural Information Processing Systems, 36, 2024.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee,
Sang-goo Lee, and Taeuk Kim. Ground-truth labels matter: A deeper look into input-label
demonstrations. arXiv preprint arXiv:2205.12685, 2022.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

A Informal Version of Results 15

B Related Works, Broader Impact and Limitations 15
B.1 Related Works . 15
B.2 Broader Impact . 16
B.3 Limitations . 16

C Supplementary Theoretical Backgrounds 18
C.1 Transformers . 18
C.2 ReLU Provably Approximates Smooth k-Variable Functions 18

D Proofs of Main Text 20
D.1 Proof of Lemma 1 . 20
D.2 Proof of Lemma 2 . 21
D.3 Proof of Lemma 3 . 24
D.4 Proof of Lemma 4 . 26
D.5 Proof of Lemma 5 . 27
D.6 Proof of Lemma 6 . 28
D.7 Proof of Theorem 1 . 30
D.8 Proof of Corollary 1.1 . 33

E Extension: Different Input and Output Dimensions 35

F Extension: Softmax Transformer 37
F.1 Universal Approximation of Softmax Transformer 37
F.2 In-Context Gradient Descent with Softmax Transformer 37
F.3 Proof of Theorem 6 . 38
F.4 Proof of Lemma 16 . 38

G Experimental Details 47
G.1 Experiments for Objectives 1 and 2 . 47

G.1.1 Performance of ReLU Transformer. 48
G.1.2 Performance of Softmax Transformer. 48

G.2 Experiments for Objective 3 . 48
G.3 Experiments for Objective 4 . 49

H Application: ICL for Diffusion Score Approximation 51
H.1 Score Matching Generative Diffusion Models . 51
H.2 ICL for Score Approximation . 51

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A INFORMAL VERSION OF RESULTS

In this section, we show the informal version of our main results.

Theorem 2 (ICGD on N -layer NNs, informal version of Theorem 1). Assume functions r(t), r′(t)
and u(t, y)[k] (Definition 1) are C4-smoothness. Let all parameter and data are bounded, then their
exist a explicit constructed transformer capable of solving Problem 1 on N -layer NNs.

Theorem 3 (ICGD on General Risk Function, informal version of Theorem 6). Assume all parameters
and data are bounded. Let l(w, xi, yi) be a loss function with L-Lipschitz gradient. Let Ln(w) =
1
n

∑n
i=1 ℓ(w, xi, yi) denote the empirical loss function, then there exists a transformer NNθ, such

that for any input sequences H(0), take from (2.1), NNθ(H
(0)) solves Problem 1 on Ln(w).

B RELATED WORKS, BROADER IMPACT AND LIMITATIONS

In this section, we show the related works, broader impact and limitations.

B.1 RELATED WORKS

In-Context Learning. Large language models (LLMs) demonstrate the in-context learning (ICL)
ability (Brown, 2020), an ability to flexibly adjust their prediction based on additional data given in
context. In recent years, a number of studies investigate enhancing ICL capabilities (Chen et al., 2022;
Gu et al., 2023; Shi et al., 2023), exploring influencing factors (Shin et al., 2022; Yoo et al., 2022), and
interpreting ICL theoretically (Xie et al., 2021; Wies et al., 2024; Panwar et al., 2023; Li et al., 2023;
Bai et al., 2023; Dai et al., 2022). The works most relevant to ours are as follows. (Von Oswald et al.,
2023) showed that linear attention-only Transformers with manually set parameters closely resemble
models trained via gradient descent. (Bai et al., 2023) providing a more efficient construction for in-
context gradient descent and established quantitative error bounds for simulating multi-step gradient
descent. However, these results focused on simple ICL algorithms or specific tasks like least squares,
ridge regression, and gradient descent on two-layer neural networks. These algorithms are inadequate
for practical applications. For example: (i) Approximating the diffusion score function requires
neural networks with multiple layers (Chen et al., 2023). (ii) Approximating the indicator function
requires at least 3-layer networks (Safran and Shamir, 2017). Therefore, the explicit construction
of transformers to implement in-context gradient descent (ICGD) on deep models is necessary to
better align with real-world in-context settings. Our work achieves this by analyzing the gradient
descent on N -layer neural networks through the use of ICL. We provide a more efficient construction
for in-context gradient descent. Furthermore, we extend our analysis to Softmax-transformer in
Appendix F to better align with real-world uses.

In-Context Gradient Descent on Deep Models (Wang et al.; Panigrahi et al., 2023). A work
similar to ours is (Wang et al.). It constructs a family of transformers with flexible activation functions
to implement multiple steps of ICGD on deep neural networks. This work emphasizes the generality
of activation functions and demonstrates the theoretical feasibility of such constructions. Our work
adopts a different approach by enhancing the efficiency of transformers and better aligning with
practical applications. We introduce the following novelties:
• More structured and efficient transformer architecture. While the work (Wang et al.) uses a
O(N2L)-layer transformer to approximate L gradient descent steps on N -layer neural networks,
our approach achieves more efficient simulation for ICGD. We approximate specific terms in the
gradient expression to reduce computational costs, requiring only a (2N+4)L-layer transformer for
L gradient descent steps. Our method focuses on selecting and approximating the most impactful
intermediate terms in the explicit gradient descent expression (Lemmas 3 to 5), optimizing layer
complexity to O(NL).

• Less restrictive input and output dimensions for N -layer neural networks. The work (Wang
et al.) simplifies the output of N -layer networks to a scalar. Our work expands this by considering
cases where output dimensions exceed one, as detailed in Appendix E. This includes scenarios
where input and output dimensions differ.

• More practical transformer model. The work (Wang et al.) discusses activation functions in the
attention layer that meet a general decay condition ((Wang et al., Definition 2.3)) without consid-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

ering the Softmax activation function. We extend our analysis to include Softmax-transformers.
Our analysis reflects more realistic applications, as detailed in Appendix F.

• More advanced and complicated applications. The work (Wang et al.) discusses the applications
to functions, including indicators, linear, and smooth functions. We explore more advanced and
complicated scenarios, i.e., the score function in diffusion models discussed in Appendix H. The
score function (Chen et al., 2023) falls outside the smooth function class. This enhancement
broadens the applicability of our results.

Another work similar to ours is (Panigrahi et al., 2023). It proposes a new efficient construction,
Transformer in Transformer (TINT), to allow a transformer to simulate and finetune more complex
models (e.g., one transformer). The main distinction between ours and (Panigrahi et al., 2023)
lies in the different aims: Our approach focuses on using a standard transformer for the simulator
(with a minor modification: the “element-wise multiplication layer”), and we provide a theoretical
understanding of how a standard transformer can learn the ICGD of an N -layer network using ICL.
In contrast, the work (Panigrahi et al., 2023) aims to build even stronger transformers by introducing
several structural modifications that enable running gradient descent on auxiliary transformers. While
it demonstrates in-context gradient descent for a more advanced model, i.e., one transformer, our
work offers the following potential advantages:

• Explicit transformer construction. We provide an explicit construction of the transformer,
whereas the work (Panigrahi et al., 2023) does not detail the explicit construction of model
parameters within their transformer.

• Exact gradient descent. We compute the exact and explicit gradient descent for an N -layer
network (Lemma 1). Building on this, we employ the transformer’s ICL to perform gradient descent
on all parameters. However, the work (Panigrahi et al., 2023) stops the gradient computation
through attention scores in the self-attention layer and only updates the value parameter in the
self-attention module. Additionally, it uses Taylor expansion to approximate the gradient.

• Rigorous error and convergence guarantees. We provide rigorous gradient descent approxima-
tion errors (for multiple steps) and convergence guarantees for the ICGD on an N -layer network
(Corollary 1.1 and Lemma 14). However, the work (Panigrahi et al., 2023) only presents the
gradient approximation error for each specific part of the parameters in a single step.

• Attention layer better aligned with practice. Our analysis is based on ReLU-attention (Theo-
rem 1) or Softmax-attention (Theorem 6), whereas the work (Panigrahi et al., 2023) utilizes linear
attention. Our choice of attention layer better aligns with practical applications.

B.2 BROADER IMPACT

This theoretical work aims to shed light on the foundations of large transformer-based models and is
not expected to have negative social impacts.

B.3 LIMITATIONS

Our work has the following four limitations:

• Although we provide a theoretical guarantee for the ICL of the Softmax-Transformer to ap-
proximate gradient descent in N -layer NN, characterizing the weight matrices construction in
Softmax-Transformer remains challenging. This motivates us to rethink transformer universality
and explore more accurate proof techniques for ICL in Softmax-Transformer, which we leave for
future work.

• The hidden dimension and MLP dimension of the transformer in Theorem 1 are both Õ(NK2) +
Dw, which is very large. The reason for the large dimensions is that if we use ICL to perform
ICGD on the N -layer network, we need to allow the transformer to realize the N -layer network
parameters. This means that it is reasonable for the input dimension to be so large. However, it is
possible to reduce the hidden dimension and MLP dimension of the transformer through smarter
construction. We leave this for future work.

• The generalization capabilities are limited compared with traditional transformers. In our setting,
the pretraining task refers to using in-context examples generated by an N -layer network for a
given N . Specifically, during pretraining, the distribution of the N -layer network parameters is
predetermined (e.g., N(0, I)). The input data distribution of N -layer network for generating the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

in-context examples is also predetermined (e.g., N(−2, I)). The generalization capabilities include
the following two aspects: (i) Varying the input data distribution for the N -layer network to generate
the in-context examples. For example, we change the input data distribution from N(−2, I) to
0.9N(−2, I) + 0.1N(2, I) during the testing in Appendix G.1. (ii) Varying the distribution of the
N -layer network parameters. For example, we change the distribution from N(0, I) to N(0.5, I)
in Appendix G.2. The above points lead to differences between the distributions of in-context
examples during pretraining and testing. However, we must generate the in-context examples by
the N -layer network with the same hyperparameters, including the network width and depth. We
leave the theoretical analysis of broader generalization capabilities for future work.

• In theory, the FLOPs (Hoffmann et al., 2022) required to perform one forward pass of the trans-
former are greater than those required for the direct training of an N -layer network. (i) For the
forward pass of the transformer, the FLOPs for in-context learning (ICL) are O(nLN3K5/ϵ2),
where ϵ is the approximation error in the sum of ReLU. (ii) For direct training of the N -layer
network, the FLOPs without ICL are O(nLNK2). Therefore, the FLOPs required for ICL ex-
ceed those needed for direct training of the N -layer network. However, experimental results in
Appendix G demonstrate that the transformer with ICL can achieve the performance of a trained
6-layer network using fewer FLOPs in practice (3.3 billion vs. 7.6 billion FLOPs). This finding
encourages further exploration of more efficient architectures. We also leave this topic for future
research.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C SUPPLEMENTARY THEORETICAL BACKGROUNDS

Here we present some ideas we built on.

C.1 TRANSFORMERS

Lastly, we introduce key components for constructing a transformer for ICGD: ReLU-Attention,
MLP, and element-wise multiplication layers. We begin with the ReLU-Attention layer.

Definition 7 (ReLU-Attention Layer). For any input sequence H ∈ RD×n, an M -head ReLU-
attention layer with parameters θ = {Qm,Km, Vm}m∈[M] outputs

Attnθ(H) := H +
1

n

M∑
m=1

(VmH) · σ((QmH)⊤(KmH)),

where Qm,Km, Vm ∈ RD×D and σ(·) is element-wise ReLU activation function. In vector form, for
each token hi ∈ RD in H , it outputs [Attnθ(H)]i = hi+

1
n

∑M
m=1

∑n
s=1 σ(⟨Qmhi,Kmhs⟩)·Vmhs.

Notably, Definition 7 uses normalized ReLU activation σ/n, instead of the standard Softmax. We
adopt this for technical convenience following (Bai et al., 2023). Next we define the MLP layer.

Definition 8 (MLP Layer). For any input sequence H ∈ RD×n, an d′-hidden dimensions MLP
layer with parameters θ = (W1,W2) outputs MLPθ(H) := H +W2σ(W1H), where W1 ∈ Rd′×D,
W2 ∈ RD×d′

and σ(·) : R → R is element-wise ReLU activation function. In vector form, for each
token hi ∈ RD in H , it outputs MLPθ(H)i := hi +W2σ(W1hi).

Then, we consider a transformer architecture with L ≥ 1 transformer layers, each consisting of a
self-attention layer followed by an MLP layer.

Definition 9 (Transformer). For any input sequence H ∈ RD×n, an L-layer transformer with
parameters θ = {θAttn, θMLP} outputs

TFL
θ (H) := MLP

θ
(L)
mlp

◦Attn
θ
(L)
attn

. . .MLP
θ
(1)
mlp

◦Attn
θ
(1)
attn

(H),

where θ = {θAttn, θMLP} consists of Attention layers θAttn = {(Ql
m,Kl

m, V l
m)}l∈[L],m∈[M l] and

MLP layers θMLP = {(W l
1,W

l
2)}l∈[L]. Above, for any l ∈ [L],m ∈ [M l], Ql

m,Kl
m, V l

m ∈ RD×D

and (W l
1,W

l
2) ∈ Rd′×D × RD×d′

In this section, we consider ReLU Attention layer and MLP layer
are both a special kind of 1-layer transformer, which is for technical convenience.

For later proof use, we define the norm for L-layer transformer TFθ as:

Bθ := max
l∈[L]

{
max
m∈[M]

{
∥Ql

m∥1, ∥Kl
m∥1

}
+

m∑
i=1

∥V l
m∥1 + ∥W1∥1 + ∥W2∥1

}
. (C.1)

The choice of operation norm and max/sum operation is for convenience in later proof only, as our
result depends only on Bθ.

C.2 RELU PROVABLY APPROXIMATES SMOOTH k-VARIABLE FUNCTIONS

Following lemma expresses that the smoothness enables the approximability of sum of ReLU.

Lemma 7 (Approximating Smooth k-Variable Functions, modified from Proposition A.1 of (Bai
et al., 2023)). For any ϵ, Cl > 0, R ≥ 1. If function g : Rk → R such that for s := ⌈(k − 1)/2⌉+ 1,
g is a Cs function on Bk

∞(R), and for all i ∈ {0, 1, . . . , s},

sup
z∈Bk

∞(R)

∥∇ig(z)∥∞ ≤ Li, max
0≤i≤s

LiR
i ≤ Cl,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

then function g is (ϵ, R,H,C)-approximable by sum of ReLUs (Definition 4) with H ≤
C(k)C2

l log(1 + Cl/ϵ)/ϵ
2 and C ≤ C(k)Cl where C(k) is a constant that depends only on k.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D PROOFS OF MAIN TEXT

D.1 PROOF OF LEMMA 1

Lemma 8 (Lemma 1 Restated: Decomposition of One Gradient Descent Step). Fix any Bv, η > 0.
Suppose loss function Ln(w) on n data points {(xi, yi)}i∈[n] follows (2.2). Suppose closed domain
W and projection function ProjW(w) follows (3.4). Let Ai(j), r

′
i(j), Ri(j), Vj be as defined in

Definition 2. Then the explicit form of gradient ∇Ln(w) becomes

∇Ln(w) =
1

2n

n∑
i=1

Ai(1)
...

Ai(N)

 ,

where Ai(j) denote the derivative of ℓ(pi(N), yi) with respect to the parameters in the j-th layer,

Ai(j) =

{
(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·

[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j ̸= N

(Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j = N.

Proof of Lemma 1. We start with calculating ∇wLn(w). By chain rule and (2.2),

∇wLn(w)︸ ︷︷ ︸
RDN×1

=
1

2n

n∑
i=1

[
∂

∂w
pi(N)]⊤︸ ︷︷ ︸

RDN×d

· [∂

∂pi(N)
ℓ(pi(N), yi)]

⊤︸ ︷︷ ︸
Rd×1

(
By (2.2) and chain rule

)

Thus we only need to calculate ∂
∂wpi(N). For a vector x and a function r : R → R, we use r(x) to

denote the vector that i-th coordinate is r(xi). Let Ri(j), Vj follows Definition 2, then it holds

∂pi(N)

∂w︸ ︷︷ ︸
Rd×DN

=
∂r(

Rd×K︷︸︸︷
VN ·

RK︷ ︸︸ ︷
pi(N − 2))

∂w︸ ︷︷ ︸
Rd×DN

(
By Definition 1

)

=
∂r(VN · pi(N − 1))

∂VN · pi(N − 1)︸ ︷︷ ︸
Rd×d

· ∂VN · pi(N − 1)

∂w︸ ︷︷ ︸
Rd×DN

(
By chain rule

)

= diag{r′(v⊤N1
pi(N − 1)), . . . , r′(v⊤NK

pi(N − 1))} · ∂VN · pi(N − 1)

∂w(
By Definition 2

)
= Ri(N − 1) · ∂VN · pi(N − 1)

∂w
. (D.1)

Notice that for any k ∈ [d], vNk
is a part of w, thus

∂vNk

∂w
= [

DN−1+(k−1)K︷︸︸︷
0

K︷︸︸︷
I

DN−DN−1−kK︷︸︸︷
0] ∈ Rd×DN . (D.2)

Therefore, letting ⊗ denotes Kronecker product, it holds

∂VN · pi(N − 1)

∂w

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

=


v⊤N1

· ∂pi(N−1)
∂w + pi(N − 1)⊤ · ∂vN1

∂w
...

v⊤Nd
· .∂pi(N−1)

∂w + pi(N − 1)⊤ · ∂vNd

∂w

 (
By chain rule and product rule

)

= VN · ∂pi(N − 1)

∂w
+
[
0DN−1

; IK×K ⊗ pi(N − 1)⊤
]
, (D.3)

where the last step follows from the definition of VN (i.e., Definition 2) and (D.2).

Substituting (D.3) into (D.1), we obtain

∂pi(N)

∂w
= Ri(N − 1) · (VN · ∂pi(N − 1)

∂w
+
[
0DN−1

; Id×d ⊗ pi(N − 1)⊤
]
).

Similarly, for any j ∈ [N], we can proof

∂pi(j)

∂w
= Ri(j − 1) · (Vj ·

∂pi(j − 1)

∂w
+
[
0Dj−1

; IK×K ⊗ pi(j − 1)⊤; 0DN−Dj

]
). (D.4)

By the recursion formula (D.4), for any j ∈ [N − 1], we calculate Ai(j) as follows,

Ai(j) =

((
∂ℓ(pi(N), yi)

∂pi(N)
· ∂pi(N)

∂w

)⊤
)
[Dj−1 : Dj]

(
By Definition 2

)
= (

∂pi(N)

∂w
)⊤ · (∂ℓ(pi(N), yi)

∂pi(N)
)⊤[Dj−1 : Dj]

(
By transpose property

)
= (

∂pi(N)

∂w
)⊤[∗, Dj−1 : Dj] · (

∂ℓ(pi(N), yi)

∂pi(N)
)⊤

= (Ri(N − 1) · VN · . . . ·Ri(j − 1) ·
[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N), yi)

∂pi(N)
)⊤,(

By (D.4)
)

where M [∗, a : b] denotes a sub-matrix of M , which includes all the columns but only the rows from
the a-th row to the b-th row of A. Similarly, for j = N , it holds

Ai(N) = (Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N), yi)

∂pi(N)
)⊤.

Thus we completes the proof.

D.2 PROOF OF LEMMA 2

Lemma 9 (Lemma 2 Restated: Approximate pi(j)). Let upper bounds Bv, Bx > 0 such that for any
k ∈ [K], j ∈ [N] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N], i ∈ [n], define

Bj
r := max

|t|≤BvB
j−1
r

|r(t)|, B0
r := Bx, and Br := max

j
Bj

r .

Let function r(t) be (ϵr, R1,M1, C1)-approximable for R1 = max{BvBr, 1}, M1 ≤ Õ(C2
1ϵ

−2
r),

where C1 depends only on R1 and the C2-smoothness of r. Then, for any ϵr > 0, there exist N
attention layers Attnθ1 , . . . ,AttnθN such that for any input hi ∈ RD takes from (2.1), they map

hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]
Attnθj−−−−→ h̃i = [xi; yi;w; pi(1); . . . ; pi(j);0; 1; ti],

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

where pi(j) is approximation for pi(j) (Definition 1). In the expressions of hi and h̃i, the dimension
of 0 differs. Specifically, the 0 in hi is larger than in h̃i. The dimensional difference between these 0
vectors equals the dimension of pi(j). Suppose function r is Lr-smooth in bounded domain W , then
for any i ∈ [n+ 1], j ∈ [N], pi(j) such that

pi(j) = pi(j) + ϵ(i, j), ∥ϵ(i, j)∥2 ≤

{
(
∑j−1

l=0 Kl/2Ll
rB

l
v)
√
Kϵr , 1 ≤ j ≤ N − 1

(
∑N−1

l=0 Kl/2Ll
rB

l
v)
√
dϵr , j = N

.

Additionally, for any j ∈ [N], the norm of parameters Bθj defined as (C.1) such that

Bθj ≤ 1 +KC1.

Proof of Lemma 2. First we need to give a approximation for activation function r(t). By our
assumption and Definition 4, r(t) is (ϵr, R1,M1, C1)-approximable by sum of ReLUs, there exists:

r(t) =

M1∑
m=1

c1mσ(⟨a1m, [t; 1]⟩) with
M1∑
m=1

∣∣c1m∣∣ ≤ C1, ∥a1m∥1 ≤ 1, ∀m ∈ [M1], (D.5)

such that supt∈[−R1,R1] |r(t)− r(t)| ≤ ϵr. Let pi(0) := pi(0) = xi. Similar to pi(j) follows
Definition 1, we pick pi(j) such that for any j ∈ [N],

pi(j)[k] := r(v⊤jkpi(j − 1)). (D.6)

Fix any j ∈ [N], suppose the input sequences hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]. Then
for every m ∈ [M1], k ∈ [K](or k ∈ [d] if j = N), we define matrices Qj

m,k,K
j
m,k, V

j
m,k ∈ RD×D

such that for all i ∈ [n+ 1],

Qj
m,khi =

a1m[1] · pi(j − 1)
a1m[2]
0

 , Kj
m,khi =

[
vjk
1
0

]
, V j

m,khi = c1me1j,k , (D.7)

where e1j,k denotes the position unit vector of element pi(j)[k] because this position only depends on
j, k. Since input hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti], those matrices indeed exist. In fact, it
is simple to check that

Qj
m,k =

 0 a1m[1]IK(j) 0 0 0
0 0 0 a1m[2] 0
0 0 0 0 0

 ,

Kj
m,k =

[
0 IK(j, k) 0 0 0
0 0 0 1 0
0 0 0 0 0

]
,

V j
m,k =

 0 0 0 0
0 0 c1m(j, k) 0
0 0 0 0

 , (D.8)

are suffice to (D.7). IK(j), IK(j, k), c1m(j, k) represents their positions are related to variables in
parentheses. In Addition, by (C.1), notice that they have operator norm bounds

max
j,m,k

∥Qj
m,k∥1 ≤ 1, max

j,m,k
∥Kj

m,k∥1 ≤ 1, max
j

∑
k,m

∥V j
m,k∥1 ≤ KC1.

Consequently, for any j ∈ [N], Bθj ≤ 1 + C1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

By our construction follows (D.7), a simple calculation shows that∑
m∈[M1],k∈[K]

σ(⟨Qj
m,khi,K

j
m,khs⟩)V j

m,khs

=

K∑
k=1

M1∑
m=1

c1mσ(⟨a1m, [v⊤jkpi(j − 1); 1]⟩)e1j,k
(
By our construction (D.7)

)

=

K∑
k=1

(r(v⊤jkpi(j − 1)))e1j,k
(
By definition of r follows (D.5)

)
= [0; pi(j);0].

(
By definition of pi(j) follows (D.6)

)
Therefore, by definition of ReLU Attention layer follows Definition 7, the output h̃i becomes

h̃i = [Attnθj (hi)]

= hi +
1

n+ 1

n+1∑
s=1

∑
m∈[M1],k∈[K]

σ(⟨Qj
m,khi,K

j
m,khs⟩)V j

m,khs

= hi +
1

n+ 1

n+1∑
s=1

(n+ 1)[0; pi(j);0]

= [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti] + [0, pi(j),0]

= [xi; yi;w; pi(1); . . . ; pi(j − 1); pi(j);0; 1; ti].

Therefore, let the attention layer θj = {(Qj
m,k,K

j
m,k, V

j
m,k)}(k,m), we construct Attnθj such that

hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]
Attnθj−−−−→ h̃i = [xi; yi;w; pi(1); . . . ; pi(j);0; 1; ti].

In addition, by setting R1 = max{BvBr, 1} , the lemma then follows directly by induction on j. For
the base case j = 1, it holds

|pi(1)[k]− pi(1)[k]| =
∣∣ri(v⊤1kxi)[k]− r(v⊤1kxi)

∣∣ (
By Definition 1

)
≤ ϵr.

(
By definition of r follows (D.5)

)
Suppose the claim holds for iterate j − 1 and function r is Lr-smooth in bounded domain W . Then
for iterate j,

|pi(j)[k]− pi(j)[k]|
≤
∣∣pi(j)[k]− r(v⊤jkpi(j − 1))

∣∣+ ∣∣r(v⊤jkpi(j − 1))− pi(j)[k]
∣∣ (

By triangle inequality
)

≤ ϵr + Lr∥v⊤jk∥2∥pi(j − 1)− pi(j − 1)∥2
(
By (D.5) and Cauchy–Schwarz inequality

)
≤ ϵr +

√
KLrBv(ϵr

j−2∑
l=0

Kl/2Ll
rB

l
v)

(
By inductive hypothesis

)

≤ ϵr

j−1∑
l=0

Kl/2Ll
rB

l
v,

Thus, it holds

∥pi(j)− pi(j)∥2 =

√√√√ K∑
k=1

|pi(j)[k]− pi(j)[k]|2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

≤
√
K(ϵr

j−1∑
l=0

Kl/2Ll
rB

l
v).

This finish the induction. Then for the output layer j = N , it holds

∥pi(N)− pi(N)∥2 =

√√√√ d∑
k=1

|pi(N)[k]− pi(N)[k]|2

≤
√
d(ϵr

N−1∑
l=0

Kl/2Ll
rB

l
v).

Thus we complete the proof.

D.3 PROOF OF LEMMA 3

Lemma 10 (Lemma 3 Restated: Approximate r′i(j)). Let upper bounds Bv, Bx > 0 such that for
any k ∈ [K], j ∈ [N] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N], i ∈ [n], define

B′j
r := max

|t|≤BvB
j−1

r′

|r′(t)|, B0
r′ := Bx, and Br′ := max

j
Bj

r′ .

Suppose function r′(t) is (ϵr′ , R2,M2, C2)-approximable for R2 = max{BvBr′ , 1}, M2 ≤
Õ(C2

2ϵ
′−2
r), where C2 depends only on R2 and the C2-smoothness of r′. Then, for any ϵr > 0, there

exist an attention layer AttnθN+1
such that for any input hi ∈ RD takes from (3.12), it maps

hi = [xi; yi;w; pi;0; 1; ti]
AttnθN+1−−−−−−→ h̃i = [xi; yi;w; pi; r

′
i;0; 1; ti],

where r′i(j) is approximation for r′i(j) (Definition 2) and r′i := [r′i(0); . . . ; r
′
i(N−1)] ∈ R(N−2)K+d.

Similar to Lemma 2, in the expressions of hi and h̃i, the dimension of 0 differs. In addition, let Er

be defined in (3.11), for any i ∈ [n+ 1], j ∈ [N], k ∈ [K], r′i(j) such that

r′i(j − 1)[k] = r′i(j − 1)[k] + ϵ(i, j, k), |ϵ(i, j, k)| ≤ ϵr′ + Lr′BvErϵr,

where ϵr denotes the error generated in approximating r by sum of ReLUs r follows (D.5). Addition-
ally, the norm of parameters BθN+1

defined as (C.1) such that BθN+1
≤ 1 +K(N − 1)C2.

Proof of Lemma 3. By Definition 2, recall that for any j ∈ [N], i ∈ [n+ 1], k ∈ [K],

r′i(j)[k] = r′(v⊤j+1k
pi(j)). (D.9)

Therefore we need to give a approximation for r′. By our assumption and Definition 4, r′(t) is
(ϵr′ , R2,M2, C2)-approximable by sum of relus. In other words, there exists:

r′(t) =

M2∑
m=1

c2mσ(⟨a2m, [t; 1]⟩) with
M2∑
m=1

∣∣c2m∣∣ ≤ C2, ∥a2m∥2 ≤ 1, ∀m ∈ [M2], (D.10)

such that supt∈[−R2,R2] |r
′(t)− r′(t)| ≤ ϵr′ . Similar to (D.9), we pick r′i(j) such that

r′i(j)[k] := r′(v⊤j+1k
pi(j)). (D.11)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

To ensure (D.11), we construct our attention layer as follows: for every j ∈ [N],m ∈ [M2], k ∈ [K],
we define matrices QN+1

j,m,k,K
N+1
j,m,k, V

N+1
j,m,k ∈ RD×D such that

QN+1
j,m,khi =

a2m[1] · pi(j − 1)
a2m[2]
0

 , KN+1
j,m,khi =

[
vjk
1
0

]
, V N+1

j,m,khi = c2me2j,k , (D.12)

for all i ∈ [n + 1] and e2j,k denotes the position unit vector of element r′i(j)[k]. Since input
hi = [xi; yi;w; pi;0; 1; ti], similar to (D.8), those matrices indeed exist. In addition, they have
operator norm bounds

max
j,m,k

∥QN+1
j,m,k∥1 ≤ 1, max

j,m,k
∥KN+1

j,m,k∥1 ≤ 1,
∑
j,m,k

∥V N+1
j,m,k∥1 ≤ K(N − 1)C2.

Consequently, by definition of parameter norm follows (C.1), BθN+1
≤ 1 +K(N − 1)C2.

A simple calculation shows that∑
j∈[N],m∈[M2],k∈[K]

σ(⟨QN+1
j,m,khi,K

N+1
j,m,khs⟩)V N+1

j,m,khs

=

N∑
j=1

K∑
k=1

M2∑
m=1

c2mσ(⟨a2m, [v⊤jkpi(j − 1); 1]⟩)e2j,k
(
By our construction follows (D.12)

)

=

N∑
j=1

K∑
k=1

(r′(v⊤jkpi(j − 1)))e2j,k
(
By definition of r′ follows (D.5)

)
= [0; r′i(0); . . . ; r

′
i(N − 1);0]

(
By definition of r′i(j) follows (D.11)

)
= [0; r′i;0],

(
By definition of r′i

)
Therefore, by definition of ReLU Attention layer follows Definition 7, the output h̃i becomes

h̃i = [AttnθN (hi)]

= hi +
1

n+ 1

n+1∑
s=1

∑
j∈[N−1],m∈[M2],k∈[K]

σ(⟨QN
j,m,khi,K

N
j,m,khs⟩)V N

j,m,khs

= hi +
1

n+ 1

n+1∑
s=1

(n+ 1)[0; r′i;0]

= [xi; yi;w; pi;0; 1; ti] + [0; r′i;0]

= [xi; yi;w; pi; r
′
i;0; 1; ti].

Next, we calculate the error accumulation in this approximation layer. By our assumption, R2 =
max{BvBr′ , 1}. Thus, for any j ∈ [N], k ∈ [K], i ∈ [n+ 1], it holds

v⊤jkpi(j − 1) ≤ R2.

As our assumption, we suppose function r′ is Lr-smooth in bounded domain W . Combining above,
the upper bound of error accumulation |r′i(j)[k]− r′i(j)[k]| becomes

|r′i(j)[k]− r′i(j)[k]|
≤
∣∣r′i(j)[k]− r′(v⊤jkpi(j − 1))

∣∣+ ∣∣r′(v⊤jkpi(j − 1))− r′i(j)[k]
∣∣ (

By triangle inequality
)

≤ ϵr′ + Lr′∥v⊤jk∥2∥pi(j − 1)− pi(j − 1)∥2
(
By (D.10) and Cauchy–Schwarz inequality

)
≤ ϵr′ + Lr′BvErϵr.

(
By definition of Er follows (3.11)

)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Thus we complete the proof.

D.4 PROOF OF LEMMA 4

Lemma 11 (Lemma 4 Restated: Approximate ∂1ℓ(pi(N), yi)). Let upper bounds Bv, Bx, > 0 such
that for any k ∈ [K], j ∈ [N] and i ∈ [n], ∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. For any k ∈ [d],
suppose function u(t, y)[k] be (ϵl, R3,M

k
3 , C

k
3)-approximable for R3 = max{BvBr, By, 1}, M3 ≤

Õ((Ck
3)

2ϵ−2
l), where Ck

3 depends only on Rk
3 and the C3-smoothness of u(t, y)[k]. Then, there

exists an MLP layer MLPθN+2 such that for any input sequences hi ∈ RD takes from (3.14), it maps

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]

MLPθN+2−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i; gi;0; 1; ti],

where gi ∈ Rd is an approximation for u(pi(N), yi). For any k ∈ [d], assume u(pi(N), yi) is Ll-
Lipschitz continuous. Then the approximation gi such that,

gi[k] = u(pi(N), yi)[k] + ϵ(i, k), with |ϵ(i, k)| ≤ ϵl + LlErϵr.

Additionally, the parameters θN+2 such that BθN+2
≤ max{R3 + 1, C3}.

Proof of Lemma 4. By our assumption and Definition 4, for any k ∈ [d], function u[k](t, y) is
(ϵl, R3,M

k
3 , C

k
3)-approximable by sum of relus, there exists :

gk(t, y) =

Mk
3∑

m=1

c3,km σ(⟨a3,km , [t; y; 1]⟩) with
Mk

3∑
m=1

∣∣c3,km

∣∣ ≤ C3, ∥a3,km ∥2 ≤ 1, ∀m ∈ [Mk
3], (D.13)

such that sup(t,y)∈[−R3,R3]2 |gk(t, y)− u[k](t, y)| ≤ ϵl. Then we construct our MLP layer.

Let M3 :=
∑d

k=1 M
k
3 , we pick matrices WN+1

1 ∈ RM3×D,WN+1
2 ∈ RD×M3 such that for any

i ∈ [n+ 1],m ∈ [M3],

WN+1
1 hi =



a3,11 [1] · pi(N) + a3,11 [2] · yi + a3,11 [3]−R3(1− ti)
...

a3,1
M1

3
[1] · pi(N) + a3,1M1 [2] · yi + a3,1

M1
3
[3]−R3(1− ti)

...
a3,d1 [1] · pi(N) + a3,d1 [2] · yi + a3,d1 [3]−R3(1− ti)

...
a3,d
Md

3
[1] · pi(N) + a3,d

Md [2] · yi + a3,d
Md

3
[3]−R3(1− ti)


∈ RM3 ,

WN+1
2 [j,m] = c3,km · 1{j = Dk

g ,M
k−1
3 < m ≤ Mk

3 }, (D.14)

where Dk
g denotes the position of element gi[k]. Since input hi = [xi; yi;w; pi; r

′
i;0; 1; ti], similar

to (D.8), those matrices indeed exist. Furthermore, by (C.1), they have operator norm bounds

∥WN+1
1 ∥1 ≤ R3 + 1, ∥WN+1

2 ∥1 ≤ C3

Consequently, BθN+2
≤ max{R3 + 1, C3}.

By our construction (D.14), a simple calculation shows that

WN+1
2 σ(WN+1

1 hi) =

d∑
k=1

Mk
3∑

m=1

σ(⟨a3,km , [pi(N); yi; 1]⟩ −R3(1− ti)) · c3,km eDk
g

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

= 1{tj = 1} ·


0

g1(pi(N), yi)
...

gd(pi(N), yi)
0

 .

For k ∈ [d], we let gi[k] = 1{tj = 1} · gk(pi(N), yi)eDk
g

for i ∈ [n+ 1]. Hence, MLPθN+2
maps

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]

MLPθN+2−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i; gi;0; 1; ti],

Next, we calculate the error generated in this approximation. By setting R3 = max{BvBr, By, 1},
for any i ∈ [n+ 1], it holds

pi(N) ≤ R3, yi ≤ R3

Moreover, as our assumption, we suppose function ∂1ℓ is Ll-smooth in bounded domain W . There-
fore, by the definition of the function g, for each i ∈ [n], the error becomes

|gi[k]− u(pi(N), yi)[k]|
≤ |gi[k]− u(pi(N), yi)[k]|+ |u(pi(N), yi)[k]− u(pi(N), yi)[k]|

(
By triangle inequality

)
≤ ϵl + Ll∥pi(N)− pi(N)∥2

(
By the definition of gk follows (D.13) and Ll-smooth assumption

)
≤ ϵl + LlErϵr, .

(
By the definition of Er follows (3.11)

)
Combining above, we complete the proof.

D.5 PROOF OF LEMMA 5

Lemma 12 (Lemma 5 Restated: Approximate st(j)). Recall that si(j) = r′i(j−1)⊙(V ⊤
j+1 ·si(j+1))

follows Definition 3. Let the initial input takes from (3.16). Then, there exist N element-wise
multiplication layers: EWMLθN+3

, . . . ,EWMLθ2N+2
such that for input sequences, j ∈ [N],

hi = [xi; yi;w; pi; r
′
i; gi; si(N); . . . ; si(j + 1);0; 1; ti],

they map EWMLθ2N+3−j
(hi) = [xi; yi;w; pi; r

′
i; gi; si(N); . . . ; si(j);0; 1; ti], where the approxi-

mation si(j) is defined as recursive form: for any i ∈ [n+ 1], j ∈ [N − 1],

si(j) :=

{
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1)), j ∈ [N − 1]

r′i(N − 1)⊙ gi, j = N.

Additionally, for any j ∈ [N], BθN+2+j
defined in (C.1) satisfies BθN+2+j

≤ 1.

Proof of Lemma 5. We give the construction of parameters directly. For every j ∈ [N − 1], k ∈ [K],
we define matrices Q2N+3−j

k ,K2N+3−j
k , V 2N+3−j

k ∈ RD×D such that for all i ∈ [n+ 1],

Q2N+3−j
k hi =


vj+11 [k]

...
vj+1K [k]

0

 , K2N+3−j
k hi =

[
si(j + 1)

0

]
, V 2N+3−j

k hi = r′i(j − 1)[k] · e3j,k ,

(D.15)

where e3j,k denotes the position unit vector of element si(j)[k].

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Since input hi = [xi; yi;w; pi; r
′
i; gi; si(N); . . . ; si(j + 1);0; 1; ti], similar to (D.8), those matrices

indeed exist. Thus, it is straightforward to check that∑
k∈[K]

γ(⟨Q2N+3−j
k hi,K

2N+3−j
k hi⟩)V 2N+3−j

k hi

=

K∑
k=1

(V ⊤
j+1[k, ∗] · si(j + 1))r′i(j − 1)[k]e3j,k

(
By definition of EWML layer follows Definition 6

)

=


0

ri(j − 1)[1]V ⊤
j+1[1, ∗] · si(j + 1)

...
r′i(j − 1)[k]V ⊤

j+1[K, ∗] · si(j + 1)
0


(
By definition of e3j,k

)

=

 0
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1))
0

 (
By definition of hadamard product

)
= [0; si(j);0].

(
By definition of si(j) follows (3.19)

)
Therefore, by the definition of EWML layer follows Definition 6, the output h̃i becomes

h̃i = [Attnθ2N+3−j
(hi)]

= hi +
∑

m∈[2],k∈[K]

σ(⟨Q2N+3−j
m,k hi,K

2N+3−j
m,k hs⟩)V 2N+3−j

m,k hs

= hi + [0; s(j);0]

= [xi; yi;w; pi; r
′
i; gi; si(N − 1); . . . ; si(j + 1);0; 1; ti] + [0; si(j);0]

= [xi; yi;w; pi; r
′
i; gi; si(N − 1); . . . ; si(j);0; 1; ti].

Finally we come back to approximate the initial approximation si(N) = r′i(N − 1) ⊙ gi. Notice
that gi and r′i(N − 1) are already in the input hi = [xi; yi;w; pi; r

′
i; gi;0; 1; ti], thus it is simple to

construct EWMLN+3 , similar to (D.15), such that it maps,

[xi; yi;w; pi; r
′
i; gi;0; 1; ti]

EWMLN+3−−−−−−−→ [xi; yi;w;0; 1; pi; r
′
i; gi; si(N);0; 1; ti].

Since we don’t using the sum of ReLU to approximate any variables, these step don’t generate extra
error. Besides, by (3.18), matrices have operator norm bounds

max
j,k

∥QN+2+j
k ∥1 ≤ 1, max

j,k
∥KN+2+j

k ∥1 ≤ 1, max
j,k

∥V N+2+j
k ∥1 ≤ 1.

Consequently, for any j ∈ [N], BθN+2+j
≤ 1. Thus we complete the proof.

D.6 PROOF OF LEMMA 6

Lemma 13 (Lemma 6 Restated: Error for gisi(j)). Suppose the upper bounds Bv, Bx > 0
such that for any k ∈ [K], j ∈ [N] and i ∈ [n], ∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. Let
r′i(j) ∈ RK such that r′i(j)[k] := r′(v⊤j+1k

pi(j)) follows Definition 2. Let si(j) = Ri(j −
1)V ⊤

j+1 . . . Ri(N − 2)V ⊤
N ·Ri(N − 1)u follows Definition 3. Let r′i(j), gi, si(j) be the approxima-

tions for r′i(j), u(pi(N), yi), si(j) follows Lemma 3, Lemma 4 and Lemma 5 respectively. Let Br′

be the upper bound of r′i(j)[k] and r′i(j)[k] as defined in Lemma 3. Let Bl be the upper bound of
gi[k] and u(pi(N), yi)[k] as defined in Lemma 4. Then for any i ∈ [n+ 1], j ∈ [N], k ∈ [K],

si(j)[k] ≤ Bs,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

|si(j)[k]− si(j)[k]| ≤ Er
s ϵr + Er′

s ϵr′ + El
sϵl,

where

P := max{
√
K,

√
d}

Bs := max
j∈[N]

{(P ·Br′Bv)
N−jBr′Bl},

Er
s := max

j∈[N]
{Lr′ErPBsB

2
v [

N−j−1∑
l=0

(Br′BvP)l] + (Br′BvP)N−j(BlLr′BvEr +Br′LlEr)},

Er′

s := max
j∈[N]

{PBsBv[

N−j−1∑
l=0

(Br′BvP)l] + (Br′BvP)N−jBl},

El
s := max

j∈[N]
{(Br′BvP)N−jBr′}.

Above, Bs is the upper bound of si(j)[k] and Er
s , E

r′

s , El
s are the coefficients of ϵr, ϵ′r, ϵl in the upper

bounds of |si(j)[k]− si(j)[k]|, respectively.

Proof of Lemma 6. We use induction to prove the first two statements. To begin with, we illustrate
the recursion formula for si(j). By (3.19), recall that for any j ∈ [N],

si(j) :=

{
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1)), j ∈ [N − 1]

r′i(N − 1)⊙ gi, j = N.

We consider applying induction to prove the first statement:

si(j)[k] ≤ (P ·Br′Bv)
N−nBr′Bl.

As for the base case, j = N :

si(N)[k] = r′i(N − 1)[k] · gi[k] ≤ Br′Bl.

Therefore, if the statement holds for j = n+ 1, by (3.19) and our assumption, it holds

si(n)[k] = r′i(n− 1)[k] · (v⊤j+1k
si(n+ 1))

(
By recursion formula (3.19)

)
≤ r′i(n− 1)[k] · ∥vn+1k∥2 · ∥si(n+ 1)∥2

(
By Cauchy-schwarz inequality

)
≤ r′i(n− 1)[k] · ∥vn+1k∥2 ·max{

√
K,

√
d} ·max

k
|si(n+ 1)[k]|

≤ (Br′Bv) ·max{
√
K,

√
d} · (max{

√
K,

√
d} ·Br′Bv)

N−n−1Br′Bl(
By inductive hypothesis

)
= (P ·Br′Bv)

N−nBr′Bl.
(
By definition of P follows (3.22)

)
Thus, by the principle of induction, the first statement is true for all integers j ∈ [N]. Moreover,
by the definition of Bs follows (3.23), we know Bs is the upper bound of si(j)[k]. Next we apply
induction to prove the second statement:

|si(j)[k]− si(j)[k]| ≤ (ϵr′ + Lr′BvErϵr)PBvBs[

N−n−1∑
l=0

(Br′BvP)l]

+ (Br′BvP)N−n[(BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl].

For the base case, j = N :

|si(N)[k]− si(N)[k]|
= |r′i(N − 1)[k] · gi[k]− r′i(N − 1)[k] · u(pi(N), yi)[k]|

(
By definition (3.19) and (3.7)

)
29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

≤ |r′i(N − 1)[k]− r′i(N − 1)[k]| · |gi[k]|+ |r′i(N − 1)[k]| · |gi[k]− u(pi(N), yi)[k]|(
By triangle inequality

)
≤ (ϵr′ + Lr′BvErϵr)Bl +Br′(ϵl + LlErϵr).

(
By (3.13) and (3.15)

)
= (BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl

Therefore, if the statement holds for j = n+ 1, by (3.19) and our assumption, it holds

|si(n)[k]− si(n)[k]|
=
∣∣r′i(n− 1)[k] · (v⊤n+1k

si(n+ 1))− r′i(n− 1)[k] · (v⊤n+1k
si(n+ 1))

∣∣(
By the recursion formula (3.7) and (3.19)

)
≤ |r′i(n− 1)[k]− r′i(n− 1)[k]| ·

∣∣v⊤n+1k
si(n+ 1)

∣∣
+ |r′i(n− 1)[k]| ·

∣∣(v⊤n+1k
si(n+ 1))− (v⊤n+1k

si(n+ 1))
∣∣ (

By triangle inequality
)

≤ (ϵr′ + Lr′BvErϵr)PBvBs +Br′Bv∥si(n+ 1)− si(n+ 1)∥2(
By error accumulation of approximating r′ follows (3.13)

)
≤ (ϵr′ + Lr′BvErϵr)PBvBs +Br′BvP max

k
|si(n+ 1)[k]− si(n+ 1)[k]|

≤ (ϵr′ + Lr′BvErϵr)PBvBs +Br′BvP
{
(ϵr′ + Lr′BvErϵr)PBvBs[

N−n−2∑
l=0

(Br′BvP)l]

+ (Br′BvP)N−n−1[(BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl]
} (

By inductive hypothesis
)

≤ (ϵr′ + Lr′BvErϵr)PBvBs[

N−n−1∑
l=0

(Br′BvP)l]

+ (Br′BvP)N−n[(BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl].

Thus, by the principle of induction, the second statement is true for all integers j ∈ [N − 1]. By the
definition of Es follows (3.24), it is simple to check that

|si(j)[k]− si(j)[k]| ≤ Er
s ϵr + Er′

s ϵr′ + El
sϵl.

Thus we complete the proof.

D.7 PROOF OF THEOREM 1

Theorem 4 (Theorem 1 Restated: In-context gradient descent on N -layer NNs). Fix any Bv, η, ϵ >
0, L ≥ 1. For any input sequences takes from (2.1), their exist upper bounds Bx, By such that for
any i ∈ [n], ∥yi∥2 ≤ By, ∥xi∥2 ≤ Bx. Assume functions r(t), r′(t) and u(t, y)[k] are Lr, Lr′ , Ll-
Lipschitz continuous. Suppose W is a closed domain such that for any j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk] ∈ RDN : ∥vjk∥2 ≤ Bv

}
,

and ProjW project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer
with hidden dimension Dw parameters ∥θ∥ ≤ Cw. If functions r(t), r′(t) and u(t, y)[k] are C4-
smoothness, then for any ϵ > 0, there exists a transformer model NNθ with (2N +4)L hidden layers
consists of L neural network blocks TFN+2

θ ◦ EWMLN
θ ◦ TF2

θ,

NNθ := TFN+2
θ ◦ EWMLN

θ ◦ TF2
θ ◦ . . . ◦ TF

N+2
θ ◦ EWMLN

θ ◦ TF2
θ,

such that the heads number M l, embedding dimensions Dl, and the parameter norms Bθl suffice

max
l∈[(2N+4)L]

M l ≤ Õ(ϵ−2), max
l∈[(2N+4)L]

Dl ≤ O(NK2) +Dw, max
l∈[(2N+4)L]

Bθl ≤ O(η) + Cw + 1,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

where Õ(·) hides the constants that depend on d,K,N , the radius parameters Bx, By, Bv and the smoothness
of r and ℓ. And this neural network such that for any input sequences H(0), take from (2.1), NNθ(H

(0))
implements L steps in-context gradient descent on risk Eqn (2.2): For every l ∈ [L], the (2N + 4)l-th layer
outputs h((2N+4)l)

i = [xi; yi;w
(l);0; 1; ti] for every i ∈ [n+ 1], and approximation gradients w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

Proof of Theorem 1. We consider the first N + 2 transformer layers TFN+2
θ are layers in Lemma 2

,Lemma 3 and Lemma 4. Then we let the middle N element-wise multiplication layers EWMLN
θ

be layers in Lemma 5. We only need to check approximability conditions. By Lemma 7 and our
assumptions, for any ϵr, ϵr′ , ϵl, it holds

• Function r(t) is (ϵr, R1,M1, C1)-approximable for R1 = max{BvBr, 1}, M1 ≤ Õ(C2
1ϵ

−2
r),

where C1 depends only on R1 and the C2-smoothness of r(t).

• Function r′(t) is (ϵr′ , R2,M2, C2)-approximable for R2 = max{BvBr′ , 1}, M2 ≤ Õ(C2
2ϵ

′−2
r),

where C2 depends only on R2 and the C2-smoothness of r′(t).

• Function ∂1ℓ(t, y) is (ϵl, R3,M3, C3)-approximable for R3 = max{BvBr, 1}, M3 ≤ Õ(C2
3ϵ

−2
l),

where C3 depends only on R3 and the C3-smoothness of u(t, y)[k].

which suffice approximability conditions in Lemma 2, Lemma 3 and Lemma 4.

Now we construct the last two layers to implement w− η∇Ln(w) and ProjW(w). First we construct
a attention layer to approximate w − η∇Ln(w). For every m ∈ [2], j ∈ [N], k ∈ [K], we consider
matrices Q2N+3

m,j,k , j
2N+3
m,j,k , V 2N+3

m,j,k ∈ RD×D such that

Q2N+3
1,j,k hi =

[
1
0

]
, K2N+3

1,j,k hi =

[
si(j)[k]

0

]
, V 2N+3

1,j,k hi = −η(n+ 1)

2n

[
0

pi(j − 1)
0

]
,

Q2N+3
2,j,k hi =

[
−1
0

]
, K2N+3

2,j,k hi =

[
si(j)[k]

0

]
, V 2N+3

2,j,k hi = −η(n+ 1)

2n

[
0

−pi(j − 1)
0

]
.

(D.16)

Furthermore, we define approximation gradient ∇wLn(w) as follows,

∇wLn(w) := − 1

η(n+ 1)

n+1∑
t=1

∑
m∈[2],j∈[N],k∈[K]

σ(⟨Q2N+3
m,j,k hi,K

2N+3
m,j,k ht⟩)V 2N+3

m,j,k ht

=
1

2n

n+1∑
t=1

K∑
k=1

N∑
j=1

(σ(st(j)[k])− σ(−st(j)[k]))

[
0

pt(j − 1)
0

]
(
By our construction (D.16)

)
=

1

2n

n+1∑
t=1

K∑
k=1

N∑
j=1

st(j)[k] ·

[
0

pt(j − 1)
0

] (
By f(x) = σ(x)− σ(−x)

)

=
1

2n

n+1∑
t=1

N∑
j=1

[
0

IK×K ⊗ pt(j − 1) · st(j)
0

] (
By definition of Kronecker product

)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

=
1

2n

n∑
t=1


0

At(1)
...

At(N)
0

 ,
(
By sn+1(j) = 0 follows Lemma 5

)

where At(j) := IK×K ⊗ pt(j − 1) · st(j) denotes the approximation for At(j). Therefore, by the
definition of ReLU attention layer follows Definition 7, for any i ∈ [n+ 1],

h̃i = [Attnθ2N+3
(hi)]

= hi +
1

n+ 1

n+1∑
i=1

∑
m∈[2],j∈[N],k∈[K]

σ(⟨Q2N+3
m,j,k hs,K

2N+3
m,j,k hi⟩)V 2N+3

m,j,k hi

= [xi; yi;w; pi; r
′
i; gi; si;0; 1; ti]−

η

2n

n∑
t=1


0

At(1)
...

At(N)
0


= [xi; yi;w − η∇wLn(w); pi; r

′
i; gi;0; 1; ti].

(
By definition of ∇wLn(w)

)
Since we do not use approximation technique like Definition 4, this step do not generate extra error.
Besides,by (C.1), matrices have operator norm bounds

max
j,m,k

∥Q2N+3
j,m,k ∥1 ≤ 1, max

j,m,k
∥K2N+3

j,m,k ∥1 ≤ 1,
∑
j,m,k

∥V 2N+3
j,m,k ∥1 ≤ 2ηNK.

Consequently, Bθ2N+3
≤ 1 + 2ηNK. Fix any ϵ > 0, then we pick appropriate ϵr, ϵ

′
r, ϵl such that

∥ϵ(l−1)∥2 = η∥∇wLn(w
(l−1))−∇wLn(w

(l−1))∥2 ≤ ηϵ.

By Definition 3 and Lemma 6, for any j ∈ [N − 1], i ∈ [n], it holds

∥Ai(j)−Ai(j)∥2

≤
K∑

k=1

∥si(j)[k]pi(j − 1)− si(j)[k]pi(j − 1)∥2
(
By Definition 2 and definition of Ai(j)

)

≤
K∑

k=1

|si(j)[k]− si(j)[k]| · ∥pi(j − 1)∥2 + |si(j)[k]| · ∥pi(j − 1)− pi(j − 1)∥2(
By triangle inequality

)
≤ P [(Er

s ϵr + Er′

s ϵr′ + El
sϵl)

√
PBr +BsErϵr],

(
By (3.11) and Lemma 6

)
where Bs is the upper bound of si(j)[k] and Er

s , E
r′

s , El
s are the coefficients of ϵr, ϵ

′
r, ϵl in the

upper bounds of |si(j)[k]− si(j)[k]| follow Lemma 6, respectively. We can drive similar results as
j = N . Actually, by P = max{

√
K,

√
d} follows Lemma 6, above inequality also holds for j = N .

Therefore, the error in total such that for any w,

∥∇wLn(w)−∇wLn(w)∥2

= ∥ 1

2n

n∑
t=1


0

At(1)
...

At(N)
0

− 1

2n

n∑
t=1


0

At(1)
...

At(N)
0

 ∥2
(
By definition of Ln(w) and Ln(w)

)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

≤ 1

2
max
1≤t≤n

{
N∑
j=1

∥At(j)−At(j)∥2}

≤ N

2
P [(Er

s ϵr + Er′

s ϵr′ + El
sϵl)

√
PBr +BsErϵr].(

By the error accumulation results derived before
)

Let Cl, Cr, Cr′ denotes coefficients in front of ϵl, ϵr, ϵr′ respectively. Then it holds

Cl = NP
3
2BrE

l
s,

Cr = NP
3
2BrE

r
s +NPBsEr,

Cr′ = NP
3
2BrE

r′

s .

Thus, to ensure ∥∇wLn(w)−∇wLn(w)∥2 ≤ ϵ, we only need to select ϵl, ϵr, ϵ′r as

ϵl =
2ϵ

3Cl
, ϵr =

2ϵ

3Cr
, ϵ′r =

2ϵ

3Cr′
.

Therefore, we only need to pick the last MLP layer MLP2N+4 such that it maps

[xi; yi;w − η∇wLn(w); pi; r
′
i; gi; si;0; 1; ti]

MLP2N+4−−−−−−→ [xi; yi; ProjW(w − η∇wLn(w));0; 1; ti].

By our assumption on the map ProjW , this is easy.

Finally, we analyze how many embedding dimensions of Transformers are needed to implement the
above ICGD. Recall that

xi, yi ∈ Rd, w ∈ R2dK+(N−2)K2

, pi ∈ R(N−1)K+d, r′i ∈ R(N−2)K+d, gi ∈ Rd, si ∈ R(N−1)K+d.

Therefore, max{Ω(NK2), Dw} embedding dimensions of Transformer are required to implement
ICGD on deep models.

Combining the above, we complete the proof.

D.8 PROOF OF COROLLARY 1.1

Corollary 4.1 (Corollary 1.1 Restated: Error for implementing ICGD on N -layer neural network).
Fix L ≥ 1, under the same setting as Theorem 1, (2N+4)L-layer neural networks NNθ approximates
the true gradient descent trajectory {wl

GD}l≥0 ∈ RDN with the error accumulation

∥wl − wl
GD∥2 ≤ L−1

f (1 + nLf)
lϵ,

where Lf denotes the Lipschitz constant of LN (w) within W .

First we introduce a helper lemma.

Lemma 14 (Error for Approximating GD, Lemma G.1 of (Bai et al., 2023)). Let W ⊂ Rd is a
convex bounded domain and ProjW projects all vectors into W . Suppose f : W → R and ∇f is
Lf -Lipschitz on W . Fix any ϵ > 0, let sequences {wl}l≥0 ∈ Rd and {wl

GD}l≥0 ∈ Rd are given by
w0 = w0

GD = 0, then for all l ≥ 0,

wl = ProjW(wl−1 − η∇Ln(w
l−1) + ϵl−1), ∥ϵl−1∥2 ≤ ηϵ,

wl
GD = ProjW(wl−1

GD − η∇Ln(w
l−1
GD))

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

To show the convergence, we define the gradient mapping at w with step size η as,

Gf
W,η :=

w − ProjW(w − η∇Ln(w))

η
.

Then if η ≤ Lf , for all L ≥ 1, convergence holds

min
l∈[L−1]

∥Gf
W,η(w

l)∥22 ≤ 1

L

L−1∑
l=1

∥Gf
W,η(w

l)∥22 ≤ 8(f(0)− infw∈W f(w))

ηL
+ 10ϵ2.

Moreover, for any l ≥ 0, the error accumulation is

∥wl − wl
GD∥2 ≤ L−1

f (1 + nLf)
lϵ.

Lemma 14 shows Theorem 1 leads to exponential error accumulation in the general case. Moreover,
Lemma 14 also provides convergence of approximating GD. Then we proof Corollary 1.1.

Proof. For any small ϵ, by Theorem 1, the neural network NNθ implements each gradient descent
step with error bounded by ϵ. Then we simply apply Lemma 14 to complete the proof.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

E EXTENSION: DIFFERENT INPUT AND OUTPUT DIMENSIONS

In this section, we explore the ICGD on N -layer neural networks under the setting where the
dimensions of input xi and label yi can be different. Specifically, we consider our prompt datasets
{(xi, yi)}i∈[n] where xi ∈ Rdx and yi ∈ Rdy . We start with our new N -layer neural network.

Definition 10 (N -Layer Neural Network). An N -Layer Neural Network comprises N − 1 hidden
layers and 1 output layer, all constructed similarly. Let r : R → R be the activation function. For the
hidden layers: for any i ∈ [n+ 1], j ∈ [N − 1], and k ∈ [K], the output for the first j layers w.r.t.
input xi ∈ Rd, denoted by predh(xi; j) ∈ RK , is defined as recursive form:

predh(xi; 1)[k] := r(v⊤1kxi), and predh(xi; j)[k] := r(v⊤jkpredh(xi; j − 1)),

where v1k ∈ Rd and vjk ∈ RK for j ∈ {2, . . . , N − 1} are the k-th parameter vectors in the first
layer and the j-th layer, respectively. For the output layer (N -th layer), the output for the first N
layers (i.e the entire neural network) w.r.t. input xi ∈ Rdx , denoted by predo(xi;w,N) ∈ Rdy , is
defined for any k ∈ [dy] as follows:

predo(xi;w,N)[k] := r(v⊤Nk
predh(xi;N − 1)),

where vNk
∈ RK are the k-th parameter vectors in the N -th layer and w ∈ R(dx+dy)K+(N−2)K2

denotes the vector containing all parameters in the neural network,

w :=
[
v⊤11 , . . . , v

⊤
1K , . . . , v⊤jk , . . . v

⊤
N−11

, . . . , v⊤N−1K
, v⊤N1

, . . . , v⊤Ndy

]⊤
.

Notice that our new N -layer neural network only modify the output layer compared to Definition 1.
Intuitively, this results in minimal change in output, which allows our framework in Section 3.3
to function across varying input/output dimensions. Theoretically, we derive the explicit form of
gradient ∇Ln(w).

Lemma 15 (Decomposition of One Gradient Descent Step). Fix any Bv, η > 0. Suppose the
empirical loss function Ln(w) on n data points {(xi, yi)}i∈[n] is defined as

Ln(w) :=
1

2n

n∑
i=1

ℓ(f(w, xi), yi), where ℓ : Rdy × Rdy → R is a loss function,

where f(w, xi), yi) is the output of N -layer neural networks (Definition 10) with modified out-
put layer. Suppose closed domain W and projection function ProjW(w) follows (3.4). Let
Ai(j), r

′
i(j), Ri(j), Vj be as defined in Definition 2 (with modified dimensions), then the explicit

form of gradient ∇Ln(w) becomes

∇Ln(w) =
1

2n

n∑
i=1

Ai(1)
...

Ai(N)

 ,

where Ai(j) denote the derivative of ℓ(pi(N), yi) with respect to the parameters in the j-th layer,

Ai(j) =

{
(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·

[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j ̸= N

(Ri(N − 1) ·
[
Idy×dy

⊗ pi(N − 1)⊤
]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N))⊤, j = N.

Proof. Simply follow the proof of Lemma 1. We show the different terms compared to Definition 2:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

• Let Dj ∈ R denote the total number of parameters in the first j layers.

Dj =


0, j = 0

dxK, j = 1

(j − 1)K2 + dxK, 2 ≤ j ≤ N − 1

(N − 2)K2 + (dx + dy)K, j = N,

• The intermediate term Ri(N − 1),

Ri(N − 1) = diag{r′(v⊤j+11
pi(j)), . . . , r

′(v⊤j+1dy
pi(j))} ∈ Rdy×dy .

• The parameters matrices of the first and the last layers:

Vj :=


[
v11 , . . . , v1K

]⊤ ∈ RK×dx , j = 1[
vN1

, . . . , vNdy

]⊤
∈ Rdy×K , j = N.

Thus we complete the proof.

Lemma 15 shows that the explicit form of gradient ∇Ln(w) holds the same structure as Lemma 1.
Therefore, it is simple to follow our framework in Section 3.3 to approximate ∇Ln(w) term by term.
Finally, we introduce the generalized version of main result Theorem 1.

Theorem 5 (In-Context Gradient Descent on N -layer NNs). Fix any Bv, η, ϵ > 0, L ≥ 1. For any
input sequences takes from (2.1), where {(xi, yi)}i∈[n] and xi ∈ Rdx and yi ∈ Rdy , their exist upper
bounds Bx, By such that for any i ∈ [n], ∥yi∥2 ≤ By, ∥xi∥2 ≤ Bx. Assume functions r(t), r′(t)
and u(t, y)[k] are Lr, Lr′ , Ll-Lipschitz continuous. Suppose W is a closed domain such that for any
j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk] ∈ RDN : ∥vjk∥2 ≤ Bv

}
,

and ProjW project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer
with hidden dimension Dw parameters ∥θ∥ ≤ Cw. If functions r(t), r′(t) and u(t, y)[k] are C4-
smoothness, then for any ϵ > 0, there exists a transformer model NNθ with (2N +4)L hidden layers
consists of L neural network blocks TFN+2

θ ◦ EWMLN
θ ◦ TF2

θ,

NNθ := TFN+2
θ ◦ EWMLN

θ ◦ TF2
θ ◦ . . . ◦ TF

N+2
θ ◦ EWMLN

θ ◦ TF2
θ,

such that the heads number M l, parameter dimensions Dl, and the parameter norms Bθl suffice

max
l∈[(2N+4)L]

M l ≤ Õ(ϵ−2), max
l∈[(2N+4)L]

Dl ≤ O(K2N) +Dw, max
l∈[(2N+4)L]

Bθl ≤ O(η) + Cw + 1,

where Õ(·) hides the constants that depend on d,K,N , the radius parameters Bx, By, Bv and the smoothness
of r and ℓ. And this neural network such that for any input sequences H(0), take from (2.1), NNθ(H

(0))
implements L steps in-context gradient descent on risk Ln(w) follows Lemma 15: For every l ∈ [L], the
(2N + 4)l-th layer outputs h

((2N+4)l)
i = [xi; yi;w

(l);0; 1; ti] for every i ∈ [n + 1], and approximation
gradients w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

F EXTENSION: SOFTMAX TRANSFORMER

In this part, we demonstrate the existence of pretrained Softmax transformers capable of implement-
ing ICGD on an N -layer neural network. First, we introduce our main technique: the universal
approximation property of softmax transformers in Appendix F.1. Then, we prove the existence of
pretrained softmax transformers that implement ICGD on N -layer neural networks in Appendix F.2.

F.1 UNIVERSAL APPROXIMATION OF SOFTMAX TRANSFORMER

Softmax-Attention Layer. We replace modified normalized ReLU activation σ/n in ReLU attention
layer (Definition 7) by standard softmax. Thus, for any input sequence H ∈ RD×n, a single head
attention layer outputs

Attn (H) = H +W (O)(V H) Softmax
[
(KH)⊤(QH)

]
, (F.1)

where W (O), Q,K, V ∈ RD×D ∈ Rd×d are the weight matrices. Then we introduce the softmax
transformer block, which consists of two feed-forward neural network layers and a single-head
self-attention layer with the softmax function.

Definition 11 (Transformer Block TSoftmax). For any input sequences H ∈ RD×n, let FF(H) :=
H +W2 · ReLU(W1H + b11

T
L) + b21

T
L be the Feed-Forward layer, where d′ is hidden dimensions,

W1 ∈ Rd′×D, W2 ∈ RD×d′
, b1 ∈ Rl, and b2 ∈ Rd. We configure a transformer block with

Softmax-attention layer as TSoftmax := {FF ◦Attn ◦ FF : Rd×L → Rd×L}.

Universal Approximation of Softmax-Transformer. We show the universal approximation theorem
for Transformer blocks (Definition 11). Specifically, Transformer blocks TSoftmax are universal
approximators for continuous permutation equivariant functions on bounded domain.

Lemma 16 (Universal Approximation of TSoftmax). Let f(·) := Rd×n → Rd×n be any L-Lipschitz
permutation equivariant function supported on [0, Bx]

d×n. We denote the discrete input domain of
[0, Bx]

d×n by a grid GD with granularity D ∈ N defined as GD = {Bx/D, 2Bx/D, . . . , Bx}d×n ⊂
Rd×n. For any κ > 0, there exists a transformer network fSoftmax ∈ TSoftmax, such that for any
Z ∈ [0, Bx]

d×n, it approximate f(Z) as: ∥fSoftmax(Z)− f(Z)∥2 ≤ L(8
√
dn+

√
n)Bx

2D = κ.

Proof Sketch. First, we use a piece-wise constant function to approximate f and derive an upper
bound based on its L-Lipschitz property. Next, we demonstrate how the feed-forward neural network
F (FF)

1 quantizes the continuous input domain into the discrete domain GD through a multiple-step
function, using ReLU functions to create a piece-wise linear approximation. Then, we apply the
self-attention layer F (SA) on F (FF)

1 , establishing a bounded output region for F (SA)
S ◦ F (FF)

1 .
Finally, we employ a second feed-forward network F (FF)

2 to predict fSoftmax(Z) and assess the
approximation error relative to the actual output f(Z) . See Appendix F.4 for a detailed proof.

F.2 IN-CONTEXT GRADIENT DESCENT WITH SOFTMAX TRANSFORMER

In-Context Gradient Descent with Softmax Transformer. By applying universal approximation
theory (Lemma 16), we now illustrate how to use Transformer block TSoftmax (Definition 11) and
MLP layers (Definition 8) to implement ICGD on general risk function Ln(w).

Theorem 6 (In-Context Gradient Descent on General Risk Function). Fix any Bw, η, ϵ > 0, L ≥ 1.
For any input sequences takes from (2.1), their exist upper bounds Bx, By such that for any i ∈ [n],
∥yi∥max ≤ By , ∥xi∥max ≤ Bx. Suppose W is a closed domain such that ∥w∥max ≤ Bw and ProjW
project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer. Define l(w, xi, yi)
as a loss function with L-Lipschitz gradient. Let Ln(w) =

1
n

∑n
i=1 ℓ(w, xi, yi) denote the empirical

loss function, then there exists a transformer NNθ, such that for any input sequences H(0), take from
(2.1), NNθ(H

(0)) implements L steps in-context gradient descent on Ln(w): For every l ∈ [L], the
4l-th layer outputs h(4l)

i = [xi; yi;w
(l);0; 1; ti] for every i ∈ [n+ 1], and approximation gradients

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

Proof Sketch. By our assumption ProjW = MLPθ, we only need to find a transformer to implement
gradient descent w+ := w − η∇Ln(w). For ant input takes from (F.2), let function f : RD×n →
RD×n maps w into w−η∇Ln(w) and preserve other elements. By Lemma 7, their exist a transformer
block fSoftmax capable of approximating f with any desired small error. Therefore, fSoftmax ◦MLP
suffices our requirements. Please see Appendix F.3 for a detailed proof.

F.3 PROOF OF THEOREM 6

Proof of Theorem 6. We only need to construct a 4 layers transformer capable of implementing
single step gradient descent. With out loss of generality, we assume w ∈ RDw . Recall that the input
sequences H ∈ RD×n takes form

H :=

[
x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
q1 q2 · · · qn qn+1

]
∈ RD×(n+1), qi :=

w01
ti

 ∈ RD−(d+1). (F.2)

Let function f : RD×n → RD×n output

f(H) =

[
x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
q1 q2 · · · qn qn+1

]
, qi :=

w − η∇Ln(w)
0
1
ti

 ∈ RD−(d+1).

By Lemma 16, for any κ > 0, there exists a transformer network fSoftmax ∈ TSoftmax, such
that for any input H ∈ [−B,B]d×L, we have ∥fSoftmax(H)− f(H)∥2 ≤ κ. Therefore, by the
equivalence of matrix norms, ∥fSoftmax(H)− f(H)∥max ≤ κ holds without loss of generality.
Above B := max{Bx, By, Bw, 1} denotes the upper bound for every elements in H . Thus, we
obtain w from the identical position of w in fSoftmax(H). Suppose we choose κ = ϵ√

Dw
, then it

holds

∥w − (w − η∇Ln(w)∥2 ≤
√

Dw∥w − (w − η∇Ln(w)∥max

≤ ∥fSoftmax − f(H)∥max

≤
√

Dw · ϵ√
Dw

≤ ϵ.

Finally, by our assumption, there exists an MLP layer such that for any i ∈ [n+ 1], it maps

[xi; yi;w − η∇Ln(w);0; 1; ti]
MLP−−−→ [xi; yi; ProjW(w − η∇wLn(w));0; 1; ti].

Therefore, a four-layer transformer fSoftmax ◦MLP is capable of implementing one-step gradient
descent through ICL. As a direct corollary, there exist a 4L-layer transformer consists of L identical
blocks fSoftmax ◦MLP to approximate L steps gradient descent algorithm. Each block approximates
a one-step gradient descent algorithm on general risk function Ln(w).

F.4 PROOF OF LEMMA 16

In this section, we introduce a helper lemma Lemma 17 to prove Lemma 16. At the beginning, we
assume all input sequences are separated by a certain distance.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Definition 12 (Token-wise Separateness, Definition 1 of (Kajitsuka and Sato, 2024)). Let N ≥ 1
and Z(1), . . . , Z(N) ∈ Rd×n be input sequences. Then, Z(1), . . . , Z(N) are called token-wise
(rmin, rmax, δ)-separated if the following three conditions hold.
• For any i ∈ [N] and k ∈ [n],

∥∥∥Z(i)
:,k

∥∥∥
2
> rmin holds.

• For any i ∈ [N] and k ∈ [n],
∥∥∥Z(i)

:,k

∥∥∥
2
< rmax holds.

• For any i, j ∈ [N] and k, l ∈ [n] with Z
(i)
:,k ̸= Z

(j)
:,l ,
∥∥∥Z(i)

:,k − Z
(j)
:,l

∥∥∥
2
> δ holds.

Note that we refer to Z(1), . . . , Z(N) as token-wise (rmax, ϵ)-separated instead if the sequences
satisfy the last two conditions.

Then we introduce the definition of contextual mapping. Intuitively, a contextual mapping can provide
every input sequence with a unique id, which enables us to construct approximation for labels.

Definition 13 (Contextual mapping, Definition 2 of (Kajitsuka and Sato, 2024)). Let input sequences
Z(1), . . . , Z(N) ∈ Rd×n. Then, a map q : Rd×n → Rd×n is called an (r, δ)-contextual mapping if
the following two conditions hold:
• For any i ∈ [N] and k ∈ [n],

∥∥∥q (Z(i)
)
:,k

∥∥∥
2
< r holds.

• For any i, j ∈ [N] and k, l ∈ [n], if Z(i)
:,k ̸= Z

(j)
:,l , then

∥∥∥q (Z(i)
)
:,k

− q
(
Z(j)

)
:,l

∥∥∥
2
> δ holds.

In particular, q
(
Z(i)

)
for i ∈ [N] is called a context id of Z(i).

Next, we show that a softmax-based 1-layer attention block with low-rank weight matrices is a
contextual mapping for almost all input sequences.

Lemma 17 (Softmax attention is contextual mapping, Theorem 2 of (Kajitsuka and Sato, 2024)). Let
Z(1), . . . , Z(N) ∈ Rd×n be input sequences with no duplicate word token in each sequence, that is,

Z
(i)
:,k ̸= Z

(i)
:,l

for any i ∈ [N] and k, l ∈ [n]. Also assume that Z(1), . . . , Z(N) are token-wise (rmin, rmax, ϵ)
separated. Then, there exist weight matrices W (O) ∈ Rd×s and V,K,Q ∈ Rs×d such that the ranks
of V,K and Q are all 1, and 1-layer single head attention with softmax, i.e., F (SA)

S with h = 1 is an
(r, δ)-contextual mapping for the input sequences Z(1), . . . , Z(N) ∈ Rd×n with r and δ defined by

r = rmax +
ϵ

4

δ =
2(log n)2ϵ2rmin

r2max(|V|+ 1)4(2 log n+ 3)πd
exp

(
−(|V|+ 1)4

(2 log n+ 3)πdr2max

4ϵrmin

)
Applying Lemma 17, we extends Proposition 1 of (Kajitsuka and Sato, 2024) to our Lemma 16.1
We provide explicit upper bound of error ∥fSoftmax(Z)− f(Z)∥2 and analysis with function f of a
broader supported domain.

Lemma 18 (Lemma 16 Restated: Universal Approximation of TSoftmax). Let f(·) := Rd×n →
Rd×n be any L-Lipschitz permutation equivariant function supported on [0, Bx]

d×n. We de-
note the discrete input domain of [0, Bx]

d×n by a grid GD with granularity D ∈ N defined as
GD = {Bx/D, 2Bx/D, . . . , Bx}d×n ⊂ Rd×n. For any κ > 0, there exists a transformer network
fSoftmax ∈ TSoftmax (Definition 11), such that for any Z ∈ [0, Bx]

d×n, it approximate f(Z) as:
∥fSoftmax(Z)− f(Z)∥2 ≤ L(8

√
dn+

√
n)Bx

2D = κ.

Proof. We begin our 3-step proof.

1This extension builds on the results of (Hu et al., 2024a), which extend the rank-1 requirement to any rank
for attention weights. Additionally, Hu et al. (2024b) apply similar techniques to analyze the statistical rates of
diffusion transformers (DiTs).

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Approximation of f by piece-wise constant function. Since f is a continuous function on a
compact set, f has maximum and minimum values on the domain. By scaling with F (FF)

1 and
F (FF)

2 , f is assumed to be normalized: for any Z ∈ Rd×n \ [0, Bx]
d×n

f(Z) = 0,

and for any Z ∈ [0, Bx]
d×n

−By ≤ f(Z) ≤ By.

Let D ∈ N be the granularity of a grid GD:

GD = {Bx

D
,
2Bx

D
, . . . , Bx}d×n ⊂ Rd×n,

where each coordinate only take discrete value Bx/D, 2Bx/D, ..., Bx. Now with a continuous input
Z, we approximate f by using a piece-wise constant function f evaluating on the nearest grid point
L of Z in the following way:

f(Z) =
∑

L∈GD

f (L) 1Z∈L+[−Bx/D,0)d×n . (F.3)

Additionally if Z ∈ L+ [−1/D, 0)d×n, denote it as Q(Z) = L.

Now we bound the piece-wise constant approximation error ∥f − f∥ as follows.

Define set PD = {L + [−Bx/D, 0)d×n|L ∈ GD}. It is a set of regions of size (Bx

D)d×n, whose
vertexes are the points in GD.

For any subset U ∈ PD, the maximal difference of f and f in this region is:

max
Z∈U

∥f(Z)− f(Z)∥2 = max
Z∈U

∥f(Z)− f(Q(Z))∥2

≤ max
Z,Z′∈U

∥f(Z)− f(Z ′)∥2

≤ L · max
Z,Z′∈U

∥Z − Z ′∥2
(
By f is a L-Lipschitz function

)
= L ·

√
dn · (Bx

D
)2

(
Z, Z′ are in the same Bx

D
-wide (d · n)-dimension U .

)
=

L
√
dnBx

D
. (F.4)

Quantization of input using F (FF)
1 . In the second step, we use F (FF)

1 to quantize the continuous
input domain into GD. This process is achieved by a multiple-step function, and we use ReLU
functions to approximate this multiple-step functions. This ReLU function can be easily implemented
by a one-layer feed-forward network.

First for any small δ > 0 and z ∈ R, we construct a δ-approximated step function using ReLU
functions:

σR

[
z
δ

]
− σR

[
z
δ −Bx

]
D

=


0 z < 0
z
δD 0 ≤ z < δBx
Bx

D δBx ≤ z

, (F.5)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

where a one-hidden-layer feed-forward neural network is able to implement this. By shifting (F.5) by
Bx, for any t ∈ [D − 1], we have:

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

=


0 z < tBx

D
z
δD

tBx

D ≤ z < δBx + tBx

D
Bx

D δBx + tBx

D ≤ z

, (F.6)

when δ is small the above function approximates to a step function:

quant
(t)
D (z) =

{
0 z ≤ tBx

D
Bx

D
tBx

D ≤ z
.

By adding up (F.6) at every t ∈ [D − 1], we have an approximated multiple-step function

D−1∑
t=0

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

(F.7)

≈
D−1∑
t=0

quant
(t)
D (z)

(
when δ is small.

)
= quantD(z)

=


0 z < 0
Bx

D 0 ≤ z < Bx

D
...

...
Bx Bx − Bx

D ≤ z

. (F.8)

Note that the error of approximation at z here estimated as:∣∣∣∣∣
D−1∑
t=0

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

− quantD(z)

∣∣∣∣∣ ≤ Bx

D
, (F.9)

and for matrix Z ∈ Rd×n:

∥
D−1∑
t=0

σR

[
Z
δ − Q(Z)

δD

]
− σR

[
Z
δ −BxE − Q(Z)

δD

]
D

− quantD(Z)∥2

≤
√
d× n× (

Bx

D
)2

(
Z ∈ Rd×n

)
=

Bx

√
dn

D
.

Subtract the last step function from (F.7) we get the desired result:

D−1∑
t=0

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

− (σR

[
z

δ
− Bx

δ

]
− σR

[
z

δ
− 1− Bx

δ

]
). (F.10)

This equation approximate the quantization of input domain [0, Bx] into {Bx/D, . . . , Bx} and
making R \ [0, Bx] to 0. In addition to the quantization of input domain [0, Bx], we add a penalty

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

term for input out of [0, Bx] in the following way:

−BxσR

[
(z −Bx)

δ

]
+BxσR

[
(z −Bx)

δ
− 1

]
−BxσR

[
−z

δ

]
+BxσR

[
−z

δ
− 1

]
(F.11)

≈ penalty(z) =


−Bx z ≤ 0

0 0 < z ≤ Bx

−Bx Bx < z

.

Both (F.10) and (F.11) can be realized by the one-layer feed-forward neural network. Also, it is
straightforward to show that generate both of them to input Z ∈ Rd×n.

Combining both components together, the fırst feed-forward neural network layer F (FF)
1 approxi-

mates the following function F (FF)

1 (Z):

F (FF)
1 ≈ F (FF)

1 (Z) = quantd×n
D (Z) +

d∑
t=1

n∑
k=1

penalty(Zt,k). (F.12)

Note how we generalize penalty(·) to multi-dimensional occasions in the above equation. Whenever
an input sequence Z has one entry Zt,k out of [0, Bx]

d×n, we penalize the whole input sequence by
adding a −Bx to all entries. This makes all entries of this quantization lower bounded by −dnBx.

(F.12) quantizes inputs in [0, Bx]
d×n with granularity D, while every element of the output is non-

positive for inputs outside [0, Bx]
d×n. In particular, the norm of the output is upper-bounded when

every entry in Z is out of [0, Bx], this adds −dnBx penalties to all entries:

max
Z∈Rd×n

∥∥∥F (FF)
1 (Z):,k

∥∥∥
2
=
√
d · (−dnBx)2

(
One column is d−dimension.

)
≤ dn ·

√
dBx, (F.13)

for any k ∈ [n].

Estimating the influence of self-attention F (SA). Define G̃D ⊂ GD as:

G̃D = {L ∈ GD | ∀k, l ∈ [n], L:,k ̸= L:,l} . (F.14)

It is a set of all the input sequences that don’t have have identical tokens after quantization.

Within this set, the elements are at least Bx

D separated by the quantization. Thus Lemma 17 allows us
to construct a self-attention F (SA) to be a contextual mapping for such input sequences.

Since when D is sufficiently large, originally different tokens will still be different after quantization.
In this context, we omit GD/G̃D for simplicity.

From the proof of Lemma 17 in (Kajitsuka and Sato, 2024), we follow their way to construct
self-attention and have following equation:∥∥∥F (SA)

S (Z):,k − Z:,k

∥∥∥
2
<

1

4
√
dD

max
k′∈[n]

∥Z:,k′∥2, (F.15)

for any k ∈ [n] and Z ∈ Rd×n.

Combining this upper-bound with (F.13) we have

∥∥∥F (SA)
S ◦ F (FF)

1 (Z):,k −F (FF) (Z):,k

∥∥∥
2
<

1

4
√
dD

max
k′∈[n]

∥F (FF)(Z:,k)∥2

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

<
1

4
√
dD

× dn
√
dBx

(
By (F.13)

)
=

dnBx

4D
. (F.16)

We show that if we take large enough D, every element of the output for Z ∈ Rd×n\[0, Bx]
d×n is

upper-bounded by

F (SA)
S ◦ F (FF)

1 (Z)t,k <
Bx

4D
(∀t ∈ [d], k ∈ [n]). (F.17)

To show (F.17) holds, we consider the opposite occasion that there exists a F (SA)
S ◦F (FF)

1 (Z)t0,k0
≥

Bx/4D. Then we divide the case into two sub cases:

1. The whole F (FF)
1 (Z) receives no less than 2 penalties. In this occasion, since every entry consists

of two counterparts in (F.12): the quantization part quantd×n
D (Z) ∈ [0, Bx] and aggregated with a

penalty part
∑d

t=1

∑n
k=1 penalty(Zt,k) ≤ −2Bx, for every entry we have F (FF) (Z)t,k ≤ −Bx.

This yields that:

∥F (SA)
S ◦ F (FF)

1 (Z):,k0
−F (FF) (Z):,k0

∥2 ≥ ∥F (SA)
S ◦ F (FF)

1 (Z)t0,k0
−F (FF) (Z)t0,k0

∥2

≥ |Bx

4D
− (−Bx)|

≥ dn

4D
Bx,

(
for a large enough D

)
thus we derive a contradiction towards (F.16) from the assumption, proving it to be incorrect.

2. The whole F (FF)
1 (Z) receives only one penalty. In this case all entries in Z is penalized by −Bx

and satisfies:

F (FF)
1 (Z)t,k ∈ [−Bx, 0]

d×n. (F.18)

By (F.15), this further denotes:∥∥∥F (SA)
S ◦ F (FF)

1 (Z):,k −F (FF)
1 (Z):,k

∥∥∥
2
<

1

4
√
dD

max
k′∈[n]

∥F (FF)
1 (Z):,k′ ∥2

(
By (F.15)

)
≤ 1

4
√
dD

√
d×B2

x

(
By (F.18)

)
=

Bx

4D
. (F.19)

Yet by our assumption, there exists such an entry F (SA)
S ◦ F (FF) (Z)t0,k0

≥ Bx/4D, which since

F (FF)
1 (Z)t0,k0

≤ 0, yields:∥∥∥F (SA)
S ◦ F (FF)

1 (Z):,k0
−F (FF)

1 (Z):,k0

∥∥∥
2
≥
∥∥∥F (SA)

S ◦ F (FF)
1 (Z)t0,k0

−F (FF)
1 (Z)t0,k0

∥∥∥
2

≥ |Bx

4D
− 0|

=
Bx

4D

The final conclusion contradict the former result, suggesting the prerequisite to be fallacious.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Joining the incorrectness of the two sub-cases of the opposite occasion, we confirm the upper bound
when input Z is outside [0, Bx]

d×n in (F.17).

For the input Z inside [0, Bx]
d×n, we now show it is lower-bounded by

F (SA)
S ◦ F (FF)

1 (Z)t,k >
3Bx

4D
(∀t ∈ [d], k ∈ [n]). (F.20)

By our construction, every entry Z in [0, Bx]
d×n satisfies:

F (FF)
1 (Z)t,k ∈ [

Bx

D
,Bx]. (F.21)

By (F.15): ∥∥∥F (SA)
S ◦ F (FF)

1 (Z):,k −F (FF)
1 (Z):,k

∥∥∥
2

<
1

4
√
dD

max
k′∈[n]

∥F (FF)
1 (Z):k′ ∥2

(
By (F.15)

)
≤ 1

4
√
dD

√
d×B2

x

(
d−dimension vector with each entry has maximum value Bx.

)
=

Bx

4D
. (F.22)

This yields:

|F (SA)
S ◦ F (FF)

1 (Z)t,k −F (FF)
1 (Z)t,k | ≤

∥∥∥F (SA)
S ◦ F (FF)

1 (Z):,k −F (FF)
1 (Z):,k

∥∥∥
2

<
Bx

4D
. (F.23)

Finally, we have:

F (SA)
S ◦ F (FF)

1 (Z)t,k

> F (FF)
1 (Z)t,k −

∥∥∥F (SA)
S ◦ F (FF)

1 (Z)t,k −F (FF)
1 (Z)t,k

∥∥∥
2

>
Bx

D
− ∥F (SA)

S ◦ F (FF)
1 (Z)t,k −F (FF)

1 (Z)t,k ∥2
(
By (F.21).

)
>

Bx

D
− Bx

4D

(
By (F.23)

)
=

3Bx

4D
.

Hence we finally finish the proof for the upper bound of F (SA)
S ◦ F (FF)

1 (Z)t,k for Z outside [0, Bx]

in (F.17) and lower bound for Z inside [0, Bx] in (F.20).

Approximation error Now, we can conclude our work by constructing the final feed-forward
network F (FF)

2 . It receives the output of the self-attention layer and maps the ones in G̃D ⊂
(3Bx/4D,∞)d×n to the corresponding value of the target function, and the rest in (−∞, Bx/4D)d×n

to 0.

In order to adapt to the L2 norm, we use a continuous and Lipschitz function to map the input Z to
its targeted corresponding output f(Q(Z)).

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

According to piece-wise linear approximation, function F (FF)
2 exists such that for any input L ∈ GD,

it maps it to corresponding f(L), and for an arbitrary input Z, its output suffices:

F (FF)
2 (Z) ∈ [min

∥L−Z∥max≤Bx
2D

f(L), max
∥L−Z∥max≤Bx

2D

f(L)]. (F.24)

Next we estimate the difference between F (FF)
2 ◦ F (SA)

S ◦ F (FF)
1 and F (FF)

2 ◦ F (SA)
S ◦ F (FF)

1 .

The difference is caused by the difference between F (FF)

1 and F (FF)
1 . By (F.9), this difference is

bounded by 1
D in every dimension, for any input Z ∈ Rd×n:

∥F (FF)

1 (Z)−F (FF)
1 (Z)∥2 <

√
dnBx

D
.

By (F.19):

∥F (SA)
S ◦ F (FF)

1 (Z)−F (SA)
S ◦ F (FF)

1 (Z)∥2

≤ ∥F (SA)
S ◦ F (FF)

1 (Z)−F (FF)

1 (Z)∥2 + ∥F (FF)

1 (Z)−F (FF)
1 (Z)∥2

+ ∥F (FF)
1 (Z)−F (SA)

S ◦ F (FF)
1 (Z)∥2

(
By triangle inequality

)
≤

√
dnBx

D
+ 2 ·

√
nBx

4D
.

(
By ∥A∥2 ≤ ∥A∥F and (F.19)

)
In the section on quantization of the input, we used piece-wise linear functions (F.7) to approximate
piece-wise-constant functions (F.8), this creates a deviation for the inputs on the boundaries of the
constant regions. Consider Z as one of these inputs whose value deviated from F (FF)

2 ◦ F (SA)
S ◦

F (FF)

1 (Q(Z)). Let f(L1) denote the value given to F (FF)
2 ◦ F (SA)

S ◦ F (FF)
1 (Z). Because the

deviation take the output to a grid at most
√
dnBx/D +

√
nBx/2D away from its original grid,

under the quantization of the output, f(L1) at most deviate from its original output F (FF)
2 ◦ F (SA)

S ◦
F (FF)

1 (Z) by the distance of
√
dnBx/D +

√
nBx/2D aggregated with 2 times of the maximal

distance within a grid. They sum up to be:

∥F (FF)
2 ◦ F (SA)

S ◦ F (FF)
1 −F (FF)

2 ◦ F (SA)
S ◦ F (FF)

1 ∥2 ≤ L× (
2
√
dnBx +

√
nBx

2D
+ 2

√
dnBx

D
)

< L
6
√
dnBx +

√
nBx

2D
.

Lastly, by condition we neglect the GD \ G̃D part. This yields:

F (FF)
2 ◦ F (SA)

S ◦ F (FF)

1 = f.

Thus, adding up the errors yields:

∥f −F (FF)
2 ◦ F (SA)

S ◦ F (FF)
1 ∥2

≤ ∥f − f∥2 + ∥f −F (FF)
2 ◦ F (SA)

S ◦ F (FF)
1 ∥2

(
By triangle inequality

)
= L

6
√
dnBx +

√
nBx

2D
+ L

√
dnBx

D

(
By (F.4)

)
=

L(8
√
dn+

√
n)Bx

2D
.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

This completes the proof.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

G EXPERIMENTAL DETAILS

In this section, we conduct experiments to verify the capability of ICL to learn deep feed-forward
neural networks. We conduct the experiments based on 3-layer NN, 4-layer NN and 6-layer NN using
both ReLU-Transformer and Softmax-Transformer based on the GPT-2 backbone.

Experimental Objectives. Our objectives include the following three parts:

• Objective 1. Validating the performance of ICL matches that of training N -layer networks, i.e.,
the results in Theorem 1, Theorem 5, and Theorem 6.

• Objective 2. Validating the ICL performance in scenarios where the testing distribution diverges
from the pretraining one or where prompt lengths exceed those used in pretraining.

• Objective 3. Validating the ICL performance in scenarios where the distribution of parameters in
the N -layer network diverges from that of the pretraining phase.

• Objective 4. Validating that a deeper transformer achieves better ICL performance, supporting the
idea that scaling up the transformer enables it to perform more ICGD steps.

Computational Resource. We conduct all experiments using 1 NVIDIA A100 GPU with 80GB
of memory. Our code is based on the PyTorch implementation of the in-context learning for the
transformer (Garg et al., 2022) at https://github.com/dtsip/in-context-learning.

G.1 EXPERIMENTS FOR OBJECTIVES 1 AND 2

In this section, we conduct experiments to validate Objectives 1 and 2. We sample the input of
feed-forward network x ∈ Rd from the Gaussian mixture distribution: w1N(−2, Id) + w2N(2, Id),
where w1, w2 ∈ R. We consider three kinds of network f : Rd → R, (i) 3-layer NN, (ii) 4-layer NN,
and (iii) 6-layer NN. We generate the true output by y = f(x). In our setting, we use d = 20.

Model Architecture. The sole difference between ReLU-Transformer and Softmax-Transformer is
the activation function in the attention layer. Both models comprise 12 transformer blocks, each with
8 attention heads, and share the same hidden and MLP dimensions of 256.

Transformer Pretraining. We pretrain the ReLU-Transformer and Softmax-Transformer based on
the GPT-2 backbone. In our setting, we sample the pertaining data from N(−2, Id), i.e., w1 = 1 and
w2 = 0. Following the pre-training method in (Garg et al., 2022), we use the batch size as 64. To
construct each sample in a batch, we use the following steps (take the generation for the i-th sample
as an example):

1. Initialize the parameters in fi with a standard Gaussian distribution, i.e., N(0, I).
2. Generate n queries {xi,j}nj=1 (i.e., input of fi) from the Gaussian mixture model ω1N(−2, Id) +

ω2N(2, Id). Here we take n = 51.
3. For each query xi,j , use yi,j = fi(xi,j) to calculate the true output.

This generates a training sample for the transformer model with inputs

[xi,1, yi,1, · · · , xi,50, yi,50, xi,51] ,

and training target

oi = [yi,1, · · · , yi,50, yi,51] .

We use the MSE loss between prediction and true value of oi. The pretraining process iterates for
500k steps.

Testing Method. We generate samples similar to the pretraining process. The batch size is 64, and
the number of batch is 100, i.e., we have 6400 samples totally. For each sample, we extend the value
n from 51 to 76 to learn the performance of in-context learning when the prompt length is longer
than we used in pretraining. The input to the model becomes

[xi,1, yi,1, · · · , xi,75, yi,75, xi,76] .

We assess performance using the mean R-squared value for all 6400 samples.

47

https://github.com/dtsip/in-context-learning

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Baseline. We use the 3-layer, 4-layer, and 6-layer feed-forward neural networks with 200 hidden
dimensions as baselines by training them with in-context examples. Specially, given a testing sample
(take the i-th sample as an example), which includes prompts {xi,j , yi,j}k−1

j=1 and a test query xi,k.

We use {xi,j , yi,j}k−1
j=1 to train the network with MSE loss for 100 epochs. We select the highest

R-squared value from each epoch as the testing measure and calculate the average across all 6400
samples.

G.1.1 PERFORMANCE OF RELU TRANSFORMER.

We use three different Gaussian mixture distribution ω1N(−2, Id) + ω2N(2, Id) for the testing data:
(i) ω1 = 1, ω2 = 0, (ii) ω1 = 0.9, ω2 = 0.1, (iii) ω1 = 0.7, ω2 = 0.3, (iv) ω1 = 0.5, ω2 = 0.5. Here
the distribution in the first setting matches the distribution in pretraining. We show the results in
Figure 1.

0 25 50 75
In-context Examples

1.5
1.0
0.5
0.0
0.5
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
3-Layer NN

(a) 3-Layer NN

0 25 50 75
In-context Examples

1.5
1.0
0.5
0.0
0.5
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
4-Layer NN

(b) 4-Layer NN

0 25 50 75
In-context Examples

0.2
0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
6-Layer NN

(c) 6-Layer NN

Figure 1: Performance of ICL in ReLU-Transformer: ICL learns 3-layer, 4-layer, and 6-layer NN
and achieves R-squared values comparable to those from training with prompt samples. The results
also show the ICL performance declines as the testing distribution diverges from the pretraining one.

G.1.2 PERFORMANCE OF SOFTMAX TRANSFORMER.

We use three different Gaussian mixture distribution ω1N(−2, Id) + ω2N(2, Id) for the testing data:
(i) ω1 = 1, ω2 = 0, (ii) ω1 = 0.9, ω2 = 0.1, (iii) ω1 = 0.7, ω2 = 0.3, (iv) ω1 = 0.5, ω2 = 0.5. Here
the distribution in the first setting matches the distribution in pretraining. We show the results in
Figure 2.

0 25 50 75
In-context Examples

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
3-Layer NN

(a) 3-Layer NN

0 25 50 75
In-context Examples

1.0
0.5
0.0
0.5
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
4-Layer NN

(b) 4-Layer NN

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

N(2, I)
0.9N(2, I) + 0.1N(2, I)
0.7N(2, I) + 0.3N(2, I)
0.5N(2, I) + 0.5N(2, I)
6-Layer NN

(c) 6-Layer NN

Figure 2: Performance of ICL in Softmax-Transformer: ICL learns 3-layer, 4-layer, and 6-layer
NN and achieves R-squared values comparable to those from training with prompt samples. The
results also show the ICL performance declines as the testing distribution diverges from the pretraining
one. Note that performance decreases when the prompt length exceeds the pretraining length (i.e.,
50), a well-known issue (Dai et al., 2019; Anil et al., 2022). We believe this is due to the absolute
positional encodings in GPT-2, as noted in (Zhang et al., 2023)

The results in Appendix G.1.1 and Appendix G.1.2 show that the performance of ICL in the trans-
former matches that of training N -layer networks, regardless of whether the prompt lengths are
within or exceed those used in pretraining. Furthermore, the ICL performance declines as the testing
distribution diverges from the pretraining one.

G.2 EXPERIMENTS FOR OBJECTIVE 3

In this section, we conduct experiments to validate Objective 3. For these experiments, we use testing
data that is identical to the training data, which follows a distribution of N(−2, Id). We vary the

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

distribution of parameters in the N -layer network. During the training process, we set the distribution
as N(0, I). In the testing process, we examine different distributions, including N(0, I), N(−0.5, I),
and N(0.5, I). All other model hyperparameters and experimental details remain consistent with
those described in Appendix G.1. We evaluate the ICL performance of both the ReLU-Transformer
and the Softmax-Transformer for 4-layer networks, as shown in Figure 3 and Figure 4. The results
demonstrate that the ICL performance in the transformer matches that of training N -layer networks,
regardless of whether the parameter distribution in the N -layer network diverges from that of the
pretraining phase.

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0, I))

(a) Parameters ∼ N(0, I)

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0.5, I))

(b) Parameters ∼ N(−0.5, I)

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0.5, I))

(c) Parameters ∼ N(0.5, I)

Figure 3: Performance of ICL Across Various N -layer Network Parameter Distributions for the
ReLU-Transformer: ICL learns 4-layer NN and achieves R-squared values comparable to those
from training with prompt samples, even when the parameter distribution in the N -layer network
during testing diverges from that in the pretraining phase (N(0, I)).

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0, I))

(a) Parameters ∼ N(0, I)

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d

ICL of Transformer
4-Layer NN (Param. ~ N(0.5, I))

(b) Parameters ∼ N(−0.5, I)

0 25 50 75
In-context Examples

0.0
0.2
0.4
0.6
0.8
1.0

R-
Sq

ua
re

d
ICL of Transformer
4-Layer NN (Param. ~ N(0.5, I))

(c) Parameters ∼ N(0.5, I)

Figure 4: Performance of ICL Across Various N -layer Network Parameter Distributions for the
Softmax-Transformer: ICL learns 4-layer NN and achieves R-squared values comparable to those
from training with prompt samples, even when the parameter distribution in the N -layer network
during testing diverges from that in the pretraining phase (N(0, I)).

G.3 EXPERIMENTS FOR OBJECTIVE 4

In this section, we conduct experiments to validate Objective 4. For these experiments, we use testing
data identical to the pertaining data from N(−2, Id). We vary the number of layers in the transformer
architecture, testing configurations with 4, 6, 8 and 10 layers. All other model hyperparameters
and experimental details remain consistent with those described in Appendix G.1. We evaluate the
ICL performance of both the ReLU-Transformer and the Softmax-Transformer with 15, 30, and 45
in-context examples, as shown in Figure 5. The results show that a deeper transformer achieves better
ICL performance, supporting the idea that scaling up the transformer enables it to perform more
ICGD steps.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

4 6 8 10
ReLU-Transformer Layer Depth

0.82
0.83
0.84
0.85
0.86
0.87
0.88

R-
Sq

ua
re

d

15 In-context Examples
30 In-context Examples
45 In-context Examples

(a) ReLU-Transformer

4 6 8 10
Softmax-Transformer Layer Depth

0.85
0.86
0.87
0.88
0.89
0.90
0.91

R-
Sq

ua
re

d

15 In-context Examples
30 In-context Examples
45 In-context Examples

(b) Softmax-Transformer

Figure 5: Performance of ICL Across Varying Transformer Depths: We use the number of
in-context examples as 15, 30, or 45 for both the ReLU-Transformer and the Softmax-Transformer.
The results show that a deeper transformer achieves better ICL performance, supporting the idea that
scaling up the transformer enables it to perform more ICGD steps.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

H APPLICATION: ICL FOR DIFFUSION SCORE APPROXIMATION

In this part, we give an important application of our work, i.e., learn the score function of diffusion
models by the in-context learning of transformer models. We give the preliminaries about score
matching generative diffusion models in Appendix H.1. Then, we give the analysis for ICL to
approximate the diffusion score function in Appendix H.2.

H.1 SCORE MATCHING GENERATIVE DIFFUSION MODELS

Diffusion Model. Let x0 ∈ Rd be initial data following target data distribution x0 ∼ P0. In essence,
a diffusion generative model consists of two stochastic process in Rd:

• A forward process gradually add noise to the initial data (e.g., images): x0 → x1 → · · · → xT .
• A backward process gradually remove noise from pure noise: yT → yT−1 → · · · → y0.
Importantly, the backward process is the reversed forward process, i.e., yt

d
≈ xT−t for i ∈ 0, . . . , T .2

This allows the backward process to reconstruct the initial data from noise, and hence generative. To
achieve this time-reversal, a diffusion model learns the reverse process by ensuring the backward
conditional distributions mirror the forward ones. The most prevalent technique for aligning these
conditional dynamics is through “score matching” — a strategy training a model to match score
function, i.e., the gradients of the log marginal density of the forward process (Song et al., 2020b;a;
Vincent, 2011). To be precise, let Pt, pt(·) denote the distribution function and destiny function of
xt. The score function is given by ∇ log pt(·). In this work, we focus on leveraging the in-context
learning (ICL) capability of transformers to emulate the score-matching training process.

Score Matching Loss. We introduce the basic setting of score-matching as follows3. To estimate the
score function, we use the following loss to train a score network sW (·, t) with parameters W :

min
W

∫ T

T0

γ(t)Ext∼Pt

[
∥sW (xt, t)−∇ log pt(xt)∥22

]
dt, where γ(t) is a weight function, (H.1)

and T0 is a small value for stabilizing training and preventing the score function from diverging. In
practice, as ∇ log pt(·) is unknown, we minimize the following equivalent loss (Vincent, 2011).

min
W

∫ T

T0

γ(t)Ex0∼P0

[
Ext|x0

[
∥sW (xt, t)−∇ log p(xt|x0)∥22

]]
dt, (H.2)

where p(xt|x0) is distribution of xt conditioned on x0.

H.2 ICL FOR SCORE APPROXIMATION

We first give the problem setup about the ICL for score approximation as the following:

Problem 3 (In-Context Learning (ICL) for Score Function ∇ log pt(·)). Consider the score function
∇ log pt(·) for any t ≥ 0. Given a dataset Dn := {(xi, yi)}i∈[n], where {xi}i∈[n] ⊆ Rd and
yi = ∇ log pti(xi) ⊆ Rd (ti ≥ 0), and a test input xn+1, the goal of “ICL for Score Function” is to
find a transformer T to predict yn+1 based on xn+1 and the in-context dataset Dn. In essence, the
desired transformer T serves as the trained score network sW (·, t).

To solve Problem 3, we follow two steps: (i) Approximate the diffusion score function ∇ log pt(·)
with a multi-layer feed-forward network with ReLU activation functions under the given training
dataset Dn. (ii) Approximate the gradient descent used to train this network by the in-context learning
of the Transformer until convergence, using the same training set Dn as the prompts of ICL.

For the first step, we follow the score approximation results based on a multi-layer feed-forward
network with ReLU activation in (Chen et al., 2023), stated as next lemma.

2 d
≈ denotes distributional equivalence.

3Please also see Appendix B.1 and (Chen et al., 2024; Chan, 2024; Yang et al., 2023) for overviews.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Lemma 19 (Score Approximation by Feed-Forward Networks, Theorem 1 of (Chen et al., 2023)).
Given an approximation error ϵ > 0, for any initial data distribution P0, there exist a multi-layer
feed-forward network with ReLU activation, f(w, x, t) : RDw × Rd × R → Rd. Then for any
t ∈ [T0, T], we have ∥f(w, ·, t)−∇ log pt(·)∥L2(Pt)

≤ O(ϵ).

With the approximation result, we reduce the Problem 3 to Problem 2, where the loss function is (H.1).
Following Theorem 1, we show that the in-context learning of transformer models can approximate
the score function of diffusion model.

52

	Introduction
	Preliminaries: ICL and ICGD
	In-Context Gradient Descent on -Layer Neural Networks
	Problem Setup: ICGD for -Layer Neural Network
	Explicit Gradient Descent of -Layer Neural Network
	Transformers Approximate Gradient Descent of -Layer Neural Networks with ICL

	Discussion and Conclusion
	Informal Version of Results
	Related Works, Broader Impact and Limitations
	Related Works
	Broader Impact
	Limitations

	Supplementary Theoretical Backgrounds
	Transformers
	ReLU Provably Approximates Smooth -Variable Functions

	Proofs of Main Text
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of
	Proof of

	Extension: Different Input and Output Dimensions
	Extension: Softmax Transformer
	Universal Approximation of Softmax Transformer
	In-Context Gradient Descent with Softmax Transformer
	Proof of thm:icgdsoft
	Proof of lemma:univeralitysoftmax

	Experimental Details
	Experiments for Objectives 1 and 2
	Performance of ReLU Transformer.
	Performance of Softmax Transformer.

	Experiments for Objective 3
	Experiments for Objective 4

	Application: ICL for Diffusion Score Approximation
	Score Matching Generative Diffusion Models
	ICL for Score Approximation

