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ABSTRACT

We investigate the transformer’s capability for in-context learning (ICL) to simulate
the training process of deep models. Our key contribution is providing a positive
example of using a transformer to train a deep neural network by gradient descent
in an implicit fashion via ICL. Specifically, we provide an explicit construction of a
(2N + 4)L-layer transformer capable of simulating L gradient descent steps of an
N -layer ReLU network through ICL. We also give the theoretical guarantees for
the approximation within any given error and the convergence of the ICL gradient
descent. Additionally, we extend our analysis to the more practical setting using
Softmax-based transformers. We validate our findings on synthetic datasets for 3-
layer, 4-layer, and 6-layer neural networks. The results show that ICL performance
matches that of direct training.

1 INTRODUCTION

We study transformers’ ability to simulate the training process of deep models. This analysis is not
only practical but also timely. On one hand, transformers and deep models (Brown, 2020; Radford
et al., 2019) are so powerful, popular and form a new machine learning paradigm — foundation
models. These large-scale machine learning models, trained on vast data, provide a general-purpose
foundation for various tasks with minimal supervision (Team et al., 2023; Touvron et al., 2023;
Zhang et al., 2022). On the other hand, the high cost of pretraining these models often makes them
prohibitive outside certain industrial labs (Jiang et al., 2024; Bi et al., 2024; Achiam et al., 2023). In
this work, we aim to advance the “one-for-many” modeling philosophy of foundation model paradigm
(Bommasani et al., 2021) by considering the following research problem:

Question 1. Is it possible to train one deep model with the ICL of another foundation model?

The implication of Question 1 is profound: if true, one foundation model could lead to many others
without pertaining. In this work, we provide an affirmative example for Question 1. Specifically,
we show that transformer models are capable of simulating the training of a deep ReLU-based
feed-forward neural network with provable guarantees through In-Context Learning (ICL). Our
analysis assumes that we have well-pretrained the transformer using the data generated by the deep
network. We require the deep network to maintain consistent hyperparameters (e.g., model width
and depth) during the pretraining and testing. However, during the testing, we vary the parameter
distribution and input data distribution of the deep network to generate data for the transformer.

In ICL, the models learn to solve new tasks during inference by using task-specific examples provided
as part of the input prompt, rather than through parameter updates (Wei et al., 2023; Bubeck et al.,
2023; Achiam et al., 2023; Bai et al., 2023; Min et al., 2022; Garg et al., 2022; Brown, 2020). Unlike
standard supervised learning, ICL enables models to adapt to new tasks during inference using only
the provided examples. In this work, the new task of our interest is algorithmic approximation via
ICL (Bai et al., 2023; Zhang et al., 2023; Wang et al.). Specifically, we aim to use transformer’s ICL
capability to replace/simulate the standard supervised training algorithms for N -layer networks. To
be concrete, we formalize the learning problem of how transformers learn (i) a given function and (ii)
a machine learning algorithm (e.g., gradient descent) via ICL, following (Bai et al., 2023).

(i) ICL for Function f . Let f : Rd → R be the function of our interest. Suppose we have a dataset
Dn := {(xi, yi)}i∈[n], where {xi}i∈[n] ⊆ Rd and {yi}i∈[n] ⊆ R are the input and output of f ,
respectively. Let xn+1 be the test input. The goal of ICL is to use a transformer, denoted by T , to
predict yn+1 based on the test input and the in-context dataset autoregresively: ŷn+1 ∼ T (Dn, xn+1).
The goal is for the prediction ŷn+1 to be close to yn+1 = f(x).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(ii) ICL for Gradient Descent of a Parametrized Model f(w, ·). Bai et al. (2023) generalize (i)
to include algorithmic approximations of Gradient Descent (GD) training algorithms and explore
how transformers simulate gradient descent during inference without parameter updates. They term
the simulated GD algorithm “In-Context Gradient Descent (ICGD).” In essence, ICGD enables
transformers to approximate gradient descent on a loss function Ln(w) for a parameterized model
f(w, ·) based on a dataset Dn. Traditional gradient descent updates w iteratively as wt+1 = wt −
η∇Ln(wt). In contrast, ICGD uses a transformer T to simulate these updates within a forward
pass. Given example data Dn and test input xn+1, the transformer performs gradient steps in an
implicit fashion by inferring parameter updates through its internal representations, using input
context without explicit weight changes. Please see Section 2 for explicit formulation.

In this work, we investigate the case where f(w, ·) is a deep feed-forward neural network. We defer
the detailed problem setting to Section 2. In comparison to standard ICGD (Bai et al., 2023), ICGD
for deep feed-forward networks is not trivial. This is due to two technical challenges:
(C1) Analytical feasibility of gradient computation for these thick networks.
(C2) Explicit construction capable of approximating ICGD for such layers and their gradients.
A work similar to ours is (Wang et al.). It demonstrates that the transformer implements multiple steps
of ICGD on deep neural networks. However, it requires more layers in the transformer model and
fails to consider the Softmax-transformer. We provide a more detailed comparison in Appendix B.1.
To this end, we present the first explicit expression for gradient computation of N -layer feed-forward
network (Lemma 1). Importantly, its term-by-term tractability provides key insights for the detailed
construction of a specific transformer to train this network via ICGD (Theorem 1).
Contributions. We offer a positive early investigation of Question 1. Our contributions are threefold:
• Approximation by ReLU-Transformer. For simplicity, we begin with the ReLU-based trans-

former. For a broad class of smooth empirical risks, we construct a (2N + 4)L-layer transformer
to approximate L steps of in-context gradient descent on the N -layer feed-forward networks with
the same input and output dimensions (Theorem 1). We then extend this to accommodate varying
dimensions (Theorem 5). We also provide the theoretical guarantees for the approximation within
any given error (Corollary 1.1) and the convergence of the ICL gradient descent (Lemma 14).

• Approximation by Softmax-Transformer. We extend our analysis to the Softmax-transformer to
better reflect realistic applications. The key technique is to ensure a qualified approximation error
at each point to achieve universal approximation capabilities of the Softmax-based Transformer
(Lemma 16). We give a construction of a 4L-layer Softmax transformer to approximate L steps of
gradient descent, and guarantee the approximation and the convergence (Theorem 6).

• Experimental Validation. We validate our theory with ReLU- and Softmax-transformers, specifi-
cally, ICGD for the N -layer networks (Theorem 1, Theorem 5, and Theorem 6). We assess the ICL
capabilities of transformers by training 3-, 4-, and 6-layer networks in Appendix G. The numerical
results show that the performance of ICL matches that of training N -layer networks.

Organization. We show our main results in Theorem 1 and the informal version in Appendix A.
Section 2 presents preliminaries. Section 3 presents the problem setup and ICL approximation to
GD steps of N -layer feed-forward network based on ReLU-transformer. The appendix includes the
related works (Appendix B.1), the detailed proofs of the main text (Appendix D), ICL approximation
to GD steps of N -layer network based on Softmax-transformer (Appendix F), the experimental
results (Appendix G), and the application to diffusion models (Appendix H).

Notations. We use lower case letters to denote vectors and upper case letters to denote matrices. The
index set {1, ..., I} is denoted by [I], where I ∈ N+. For any matrices A ∈ Rn×n, let ℓp norm of
A be induced by vector ℓp-norm, defined as ∥A∥p := sup{∥Ax∥p : x ∈ Rn with ∥x∥p = 1}. For
any function f and distribution P , we denote L2(P ) norm of f as ∥f∥L2(P ) = E1/2

P [||f ||22]. We use
A[i, j] to denote the element in i-th row and j-th column of matrix A. For any matrices A ∈ Rm×n

and B ∈ Rm×n, let ⊙ denotes the Hadamard product: (A ⊙ B)[i, j] := A[i, j] · B[i, j]. For any
matrices A ∈ Rm×n and B ∈ Rp×q , let ⊗ denote the Kronecker product:

A⊗B :=

[
A[1, 1]B · · · A[1, n]B

...
. . .

...
A[m, 1]B · · · A[m,n]B

]
.

2 PRELIMINARIES: ICL AND ICGD
We present the ideas we built upon: In-Context Gradient Descent (ICGD).
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(i) ICL for Function f . Let f : Rd → R be the function of our interest. Suppose we have a dataset
Dn := {(xi, yi)}i∈[n], where {xi}i∈[n] ⊆ Rd and {yi}i∈[n] ⊆ R are the input and output of f ,
respectively. Let xn+1 be the test input. The goal of ICL is to use a transformer, denoted by T , to
predict yn+1 based on the test input and the in-context dataset autoregresively: ŷn+1 ∼ T (Dn, xn+1).
For convenience in our analysis, we adopt the ICL notation from (Bai et al., 2023). Specifically,
we shorthand (Dn, xn+1) into an input sequence (i.e., prompt) of length n+ 1 and represent it as a
compact matrix H ∈ RD×(n+1) := [h1, . . . , hn+1] in the form:

H :=

[
x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
q1 q2 · · · qn qn+1

]
∈ RD×(n+1), qi :=

[
0D−(d+3)

1
ti

]
∈ RD−(d+1). (2.1)

Here, we choose D := dimxi+dim yi+dim qi = Θ(d). We use qi to fill in the remain D− (d+1)
entries in addition to xi ∈ Rd and yi ∈ R. The last entry ti := 1(i < n + 1) of qi is the position
indicator to distinguish the n in-context examples and the test data. The problem of “ICL for f”
is to show the existence of a transformer T that, when given H , outputs T (H) ∈ RD×(n+1) of the
same shape, and the “(d+ 1, n+ 1) entry of T (H)” provides the prediction ŷn+1. The goal is for
the prediction ŷn+1 to be close to yn+1 = f(x) measured by some proper loss.

(ii) ICL for Gradient Descent of a Parametrized Model f(w, ·). In this work, we aim to use ICL to
replace/simulate the standard supervised training procedure for N -layer neural networks. To achieve
this, we introduce the concept of In-Context Gradient Descent (ICGD) for a parameterized model.

Consider a machine learning model f(w, ·) : RDw × Rd → Rd, parametrized by w ∈ RDw . Given
a dataset Dn := {(xi, yi)}i∈[n]

iid∼ P, a typical learning task is to find parameters w⋆ such that
f(w⋆, ·) becomes closest to the true data distribution P. Then, for any test input xn+1, we predict:
ŷn+1 = f(w⋆, xn+1). To find w⋆, Bai et al. (2023) configure a transformer to implement gradient
descent on f(w, ·) through ICL, simulating optimization algorithms during inference without explicit
parameter updates. We formalize this In-Context Gradient Descent (ICGD) problem: using a
pretrained model to simulate gradient descent on f(w, ·) w.r.t. the provided context (Dn, xn+1).

Problem 1 (In-Context Gradient Descent (ICGD) on Model f(w, ·) (Bai et al., 2023)). Let ϵ > 0
and L ≥ 1. Consider a machine learning model f(w, x) : RDw × Rd → Rd parameterized by
w ∈ RDw . Given a dataset Dn := {(xi, yi)}i∈[n]

iid∼ P with (xi, yi) ∈ Rd × Rd, define the empirical
risk function:

Ln(w) :=
1

2n

n∑
i=1

ℓ(f(w, xi), yi), where ℓ : Rd × Rd → R is a loss function. (2.2)

Let W ⊆ RDw be a closed domain, and ProjW denote the projection onto W . The problem of
“ICGD on model f(w, ·)” is to find a transformer T with L blocks, each approximating one step of
gradient descent using T layers. For any input H(0) ∈ RD×(n+1) in the form of (2.1), the transformer
T (H(0)) approximates L steps of gradient descent. Specifically, for l ∈ [L] and i ∈ [n + 1], the
output at layer T l is: h(Tl)

i = [xi; yi;w
(l);0; 1; ti], where, with w(0) = 0,

w(l) = ProjW

(
w(l−1) − η

(
∇Ln(w

(l−1)) + ϵ(l−1)
))

is updated recursively, (2.3)

and ∥ϵ(l−1)∥2 ≤ ϵ represents the approximation error at step l − 1.

Problem 1 aims to find a transformers T to perform L steps gradient descent on loss Ln(w) in an
implicit fashion (i.e., no explicit parameter update). More precisely, Bai et al. (2023) configure T
with L identical blocks, each approximating one gradient descent step using T layers. In this work,
we investigate the case where f(w, ·) is an “N -layer neural network.”

Transformer. We defer standard definition of transformer to Appendix C.1 due to the page limit.

3 IN-CONTEXT GRADIENT DESCENT ON N -LAYER NEURAL NETWORKS

We now show that transformers is capable of implementing gradient descent on N -layer neural
networks through ICL. In Section 3.1, we define the N -layer ReLU neural network and state its
ICGD problem. In Section 3.2, we derive explicit gradient descent expression for N -layer NN. In
Section 3.3, we show how transformers execute gradient descent on N -layer NN via ICL.
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3.1 PROBLEM SETUP: ICGD FOR N -LAYER NEURAL NETWORK

To begin, we introduce the construction of our N -Layer Neural Network which we aims to implement
gradient descent on its empirical loss function.

Definition 1 (N -Layer Neural Network). An N -Layer Neural Network comprises N − 1 hidden
layers and 1 output layer, all constructed similarly. Let r : R → R be the activation function. For the
hidden layers: for any i ∈ [n+ 1], j ∈ [N − 1], and k ∈ [K], the output for the first j layers w.r.t.
input xi ∈ Rd, denoted by predh(xi; j) ∈ RK , is defined as recursive form:

predh(xi; 1)[k] := r(v⊤1kxi), and predh(xi; j)[k] := r(v⊤jkpredh(xi; j − 1)),

where v1k ∈ Rd and vjk ∈ RK for j ∈ {2, . . . , N − 1} are the k-th parameter vectors in the first
layer and the j-th layer, respectively. For the output layer (N -th layer), the output for the first N
layers (i.e the entire neural network) w.r.t. input xi ∈ Rd, denoted by predo(xi;w,N) ∈ Rd, is
defined for any k ∈ [d] as follows:

predo(xi;w,N)[k] := r(v⊤Nk
predh(xi;N − 1)), (3.1)

where vNk
∈ RK are the k-th parameter vectors in the N -th layer and w ∈ R2dK+(N−2)K2

denotes
the vector containing all parameters in the neural network,

w :=
[
v⊤11 , . . . , v

⊤
1K , . . . , v⊤jk , . . . v

⊤
N−11

, . . . , v⊤N−1K
, v⊤N1

, . . . , v⊤Nd

]⊤
. (3.2)

Remark 1 (Prediction Function for j-th layer on i-th Data: pi(j)). For simplicity, we abbreviate the
output from the first j-th layer of the N -layer neural networks NN with input xi as pi(j),

pi(j) :=


xi ∈ Rd, for j = 0,

predh(xi; j) ∈ RK , for j ∈ [N − 1],

predo(xi;w,N) ∈ Rd, for j = N.

(3.3)

Additionally, we define pi := [pi(1); . . . ; pi(N)] ∈ R(N−1)K+d.

We formalize the problem of using a transformer to simulate gradient descent algorithms for training
the N -layer NN defined in Definition 1, by optimizing loss (2.2). Specifically, we consider the ICGD
(Problem 1) with the parameterized model f(w, ·) := predo(·;w,N).

Problem 2 (ICGD on N -Layer Neural Networks). Let the N -layer neural networks, activation
function r, and prediction function pi(j) for all layers follow Definition 1 and Remark 1. Assume we
under the identical setting as Problem 1, considering model f(w, ·) := predo(·;w,N) and specifying
W is a closed domain such that for any j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk ] ∈ RDN : ∥vjk∥2 ≤ Bv

}
. (3.4)

The problem of “ICGD on N -layer neural networks” is to find a TL layers transformer T , capable of
implementing L steps gradient descent as in Problem 1. Specifically, for any L ∈ [L], i ∈ [n+ 1],
the T l-th layer outputs h(Tl)

i = [xi; yi;w
(l);0; 1; ti], where:

w(l) = ProjW

(
w(l−1) − η

(
∇Ln(w

(l−1)) + ϵ(l−1)
))

, w(0) = 0, (3.5)

and ∥ϵ(l−1)∥2 ≤ ϵ is the error term generated from the approximation in the l-th step.

Remark 2 (Necessary for bounded domain W). For using a sum of ReLU to approximate functions
like r, which illustrated in the consequent section, we need to avoid gradient exploding. Therefore,
we require W to be a bounded domain, and utilize ProjW to project w into bounded domain W .

3.2 EXPLICIT GRADIENT DESCENT OF N -LAYER NEURAL NETWORK

Intuitively, Problem 2 asks whether there exists a transformer capable of simulating the gradient
descent algorithm on the loss function of an N -layer neural network. We answer Problem 2 by
providing an explicit construction for such a transformer T in Theorem 1. To facilitate our proof, we
first introduce the necessary notations for explicit expression of the gradient ∇wLn(w).

Definition 2 (Abbreviations). Fix i ∈ [n+1], and consider an N -layer neural network with activation
function r and prediction function pi(j) as defined in Definition 1.

4
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• Let Dj ∈ R denote the total number of parameters in the first j layers. By (3.2), we have:

Dj =


0, j = 0

dK, j = 1

(j − 1)K2 + dK, 2 ≤ j ≤ N − 1

(N − 2)K2 + 2dK, j = N.

• The parameter vector w :=
[
v⊤11 , . . . , v

⊤
1K , . . . , v⊤N−11

, . . . , v⊤N−1K
, v⊤N1

, . . . , v⊤Nd

]⊤
follows (3.2).

Define ϕi :=
(

∂ℓ(pi(N),yi)
∂pi(N) · ∂pi(N)

∂w

)⊤
∈ RDN . For any j ∈ [N ], let Ai(j) denote the derivative

of ℓ(pi(N), yi) with respect to the parameters in the j-th layer:Ai(j) = ϕi[Dj−1 : Dj ], where
ϕi[a : b] selects elements from the a-th to b-th position in ϕi.

• For activation function r(t), let r′(t) be its derivative. Define r′i(j) ∈ RK as:

r′i(j)[k] := r′(v⊤j+1k
pi(j)).

• Define r′i := [r′i(0); . . . ; r
′
i(N − 1)] and Ri(j) as:

Ri(j) :=

{
diag{r′(v⊤j+11

pi(j)), . . . , r
′(v⊤j+1K

pi(j))} ∈ RK×K , j ∈ {0, 1, . . . N − 2}
diag{r′(v⊤j+11

pi(j)), . . . , r
′(v⊤j+1d

pi(j))} ∈ Rd×d, j = N − 1.

• For any j ∈ [N ], let Vj denote the parameters in the j-th layer as:

Vj :=


[
v11 , . . . , v1K

]⊤ ∈ RK×d, j = 1[
vj1 , . . . , vjK

]⊤ ∈ RK×K , j ∈ 2, . . . , N − 1[
vN1

, . . . , vNd

]⊤ ∈ Rd×K , j = N.

Definition 2 splits the gradient of Ln(w) into N parts. This makes ∇wLn(w) more interpretable and
tractable, since all parts follows a recursion formula according to chain rule. With above notations,
we calculate the gradient descent step (3.5) of N -layer neural network as follows:

Lemma 1 (Decomposition of One Gradient Descent Step). Fix any Bv, η > 0. Suppose loss function
Ln(w) on n data points {(xi, yi)}i∈[n] follows (2.2). Suppose closed domain W and projection
function ProjW(w) follows (3.4). Let Ai(j), r

′
i(j), Ri(j), Vj be as defined in Definition 2. Then the

explicit form of gradient ∇Ln(w) becomes

∇Ln(w) =
1

2n

n∑
i=1

Ai(1)
...

Ai(N)

 , (3.6)

where Ai(j) denote the derivative of ℓ(pi(N), yi) with respect to the parameters in the j-th layer,

Ai(j) =

{
(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·

[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N) )⊤, j ̸= N

(Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N) )⊤, j = N.

Proof Sketch. Using the chain rule and product rule, we decompose the gradient as follows:
∇wLn(w) = 1

2n

∑N
i=1[

∂pi(N)
∂w ]⊤ · [∂ℓ(pi(N),yi)

∂pi(N) ]⊤. Thus, we only need to compute ∂pi(N)
∂w . By

Definition 1 and the chain rule, we prove that ∂pi(N)
∂w satisfies the recursive formulation (D.4). Com-

bining these, we derive the explicit form of gradient ∇wLn(w) , and the gradient step follows directly.
Please see Appendix D.1 for a detailed proof.

Since it is hard to calculate the elements in Ai(j) in a straightforward mannar, we calculate each
parts of it successively. Specifically, we define the intermediate terms si(j) and u as follows

Definition 3 (Definition of intermediate terms). Let Ai(j), r
′
i(j), Ri(j), Vj be as defined in Defini-

tion 2. By Lemma 1, the derivative of ℓ(pi(N), yi) w.r.t the parameters in the j-th layer follows,

Ai(j) =

{
(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·

[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N) )⊤, j ̸= N

(Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N) )⊤, j = N.

5
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For any t, y ∈ Rd, we define vector function u(t, y) := (∂ℓ(t,y)∂t )⊤ : Rd × Rd → Rd. Moreover, for
any j ∈ [N ], i ∈ [n+ 1], we define si(j) as

si(j) :=

{
Ri(j − 1)V ⊤

j+1 . . . Ri(N − 2)V ⊤
N ·Ri(N − 1) · u(pi(N), yi), ∈ RK , j ̸= N,

Ri(N − 1) · u(pi(N), yi), ∈ Rd, j = N.

Let ⊙ denotes hadamard product. For any j ∈ [N − 1], i ∈ [N + 1], Definition 3 leads to

si(j) = r′i(j − 1)⊙ (V ⊤
j+1 · si(j + 1)), (3.7)

Moreover, by Definition 3, it holds

Ai(j) =

{[
IK×K ⊗ pi(j − 1)

]
· si(j), j ̸= N,[

Id×d ⊗ pi(N − 1)
]
· si(N), j = N.

(3.8)

3.3 TRANSFORMERS APPROXIMATE GRADIENT DESCENT OF N -LAYER NEURAL NETWORKS
WITH ICL

For using neural networks to approximate (2.2), which contains smooth functions changeable, we
need to approximate these smooth functions by simple combination of activation functions. Our key
approximation theory is using a sum of ReLUs to approximate any smooth function (Bai et al., 2023).

Definition 4 (Approximability by Sum of ReLUs, Definition 12 of (Bai et al., 2023)). Let z ∈ Rk.
We say that a function g : Rk → R is (ϵapprox, R,H,C)-approximable by sum of ReLUs if there exist
a “(H,C)-sum of ReLUs” function fH,C(z) defined as

fH,C(z) =

H∑
h=1

chσ(a
⊤
h [z; 1]) with

H∑
h=1

|ch| ≤ C, max
h∈[H]

∥ah∥1 ≤ 1, ah ∈ Rk+1, ch ∈ R,

such that supz∈[−R,R]k |g(z)− fH,C(z)| ≤ ϵapprox.

Overview of Our Proof Strategy. Lemma 1 and Definition 4 motivate the following strategy:
term-by-term approximation for our gradient descent step (3.6).

Step 1. Given (xi, w), we use N attention layers to approximate the output of the first j layers
with input xi, pi(j) := predh(xi; j) ∈ Rk (Definition 1) for any j ∈ [N ]. Then we use 1
attention layer to approximate chain-rule intermediate terms r′i(j−1)[k] := r′(v⊤jkpi(j−1))
(Definition 2) for any i ∈ [n], j ∈ [N ] and k ∈ [K]: Lemma 2 and Lemma 3.

Step 2. Given (r′i, pi, w), we use an MLP layer to approximate u(pi(N), yi) (Definition 3), for
i ∈ [n], and use N element-wise multiplication layers to approximate si(j) (Definition 3),
for any j ∈ [N ]: Lemma 4 and Lemma 5. Moreover, Lemma 6 shows the closeness result
for approximating si(j), which leads to the final error accumulation in Theorem 1.

Step 3. Given (pi, r
′
i, gisi(j), w), we use an attention layer to approximate w−η∇Ln(w). Then we

use an MLP layer to approximate ProjW(w). And implementing L steps gradient descent
by a (2N + 4)L-layer neural network NNθ constructed based on Step 1 and 2. Finally, we
arrive our main result: Theorem 1. Furthermore, Lemma 14 shows closeness results to the
true gradient descent path.

Step 1. We start with approximation for pi(j).

Lemma 2 (Approximate pi(j)). Let upper bounds Bv, Bx > 0 such that for any k ∈ [K], j ∈
[N ] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N ], i ∈ [n], define

Bj
r := max

|t|≤BvB
j−1
r

|r(t)|, B0
r := Bx, and Br := max

j
Bj

r .

Let function r(t) be (ϵr, R1,M1, C1)-approximable for R1 = max{BvBr, 1}, M1 ≤ Õ(C2
1ϵ

−2
r ),

where C1 depends only on R1 and the C2-smoothness of r. Then, for any ϵr > 0, there exist N
attention layers Attnθ1 , . . . ,AttnθN such that for any input hi ∈ RD takes from (2.1), they map

hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]
Attnθj−−−−→ h̃i = [xi; yi;w; pi(1); . . . ; pi(j);0; 1; ti],

where pi(j) is approximation for pi(j) (Definition 1). In the expressions of hi and h̃i, the dimension
of 0 differs. Specifically, the 0 in hi is larger than in h̃i. The dimensional difference between these 0
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vectors equals the dimension of pi(j). Suppose function r is Lr-smooth in bounded domain W , then
for any i ∈ [n+ 1], j ∈ [N ], pi(j) such that

pi(j) = pi(j) + ϵ(i, j), ∥ϵ(i, j)∥2 ≤

{
(
∑j−1

l=0 Kl/2Ll
rB

l
v)
√
Kϵr , 1 ≤ j ≤ N − 1

(
∑N−1

l=0 Kl/2Ll
rB

l
v)
√
dϵr , j = N

. (3.9)

Additionally, for any j ∈ [N ], the norm of parameters Bθj defined as (C.1) such that Bθj ≤ 1+KC1.

Proof Sketch. By Definition 1, we provide term-by-term approximations for pi(j) as forward prop-
agation. Specifically, we construct Attention layers to implement forward propagation algorithm.
Then we establish upper bounds for the errors ∥pi(j)− pi(j)∥2 inductively. Finally, we present the
norms (C.1) of the Transformers constructed. Please see Appendix D.2 for a detailed proof.

Notice that the form of error accumulation in Lemma 2 is complicated. For the ease of later
presentations, we define the upper bound of coefficient in (3.9) as

Er := max
j∈[N ]

∥ϵ(i, j)∥2
ϵr

= max
j∈[N ]

{(
j−1∑
l=0

Kl/2Ll
rB

l
v)
√
K, (

N−1∑
l=0

Kl/2Ll
rB

l
v)
√
d}, (3.10)

such that (3.9) becomes
pi(j) = pi(j) + ϵ(i, j), ∥ϵ(i, j)∥2 ≤ Erϵr. (3.11)

Moreover, we abbreviate pi := [pi(1); . . . ; pi(N)] ∈ R(N−1)K+d, such that the output of Attnθ1 ◦
· · · ◦AttnθN is

hi = [xi; yi;w; pi;0; 1; ti]. (3.12)
Then, the next lemma approximates r′i(j) base on pi(j) obtained in Lemma 2.

Lemma 3 (Approximate r′i(j)). Let upper bounds Bv, Bx > 0 such that for any k ∈ [K], j ∈
[N ] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N ], i ∈ [n], define

B′j
r := max

|t|≤BvB
j−1

r′

|r′(t)|, B0
r′ := Bx, and Br′ := max

j
Bj

r′ .

Suppose function r′(t) is (ϵr′ , R2,M2, C2)-approximable for R2 = max{BvBr′ , 1}, M2 ≤
Õ(C2

2ϵ
′−2
r ), where C2 depends only on R2 and the C2-smoothness of r′. Then, for any ϵr > 0, there

exist an attention layer AttnθN+1
such that for any input hi ∈ RD takes from (3.12), it maps

hi = [xi; yi;w; pi;0; 1; ti]
AttnθN+1−−−−−−→ h̃i = [xi; yi;w; pi; r

′
i;0; 1; ti],

where r′i(j) is approximation for r′i(j) (Definition 2) and r′i := [r′i(0); . . . ; r
′
i(N−1)] ∈ R(N−2)K+d.

Similar to Lemma 2, in the expressions of hi and h̃i, the dimension of 0 differs. In addition, let Er

be defined in (3.11), for any i ∈ [n+ 1], j ∈ [N ], k ∈ [K], r′i(j) such that
r′i(j − 1)[k] = r′i(j − 1)[k] + ϵ(i, j, k), |ϵ(i, j, k)| ≤ ϵr′ + Lr′BvErϵr, (3.13)

where ϵr denotes the error generated in approximating r by sum of ReLUs r follows (D.5). Addition-
ally, the norm of parameters BθN+1

defined as (C.1) such that BθN+1
≤ 1 +K(N − 1)C2.

Proof Sketch. By Lemma 2, we obtain pi(j), the approximation for pi(j) (3.3). Using pi(j), we
construct an Attention layer to approximate r′i(j). We then establish upper bounds for the errors
|r′i(j)[k]− r′i(j)[k]| by applying Cauchy-Schwarz inequality and Lemma 2. Finally we present the
norms (C.1) of the Transformers constructed. Please see Appendix D.3 for a detailed proof.

Let Attnθj (j ∈ [N ]) be as defined in Lemma 2, then Lemma 3 implies that for the input takes from
Problem 2, the output of Attnθ1 ◦ · · · ◦AttnθN+1

is

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]. (3.14)

Step 2. Now, we construct an approximation for u(pi(N), yi) = (∂ℓ(pi(N),yi)
∂pi(N) )⊤.

Lemma 4 (Approximate u(pi(N), yi)). Let upper bounds Bv, Bx, > 0 such that for any k ∈
[K], j ∈ [N ] and i ∈ [n], ∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. For any k ∈ [d], suppose function
u(t, y)[k] be (ϵl, R3,M

k
3 , C

k
3 )-approximable for R3 = max{BvBr, By, 1}, M3 ≤ Õ((Ck

3 )
2ϵ−2

l ),

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where Ck
3 depends only on Rk

3 and the C3-smoothness of u(t, y)[k]. Then, there exists an MLP layer
MLPθN+2

such that for any input sequences hi ∈ RD takes from (3.14), it maps

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]

MLPθN+2−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i; gi;0; 1; ti],

where gi ∈ Rd is an approximation for u(pi(N), yi). For any k ∈ [d], assume u(pi(N), yi) is Ll-
Lipschitz continuous. Then the approximation gi such that,

gi[k] = u(pi(N), yi)[k] + ϵ(i, k), with |ϵ(i, k)| ≤ ϵl + LlErϵr. (3.15)
Additionally, the parameters θN+2 such that BθN+2

≤ max{R3 + 1, C3}.

Proof Sketch. By Lemma 2, we obtain pi(N), the approximation for pi(N) (3.3). Using pi(N), we
construct an MLP layer to approximate u. We then establish upper bounds for the errors |gi[k]− u[k]|
and present the norms (C.1) of Transformers constructed. See Appendix D.4 for a detailed proof.

Let Attnθj (j ∈ [N + 1]) be as defined in Lemma 2 and Lemma 3, then for any input sequences
hi ∈ RD takes from (2.1), the output of Attnθ1 ◦ · · · ◦AttnθN+1

◦MLPθN+2 is

hi = [xi; yi;w; pi; r
′
i; gi;0; 1; ti]. (3.16)

Before introducing our next approximation lemma, we define an element-wise multiplication layer,
since attention mechanisms and MLPs are unable to compute self-products (e.g., output xy from
input [x; y]). To enable self-multiplication, we introduce a function γ. This function, for any square
matrix, preserves the diagonal elements and sets all others to zero.

Definition 5 (Operator Function γ). For any square matrix A ∈ Rn×n, define γ(A) :=
diag(A[1, 1], . . . A[n, n]) ∈ Rn×n.

By Definition 5, we introduce the following element-wise multiplication layer, capable of performing
self-multiplication operations such as the Hadamard product.

Definition 6 (Element-wise Multiplication Layer). Let γ be defined as Definition 5. An element-wise
multiplication layer with m heads is denoted as Attnθ(·) with parameters θ = {Qm,Km, Vm}m∈[M ].
On any input sequence H ∈ RD×n,

EWMLθ(H) = H +

m∑
i=1

(VmH) · γ((QmH)⊤(KmH)). (3.17)

where Qm,Km, Vm ∈ RD×D and γ(·) is operator function follows Definition 5. In vector form, for
for each token hi ∈ RD in H , it outputs [EWMLθ(H)]i = hi +

∑M
m=1 γ(⟨Qmhi,Kmhi⟩) · Vmhi.

In addition, we define L-layer neural networks EWMLL
θ := EWMLθ1 ◦ · · · ◦ EWMLθL .

Remark 3 (Necessary for Element-Wise Multiplication Layer). As we shall show in subsequent
sections, element-wise multiplication layer is capable of implementing multiplication in hi. Specifi-
cally, it allows us to multiply some elements in hi in Lemma 5. By Definition 7, it is impossible for
transformer layers to achieve our goal without any other assumptions.

Similar to (C.1), we define the norm for L-layer transformer EWMLL
θ as:

Bθ := max
m∈[M ],l∈[L]

{∥Ql
m∥1, ∥Kl

m∥1, ∥V l
m∥1}. (3.18)

Then, given the approximations for pi(j) and r′i(j), we use N element-wise multiplication layer
(Definition 6) to approximate si(j), the chain-rule intermediate terms defined as Definition 3.

Lemma 5 (Approximate st(j)). Recall that si(j) = r′i(j−1)⊙(V ⊤
j+1 ·si(j+1)) follows Definition 3.

Let the initial input take from (3.16). Then, there exist N element-wise multiplication layers:
EWMLθN+3

, . . . ,EWMLθ2N+2
such that for input sequences, j ∈ [N ],

hi = [xi; yi;w; pi; r
′
i; gi; si(N); . . . ; si(j + 1);0; 1; ti],

8
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they map EWMLθ2N+3−j
(hi) = [xi; yi;w; pi; r

′
i; gi; si(N); . . . ; si(j);0; 1; ti], where the approxi-

mation si(j) is defined as recursive form: for any i ∈ [n+ 1], j ∈ [N ],

si(j) :=

{
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1)), j ∈ [N − 1]

r′i(N − 1)⊙ gi, j = N.
(3.19)

Additionally, for any j ∈ [N ], BθN+2+j
defined in (C.1) satisfies BθN+2+j

≤ 1.

Proof Sketch. By Lemma 2 and Lemma 3, we obtain pi(j) and r′i(j), the approximation for pi(j)
(3.3) and r′i(j) respectively. Using pi(j) and r′i(j), we construct N element-wise multiplication
layers to approximate si(j). We then present the norms (3.18) of the EWMLs constructed. Please
see Appendix D.5 for a detailed proof.

Let Attnθj (j ∈ [N + 1]),MLPθN+2
be as defined in Lemma 2, Lemma 3 and Lemma 4 respectively.

Define si := [si(N); . . . ; si(1)] ∈ R(N−1)K+d, then for any input sequences hi ∈ RD takes from
Problem 2, the output of neural network

Attnθ1 ◦ · · · ◦AttnθN+1
◦MLPθN+2

◦ EWMLθN+3
◦ · · · ◦ EWMLθ2N+1

, (3.20)
is

hi = [xi; yi;w; pi; r
′
i; si;0; 1; ti]. (3.21)

For the sake of simplicity, we consider ReLU Attention layer and MLP layer are both a special kind
of transformer. In this way, by Definition 9, (3.20) becomes

TFN+2
θ ◦ EWMLN−1

θ .

Next we calculate the error accumulation |si(j)[k]− si(j)[k]| based on Lemma 3 and Lemma 4.

Lemma 6 (Error for si(j)). Suppose the upper bounds Bv, Bx > 0 such that for any k ∈ [K], j ∈
[N ] and i ∈ [n], ∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. Let r′i(j) ∈ RK such that r′i(j)[k] :=
r′(v⊤j+1k

pi(j)) follows Definition 2. Let si(j) = Ri(j − 1)V ⊤
j+1 . . . Ri(N − 2)V ⊤

N · Ri(N − 1)u

follows Definition 3. Let r′i(j), gi, si(j) be the approximations for r′i(j), u(pi(N), yi), si(j) follows
Lemma 3, Lemma 4 and Lemma 5 respectively. Let Br′ be the upper bound of r′i(j)[k] and r′i(j)[k]
as defined in Lemma 3. Let Bl be the upper bound of gi and u(pi(N), yi) as defined in Lemma 4.
Then for any i ∈ [n+ 1], j ∈ [N ], k ∈ [K],

si(j)[k] ≤ Bs, and |si(j)[k]− si(j)[k]| ≤ Er
s ϵr + Er′

s ϵr′ + El
sϵl, where,

P := max{
√
K,

√
d} (3.22)

Bs := max
j∈[N ]

{(P ·Br′Bv)
N−jBr′Bl}, (3.23)

Er
s := max

j∈[N ]
{Lr′ErPBsB

2
v [

N−j−1∑
l=0

(Br′BvP )l] + (Br′BvP )N−j(BlLr′BvEr +Br′LlEr)},

Er′

s := max
j∈[N ]

{PBsBv[

N−j−1∑
l=0

(Br′BvP )l] + (Br′BvP )N−jBl},

El
s := max

j∈[N ]
{(Br′BvP )N−jBr′}. (3.24)

Above, Bs is the upper bound of si(j)[k] and Er
s , E

r′

s , El
s are the coefficients of ϵr, ϵ′r, ϵl in the upper

bounds of |si(j)[k]− si(j)[k]|, respectively.

Proof Sketch. By Lemma 5, we manage to approximate si(j) by si(j). By triangle inequality,
we have |si(j)[k]− si(j)[k]| ≤ |r′i(n− 1)[k]− r′i(n− 1)[k]| ·

∣∣v⊤n+1k
si(n+ 1)

∣∣+ |r′i(n− 1)[k]| ·∣∣(v⊤n+1k
si(n+ 1))− (v⊤n+1k

si(n+ 1))
∣∣. We bound these four terms separately. By Lemma 3,

|r′i(n− 1)[k]− r′i(n− 1)[k]| is bounded by ϵr′ + Lr′BvErϵr. We then use induction to establish
upper bounds for si(j)[k] and |si(j)[k]− si(j)[k]|. See Appendix D.6 for a detailed proof.

Lemma 6 offers the explicit form of the error |si(j)[k]− si(j)[k]|, which is crucial for calculating
the error ∥∇wLn(w)−∇wLn(w)∥2 in Theorem 1.
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Step 3. Combining the above, we prove the existence of a neural network, that implements L
in-context GD steps on our N -layer neural network. And finally we arrive our main result: a neural
network T for Problem 2.
Theorem 1 (In-Context Gradient Descent on N -layer NNs). Fix any Bv, η, ϵ > 0, L ≥ 1. For
any input sequences takes from (2.1), their exist upper bounds Bx, By such that for any i ∈ [n],
∥yi∥2 ≤ By, ∥xi∥2 ≤ Bx. Assume functions r(t), r′(t) and u(t, y)[k] are Lr, Lr′ , Ll-Lipschitz
continuous. Suppose W is a closed domain such that for any j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk ] ∈ RDN : ∥vjk∥2 ≤ Bv

}
,

and ProjW project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer
with hidden dimension Dw parameters ∥θ∥ ≤ Cw. If functions r(t), r′(t) and u(t, y)[k] are C4-
smoothness, then for any ϵ > 0, there exists a transformer model NNθ with (2N +4)L hidden layers
consists of L neural network blocks TFN+2

θ ◦ EWMLN
θ ◦ TF2

θ,

NNθ := TFN+2
θ ◦ EWMLN

θ ◦ TF2
θ ◦ . . . ◦ TF

N+2
θ ◦ EWMLN

θ ◦ TF2
θ,

such that the heads number M l, parameter dimensions Dl, and the parameter norms Bθl suffice

max
l∈[(2N+4)L]

M l ≤ Õ(ϵ−2), max
l∈[(2N+4)L]

Dl ≤ O(NK2) +Dw, max
l∈[(2N+4)L]

Bθl ≤ O(η) + Cw + 1,

where Õ(·) hides the constants that depend on d,K,N , the radius parameters Bx, By, Bv and
the smoothness of r and ℓ. And this neural network such that for any input sequences H(0), take
from (2.1), NNθ(H

(0)) implements L steps in-context gradient descent on risk Eqn (2.2): For every
l ∈ [L], the (2N + 4)l-th layer outputs h((2N+4)l)

i = [xi; yi;w
(l);0; 1; ti] for every i ∈ [n+ 1], and

approximation gradients w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

Proof Sketch. Let the first 2N + 2 layers of NNθ are Transformers and EWMLs constructed in
Lemma 2, Lemma 3, Lemma 4, and Lemma 5. Explicitly, we design the last two layers to implement
the gradient descent step (Lemma 1). We then establish the upper bounds for error ∥∇wLn(w)−
∇wLn(w)∥2, where ∇wLn(w), derived from the outputs of NNθ, approximates ∇wLn(w). Next,
for any ϵ > 0, we select appropriate parameters ϵl, ϵr and ϵr′ to ensure that ∥∇wLn(w

(l−1)) −
∇wLn(w

(l−1))∥2 ≤ ϵ holds for any l ∈ [L]. Please see Appendix D.7 for a detailed proof.

As a direct result, the neural networks NNθ constructed earlier is able to approximate the true gradient
descent trajectory {wl

GD}l≥0, defined by w0
GD = 0 and wl+1

GD = wl
GD − η∇wLn(w

l
GD) for any

l ≥ 0. Consequently, Theorem 1 motivates us to investigate the error accumulation under setting

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ represents error terms. Moreover, Corollary 1.1 shows NNθ constructed in
Theorem 1 implements L steps ICGD with exponential error accumulation to the true GD paths.

Corollary 1.1 (Error for implementing ICGD on N -layer neural network). Fix L ≥ 1, under the
same setting as Theorem 1, (2N + 4)L-layer neural networks NNθ approximates the true gradient
descent trajectory {wl

GD}l≥0 ∈ RDN with the error accumulation ∥wl −wl
GD∥2 ≤ L−1

f (1+nLf )
lϵ,

where Lf denotes the Lipschitz constant of Ln(w) within W .

Proof. Please see Appendix D.8 for a detailed proof.

4 DISCUSSION AND CONCLUSION
We provide an explicit characterization of the ICL capabilities of a transformer model in approxi-
mating the gradient descent training process of a N -layer feed-forward neural network. Our results
include approximation (Theorem 1) and convergence (Corollary 1.1) guarantees. We further extend
our analysis in two ways: (i) from N -layer networks with the same input and output dimensions
to scenarios with arbitrary dimensions (Appendix E); (ii) from ReLU-transformers (aligned with
(Bai et al., 2023)) to more practical Softmax-transformers for ICGD of N -layer neural network
(Appendix F). We support our theory with numerical validations in Appendix G, and apply our results
to learn the score function of the diffusion model through ICL in Appendix H. Please see the related
works, a detailed comparison with (Wang et al.), broader impact, and limitations in Appendix B.
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A INFORMAL VERSION OF RESULTS

In this section, we show the informal version of our main results.

Theorem 2 (ICGD on N -layer NNs, informal version of Theorem 1). Assume functions r(t), r′(t)
and u(t, y)[k] (Definition 1) are C4-smoothness. Let all parameter and data are bounded, then their
exist a explicit constructed transformer capable of solving Problem 1 on N -layer NNs.

Theorem 3 (ICGD on General Risk Function, informal version of Theorem 6). Assume all parameters
and data are bounded. Let l(w, xi, yi) be a loss function with L-Lipschitz gradient. Let Ln(w) =
1
n

∑n
i=1 ℓ(w, xi, yi) denote the empirical loss function, then there exists a transformer NNθ, such

that for any input sequences H(0), take from (2.1), NNθ(H
(0)) solves Problem 1 on Ln(w).

B RELATED WORKS, BROADER IMPACT AND LIMITATIONS

In this section, we show the related works, broader impact and limitations.

B.1 RELATED WORKS

In-Context Learning. Large language models (LLMs) demonstrate the in-context learning (ICL)
ability (Brown, 2020), an ability to flexibly adjust their prediction based on additional data given in
context. In recent years, a number of studies investigate enhancing ICL capabilities (Chen et al., 2022;
Gu et al., 2023; Shi et al., 2023), exploring influencing factors (Shin et al., 2022; Yoo et al., 2022), and
interpreting ICL theoretically (Xie et al., 2021; Wies et al., 2024; Panwar et al., 2023; Li et al., 2023;
Bai et al., 2023; Dai et al., 2022). The works most relevant to ours are as follows. (Von Oswald et al.,
2023) showed that linear attention-only Transformers with manually set parameters closely resemble
models trained via gradient descent. (Bai et al., 2023) providing a more efficient construction for in-
context gradient descent and established quantitative error bounds for simulating multi-step gradient
descent. However, these results focused on simple ICL algorithms or specific tasks like least squares,
ridge regression, and gradient descent on two-layer neural networks. These algorithms are inadequate
for practical applications. For example: (i) Approximating the diffusion score function requires
neural networks with multiple layers (Chen et al., 2023). (ii) Approximating the indicator function
requires at least 3-layer networks (Safran and Shamir, 2017). Therefore, the explicit construction
of transformers to implement in-context gradient descent (ICGD) on deep models is necessary to
better align with real-world in-context settings. Our work achieves this by analyzing the gradient
descent on N -layer neural networks through the use of ICL. We provide a more efficient construction
for in-context gradient descent. Furthermore, we extend our analysis to Softmax-transformer in
Appendix F to better align with real-world uses.

In-Context Gradient Descent on Deep Models (Wang et al.; Panigrahi et al., 2023). A work
similar to ours is (Wang et al.). It constructs a family of transformers with flexible activation functions
to implement multiple steps of ICGD on deep neural networks. This work emphasizes the generality
of activation functions and demonstrates the theoretical feasibility of such constructions. Our work
adopts a different approach by enhancing the efficiency of transformers and better aligning with
practical applications. We introduce the following novelties:
• More structured and efficient transformer architecture. While the work (Wang et al.) uses a
O(N2L)-layer transformer to approximate L gradient descent steps on N -layer neural networks,
our approach achieves more efficient simulation for ICGD. We approximate specific terms in the
gradient expression to reduce computational costs, requiring only a (2N+4)L-layer transformer for
L gradient descent steps. Our method focuses on selecting and approximating the most impactful
intermediate terms in the explicit gradient descent expression (Lemmas 3 to 5), optimizing layer
complexity to O(NL).

• Less restrictive input and output dimensions for N -layer neural networks. The work (Wang
et al.) simplifies the output of N -layer networks to a scalar. Our work expands this by considering
cases where output dimensions exceed one, as detailed in Appendix E. This includes scenarios
where input and output dimensions differ.

• More practical transformer model. The work (Wang et al.) discusses activation functions in the
attention layer that meet a general decay condition ((Wang et al., Definition 2.3)) without consid-
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ering the Softmax activation function. We extend our analysis to include Softmax-transformers.
Our analysis reflects more realistic applications, as detailed in Appendix F.

• More advanced and complicated applications. The work (Wang et al.) discusses the applications
to functions, including indicators, linear, and smooth functions. We explore more advanced and
complicated scenarios, i.e., the score function in diffusion models discussed in Appendix H. The
score function (Chen et al., 2023) falls outside the smooth function class. This enhancement
broadens the applicability of our results.

Another work similar to ours is (Panigrahi et al., 2023). It proposes a new efficient construction,
Transformer in Transformer (TINT), to allow a transformer to simulate and finetune more complex
models (e.g., one transformer). The main distinction between ours and (Panigrahi et al., 2023)
lies in the different aims: Our approach focuses on using a standard transformer for the simulator
(with a minor modification: the “element-wise multiplication layer”), and we provide a theoretical
understanding of how a standard transformer can learn the ICGD of an N -layer network using ICL.
In contrast, the work (Panigrahi et al., 2023) aims to build even stronger transformers by introducing
several structural modifications that enable running gradient descent on auxiliary transformers. While
it demonstrates in-context gradient descent for a more advanced model, i.e., one transformer, our
work offers the following potential advantages:

• Explicit transformer construction. We provide an explicit construction of the transformer,
whereas the work (Panigrahi et al., 2023) does not detail the explicit construction of model
parameters within their transformer.

• Exact gradient descent. We compute the exact and explicit gradient descent for an N -layer
network (Lemma 1). Building on this, we employ the transformer’s ICL to perform gradient descent
on all parameters. However, the work (Panigrahi et al., 2023) stops the gradient computation
through attention scores in the self-attention layer and only updates the value parameter in the
self-attention module. Additionally, it uses Taylor expansion to approximate the gradient.

• Rigorous error and convergence guarantees. We provide rigorous gradient descent approxima-
tion errors (for multiple steps) and convergence guarantees for the ICGD on an N -layer network
(Corollary 1.1 and Lemma 14). However, the work (Panigrahi et al., 2023) only presents the
gradient approximation error for each specific part of the parameters in a single step.

• Attention layer better aligned with practice. Our analysis is based on ReLU-attention (Theo-
rem 1) or Softmax-attention (Theorem 6), whereas the work (Panigrahi et al., 2023) utilizes linear
attention. Our choice of attention layer better aligns with practical applications.

B.2 BROADER IMPACT

This theoretical work aims to shed light on the foundations of large transformer-based models and is
not expected to have negative social impacts.

B.3 LIMITATIONS

Our work has the following four limitations:

• Although we provide a theoretical guarantee for the ICL of the Softmax-Transformer to ap-
proximate gradient descent in N -layer NN, characterizing the weight matrices construction in
Softmax-Transformer remains challenging. This motivates us to rethink transformer universality
and explore more accurate proof techniques for ICL in Softmax-Transformer, which we leave for
future work.

• The hidden dimension and MLP dimension of the transformer in Theorem 1 are both Õ(NK2) +
Dw, which is very large. The reason for the large dimensions is that if we use ICL to perform
ICGD on the N -layer network, we need to allow the transformer to realize the N -layer network
parameters. This means that it is reasonable for the input dimension to be so large. However, it is
possible to reduce the hidden dimension and MLP dimension of the transformer through smarter
construction. We leave this for future work.

• The generalization capabilities are limited compared with traditional transformers. In our setting,
the pretraining task refers to using in-context examples generated by an N -layer network for a
given N . Specifically, during pretraining, the distribution of the N -layer network parameters is
predetermined (e.g., N(0, I)). The input data distribution of N -layer network for generating the
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in-context examples is also predetermined (e.g., N(−2, I)). The generalization capabilities include
the following two aspects: (i) Varying the input data distribution for the N -layer network to generate
the in-context examples. For example, we change the input data distribution from N(−2, I) to
0.9N(−2, I) + 0.1N(2, I) during the testing in Appendix G.1. (ii) Varying the distribution of the
N -layer network parameters. For example, we change the distribution from N(0, I) to N(0.5, I)
in Appendix G.2. The above points lead to differences between the distributions of in-context
examples during pretraining and testing. However, we must generate the in-context examples by
the N -layer network with the same hyperparameters, including the network width and depth. We
leave the theoretical analysis of broader generalization capabilities for future work.

• In theory, the FLOPs (Hoffmann et al., 2022) required to perform one forward pass of the trans-
former are greater than those required for the direct training of an N -layer network. (i) For the
forward pass of the transformer, the FLOPs for in-context learning (ICL) are O(nLN3K5/ϵ2),
where ϵ is the approximation error in the sum of ReLU. (ii) For direct training of the N -layer
network, the FLOPs without ICL are O(nLNK2). Therefore, the FLOPs required for ICL ex-
ceed those needed for direct training of the N -layer network. However, experimental results in
Appendix G demonstrate that the transformer with ICL can achieve the performance of a trained
6-layer network using fewer FLOPs in practice (3.3 billion vs. 7.6 billion FLOPs). This finding
encourages further exploration of more efficient architectures. We also leave this topic for future
research.
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C SUPPLEMENTARY THEORETICAL BACKGROUNDS

Here we present some ideas we built on.

C.1 TRANSFORMERS

Lastly, we introduce key components for constructing a transformer for ICGD: ReLU-Attention,
MLP, and element-wise multiplication layers. We begin with the ReLU-Attention layer.

Definition 7 (ReLU-Attention Layer). For any input sequence H ∈ RD×n, an M -head ReLU-
attention layer with parameters θ = {Qm,Km, Vm}m∈[M ] outputs

Attnθ(H) := H +
1

n

M∑
m=1

(VmH) · σ((QmH)⊤(KmH)),

where Qm,Km, Vm ∈ RD×D and σ(·) is element-wise ReLU activation function. In vector form, for
each token hi ∈ RD in H , it outputs [Attnθ(H)]i = hi+

1
n

∑M
m=1

∑n
s=1 σ(⟨Qmhi,Kmhs⟩)·Vmhs.

Notably, Definition 7 uses normalized ReLU activation σ/n, instead of the standard Softmax. We
adopt this for technical convenience following (Bai et al., 2023). Next we define the MLP layer.

Definition 8 (MLP Layer). For any input sequence H ∈ RD×n, an d′-hidden dimensions MLP
layer with parameters θ = (W1,W2) outputs MLPθ(H) := H +W2σ(W1H), where W1 ∈ Rd′×D,
W2 ∈ RD×d′

and σ(·) : R → R is element-wise ReLU activation function. In vector form, for each
token hi ∈ RD in H , it outputs MLPθ(H)i := hi +W2σ(W1hi).

Then, we consider a transformer architecture with L ≥ 1 transformer layers, each consisting of a
self-attention layer followed by an MLP layer.

Definition 9 (Transformer). For any input sequence H ∈ RD×n, an L-layer transformer with
parameters θ = {θAttn, θMLP} outputs

TFL
θ (H) := MLP

θ
(L)
mlp

◦Attn
θ
(L)
attn

. . .MLP
θ
(1)
mlp

◦Attn
θ
(1)
attn

(H),

where θ = {θAttn, θMLP} consists of Attention layers θAttn = {(Ql
m,Kl

m, V l
m)}l∈[L],m∈[M l] and

MLP layers θMLP = {(W l
1,W

l
2)}l∈[L]. Above, for any l ∈ [L],m ∈ [M l], Ql

m,Kl
m, V l

m ∈ RD×D

and (W l
1,W

l
2) ∈ Rd′×D × RD×d′

In this section, we consider ReLU Attention layer and MLP layer
are both a special kind of 1-layer transformer, which is for technical convenience.

For later proof use, we define the norm for L-layer transformer TFθ as:

Bθ := max
l∈[L]

{
max
m∈[M ]

{
∥Ql

m∥1, ∥Kl
m∥1

}
+

m∑
i=1

∥V l
m∥1 + ∥W1∥1 + ∥W2∥1

}
. (C.1)

The choice of operation norm and max/sum operation is for convenience in later proof only, as our
result depends only on Bθ.

C.2 RELU PROVABLY APPROXIMATES SMOOTH k-VARIABLE FUNCTIONS

Following lemma expresses that the smoothness enables the approximability of sum of ReLU.

Lemma 7 (Approximating Smooth k-Variable Functions, modified from Proposition A.1 of (Bai
et al., 2023)). For any ϵ, Cl > 0, R ≥ 1. If function g : Rk → R such that for s := ⌈(k − 1)/2⌉+ 1,
g is a Cs function on Bk

∞(R), and for all i ∈ {0, 1, . . . , s},

sup
z∈Bk

∞(R)

∥∇ig(z)∥∞ ≤ Li, max
0≤i≤s

LiR
i ≤ Cl,
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then function g is (ϵ, R,H,C)-approximable by sum of ReLUs (Definition 4) with H ≤
C(k)C2

l log(1 + Cl/ϵ)/ϵ
2 and C ≤ C(k)Cl where C(k) is a constant that depends only on k.
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D PROOFS OF MAIN TEXT

D.1 PROOF OF LEMMA 1

Lemma 8 (Lemma 1 Restated: Decomposition of One Gradient Descent Step). Fix any Bv, η > 0.
Suppose loss function Ln(w) on n data points {(xi, yi)}i∈[n] follows (2.2). Suppose closed domain
W and projection function ProjW(w) follows (3.4). Let Ai(j), r

′
i(j), Ri(j), Vj be as defined in

Definition 2. Then the explicit form of gradient ∇Ln(w) becomes

∇Ln(w) =
1

2n

n∑
i=1

Ai(1)
...

Ai(N)

 ,

where Ai(j) denote the derivative of ℓ(pi(N), yi) with respect to the parameters in the j-th layer,

Ai(j) =

{
(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·

[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N) )⊤, j ̸= N

(Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N) )⊤, j = N.

Proof of Lemma 1. We start with calculating ∇wLn(w). By chain rule and (2.2),

∇wLn(w)︸ ︷︷ ︸
RDN×1

=
1

2n

n∑
i=1

[
∂

∂w
pi(N)]⊤︸ ︷︷ ︸

RDN×d

· [ ∂

∂pi(N)
ℓ(pi(N), yi)]

⊤︸ ︷︷ ︸
Rd×1

(
By (2.2) and chain rule

)

Thus we only need to calculate ∂
∂wpi(N). For a vector x and a function r : R → R, we use r(x) to

denote the vector that i-th coordinate is r(xi). Let Ri(j), Vj follows Definition 2, then it holds

∂pi(N)

∂w︸ ︷︷ ︸
Rd×DN

=
∂r(

Rd×K︷︸︸︷
VN ·

RK︷ ︸︸ ︷
pi(N − 2))

∂w︸ ︷︷ ︸
Rd×DN

(
By Definition 1

)

=
∂r(VN · pi(N − 1))

∂VN · pi(N − 1)︸ ︷︷ ︸
Rd×d

· ∂VN · pi(N − 1)

∂w︸ ︷︷ ︸
Rd×DN

(
By chain rule

)

= diag{r′(v⊤N1
pi(N − 1)), . . . , r′(v⊤NK

pi(N − 1))} · ∂VN · pi(N − 1)

∂w(
By Definition 2

)
= Ri(N − 1) · ∂VN · pi(N − 1)

∂w
. (D.1)

Notice that for any k ∈ [d], vNk
is a part of w, thus

∂vNk

∂w
= [

DN−1+(k−1)K︷︸︸︷
0

K︷︸︸︷
I

DN−DN−1−kK︷︸︸︷
0 ] ∈ Rd×DN . (D.2)

Therefore, letting ⊗ denotes Kronecker product, it holds

∂VN · pi(N − 1)

∂w
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=


v⊤N1

· ∂pi(N−1)
∂w + pi(N − 1)⊤ · ∂vN1

∂w
...

v⊤Nd
· .∂pi(N−1)

∂w + pi(N − 1)⊤ · ∂vNd

∂w

 (
By chain rule and product rule

)

= VN · ∂pi(N − 1)

∂w
+
[
0DN−1

; IK×K ⊗ pi(N − 1)⊤
]
, (D.3)

where the last step follows from the definition of VN (i.e., Definition 2) and (D.2).

Substituting (D.3) into (D.1), we obtain

∂pi(N)

∂w
= Ri(N − 1) · (VN · ∂pi(N − 1)

∂w
+
[
0DN−1

; Id×d ⊗ pi(N − 1)⊤
]
).

Similarly, for any j ∈ [N ], we can proof

∂pi(j)

∂w
= Ri(j − 1) · (Vj ·

∂pi(j − 1)

∂w
+
[
0Dj−1

; IK×K ⊗ pi(j − 1)⊤; 0DN−Dj

]
). (D.4)

By the recursion formula (D.4), for any j ∈ [N − 1], we calculate Ai(j) as follows,

Ai(j) =

((
∂ℓ(pi(N), yi)

∂pi(N)
· ∂pi(N)

∂w

)⊤
)
[Dj−1 : Dj ]

(
By Definition 2

)
= (

∂pi(N)

∂w
)⊤ · (∂ℓ(pi(N), yi)

∂pi(N)
)⊤[Dj−1 : Dj ]

(
By transpose property

)
= (

∂pi(N)

∂w
)⊤[∗, Dj−1 : Dj ] · (

∂ℓ(pi(N), yi)

∂pi(N)
)⊤

= (Ri(N − 1) · VN · . . . ·Ri(j − 1) ·
[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N), yi)

∂pi(N)
)⊤,(

By (D.4)
)

where M [∗, a : b] denotes a sub-matrix of M , which includes all the columns but only the rows from
the a-th row to the b-th row of A. Similarly, for j = N , it holds

Ai(N) = (Ri(N − 1) ·
[
Id×d ⊗ pi(N − 1)⊤

]
)⊤ · (∂ℓ(pi(N), yi)

∂pi(N)
)⊤.

Thus we completes the proof.

D.2 PROOF OF LEMMA 2

Lemma 9 (Lemma 2 Restated: Approximate pi(j)). Let upper bounds Bv, Bx > 0 such that for any
k ∈ [K], j ∈ [N ] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N ], i ∈ [n], define

Bj
r := max

|t|≤BvB
j−1
r

|r(t)|, B0
r := Bx, and Br := max

j
Bj

r .

Let function r(t) be (ϵr, R1,M1, C1)-approximable for R1 = max{BvBr, 1}, M1 ≤ Õ(C2
1ϵ

−2
r ),

where C1 depends only on R1 and the C2-smoothness of r. Then, for any ϵr > 0, there exist N
attention layers Attnθ1 , . . . ,AttnθN such that for any input hi ∈ RD takes from (2.1), they map

hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]
Attnθj−−−−→ h̃i = [xi; yi;w; pi(1); . . . ; pi(j);0; 1; ti],
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where pi(j) is approximation for pi(j) (Definition 1). In the expressions of hi and h̃i, the dimension
of 0 differs. Specifically, the 0 in hi is larger than in h̃i. The dimensional difference between these 0
vectors equals the dimension of pi(j). Suppose function r is Lr-smooth in bounded domain W , then
for any i ∈ [n+ 1], j ∈ [N ], pi(j) such that

pi(j) = pi(j) + ϵ(i, j), ∥ϵ(i, j)∥2 ≤

{
(
∑j−1

l=0 Kl/2Ll
rB

l
v)
√
Kϵr , 1 ≤ j ≤ N − 1

(
∑N−1

l=0 Kl/2Ll
rB

l
v)
√
dϵr , j = N

.

Additionally, for any j ∈ [N ], the norm of parameters Bθj defined as (C.1) such that

Bθj ≤ 1 +KC1.

Proof of Lemma 2. First we need to give a approximation for activation function r(t). By our
assumption and Definition 4, r(t) is (ϵr, R1,M1, C1)-approximable by sum of ReLUs, there exists:

r(t) =

M1∑
m=1

c1mσ(⟨a1m, [t; 1]⟩) with
M1∑
m=1

∣∣c1m∣∣ ≤ C1, ∥a1m∥1 ≤ 1, ∀m ∈ [M1], (D.5)

such that supt∈[−R1,R1] |r(t)− r(t)| ≤ ϵr. Let pi(0) := pi(0) = xi. Similar to pi(j) follows
Definition 1, we pick pi(j) such that for any j ∈ [N ],

pi(j)[k] := r(v⊤jkpi(j − 1)). (D.6)

Fix any j ∈ [N ], suppose the input sequences hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]. Then
for every m ∈ [M1], k ∈ [K](or k ∈ [d] if j = N), we define matrices Qj

m,k,K
j
m,k, V

j
m,k ∈ RD×D

such that for all i ∈ [n+ 1],

Qj
m,khi =

a1m[1] · pi(j − 1)
a1m[2]
0

 , Kj
m,khi =

[
vjk
1
0

]
, V j

m,khi = c1me1j,k , (D.7)

where e1j,k denotes the position unit vector of element pi(j)[k] because this position only depends on
j, k. Since input hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti], those matrices indeed exist. In fact, it
is simple to check that

Qj
m,k =

 0 a1m[1]IK(j) 0 0 0
0 0 0 a1m[2] 0
0 0 0 0 0

 ,

Kj
m,k =

[
0 IK(j, k) 0 0 0
0 0 0 1 0
0 0 0 0 0

]
,

V j
m,k =

 0 0 0 0
0 0 c1m(j, k) 0
0 0 0 0

 , (D.8)

are suffice to (D.7). IK(j), IK(j, k), c1m(j, k) represents their positions are related to variables in
parentheses. In Addition, by (C.1), notice that they have operator norm bounds

max
j,m,k

∥Qj
m,k∥1 ≤ 1, max

j,m,k
∥Kj

m,k∥1 ≤ 1, max
j

∑
k,m

∥V j
m,k∥1 ≤ KC1.

Consequently, for any j ∈ [N ], Bθj ≤ 1 + C1.
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By our construction follows (D.7), a simple calculation shows that∑
m∈[M1],k∈[K]

σ(⟨Qj
m,khi,K

j
m,khs⟩)V j

m,khs

=

K∑
k=1

M1∑
m=1

c1mσ(⟨a1m, [v⊤jkpi(j − 1); 1]⟩)e1j,k
(
By our construction (D.7)

)

=

K∑
k=1

(r(v⊤jkpi(j − 1)))e1j,k
(
By definition of r follows (D.5)

)
= [0; pi(j);0].

(
By definition of pi(j) follows (D.6)

)
Therefore, by definition of ReLU Attention layer follows Definition 7, the output h̃i becomes

h̃i = [Attnθj (hi)]

= hi +
1

n+ 1

n+1∑
s=1

∑
m∈[M1],k∈[K]

σ(⟨Qj
m,khi,K

j
m,khs⟩)V j

m,khs

= hi +
1

n+ 1

n+1∑
s=1

(n+ 1)[0; pi(j);0]

= [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti] + [0, pi(j),0]

= [xi; yi;w; pi(1); . . . ; pi(j − 1); pi(j);0; 1; ti].

Therefore, let the attention layer θj = {(Qj
m,k,K

j
m,k, V

j
m,k)}(k,m), we construct Attnθj such that

hi = [xi; yi;w; pi(1); . . . ; pi(j − 1);0; 1; ti]
Attnθj−−−−→ h̃i = [xi; yi;w; pi(1); . . . ; pi(j);0; 1; ti].

In addition, by setting R1 = max{BvBr, 1} , the lemma then follows directly by induction on j. For
the base case j = 1, it holds

|pi(1)[k]− pi(1)[k]| =
∣∣ri(v⊤1kxi)[k]− r(v⊤1kxi)

∣∣ (
By Definition 1

)
≤ ϵr.

(
By definition of r follows (D.5)

)
Suppose the claim holds for iterate j − 1 and function r is Lr-smooth in bounded domain W . Then
for iterate j,

|pi(j)[k]− pi(j)[k]|
≤
∣∣pi(j)[k]− r(v⊤jkpi(j − 1))

∣∣+ ∣∣r(v⊤jkpi(j − 1))− pi(j)[k]
∣∣ (

By triangle inequality
)

≤ ϵr + Lr∥v⊤jk∥2∥pi(j − 1)− pi(j − 1)∥2
(
By (D.5) and Cauchy–Schwarz inequality

)
≤ ϵr +

√
KLrBv(ϵr

j−2∑
l=0

Kl/2Ll
rB

l
v)

(
By inductive hypothesis

)

≤ ϵr

j−1∑
l=0

Kl/2Ll
rB

l
v,

Thus, it holds

∥pi(j)− pi(j)∥2 =

√√√√ K∑
k=1

|pi(j)[k]− pi(j)[k]|2
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≤
√
K(ϵr

j−1∑
l=0

Kl/2Ll
rB

l
v).

This finish the induction. Then for the output layer j = N , it holds

∥pi(N)− pi(N)∥2 =

√√√√ d∑
k=1

|pi(N)[k]− pi(N)[k]|2

≤
√
d(ϵr

N−1∑
l=0

Kl/2Ll
rB

l
v).

Thus we complete the proof.

D.3 PROOF OF LEMMA 3

Lemma 10 (Lemma 3 Restated: Approximate r′i(j)). Let upper bounds Bv, Bx > 0 such that for
any k ∈ [K], j ∈ [N ] and i ∈ [n], ∥vjk∥2 ≤ Bv , and ∥xi∥2 ≤ Bx. For any j ∈ [N ], i ∈ [n], define

B′j
r := max

|t|≤BvB
j−1

r′

|r′(t)|, B0
r′ := Bx, and Br′ := max

j
Bj

r′ .

Suppose function r′(t) is (ϵr′ , R2,M2, C2)-approximable for R2 = max{BvBr′ , 1}, M2 ≤
Õ(C2

2ϵ
′−2
r ), where C2 depends only on R2 and the C2-smoothness of r′. Then, for any ϵr > 0, there

exist an attention layer AttnθN+1
such that for any input hi ∈ RD takes from (3.12), it maps

hi = [xi; yi;w; pi;0; 1; ti]
AttnθN+1−−−−−−→ h̃i = [xi; yi;w; pi; r

′
i;0; 1; ti],

where r′i(j) is approximation for r′i(j) (Definition 2) and r′i := [r′i(0); . . . ; r
′
i(N−1)] ∈ R(N−2)K+d.

Similar to Lemma 2, in the expressions of hi and h̃i, the dimension of 0 differs. In addition, let Er

be defined in (3.11), for any i ∈ [n+ 1], j ∈ [N ], k ∈ [K], r′i(j) such that

r′i(j − 1)[k] = r′i(j − 1)[k] + ϵ(i, j, k), |ϵ(i, j, k)| ≤ ϵr′ + Lr′BvErϵr,

where ϵr denotes the error generated in approximating r by sum of ReLUs r follows (D.5). Addition-
ally, the norm of parameters BθN+1

defined as (C.1) such that BθN+1
≤ 1 +K(N − 1)C2.

Proof of Lemma 3. By Definition 2, recall that for any j ∈ [N ], i ∈ [n+ 1], k ∈ [K],

r′i(j)[k] = r′(v⊤j+1k
pi(j)). (D.9)

Therefore we need to give a approximation for r′. By our assumption and Definition 4, r′(t) is
(ϵr′ , R2,M2, C2)-approximable by sum of relus. In other words, there exists:

r′(t) =

M2∑
m=1

c2mσ(⟨a2m, [t; 1]⟩) with
M2∑
m=1

∣∣c2m∣∣ ≤ C2, ∥a2m∥2 ≤ 1, ∀m ∈ [M2], (D.10)

such that supt∈[−R2,R2] |r
′(t)− r′(t)| ≤ ϵr′ . Similar to (D.9), we pick r′i(j) such that

r′i(j)[k] := r′(v⊤j+1k
pi(j)). (D.11)
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To ensure (D.11), we construct our attention layer as follows: for every j ∈ [N ],m ∈ [M2], k ∈ [K],
we define matrices QN+1

j,m,k,K
N+1
j,m,k, V

N+1
j,m,k ∈ RD×D such that

QN+1
j,m,khi =

a2m[1] · pi(j − 1)
a2m[2]
0

 , KN+1
j,m,khi =

[
vjk
1
0

]
, V N+1

j,m,khi = c2me2j,k , (D.12)

for all i ∈ [n + 1] and e2j,k denotes the position unit vector of element r′i(j)[k]. Since input
hi = [xi; yi;w; pi;0; 1; ti], similar to (D.8), those matrices indeed exist. In addition, they have
operator norm bounds

max
j,m,k

∥QN+1
j,m,k∥1 ≤ 1, max

j,m,k
∥KN+1

j,m,k∥1 ≤ 1,
∑
j,m,k

∥V N+1
j,m,k∥1 ≤ K(N − 1)C2.

Consequently, by definition of parameter norm follows (C.1), BθN+1
≤ 1 +K(N − 1)C2.

A simple calculation shows that∑
j∈[N ],m∈[M2],k∈[K]

σ(⟨QN+1
j,m,khi,K

N+1
j,m,khs⟩)V N+1

j,m,khs

=

N∑
j=1

K∑
k=1

M2∑
m=1

c2mσ(⟨a2m, [v⊤jkpi(j − 1); 1]⟩)e2j,k
(
By our construction follows (D.12)

)

=

N∑
j=1

K∑
k=1

(r′(v⊤jkpi(j − 1)))e2j,k
(
By definition of r′ follows (D.5)

)
= [0; r′i(0); . . . ; r

′
i(N − 1);0]

(
By definition of r′i(j) follows (D.11)

)
= [0; r′i;0],

(
By definition of r′i

)
Therefore, by definition of ReLU Attention layer follows Definition 7, the output h̃i becomes

h̃i = [AttnθN (hi)]

= hi +
1

n+ 1

n+1∑
s=1

∑
j∈[N−1],m∈[M2],k∈[K]

σ(⟨QN
j,m,khi,K

N
j,m,khs⟩)V N

j,m,khs

= hi +
1

n+ 1

n+1∑
s=1

(n+ 1)[0; r′i;0]

= [xi; yi;w; pi;0; 1; ti] + [0; r′i;0]

= [xi; yi;w; pi; r
′
i;0; 1; ti].

Next, we calculate the error accumulation in this approximation layer. By our assumption, R2 =
max{BvBr′ , 1}. Thus, for any j ∈ [N ], k ∈ [K], i ∈ [n+ 1], it holds

v⊤jkpi(j − 1) ≤ R2.

As our assumption, we suppose function r′ is Lr-smooth in bounded domain W . Combining above,
the upper bound of error accumulation |r′i(j)[k]− r′i(j)[k]| becomes

|r′i(j)[k]− r′i(j)[k]|
≤
∣∣r′i(j)[k]− r′(v⊤jkpi(j − 1))

∣∣+ ∣∣r′(v⊤jkpi(j − 1))− r′i(j)[k]
∣∣ (

By triangle inequality
)

≤ ϵr′ + Lr′∥v⊤jk∥2∥pi(j − 1)− pi(j − 1)∥2
(
By (D.10) and Cauchy–Schwarz inequality

)
≤ ϵr′ + Lr′BvErϵr.

(
By definition of Er follows (3.11)

)
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Thus we complete the proof.

D.4 PROOF OF LEMMA 4

Lemma 11 (Lemma 4 Restated: Approximate ∂1ℓ(pi(N), yi)). Let upper bounds Bv, Bx, > 0 such
that for any k ∈ [K], j ∈ [N ] and i ∈ [n], ∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. For any k ∈ [d],
suppose function u(t, y)[k] be (ϵl, R3,M

k
3 , C

k
3 )-approximable for R3 = max{BvBr, By, 1}, M3 ≤

Õ((Ck
3 )

2ϵ−2
l ), where Ck

3 depends only on Rk
3 and the C3-smoothness of u(t, y)[k]. Then, there

exists an MLP layer MLPθN+2 such that for any input sequences hi ∈ RD takes from (3.14), it maps

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]

MLPθN+2−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i; gi;0; 1; ti],

where gi ∈ Rd is an approximation for u(pi(N), yi). For any k ∈ [d], assume u(pi(N), yi) is Ll-
Lipschitz continuous. Then the approximation gi such that,

gi[k] = u(pi(N), yi)[k] + ϵ(i, k), with |ϵ(i, k)| ≤ ϵl + LlErϵr.

Additionally, the parameters θN+2 such that BθN+2
≤ max{R3 + 1, C3}.

Proof of Lemma 4. By our assumption and Definition 4, for any k ∈ [d], function u[k](t, y) is
(ϵl, R3,M

k
3 , C

k
3 )-approximable by sum of relus, there exists :

gk(t, y) =

Mk
3∑

m=1

c3,km σ(⟨a3,km , [t; y; 1]⟩) with
Mk

3∑
m=1

∣∣c3,km

∣∣ ≤ C3, ∥a3,km ∥2 ≤ 1, ∀m ∈ [Mk
3 ], (D.13)

such that sup(t,y)∈[−R3,R3]2 |gk(t, y)− u[k](t, y)| ≤ ϵl. Then we construct our MLP layer.

Let M3 :=
∑d

k=1 M
k
3 , we pick matrices WN+1

1 ∈ RM3×D,WN+1
2 ∈ RD×M3 such that for any

i ∈ [n+ 1],m ∈ [M3],

WN+1
1 hi =



a3,11 [1] · pi(N) + a3,11 [2] · yi + a3,11 [3]−R3(1− ti)
...

a3,1
M1

3
[1] · pi(N) + a3,1M1 [2] · yi + a3,1

M1
3
[3]−R3(1− ti)

...
a3,d1 [1] · pi(N) + a3,d1 [2] · yi + a3,d1 [3]−R3(1− ti)

...
a3,d
Md

3
[1] · pi(N) + a3,d

Md [2] · yi + a3,d
Md

3
[3]−R3(1− ti)


∈ RM3 ,

WN+1
2 [j,m] = c3,km · 1{j = Dk

g ,M
k−1
3 < m ≤ Mk

3 }, (D.14)

where Dk
g denotes the position of element gi[k]. Since input hi = [xi; yi;w; pi; r

′
i;0; 1; ti], similar

to (D.8), those matrices indeed exist. Furthermore, by (C.1), they have operator norm bounds

∥WN+1
1 ∥1 ≤ R3 + 1, ∥WN+1

2 ∥1 ≤ C3

Consequently, BθN+2
≤ max{R3 + 1, C3}.

By our construction (D.14), a simple calculation shows that

WN+1
2 σ(WN+1

1 hi) =

d∑
k=1

Mk
3∑

m=1

σ(⟨a3,km , [pi(N); yi; 1]⟩ −R3(1− ti)) · c3,km eDk
g
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= 1{tj = 1} ·


0

g1(pi(N), yi)
...

gd(pi(N), yi)
0

 .

For k ∈ [d], we let gi[k] = 1{tj = 1} · gk(pi(N), yi)eDk
g

for i ∈ [n+ 1]. Hence, MLPθN+2
maps

hi = [xi; yi;w; pi; r
′
i;0; 1; ti]

MLPθN+2−−−−−−→ h̃i = [xi; yi;w; pi; r
′
i; gi;0; 1; ti],

Next, we calculate the error generated in this approximation. By setting R3 = max{BvBr, By, 1},
for any i ∈ [n+ 1], it holds

pi(N) ≤ R3, yi ≤ R3

Moreover, as our assumption, we suppose function ∂1ℓ is Ll-smooth in bounded domain W . There-
fore, by the definition of the function g, for each i ∈ [n], the error becomes

|gi[k]− u(pi(N), yi)[k]|
≤ |gi[k]− u(pi(N), yi)[k]|+ |u(pi(N), yi)[k]− u(pi(N), yi)[k]|

(
By triangle inequality

)
≤ ϵl + Ll∥pi(N)− pi(N)∥2

(
By the definition of gk follows (D.13) and Ll-smooth assumption

)
≤ ϵl + LlErϵr, .

(
By the definition of Er follows (3.11)

)
Combining above, we complete the proof.

D.5 PROOF OF LEMMA 5

Lemma 12 (Lemma 5 Restated: Approximate st(j)). Recall that si(j) = r′i(j−1)⊙(V ⊤
j+1 ·si(j+1))

follows Definition 3. Let the initial input takes from (3.16). Then, there exist N element-wise
multiplication layers: EWMLθN+3

, . . . ,EWMLθ2N+2
such that for input sequences, j ∈ [N ],

hi = [xi; yi;w; pi; r
′
i; gi; si(N); . . . ; si(j + 1);0; 1; ti],

they map EWMLθ2N+3−j
(hi) = [xi; yi;w; pi; r

′
i; gi; si(N); . . . ; si(j);0; 1; ti], where the approxi-

mation si(j) is defined as recursive form: for any i ∈ [n+ 1], j ∈ [N − 1],

si(j) :=

{
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1)), j ∈ [N − 1]

r′i(N − 1)⊙ gi, j = N.

Additionally, for any j ∈ [N ], BθN+2+j
defined in (C.1) satisfies BθN+2+j

≤ 1.

Proof of Lemma 5. We give the construction of parameters directly. For every j ∈ [N − 1], k ∈ [K],
we define matrices Q2N+3−j

k ,K2N+3−j
k , V 2N+3−j

k ∈ RD×D such that for all i ∈ [n+ 1],

Q2N+3−j
k hi =


vj+11 [k]

...
vj+1K [k]

0

 , K2N+3−j
k hi =

[
si(j + 1)

0

]
, V 2N+3−j

k hi = r′i(j − 1)[k] · e3j,k ,

(D.15)

where e3j,k denotes the position unit vector of element si(j)[k].
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Since input hi = [xi; yi;w; pi; r
′
i; gi; si(N); . . . ; si(j + 1);0; 1; ti], similar to (D.8), those matrices

indeed exist. Thus, it is straightforward to check that∑
k∈[K]

γ(⟨Q2N+3−j
k hi,K

2N+3−j
k hi⟩)V 2N+3−j

k hi

=

K∑
k=1

(V ⊤
j+1[k, ∗] · si(j + 1))r′i(j − 1)[k]e3j,k

(
By definition of EWML layer follows Definition 6

)

=


0

ri(j − 1)[1]V ⊤
j+1[1, ∗] · si(j + 1)

...
r′i(j − 1)[k]V ⊤

j+1[K, ∗] · si(j + 1)
0


(
By definition of e3j,k

)

=

 0
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1))
0

 (
By definition of hadamard product

)
= [0; si(j);0].

(
By definition of si(j) follows (3.19)

)
Therefore, by the definition of EWML layer follows Definition 6, the output h̃i becomes

h̃i = [Attnθ2N+3−j
(hi)]

= hi +
∑

m∈[2],k∈[K]

σ(⟨Q2N+3−j
m,k hi,K

2N+3−j
m,k hs⟩)V 2N+3−j

m,k hs

= hi + [0; s(j);0]

= [xi; yi;w; pi; r
′
i; gi; si(N − 1); . . . ; si(j + 1);0; 1; ti] + [0; si(j);0]

= [xi; yi;w; pi; r
′
i; gi; si(N − 1); . . . ; si(j);0; 1; ti].

Finally we come back to approximate the initial approximation si(N) = r′i(N − 1) ⊙ gi. Notice
that gi and r′i(N − 1) are already in the input hi = [xi; yi;w; pi; r

′
i; gi;0; 1; ti], thus it is simple to

construct EWMLN+3 , similar to (D.15), such that it maps,

[xi; yi;w; pi; r
′
i; gi;0; 1; ti]

EWMLN+3−−−−−−−→ [xi; yi;w;0; 1; pi; r
′
i; gi; si(N);0; 1; ti].

Since we don’t using the sum of ReLU to approximate any variables, these step don’t generate extra
error. Besides, by (3.18), matrices have operator norm bounds

max
j,k

∥QN+2+j
k ∥1 ≤ 1, max

j,k
∥KN+2+j

k ∥1 ≤ 1, max
j,k

∥V N+2+j
k ∥1 ≤ 1.

Consequently, for any j ∈ [N ], BθN+2+j
≤ 1. Thus we complete the proof.

D.6 PROOF OF LEMMA 6

Lemma 13 (Lemma 6 Restated: Error for gisi(j)). Suppose the upper bounds Bv, Bx > 0
such that for any k ∈ [K], j ∈ [N ] and i ∈ [n], ∥vjk∥2 ≤ Bv, and ∥xi∥2 ≤ Bx. Let
r′i(j) ∈ RK such that r′i(j)[k] := r′(v⊤j+1k

pi(j)) follows Definition 2. Let si(j) = Ri(j −
1)V ⊤

j+1 . . . Ri(N − 2)V ⊤
N ·Ri(N − 1)u follows Definition 3. Let r′i(j), gi, si(j) be the approxima-

tions for r′i(j), u(pi(N), yi), si(j) follows Lemma 3, Lemma 4 and Lemma 5 respectively. Let Br′

be the upper bound of r′i(j)[k] and r′i(j)[k] as defined in Lemma 3. Let Bl be the upper bound of
gi[k] and u(pi(N), yi)[k] as defined in Lemma 4. Then for any i ∈ [n+ 1], j ∈ [N ], k ∈ [K],

si(j)[k] ≤ Bs,
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|si(j)[k]− si(j)[k]| ≤ Er
s ϵr + Er′

s ϵr′ + El
sϵl,

where

P := max{
√
K,

√
d}

Bs := max
j∈[N ]

{(P ·Br′Bv)
N−jBr′Bl},

Er
s := max

j∈[N ]
{Lr′ErPBsB

2
v [

N−j−1∑
l=0

(Br′BvP )l] + (Br′BvP )N−j(BlLr′BvEr +Br′LlEr)},

Er′

s := max
j∈[N ]

{PBsBv[

N−j−1∑
l=0

(Br′BvP )l] + (Br′BvP )N−jBl},

El
s := max

j∈[N ]
{(Br′BvP )N−jBr′}.

Above, Bs is the upper bound of si(j)[k] and Er
s , E

r′

s , El
s are the coefficients of ϵr, ϵ′r, ϵl in the upper

bounds of |si(j)[k]− si(j)[k]|, respectively.

Proof of Lemma 6. We use induction to prove the first two statements. To begin with, we illustrate
the recursion formula for si(j). By (3.19), recall that for any j ∈ [N ],

si(j) :=

{
r′i(j − 1)⊙ (V ⊤

j+1 · si(j + 1)), j ∈ [N − 1]

r′i(N − 1)⊙ gi, j = N.

We consider applying induction to prove the first statement:

si(j)[k] ≤ (P ·Br′Bv)
N−nBr′Bl.

As for the base case, j = N :

si(N)[k] = r′i(N − 1)[k] · gi[k] ≤ Br′Bl.

Therefore, if the statement holds for j = n+ 1, by (3.19) and our assumption, it holds

si(n)[k] = r′i(n− 1)[k] · (v⊤j+1k
si(n+ 1))

(
By recursion formula (3.19)

)
≤ r′i(n− 1)[k] · ∥vn+1k∥2 · ∥si(n+ 1)∥2

(
By Cauchy-schwarz inequality

)
≤ r′i(n− 1)[k] · ∥vn+1k∥2 ·max{

√
K,

√
d} ·max

k
|si(n+ 1)[k]|

≤ (Br′Bv) ·max{
√
K,

√
d} · (max{

√
K,

√
d} ·Br′Bv)

N−n−1Br′Bl(
By inductive hypothesis

)
= (P ·Br′Bv)

N−nBr′Bl.
(
By definition of P follows (3.22)

)
Thus, by the principle of induction, the first statement is true for all integers j ∈ [N ]. Moreover,
by the definition of Bs follows (3.23), we know Bs is the upper bound of si(j)[k]. Next we apply
induction to prove the second statement:

|si(j)[k]− si(j)[k]| ≤ (ϵr′ + Lr′BvErϵr)PBvBs[

N−n−1∑
l=0

(Br′BvP )l]

+ (Br′BvP )N−n[(BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl].

For the base case, j = N :

|si(N)[k]− si(N)[k]|
= |r′i(N − 1)[k] · gi[k]− r′i(N − 1)[k] · u(pi(N), yi)[k]|

(
By definition (3.19) and (3.7)

)
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≤ |r′i(N − 1)[k]− r′i(N − 1)[k]| · |gi[k]|+ |r′i(N − 1)[k]| · |gi[k]− u(pi(N), yi)[k]|(
By triangle inequality

)
≤ (ϵr′ + Lr′BvErϵr)Bl +Br′(ϵl + LlErϵr).

(
By (3.13) and (3.15)

)
= (BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl

Therefore, if the statement holds for j = n+ 1, by (3.19) and our assumption, it holds

|si(n)[k]− si(n)[k]|
=
∣∣r′i(n− 1)[k] · (v⊤n+1k

si(n+ 1))− r′i(n− 1)[k] · (v⊤n+1k
si(n+ 1))

∣∣(
By the recursion formula (3.7) and (3.19)

)
≤ |r′i(n− 1)[k]− r′i(n− 1)[k]| ·

∣∣v⊤n+1k
si(n+ 1)

∣∣
+ |r′i(n− 1)[k]| ·

∣∣(v⊤n+1k
si(n+ 1))− (v⊤n+1k

si(n+ 1))
∣∣ (

By triangle inequality
)

≤ (ϵr′ + Lr′BvErϵr)PBvBs +Br′Bv∥si(n+ 1)− si(n+ 1)∥2(
By error accumulation of approximating r′ follows (3.13)

)
≤ (ϵr′ + Lr′BvErϵr)PBvBs +Br′BvP max

k
|si(n+ 1)[k]− si(n+ 1)[k]|

≤ (ϵr′ + Lr′BvErϵr)PBvBs +Br′BvP
{
(ϵr′ + Lr′BvErϵr)PBvBs[

N−n−2∑
l=0

(Br′BvP )l]

+ (Br′BvP )N−n−1[(BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl]
} (

By inductive hypothesis
)

≤ (ϵr′ + Lr′BvErϵr)PBvBs[

N−n−1∑
l=0

(Br′BvP )l]

+ (Br′BvP )N−n[(BlLr′BvEr +Br′LlEr)ϵr +Blϵr′ +Br′ϵl].

Thus, by the principle of induction, the second statement is true for all integers j ∈ [N − 1]. By the
definition of Es follows (3.24), it is simple to check that

|si(j)[k]− si(j)[k]| ≤ Er
s ϵr + Er′

s ϵr′ + El
sϵl.

Thus we complete the proof.

D.7 PROOF OF THEOREM 1

Theorem 4 (Theorem 1 Restated: In-context gradient descent on N -layer NNs). Fix any Bv, η, ϵ >
0, L ≥ 1. For any input sequences takes from (2.1), their exist upper bounds Bx, By such that for
any i ∈ [n], ∥yi∥2 ≤ By, ∥xi∥2 ≤ Bx. Assume functions r(t), r′(t) and u(t, y)[k] are Lr, Lr′ , Ll-
Lipschitz continuous. Suppose W is a closed domain such that for any j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk ] ∈ RDN : ∥vjk∥2 ≤ Bv

}
,

and ProjW project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer
with hidden dimension Dw parameters ∥θ∥ ≤ Cw. If functions r(t), r′(t) and u(t, y)[k] are C4-
smoothness, then for any ϵ > 0, there exists a transformer model NNθ with (2N +4)L hidden layers
consists of L neural network blocks TFN+2

θ ◦ EWMLN
θ ◦ TF2

θ,

NNθ := TFN+2
θ ◦ EWMLN

θ ◦ TF2
θ ◦ . . . ◦ TF

N+2
θ ◦ EWMLN

θ ◦ TF2
θ,

such that the heads number M l, embedding dimensions Dl, and the parameter norms Bθl suffice

max
l∈[(2N+4)L]

M l ≤ Õ(ϵ−2), max
l∈[(2N+4)L]

Dl ≤ O(NK2) +Dw, max
l∈[(2N+4)L]

Bθl ≤ O(η) + Cw + 1,
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where Õ(·) hides the constants that depend on d,K,N , the radius parameters Bx, By, Bv and the smoothness
of r and ℓ. And this neural network such that for any input sequences H(0), take from (2.1), NNθ(H

(0))
implements L steps in-context gradient descent on risk Eqn (2.2): For every l ∈ [L], the (2N + 4)l-th layer
outputs h((2N+4)l)

i = [xi; yi;w
(l);0; 1; ti] for every i ∈ [n+ 1], and approximation gradients w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

Proof of Theorem 1. We consider the first N + 2 transformer layers TFN+2
θ are layers in Lemma 2

,Lemma 3 and Lemma 4. Then we let the middle N element-wise multiplication layers EWMLN
θ

be layers in Lemma 5. We only need to check approximability conditions. By Lemma 7 and our
assumptions, for any ϵr, ϵr′ , ϵl, it holds

• Function r(t) is (ϵr, R1,M1, C1)-approximable for R1 = max{BvBr, 1}, M1 ≤ Õ(C2
1ϵ

−2
r ),

where C1 depends only on R1 and the C2-smoothness of r(t).

• Function r′(t) is (ϵr′ , R2,M2, C2)-approximable for R2 = max{BvBr′ , 1}, M2 ≤ Õ(C2
2ϵ

′−2
r ),

where C2 depends only on R2 and the C2-smoothness of r′(t).

• Function ∂1ℓ(t, y) is (ϵl, R3,M3, C3)-approximable for R3 = max{BvBr, 1}, M3 ≤ Õ(C2
3ϵ

−2
l ),

where C3 depends only on R3 and the C3-smoothness of u(t, y)[k].

which suffice approximability conditions in Lemma 2, Lemma 3 and Lemma 4.

Now we construct the last two layers to implement w− η∇Ln(w) and ProjW(w). First we construct
a attention layer to approximate w − η∇Ln(w). For every m ∈ [2], j ∈ [N ], k ∈ [K], we consider
matrices Q2N+3

m,j,k , j
2N+3
m,j,k , V 2N+3

m,j,k ∈ RD×D such that

Q2N+3
1,j,k hi =

[
1
0

]
, K2N+3

1,j,k hi =

[
si(j)[k]

0

]
, V 2N+3

1,j,k hi = −η(n+ 1)

2n

[
0

pi(j − 1)
0

]
,

Q2N+3
2,j,k hi =

[
−1
0

]
, K2N+3

2,j,k hi =

[
si(j)[k]

0

]
, V 2N+3

2,j,k hi = −η(n+ 1)

2n

[
0

−pi(j − 1)
0

]
.

(D.16)

Furthermore, we define approximation gradient ∇wLn(w) as follows,

∇wLn(w) := − 1

η(n+ 1)

n+1∑
t=1

∑
m∈[2],j∈[N ],k∈[K]

σ(⟨Q2N+3
m,j,k hi,K

2N+3
m,j,k ht⟩)V 2N+3

m,j,k ht

=
1

2n

n+1∑
t=1

K∑
k=1

N∑
j=1

(σ(st(j)[k])− σ(−st(j)[k]))

[
0

pt(j − 1)
0

]
(
By our construction (D.16)

)
=

1

2n

n+1∑
t=1

K∑
k=1

N∑
j=1

st(j)[k] ·

[
0

pt(j − 1)
0

] (
By f(x) = σ(x)− σ(−x)

)

=
1

2n

n+1∑
t=1

N∑
j=1

[
0

IK×K ⊗ pt(j − 1) · st(j)
0

] (
By definition of Kronecker product

)
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=
1

2n

n∑
t=1


0

At(1)
...

At(N)
0

 ,
(
By sn+1(j) = 0 follows Lemma 5

)

where At(j) := IK×K ⊗ pt(j − 1) · st(j) denotes the approximation for At(j). Therefore, by the
definition of ReLU attention layer follows Definition 7, for any i ∈ [n+ 1],

h̃i = [Attnθ2N+3
(hi)]

= hi +
1

n+ 1

n+1∑
i=1

∑
m∈[2],j∈[N ],k∈[K]

σ(⟨Q2N+3
m,j,k hs,K

2N+3
m,j,k hi⟩)V 2N+3

m,j,k hi

= [xi; yi;w; pi; r
′
i; gi; si;0; 1; ti]−

η

2n

n∑
t=1


0

At(1)
...

At(N)
0


= [xi; yi;w − η∇wLn(w); pi; r

′
i; gi;0; 1; ti].

(
By definition of ∇wLn(w)

)
Since we do not use approximation technique like Definition 4, this step do not generate extra error.
Besides,by (C.1), matrices have operator norm bounds

max
j,m,k

∥Q2N+3
j,m,k ∥1 ≤ 1, max

j,m,k
∥K2N+3

j,m,k ∥1 ≤ 1,
∑
j,m,k

∥V 2N+3
j,m,k ∥1 ≤ 2ηNK.

Consequently, Bθ2N+3
≤ 1 + 2ηNK. Fix any ϵ > 0, then we pick appropriate ϵr, ϵ

′
r, ϵl such that

∥ϵ(l−1)∥2 = η∥∇wLn(w
(l−1))−∇wLn(w

(l−1))∥2 ≤ ηϵ.

By Definition 3 and Lemma 6, for any j ∈ [N − 1], i ∈ [n], it holds

∥Ai(j)−Ai(j)∥2

≤
K∑

k=1

∥si(j)[k]pi(j − 1)− si(j)[k]pi(j − 1)∥2
(
By Definition 2 and definition of Ai(j)

)

≤
K∑

k=1

|si(j)[k]− si(j)[k]| · ∥pi(j − 1)∥2 + |si(j)[k]| · ∥pi(j − 1)− pi(j − 1)∥2(
By triangle inequality

)
≤ P [(Er

s ϵr + Er′

s ϵr′ + El
sϵl)

√
PBr +BsErϵr],

(
By (3.11) and Lemma 6

)
where Bs is the upper bound of si(j)[k] and Er

s , E
r′

s , El
s are the coefficients of ϵr, ϵ

′
r, ϵl in the

upper bounds of |si(j)[k]− si(j)[k]| follow Lemma 6, respectively. We can drive similar results as
j = N . Actually, by P = max{

√
K,

√
d} follows Lemma 6, above inequality also holds for j = N .

Therefore, the error in total such that for any w,

∥∇wLn(w)−∇wLn(w)∥2

= ∥ 1

2n

n∑
t=1


0

At(1)
...

At(N)
0

− 1

2n

n∑
t=1


0

At(1)
...

At(N)
0

 ∥2
(
By definition of Ln(w) and Ln(w)

)
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≤ 1

2
max
1≤t≤n

{
N∑
j=1

∥At(j)−At(j)∥2}

≤ N

2
P [(Er

s ϵr + Er′

s ϵr′ + El
sϵl)

√
PBr +BsErϵr].(

By the error accumulation results derived before
)

Let Cl, Cr, Cr′ denotes coefficients in front of ϵl, ϵr, ϵr′ respectively. Then it holds

Cl = NP
3
2BrE

l
s,

Cr = NP
3
2BrE

r
s +NPBsEr,

Cr′ = NP
3
2BrE

r′

s .

Thus, to ensure ∥∇wLn(w)−∇wLn(w)∥2 ≤ ϵ, we only need to select ϵl, ϵr, ϵ′r as

ϵl =
2ϵ

3Cl
, ϵr =

2ϵ

3Cr
, ϵ′r =

2ϵ

3Cr′
.

Therefore, we only need to pick the last MLP layer MLP2N+4 such that it maps

[xi; yi;w − η∇wLn(w); pi; r
′
i; gi; si;0; 1; ti]

MLP2N+4−−−−−−→ [xi; yi; ProjW(w − η∇wLn(w));0; 1; ti].

By our assumption on the map ProjW , this is easy.

Finally, we analyze how many embedding dimensions of Transformers are needed to implement the
above ICGD. Recall that

xi, yi ∈ Rd, w ∈ R2dK+(N−2)K2

, pi ∈ R(N−1)K+d, r′i ∈ R(N−2)K+d, gi ∈ Rd, si ∈ R(N−1)K+d.

Therefore, max{Ω(NK2), Dw} embedding dimensions of Transformer are required to implement
ICGD on deep models.

Combining the above, we complete the proof.

D.8 PROOF OF COROLLARY 1.1

Corollary 4.1 (Corollary 1.1 Restated: Error for implementing ICGD on N -layer neural network).
Fix L ≥ 1, under the same setting as Theorem 1, (2N+4)L-layer neural networks NNθ approximates
the true gradient descent trajectory {wl

GD}l≥0 ∈ RDN with the error accumulation

∥wl − wl
GD∥2 ≤ L−1

f (1 + nLf )
lϵ,

where Lf denotes the Lipschitz constant of LN (w) within W .

First we introduce a helper lemma.

Lemma 14 (Error for Approximating GD, Lemma G.1 of (Bai et al., 2023)). Let W ⊂ Rd is a
convex bounded domain and ProjW projects all vectors into W . Suppose f : W → R and ∇f is
Lf -Lipschitz on W . Fix any ϵ > 0, let sequences {wl}l≥0 ∈ Rd and {wl

GD}l≥0 ∈ Rd are given by
w0 = w0

GD = 0, then for all l ≥ 0,

wl = ProjW(wl−1 − η∇Ln(w
l−1) + ϵl−1), ∥ϵl−1∥2 ≤ ηϵ,

wl
GD = ProjW(wl−1

GD − η∇Ln(w
l−1
GD ))
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To show the convergence, we define the gradient mapping at w with step size η as,

Gf
W,η :=

w − ProjW(w − η∇Ln(w))

η
.

Then if η ≤ Lf , for all L ≥ 1, convergence holds

min
l∈[L−1]

∥Gf
W,η(w

l)∥22 ≤ 1

L

L−1∑
l=1

∥Gf
W,η(w

l)∥22 ≤ 8(f(0)− infw∈W f(w))

ηL
+ 10ϵ2.

Moreover, for any l ≥ 0, the error accumulation is

∥wl − wl
GD∥2 ≤ L−1

f (1 + nLf )
lϵ.

Lemma 14 shows Theorem 1 leads to exponential error accumulation in the general case. Moreover,
Lemma 14 also provides convergence of approximating GD. Then we proof Corollary 1.1.

Proof. For any small ϵ, by Theorem 1, the neural network NNθ implements each gradient descent
step with error bounded by ϵ. Then we simply apply Lemma 14 to complete the proof.
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E EXTENSION: DIFFERENT INPUT AND OUTPUT DIMENSIONS

In this section, we explore the ICGD on N -layer neural networks under the setting where the
dimensions of input xi and label yi can be different. Specifically, we consider our prompt datasets
{(xi, yi)}i∈[n] where xi ∈ Rdx and yi ∈ Rdy . We start with our new N -layer neural network.

Definition 10 (N -Layer Neural Network). An N -Layer Neural Network comprises N − 1 hidden
layers and 1 output layer, all constructed similarly. Let r : R → R be the activation function. For the
hidden layers: for any i ∈ [n+ 1], j ∈ [N − 1], and k ∈ [K], the output for the first j layers w.r.t.
input xi ∈ Rd, denoted by predh(xi; j) ∈ RK , is defined as recursive form:

predh(xi; 1)[k] := r(v⊤1kxi), and predh(xi; j)[k] := r(v⊤jkpredh(xi; j − 1)),

where v1k ∈ Rd and vjk ∈ RK for j ∈ {2, . . . , N − 1} are the k-th parameter vectors in the first
layer and the j-th layer, respectively. For the output layer (N -th layer), the output for the first N
layers (i.e the entire neural network) w.r.t. input xi ∈ Rdx , denoted by predo(xi;w,N) ∈ Rdy , is
defined for any k ∈ [dy] as follows:

predo(xi;w,N)[k] := r(v⊤Nk
predh(xi;N − 1)),

where vNk
∈ RK are the k-th parameter vectors in the N -th layer and w ∈ R(dx+dy)K+(N−2)K2

denotes the vector containing all parameters in the neural network,

w :=
[
v⊤11 , . . . , v

⊤
1K , . . . , v⊤jk , . . . v

⊤
N−11

, . . . , v⊤N−1K
, v⊤N1

, . . . , v⊤Ndy

]⊤
.

Notice that our new N -layer neural network only modify the output layer compared to Definition 1.
Intuitively, this results in minimal change in output, which allows our framework in Section 3.3
to function across varying input/output dimensions. Theoretically, we derive the explicit form of
gradient ∇Ln(w).

Lemma 15 (Decomposition of One Gradient Descent Step). Fix any Bv, η > 0. Suppose the
empirical loss function Ln(w) on n data points {(xi, yi)}i∈[n] is defined as

Ln(w) :=
1

2n

n∑
i=1

ℓ(f(w, xi), yi), where ℓ : Rdy × Rdy → R is a loss function,

where f(w, xi), yi) is the output of N -layer neural networks (Definition 10) with modified out-
put layer. Suppose closed domain W and projection function ProjW(w) follows (3.4). Let
Ai(j), r

′
i(j), Ri(j), Vj be as defined in Definition 2 (with modified dimensions), then the explicit

form of gradient ∇Ln(w) becomes

∇Ln(w) =
1

2n

n∑
i=1

Ai(1)
...

Ai(N)

 ,

where Ai(j) denote the derivative of ℓ(pi(N), yi) with respect to the parameters in the j-th layer,

Ai(j) =

{
(Ri(N − 1) · VN · . . . ·Ri(j − 1) ·

[
IK×K ⊗ pi(j − 1)⊤

]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N) )⊤, j ̸= N

(Ri(N − 1) ·
[
Idy×dy

⊗ pi(N − 1)⊤
]
)⊤ · (∂ℓ(pi(N),yi)

∂pi(N) )⊤, j = N.

Proof. Simply follow the proof of Lemma 1. We show the different terms compared to Definition 2:
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• Let Dj ∈ R denote the total number of parameters in the first j layers.

Dj =


0, j = 0

dxK, j = 1

(j − 1)K2 + dxK, 2 ≤ j ≤ N − 1

(N − 2)K2 + (dx + dy)K, j = N,

• The intermediate term Ri(N − 1),

Ri(N − 1) = diag{r′(v⊤j+11
pi(j)), . . . , r

′(v⊤j+1dy
pi(j))} ∈ Rdy×dy .

• The parameters matrices of the first and the last layers:

Vj :=


[
v11 , . . . , v1K

]⊤ ∈ RK×dx , j = 1[
vN1

, . . . , vNdy

]⊤
∈ Rdy×K , j = N.

Thus we complete the proof.

Lemma 15 shows that the explicit form of gradient ∇Ln(w) holds the same structure as Lemma 1.
Therefore, it is simple to follow our framework in Section 3.3 to approximate ∇Ln(w) term by term.
Finally, we introduce the generalized version of main result Theorem 1.

Theorem 5 (In-Context Gradient Descent on N -layer NNs). Fix any Bv, η, ϵ > 0, L ≥ 1. For any
input sequences takes from (2.1), where {(xi, yi)}i∈[n] and xi ∈ Rdx and yi ∈ Rdy , their exist upper
bounds Bx, By such that for any i ∈ [n], ∥yi∥2 ≤ By, ∥xi∥2 ≤ Bx. Assume functions r(t), r′(t)
and u(t, y)[k] are Lr, Lr′ , Ll-Lipschitz continuous. Suppose W is a closed domain such that for any
j ∈ [N − 1] and k ∈ [K],

W ⊂
{
w = [vjk ] ∈ RDN : ∥vjk∥2 ≤ Bv

}
,

and ProjW project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer
with hidden dimension Dw parameters ∥θ∥ ≤ Cw. If functions r(t), r′(t) and u(t, y)[k] are C4-
smoothness, then for any ϵ > 0, there exists a transformer model NNθ with (2N +4)L hidden layers
consists of L neural network blocks TFN+2

θ ◦ EWMLN
θ ◦ TF2

θ,

NNθ := TFN+2
θ ◦ EWMLN

θ ◦ TF2
θ ◦ . . . ◦ TF

N+2
θ ◦ EWMLN

θ ◦ TF2
θ,

such that the heads number M l, parameter dimensions Dl, and the parameter norms Bθl suffice

max
l∈[(2N+4)L]

M l ≤ Õ(ϵ−2), max
l∈[(2N+4)L]

Dl ≤ O(K2N) +Dw, max
l∈[(2N+4)L]

Bθl ≤ O(η) + Cw + 1,

where Õ(·) hides the constants that depend on d,K,N , the radius parameters Bx, By, Bv and the smoothness
of r and ℓ. And this neural network such that for any input sequences H(0), take from (2.1), NNθ(H

(0))
implements L steps in-context gradient descent on risk Ln(w) follows Lemma 15: For every l ∈ [L], the
(2N + 4)l-th layer outputs h

((2N+4)l)
i = [xi; yi;w

(l);0; 1; ti] for every i ∈ [n + 1], and approximation
gradients w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.
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F EXTENSION: SOFTMAX TRANSFORMER

In this part, we demonstrate the existence of pretrained Softmax transformers capable of implement-
ing ICGD on an N -layer neural network. First, we introduce our main technique: the universal
approximation property of softmax transformers in Appendix F.1. Then, we prove the existence of
pretrained softmax transformers that implement ICGD on N -layer neural networks in Appendix F.2.

F.1 UNIVERSAL APPROXIMATION OF SOFTMAX TRANSFORMER

Softmax-Attention Layer. We replace modified normalized ReLU activation σ/n in ReLU attention
layer (Definition 7) by standard softmax. Thus, for any input sequence H ∈ RD×n, a single head
attention layer outputs

Attn (H) = H +W (O)(V H) Softmax
[
(KH)⊤(QH)

]
, (F.1)

where W (O), Q,K, V ∈ RD×D ∈ Rd×d are the weight matrices. Then we introduce the softmax
transformer block, which consists of two feed-forward neural network layers and a single-head
self-attention layer with the softmax function.

Definition 11 (Transformer Block TSoftmax). For any input sequences H ∈ RD×n, let FF(H) :=
H +W2 · ReLU(W1H + b11

T
L) + b21

T
L be the Feed-Forward layer, where d′ is hidden dimensions,

W1 ∈ Rd′×D, W2 ∈ RD×d′
, b1 ∈ Rl, and b2 ∈ Rd. We configure a transformer block with

Softmax-attention layer as TSoftmax := {FF ◦Attn ◦ FF : Rd×L → Rd×L}.

Universal Approximation of Softmax-Transformer. We show the universal approximation theorem
for Transformer blocks (Definition 11). Specifically, Transformer blocks TSoftmax are universal
approximators for continuous permutation equivariant functions on bounded domain.

Lemma 16 (Universal Approximation of TSoftmax). Let f(·) := Rd×n → Rd×n be any L-Lipschitz
permutation equivariant function supported on [0, Bx]

d×n. We denote the discrete input domain of
[0, Bx]

d×n by a grid GD with granularity D ∈ N defined as GD = {Bx/D, 2Bx/D, . . . , Bx}d×n ⊂
Rd×n. For any κ > 0, there exists a transformer network fSoftmax ∈ TSoftmax, such that for any
Z ∈ [0, Bx]

d×n, it approximate f(Z) as: ∥fSoftmax(Z)− f(Z)∥2 ≤ L(8
√
dn+

√
n)Bx

2D = κ.

Proof Sketch. First, we use a piece-wise constant function to approximate f and derive an upper
bound based on its L-Lipschitz property. Next, we demonstrate how the feed-forward neural network
F (FF )

1 quantizes the continuous input domain into the discrete domain GD through a multiple-step
function, using ReLU functions to create a piece-wise linear approximation. Then, we apply the
self-attention layer F (SA) on F (FF )

1 , establishing a bounded output region for F (SA)
S ◦ F (FF )

1 .
Finally, we employ a second feed-forward network F (FF )

2 to predict fSoftmax(Z) and assess the
approximation error relative to the actual output f(Z) . See Appendix F.4 for a detailed proof.

F.2 IN-CONTEXT GRADIENT DESCENT WITH SOFTMAX TRANSFORMER

In-Context Gradient Descent with Softmax Transformer. By applying universal approximation
theory (Lemma 16), we now illustrate how to use Transformer block TSoftmax (Definition 11) and
MLP layers (Definition 8) to implement ICGD on general risk function Ln(w).

Theorem 6 (In-Context Gradient Descent on General Risk Function). Fix any Bw, η, ϵ > 0, L ≥ 1.
For any input sequences takes from (2.1), their exist upper bounds Bx, By such that for any i ∈ [n],
∥yi∥max ≤ By , ∥xi∥max ≤ Bx. Suppose W is a closed domain such that ∥w∥max ≤ Bw and ProjW
project w into bounded domain W . Assume ProjW = MLPθ for some MLP layer. Define l(w, xi, yi)
as a loss function with L-Lipschitz gradient. Let Ln(w) =

1
n

∑n
i=1 ℓ(w, xi, yi) denote the empirical

loss function, then there exists a transformer NNθ, such that for any input sequences H(0), take from
(2.1), NNθ(H

(0)) implements L steps in-context gradient descent on Ln(w): For every l ∈ [L], the
4l-th layer outputs h(4l)

i = [xi; yi;w
(l);0; 1; ti] for every i ∈ [n+ 1], and approximation gradients
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w(l) such that

w(l) = ProjW(w(l−1) − η∇Ln(w
(l−1)) + ϵ(l−1)), w(0) = 0,

where ∥ϵ(l−1)∥2 ≤ ηϵ is an error term.

Proof Sketch. By our assumption ProjW = MLPθ, we only need to find a transformer to implement
gradient descent w+ := w − η∇Ln(w). For ant input takes from (F.2), let function f : RD×n →
RD×n maps w into w−η∇Ln(w) and preserve other elements. By Lemma 7, their exist a transformer
block fSoftmax capable of approximating f with any desired small error. Therefore, fSoftmax ◦MLP
suffices our requirements. Please see Appendix F.3 for a detailed proof.

F.3 PROOF OF THEOREM 6

Proof of Theorem 6. We only need to construct a 4 layers transformer capable of implementing
single step gradient descent. With out loss of generality, we assume w ∈ RDw . Recall that the input
sequences H ∈ RD×n takes form

H :=

[
x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
q1 q2 · · · qn qn+1

]
∈ RD×(n+1), qi :=

w01
ti

 ∈ RD−(d+1). (F.2)

Let function f : RD×n → RD×n output

f(H) =

[
x1 x2 · · · xn xn+1

y1 y2 · · · yn 0
q1 q2 · · · qn qn+1

]
, qi :=

w − η∇Ln(w)
0
1
ti

 ∈ RD−(d+1).

By Lemma 16, for any κ > 0, there exists a transformer network fSoftmax ∈ TSoftmax, such
that for any input H ∈ [−B,B]d×L, we have ∥fSoftmax(H)− f(H)∥2 ≤ κ. Therefore, by the
equivalence of matrix norms, ∥fSoftmax(H)− f(H)∥max ≤ κ holds without loss of generality.
Above B := max{Bx, By, Bw, 1} denotes the upper bound for every elements in H . Thus, we
obtain w from the identical position of w in fSoftmax(H). Suppose we choose κ = ϵ√

Dw
, then it

holds

∥w − (w − η∇Ln(w)∥2 ≤
√

Dw∥w − (w − η∇Ln(w)∥max

≤ ∥fSoftmax − f(H)∥max

≤
√

Dw · ϵ√
Dw

≤ ϵ.

Finally, by our assumption, there exists an MLP layer such that for any i ∈ [n+ 1], it maps

[xi; yi;w − η∇Ln(w);0; 1; ti]
MLP−−−→ [xi; yi; ProjW(w − η∇wLn(w));0; 1; ti].

Therefore, a four-layer transformer fSoftmax ◦MLP is capable of implementing one-step gradient
descent through ICL. As a direct corollary, there exist a 4L-layer transformer consists of L identical
blocks fSoftmax ◦MLP to approximate L steps gradient descent algorithm. Each block approximates
a one-step gradient descent algorithm on general risk function Ln(w).

F.4 PROOF OF LEMMA 16

In this section, we introduce a helper lemma Lemma 17 to prove Lemma 16. At the beginning, we
assume all input sequences are separated by a certain distance.
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Definition 12 (Token-wise Separateness, Definition 1 of (Kajitsuka and Sato, 2024)). Let N ≥ 1
and Z(1), . . . , Z(N) ∈ Rd×n be input sequences. Then, Z(1), . . . , Z(N) are called token-wise
(rmin, rmax, δ)-separated if the following three conditions hold.
• For any i ∈ [N ] and k ∈ [n],

∥∥∥Z(i)
:,k

∥∥∥
2
> rmin holds.

• For any i ∈ [N ] and k ∈ [n],
∥∥∥Z(i)

:,k

∥∥∥
2
< rmax holds.

• For any i, j ∈ [N ] and k, l ∈ [n] with Z
(i)
:,k ̸= Z

(j)
:,l ,
∥∥∥Z(i)

:,k − Z
(j)
:,l

∥∥∥
2
> δ holds.

Note that we refer to Z(1), . . . , Z(N) as token-wise (rmax, ϵ)-separated instead if the sequences
satisfy the last two conditions.

Then we introduce the definition of contextual mapping. Intuitively, a contextual mapping can provide
every input sequence with a unique id, which enables us to construct approximation for labels.

Definition 13 (Contextual mapping, Definition 2 of (Kajitsuka and Sato, 2024)). Let input sequences
Z(1), . . . , Z(N) ∈ Rd×n. Then, a map q : Rd×n → Rd×n is called an (r, δ)-contextual mapping if
the following two conditions hold:
• For any i ∈ [N ] and k ∈ [n],

∥∥∥q (Z(i)
)
:,k

∥∥∥
2
< r holds.

• For any i, j ∈ [N ] and k, l ∈ [n], if Z(i)
:,k ̸= Z

(j)
:,l , then

∥∥∥q (Z(i)
)
:,k

− q
(
Z(j)

)
:,l

∥∥∥
2
> δ holds.

In particular, q
(
Z(i)

)
for i ∈ [N ] is called a context id of Z(i).

Next, we show that a softmax-based 1-layer attention block with low-rank weight matrices is a
contextual mapping for almost all input sequences.

Lemma 17 (Softmax attention is contextual mapping, Theorem 2 of (Kajitsuka and Sato, 2024)). Let
Z(1), . . . , Z(N) ∈ Rd×n be input sequences with no duplicate word token in each sequence, that is,

Z
(i)
:,k ̸= Z

(i)
:,l

for any i ∈ [N ] and k, l ∈ [n]. Also assume that Z(1), . . . , Z(N) are token-wise (rmin, rmax, ϵ)
separated. Then, there exist weight matrices W (O) ∈ Rd×s and V,K,Q ∈ Rs×d such that the ranks
of V,K and Q are all 1, and 1-layer single head attention with softmax, i.e., F (SA)

S with h = 1 is an
(r, δ)-contextual mapping for the input sequences Z(1), . . . , Z(N) ∈ Rd×n with r and δ defined by

r = rmax +
ϵ

4

δ =
2(log n)2ϵ2rmin

r2max(|V|+ 1)4(2 log n+ 3)πd
exp

(
−(|V|+ 1)4

(2 log n+ 3)πdr2max

4ϵrmin

)
Applying Lemma 17, we extends Proposition 1 of (Kajitsuka and Sato, 2024) to our Lemma 16.1
We provide explicit upper bound of error ∥fSoftmax(Z)− f(Z)∥2 and analysis with function f of a
broader supported domain.

Lemma 18 (Lemma 16 Restated: Universal Approximation of TSoftmax). Let f(·) := Rd×n →
Rd×n be any L-Lipschitz permutation equivariant function supported on [0, Bx]

d×n. We de-
note the discrete input domain of [0, Bx]

d×n by a grid GD with granularity D ∈ N defined as
GD = {Bx/D, 2Bx/D, . . . , Bx}d×n ⊂ Rd×n. For any κ > 0, there exists a transformer network
fSoftmax ∈ TSoftmax (Definition 11), such that for any Z ∈ [0, Bx]

d×n, it approximate f(Z) as:
∥fSoftmax(Z)− f(Z)∥2 ≤ L(8

√
dn+

√
n)Bx

2D = κ.

Proof. We begin our 3-step proof.

1This extension builds on the results of (Hu et al., 2024a), which extend the rank-1 requirement to any rank
for attention weights. Additionally, Hu et al. (2024b) apply similar techniques to analyze the statistical rates of
diffusion transformers (DiTs).
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Approximation of f by piece-wise constant function. Since f is a continuous function on a
compact set, f has maximum and minimum values on the domain. By scaling with F (FF )

1 and
F (FF )

2 , f is assumed to be normalized: for any Z ∈ Rd×n \ [0, Bx]
d×n

f(Z) = 0,

and for any Z ∈ [0, Bx]
d×n

−By ≤ f(Z) ≤ By.

Let D ∈ N be the granularity of a grid GD:

GD = {Bx

D
,
2Bx

D
, . . . , Bx}d×n ⊂ Rd×n,

where each coordinate only take discrete value Bx/D, 2Bx/D, ..., Bx. Now with a continuous input
Z, we approximate f by using a piece-wise constant function f evaluating on the nearest grid point
L of Z in the following way:

f(Z) =
∑

L∈GD

f (L) 1Z∈L+[−Bx/D,0)d×n . (F.3)

Additionally if Z ∈ L+ [−1/D, 0)d×n, denote it as Q(Z) = L.

Now we bound the piece-wise constant approximation error ∥f − f∥ as follows.

Define set PD = {L + [−Bx/D, 0)d×n|L ∈ GD}. It is a set of regions of size (Bx

D )d×n, whose
vertexes are the points in GD.

For any subset U ∈ PD, the maximal difference of f and f in this region is:

max
Z∈U

∥f(Z)− f(Z)∥2 = max
Z∈U

∥f(Z)− f(Q(Z))∥2

≤ max
Z,Z′∈U

∥f(Z)− f(Z ′)∥2

≤ L · max
Z,Z′∈U

∥Z − Z ′∥2
(
By f is a L-Lipschitz function

)
= L ·

√
dn · (Bx

D
)2

(
Z, Z′ are in the same Bx

D
-wide (d · n)-dimension U .

)
=

L
√
dnBx

D
. (F.4)

Quantization of input using F (FF )
1 . In the second step, we use F (FF )

1 to quantize the continuous
input domain into GD. This process is achieved by a multiple-step function, and we use ReLU
functions to approximate this multiple-step functions. This ReLU function can be easily implemented
by a one-layer feed-forward network.

First for any small δ > 0 and z ∈ R, we construct a δ-approximated step function using ReLU
functions:

σR

[
z
δ

]
− σR

[
z
δ −Bx

]
D

=


0 z < 0
z
δD 0 ≤ z < δBx
Bx

D δBx ≤ z

, (F.5)
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where a one-hidden-layer feed-forward neural network is able to implement this. By shifting (F.5) by
Bx, for any t ∈ [D − 1], we have:

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

=


0 z < tBx

D
z
δD

tBx

D ≤ z < δBx + tBx

D
Bx

D δBx + tBx

D ≤ z

, (F.6)

when δ is small the above function approximates to a step function:

quant
(t)
D (z) =

{
0 z ≤ tBx

D
Bx

D
tBx

D ≤ z
.

By adding up (F.6) at every t ∈ [D − 1], we have an approximated multiple-step function

D−1∑
t=0

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

(F.7)

≈
D−1∑
t=0

quant
(t)
D (z)

(
when δ is small.

)
= quantD(z)

=


0 z < 0
Bx

D 0 ≤ z < Bx

D
...

...
Bx Bx − Bx

D ≤ z

. (F.8)

Note that the error of approximation at z here estimated as:∣∣∣∣∣
D−1∑
t=0

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

− quantD(z)

∣∣∣∣∣ ≤ Bx

D
, (F.9)

and for matrix Z ∈ Rd×n:

∥
D−1∑
t=0

σR

[
Z
δ − Q(Z)

δD

]
− σR

[
Z
δ −BxE − Q(Z)

δD

]
D

− quantD(Z)∥2

≤
√
d× n× (

Bx

D
)2

(
Z ∈ Rd×n

)
=

Bx

√
dn

D
.

Subtract the last step function from (F.7) we get the desired result:

D−1∑
t=0

σR

[
z
δ − tBx

δD

]
− σR

[
z
δ −Bx − tBx

δD

]
D

− (σR

[
z

δ
− Bx

δ

]
− σR

[
z

δ
− 1− Bx

δ

]
). (F.10)

This equation approximate the quantization of input domain [0, Bx] into {Bx/D, . . . , Bx} and
making R \ [0, Bx] to 0. In addition to the quantization of input domain [0, Bx], we add a penalty
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term for input out of [0, Bx] in the following way:

−BxσR

[
(z −Bx)

δ

]
+BxσR

[
(z −Bx)

δ
− 1

]
−BxσR

[
−z

δ

]
+BxσR

[
−z

δ
− 1

]
(F.11)

≈ penalty(z) =


−Bx z ≤ 0

0 0 < z ≤ Bx

−Bx Bx < z

.

Both (F.10) and (F.11) can be realized by the one-layer feed-forward neural network. Also, it is
straightforward to show that generate both of them to input Z ∈ Rd×n.

Combining both components together, the fırst feed-forward neural network layer F (FF )
1 approxi-

mates the following function F (FF )

1 (Z):

F (FF )
1 ≈ F (FF )

1 (Z) = quantd×n
D (Z) +

d∑
t=1

n∑
k=1

penalty(Zt,k). (F.12)

Note how we generalize penalty(·) to multi-dimensional occasions in the above equation. Whenever
an input sequence Z has one entry Zt,k out of [0, Bx]

d×n, we penalize the whole input sequence by
adding a −Bx to all entries. This makes all entries of this quantization lower bounded by −dnBx.

(F.12) quantizes inputs in [0, Bx]
d×n with granularity D, while every element of the output is non-

positive for inputs outside [0, Bx]
d×n. In particular, the norm of the output is upper-bounded when

every entry in Z is out of [0, Bx], this adds −dnBx penalties to all entries:

max
Z∈Rd×n

∥∥∥F (FF )
1 (Z):,k

∥∥∥
2
=
√
d · (−dnBx)2

(
One column is d−dimension.

)
≤ dn ·

√
dBx, (F.13)

for any k ∈ [n].

Estimating the influence of self-attention F (SA). Define G̃D ⊂ GD as:

G̃D = {L ∈ GD | ∀k, l ∈ [n], L:,k ̸= L:,l} . (F.14)

It is a set of all the input sequences that don’t have have identical tokens after quantization.

Within this set, the elements are at least Bx

D separated by the quantization. Thus Lemma 17 allows us
to construct a self-attention F (SA) to be a contextual mapping for such input sequences.

Since when D is sufficiently large, originally different tokens will still be different after quantization.
In this context, we omit GD/G̃D for simplicity.

From the proof of Lemma 17 in (Kajitsuka and Sato, 2024), we follow their way to construct
self-attention and have following equation:∥∥∥F (SA)

S (Z):,k − Z:,k

∥∥∥
2
<

1

4
√
dD

max
k′∈[n]

∥Z:,k′∥2, (F.15)

for any k ∈ [n] and Z ∈ Rd×n.

Combining this upper-bound with (F.13) we have

∥∥∥F (SA)
S ◦ F (FF )

1 (Z):,k −F (FF ) (Z):,k

∥∥∥
2
<

1

4
√
dD

max
k′∈[n]

∥F (FF )(Z:,k)∥2
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<
1

4
√
dD

× dn
√
dBx

(
By (F.13)

)
=

dnBx

4D
. (F.16)

We show that if we take large enough D, every element of the output for Z ∈ Rd×n\[0, Bx]
d×n is

upper-bounded by

F (SA)
S ◦ F (FF )

1 (Z)t,k <
Bx

4D
(∀t ∈ [d], k ∈ [n]). (F.17)

To show (F.17) holds, we consider the opposite occasion that there exists a F (SA)
S ◦F (FF )

1 (Z)t0,k0
≥

Bx/4D. Then we divide the case into two sub cases:

1. The whole F (FF )
1 (Z) receives no less than 2 penalties. In this occasion, since every entry consists

of two counterparts in (F.12): the quantization part quantd×n
D (Z) ∈ [0, Bx] and aggregated with a

penalty part
∑d

t=1

∑n
k=1 penalty(Zt,k) ≤ −2Bx, for every entry we have F (FF ) (Z)t,k ≤ −Bx.

This yields that:

∥F (SA)
S ◦ F (FF )

1 (Z):,k0
−F (FF ) (Z):,k0

∥2 ≥ ∥F (SA)
S ◦ F (FF )

1 (Z)t0,k0
−F (FF ) (Z)t0,k0

∥2

≥ |Bx

4D
− (−Bx)|

≥ dn

4D
Bx,

(
for a large enough D

)
thus we derive a contradiction towards (F.16) from the assumption, proving it to be incorrect.

2. The whole F (FF )
1 (Z) receives only one penalty. In this case all entries in Z is penalized by −Bx

and satisfies:

F (FF )
1 (Z)t,k ∈ [−Bx, 0]

d×n. (F.18)

By (F.15), this further denotes:∥∥∥F (SA)
S ◦ F (FF )

1 (Z):,k −F (FF )
1 (Z):,k

∥∥∥
2
<

1

4
√
dD

max
k′∈[n]

∥F (FF )
1 (Z):,k′ ∥2

(
By (F.15)

)
≤ 1

4
√
dD

√
d×B2

x

(
By (F.18)

)
=

Bx

4D
. (F.19)

Yet by our assumption, there exists such an entry F (SA)
S ◦ F (FF ) (Z)t0,k0

≥ Bx/4D, which since

F (FF )
1 (Z)t0,k0

≤ 0, yields:∥∥∥F (SA)
S ◦ F (FF )

1 (Z):,k0
−F (FF )

1 (Z):,k0

∥∥∥
2
≥
∥∥∥F (SA)

S ◦ F (FF )
1 (Z)t0,k0

−F (FF )
1 (Z)t0,k0

∥∥∥
2

≥ |Bx

4D
− 0|

=
Bx

4D

The final conclusion contradict the former result, suggesting the prerequisite to be fallacious.
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Joining the incorrectness of the two sub-cases of the opposite occasion, we confirm the upper bound
when input Z is outside [0, Bx]

d×n in (F.17).

For the input Z inside [0, Bx]
d×n, we now show it is lower-bounded by

F (SA)
S ◦ F (FF )

1 (Z)t,k >
3Bx

4D
(∀t ∈ [d], k ∈ [n]). (F.20)

By our construction, every entry Z in [0, Bx]
d×n satisfies:

F (FF )
1 (Z)t,k ∈ [

Bx

D
,Bx]. (F.21)

By (F.15): ∥∥∥F (SA)
S ◦ F (FF )

1 (Z):,k −F (FF )
1 (Z):,k

∥∥∥
2

<
1

4
√
dD

max
k′∈[n]

∥F (FF )
1 (Z):k′ ∥2

(
By (F.15)

)
≤ 1

4
√
dD

√
d×B2

x

(
d−dimension vector with each entry has maximum value Bx.

)
=

Bx

4D
. (F.22)

This yields:

|F (SA)
S ◦ F (FF )

1 (Z)t,k −F (FF )
1 (Z)t,k | ≤

∥∥∥F (SA)
S ◦ F (FF )

1 (Z):,k −F (FF )
1 (Z):,k

∥∥∥
2

<
Bx

4D
. (F.23)

Finally, we have:

F (SA)
S ◦ F (FF )

1 (Z)t,k

> F (FF )
1 (Z)t,k −

∥∥∥F (SA)
S ◦ F (FF )

1 (Z)t,k −F (FF )
1 (Z)t,k

∥∥∥
2

>
Bx

D
− ∥F (SA)

S ◦ F (FF )
1 (Z)t,k −F (FF )

1 (Z)t,k ∥2
(
By (F.21).

)
>

Bx

D
− Bx

4D

(
By (F.23)

)
=

3Bx

4D
.

Hence we finally finish the proof for the upper bound of F (SA)
S ◦ F (FF )

1 (Z)t,k for Z outside [0, Bx]

in (F.17) and lower bound for Z inside [0, Bx] in (F.20).

Approximation error Now, we can conclude our work by constructing the final feed-forward
network F (FF )

2 . It receives the output of the self-attention layer and maps the ones in G̃D ⊂
(3Bx/4D,∞)d×n to the corresponding value of the target function, and the rest in (−∞, Bx/4D)d×n

to 0.

In order to adapt to the L2 norm, we use a continuous and Lipschitz function to map the input Z to
its targeted corresponding output f(Q(Z)).
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According to piece-wise linear approximation, function F (FF )
2 exists such that for any input L ∈ GD,

it maps it to corresponding f(L), and for an arbitrary input Z, its output suffices:

F (FF )
2 (Z) ∈ [ min

∥L−Z∥max≤Bx
2D

f(L), max
∥L−Z∥max≤Bx

2D

f(L)]. (F.24)

Next we estimate the difference between F (FF )
2 ◦ F (SA)

S ◦ F (FF )
1 and F (FF )

2 ◦ F (SA)
S ◦ F (FF )

1 .

The difference is caused by the difference between F (FF )

1 and F (FF )
1 . By (F.9), this difference is

bounded by 1
D in every dimension, for any input Z ∈ Rd×n:

∥F (FF )

1 (Z)−F (FF )
1 (Z)∥2 <

√
dnBx

D
.

By (F.19):

∥F (SA)
S ◦ F (FF )

1 (Z)−F (SA)
S ◦ F (FF )

1 (Z)∥2

≤ ∥F (SA)
S ◦ F (FF )

1 (Z)−F (FF )

1 (Z)∥2 + ∥F (FF )

1 (Z)−F (FF )
1 (Z)∥2

+ ∥F (FF )
1 (Z)−F (SA)

S ◦ F (FF )
1 (Z)∥2

(
By triangle inequality

)
≤

√
dnBx

D
+ 2 ·

√
nBx

4D
.

(
By ∥A∥2 ≤ ∥A∥F and (F.19)

)
In the section on quantization of the input, we used piece-wise linear functions (F.7) to approximate
piece-wise-constant functions (F.8), this creates a deviation for the inputs on the boundaries of the
constant regions. Consider Z as one of these inputs whose value deviated from F (FF )

2 ◦ F (SA)
S ◦

F (FF )

1 (Q(Z)). Let f(L1) denote the value given to F (FF )
2 ◦ F (SA)

S ◦ F (FF )
1 (Z). Because the

deviation take the output to a grid at most
√
dnBx/D +

√
nBx/2D away from its original grid,

under the quantization of the output, f(L1) at most deviate from its original output F (FF )
2 ◦ F (SA)

S ◦
F (FF )

1 (Z) by the distance of
√
dnBx/D +

√
nBx/2D aggregated with 2 times of the maximal

distance within a grid. They sum up to be:

∥F (FF )
2 ◦ F (SA)

S ◦ F (FF )
1 −F (FF )

2 ◦ F (SA)
S ◦ F (FF )

1 ∥2 ≤ L× (
2
√
dnBx +

√
nBx

2D
+ 2

√
dnBx

D
)

< L
6
√
dnBx +

√
nBx

2D
.

Lastly, by condition we neglect the GD \ G̃D part. This yields:

F (FF )
2 ◦ F (SA)

S ◦ F (FF )

1 = f.

Thus, adding up the errors yields:

∥f −F (FF )
2 ◦ F (SA)

S ◦ F (FF )
1 ∥2

≤ ∥f − f∥2 + ∥f −F (FF )
2 ◦ F (SA)

S ◦ F (FF )
1 ∥2

(
By triangle inequality

)
= L

6
√
dnBx +

√
nBx

2D
+ L

√
dnBx

D

(
By (F.4)

)
=

L(8
√
dn+

√
n)Bx

2D
.
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This completes the proof.
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G EXPERIMENTAL DETAILS

In this section, we conduct experiments to verify the capability of ICL to learn deep feed-forward
neural networks. We conduct the experiments based on 3-layer NN, 4-layer NN and 6-layer NN using
both ReLU-Transformer and Softmax-Transformer based on the GPT-2 backbone.

Experimental Objectives. Our objectives include the following three parts:

• Objective 1. Validating the performance of ICL matches that of training N -layer networks, i.e.,
the results in Theorem 1, Theorem 5, and Theorem 6.

• Objective 2. Validating the ICL performance in scenarios where the testing distribution diverges
from the pretraining one or where prompt lengths exceed those used in pretraining.

• Objective 3. Validating the ICL performance in scenarios where the distribution of parameters in
the N -layer network diverges from that of the pretraining phase.

• Objective 4. Validating that a deeper transformer achieves better ICL performance, supporting the
idea that scaling up the transformer enables it to perform more ICGD steps.

Computational Resource. We conduct all experiments using 1 NVIDIA A100 GPU with 80GB
of memory. Our code is based on the PyTorch implementation of the in-context learning for the
transformer (Garg et al., 2022) at https://github.com/dtsip/in-context-learning.

G.1 EXPERIMENTS FOR OBJECTIVES 1 AND 2

In this section, we conduct experiments to validate Objectives 1 and 2. We sample the input of
feed-forward network x ∈ Rd from the Gaussian mixture distribution: w1N(−2, Id) + w2N(2, Id),
where w1, w2 ∈ R. We consider three kinds of network f : Rd → R, (i) 3-layer NN, (ii) 4-layer NN,
and (iii) 6-layer NN. We generate the true output by y = f(x). In our setting, we use d = 20.

Model Architecture. The sole difference between ReLU-Transformer and Softmax-Transformer is
the activation function in the attention layer. Both models comprise 12 transformer blocks, each with
8 attention heads, and share the same hidden and MLP dimensions of 256.

Transformer Pretraining. We pretrain the ReLU-Transformer and Softmax-Transformer based on
the GPT-2 backbone. In our setting, we sample the pertaining data from N(−2, Id), i.e., w1 = 1 and
w2 = 0. Following the pre-training method in (Garg et al., 2022), we use the batch size as 64. To
construct each sample in a batch, we use the following steps (take the generation for the i-th sample
as an example):

1. Initialize the parameters in fi with a standard Gaussian distribution, i.e., N(0, I).
2. Generate n queries {xi,j}nj=1 (i.e., input of fi) from the Gaussian mixture model ω1N(−2, Id) +

ω2N(2, Id). Here we take n = 51.
3. For each query xi,j , use yi,j = fi(xi,j) to calculate the true output.

This generates a training sample for the transformer model with inputs

[xi,1, yi,1, · · · , xi,50, yi,50, xi,51] ,

and training target

oi = [yi,1, · · · , yi,50, yi,51] .

We use the MSE loss between prediction and true value of oi. The pretraining process iterates for
500k steps.

Testing Method. We generate samples similar to the pretraining process. The batch size is 64, and
the number of batch is 100, i.e., we have 6400 samples totally. For each sample, we extend the value
n from 51 to 76 to learn the performance of in-context learning when the prompt length is longer
than we used in pretraining. The input to the model becomes

[xi,1, yi,1, · · · , xi,75, yi,75, xi,76] .

We assess performance using the mean R-squared value for all 6400 samples.
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Baseline. We use the 3-layer, 4-layer, and 6-layer feed-forward neural networks with 200 hidden
dimensions as baselines by training them with in-context examples. Specially, given a testing sample
(take the i-th sample as an example), which includes prompts {xi,j , yi,j}k−1

j=1 and a test query xi,k.

We use {xi,j , yi,j}k−1
j=1 to train the network with MSE loss for 100 epochs. We select the highest

R-squared value from each epoch as the testing measure and calculate the average across all 6400
samples.

G.1.1 PERFORMANCE OF RELU TRANSFORMER.

We use three different Gaussian mixture distribution ω1N(−2, Id) + ω2N(2, Id) for the testing data:
(i) ω1 = 1, ω2 = 0, (ii) ω1 = 0.9, ω2 = 0.1, (iii) ω1 = 0.7, ω2 = 0.3, (iv) ω1 = 0.5, ω2 = 0.5. Here
the distribution in the first setting matches the distribution in pretraining. We show the results in
Figure 1.
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Figure 1: Performance of ICL in ReLU-Transformer: ICL learns 3-layer, 4-layer, and 6-layer NN
and achieves R-squared values comparable to those from training with prompt samples. The results
also show the ICL performance declines as the testing distribution diverges from the pretraining one.

G.1.2 PERFORMANCE OF SOFTMAX TRANSFORMER.

We use three different Gaussian mixture distribution ω1N(−2, Id) + ω2N(2, Id) for the testing data:
(i) ω1 = 1, ω2 = 0, (ii) ω1 = 0.9, ω2 = 0.1, (iii) ω1 = 0.7, ω2 = 0.3, (iv) ω1 = 0.5, ω2 = 0.5. Here
the distribution in the first setting matches the distribution in pretraining. We show the results in
Figure 2.
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Figure 2: Performance of ICL in Softmax-Transformer: ICL learns 3-layer, 4-layer, and 6-layer
NN and achieves R-squared values comparable to those from training with prompt samples. The
results also show the ICL performance declines as the testing distribution diverges from the pretraining
one. Note that performance decreases when the prompt length exceeds the pretraining length (i.e.,
50), a well-known issue (Dai et al., 2019; Anil et al., 2022). We believe this is due to the absolute
positional encodings in GPT-2, as noted in (Zhang et al., 2023)

The results in Appendix G.1.1 and Appendix G.1.2 show that the performance of ICL in the trans-
former matches that of training N -layer networks, regardless of whether the prompt lengths are
within or exceed those used in pretraining. Furthermore, the ICL performance declines as the testing
distribution diverges from the pretraining one.

G.2 EXPERIMENTS FOR OBJECTIVE 3

In this section, we conduct experiments to validate Objective 3. For these experiments, we use testing
data that is identical to the training data, which follows a distribution of N(−2, Id). We vary the
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distribution of parameters in the N -layer network. During the training process, we set the distribution
as N(0, I). In the testing process, we examine different distributions, including N(0, I), N(−0.5, I),
and N(0.5, I). All other model hyperparameters and experimental details remain consistent with
those described in Appendix G.1. We evaluate the ICL performance of both the ReLU-Transformer
and the Softmax-Transformer for 4-layer networks, as shown in Figure 3 and Figure 4. The results
demonstrate that the ICL performance in the transformer matches that of training N -layer networks,
regardless of whether the parameter distribution in the N -layer network diverges from that of the
pretraining phase.
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Figure 3: Performance of ICL Across Various N -layer Network Parameter Distributions for the
ReLU-Transformer: ICL learns 4-layer NN and achieves R-squared values comparable to those
from training with prompt samples, even when the parameter distribution in the N -layer network
during testing diverges from that in the pretraining phase (N(0, I)).
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Figure 4: Performance of ICL Across Various N -layer Network Parameter Distributions for the
Softmax-Transformer: ICL learns 4-layer NN and achieves R-squared values comparable to those
from training with prompt samples, even when the parameter distribution in the N -layer network
during testing diverges from that in the pretraining phase (N(0, I)).

G.3 EXPERIMENTS FOR OBJECTIVE 4

In this section, we conduct experiments to validate Objective 4. For these experiments, we use testing
data identical to the pertaining data from N(−2, Id). We vary the number of layers in the transformer
architecture, testing configurations with 4, 6, 8 and 10 layers. All other model hyperparameters
and experimental details remain consistent with those described in Appendix G.1. We evaluate the
ICL performance of both the ReLU-Transformer and the Softmax-Transformer with 15, 30, and 45
in-context examples, as shown in Figure 5. The results show that a deeper transformer achieves better
ICL performance, supporting the idea that scaling up the transformer enables it to perform more
ICGD steps.
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Figure 5: Performance of ICL Across Varying Transformer Depths: We use the number of
in-context examples as 15, 30, or 45 for both the ReLU-Transformer and the Softmax-Transformer.
The results show that a deeper transformer achieves better ICL performance, supporting the idea that
scaling up the transformer enables it to perform more ICGD steps.

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

H APPLICATION: ICL FOR DIFFUSION SCORE APPROXIMATION

In this part, we give an important application of our work, i.e., learn the score function of diffusion
models by the in-context learning of transformer models. We give the preliminaries about score
matching generative diffusion models in Appendix H.1. Then, we give the analysis for ICL to
approximate the diffusion score function in Appendix H.2.

H.1 SCORE MATCHING GENERATIVE DIFFUSION MODELS

Diffusion Model. Let x0 ∈ Rd be initial data following target data distribution x0 ∼ P0. In essence,
a diffusion generative model consists of two stochastic process in Rd:

• A forward process gradually add noise to the initial data (e.g., images): x0 → x1 → · · · → xT .
• A backward process gradually remove noise from pure noise: yT → yT−1 → · · · → y0.
Importantly, the backward process is the reversed forward process, i.e., yt

d
≈ xT−t for i ∈ 0, . . . , T .2

This allows the backward process to reconstruct the initial data from noise, and hence generative. To
achieve this time-reversal, a diffusion model learns the reverse process by ensuring the backward
conditional distributions mirror the forward ones. The most prevalent technique for aligning these
conditional dynamics is through “score matching” — a strategy training a model to match score
function, i.e., the gradients of the log marginal density of the forward process (Song et al., 2020b;a;
Vincent, 2011). To be precise, let Pt, pt(·) denote the distribution function and destiny function of
xt. The score function is given by ∇ log pt(·). In this work, we focus on leveraging the in-context
learning (ICL) capability of transformers to emulate the score-matching training process.

Score Matching Loss. We introduce the basic setting of score-matching as follows3. To estimate the
score function, we use the following loss to train a score network sW (·, t) with parameters W :

min
W

∫ T

T0

γ(t)Ext∼Pt

[
∥sW (xt, t)−∇ log pt(xt)∥22

]
dt, where γ(t) is a weight function, (H.1)

and T0 is a small value for stabilizing training and preventing the score function from diverging. In
practice, as ∇ log pt(·) is unknown, we minimize the following equivalent loss (Vincent, 2011).

min
W

∫ T

T0

γ(t)Ex0∼P0

[
Ext|x0

[
∥sW (xt, t)−∇ log p(xt|x0)∥22

]]
dt, (H.2)

where p(xt|x0) is distribution of xt conditioned on x0.

H.2 ICL FOR SCORE APPROXIMATION

We first give the problem setup about the ICL for score approximation as the following:

Problem 3 (In-Context Learning (ICL) for Score Function ∇ log pt(·)). Consider the score function
∇ log pt(·) for any t ≥ 0. Given a dataset Dn := {(xi, yi)}i∈[n], where {xi}i∈[n] ⊆ Rd and
yi = ∇ log pti(xi) ⊆ Rd (ti ≥ 0), and a test input xn+1, the goal of “ICL for Score Function” is to
find a transformer T to predict yn+1 based on xn+1 and the in-context dataset Dn. In essence, the
desired transformer T serves as the trained score network sW (·, t).

To solve Problem 3, we follow two steps: (i) Approximate the diffusion score function ∇ log pt(·)
with a multi-layer feed-forward network with ReLU activation functions under the given training
dataset Dn. (ii) Approximate the gradient descent used to train this network by the in-context learning
of the Transformer until convergence, using the same training set Dn as the prompts of ICL.

For the first step, we follow the score approximation results based on a multi-layer feed-forward
network with ReLU activation in (Chen et al., 2023), stated as next lemma.

2 d
≈ denotes distributional equivalence.

3Please also see Appendix B.1 and (Chen et al., 2024; Chan, 2024; Yang et al., 2023) for overviews.
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Lemma 19 (Score Approximation by Feed-Forward Networks, Theorem 1 of (Chen et al., 2023)).
Given an approximation error ϵ > 0, for any initial data distribution P0, there exist a multi-layer
feed-forward network with ReLU activation, f(w, x, t) : RDw × Rd × R → Rd. Then for any
t ∈ [T0, T ], we have ∥f(w, ·, t)−∇ log pt(·)∥L2(Pt)

≤ O(ϵ).

With the approximation result, we reduce the Problem 3 to Problem 2, where the loss function is (H.1).
Following Theorem 1, we show that the in-context learning of transformer models can approximate
the score function of diffusion model.
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