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ABSTRACT

Unveiling an empty street from crowded observations captured by in-car cameras is
crucial for autonomous driving. However, removing all temporarily static objects,
such as stopped vehicles and standing pedestrians, presents a significant challenge.
Unlike object-centric 3D inpainting, which relies on thorough observation in a
small scene, street scene cases involve long trajectories that differ from previous
3D inpainting tasks. The camera-centric moving environment of captured videos
further complicates the task due to the limited degree and time duration of object
observation. To address these obstacles, we introduce StreetUnveiler to recon-
struct an empty street. StreetUnveiler learns a 3D representation of the empty
street from crowded observations. Our representation is based on the hard-label
semantic 2D Gaussian Splatting (2DGS) for its scalability and ability to identify
Gaussians to be removed. We inpaint rendered image after removing unwanted
Gaussians to provide pseudo-labels and subsequently re-optimize the 2DGS. Given
its temporal continuous movement, we divide the empty street scene into observed,
partial-observed, and unobserved regions, which we propose to locate through a
rendered alpha map. This decomposition helps us to minimize the regions that
need to be inpainted. To enhance the temporal consistency of the inpainting, we
introduce a novel time-reversal framework to inpaint frames in reverse order and
use later frames as references for earlier frames to fully utilize the long-trajectory
observations. Our experiments conducted on the street scene dataset successfully
reconstructed a 3D representation of the empty street. The mesh representation of
the empty street can be extracted for further applications.

1 INTRODUCTION

Accurate 3D reconstruction of an empty street scene from an in-car camera video is crucial for
autonomous driving. It provides reliable digital environments that simulate real-world street scenarios.
Although this is an important task, it is seldomly studied in previous works because of its challenging
nature in the following aspects: (1) Lack of ground truth data for pre-training inpainting models
specialized for street scenes; (2) The camera-centric moving captures objects from limited angles
and for brief periods; (3) The long trajectory of in-car camera videos leads to objects appearing and
disappearing at different time points, complicating object removal.

But there still exists a blessing we can take from the long trajectory moving-forward nature. As the
car moves forward, objects that disappear from the later frame will only be visible in previous video
frames. This gives a hint about maintaining the temporal consistency of the same regions.

To address the challenge of reconstructing an empty street, we introduce StreetUnveiler, a re-
construction method targeting unveiling the empty representation of long-trajectory street scenes.
StreetUnveiler involves several key steps. First, it reconstructs the observed 3D representation and
identifies unobserved regions occluded by objects. Then, it uses a time-reversal inpainting framework
to consistently inpaint these unobserved regions as pseudo labels. Finally, it re-optimizes the 3D
representation based on these pseudo labels. The overall pipeline is illustrated in Fig. 1.

StreetUnveiler first reconstructs the original parked-up street with Gaussian Splatting (GS) due to
its scalability and editability. However, as is illustrated in Fig. 2, inpainting with the naïve object
mask (orange mask) often results in blurring and loss of details in large inpainted regions, which
is a common issue in the previous works Mirzaei et al. (2023); Weder et al. (2023); Wang et al.
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Lidar

3D static scene

Reconstruction

Time-Reversal
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Input
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Clean Street Results
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Re-optimized 2DGS

Novel View Synthesis Empty Street Mesh Extraction

Application

Hard label semantic 2DGS

To Be Removed+ Semantic

Figure 1: We achieve accurate empty street reconstruction from in-car camera videos. With the aid of
the proposed hard-label semantic 2D Gaussian Splatting and time-reversal inpainting framework, we
remove the unwanted objects with satisfactory appearance and geometry of occluded regions.

(2023a); Weber et al. (2024); Liu et al. (2024). Generating masks for completely unobservable
regions (blue mask) that are invisible from any viewpoint remains a challenge. Recent work Liu
et al. (2024) requires user-provided masks, which is impractical for long trajectories. Moreover, the
messy appearance of these regions after removing the Gaussians makes it difficult to use methods like
SAM Kirillov et al. (2023). To address the difficulty of finding an ideal inpainting mask, we propose
to generate the mask through the rendered alpha map and reconstruct the scene using a hard-label
semantic 2DGS Huang et al. (2024a) instead of 3DGS Kerbl et al. (2023) . 2DGS has a high opacity
value for Gaussians, resulting in low alpha values in completely unobservable regions. A semantic
distortion loss and a shrinking loss are employed to further reduce the rendered alpha values of the
completely unobservable regions. This approach automatically generates masks for unobservable
regions without user input, leading to better inpainting results.

(a) (b)

Vehicle Mask

(d)(c)

Generated Mask

Naïve Inpaint

Remove 2DGS and Inpaint

Remove Gaussians

Inpaint

Inpaint

Figure 2: (a) The mask of the whole unwanted ob-
ject; (b) Inpainting with (a) mask; (c) Generate the
inpainting mask through a rendered alpha map. The
pixel with a low alpha value is selected as an inpainted
pixel; (d) Inpainting with the generated (c) mask.

Furthermore, we propose a time-reversal in-
painting framework to enhance the tempo-
ral consistency of inpainting results in com-
pletely unobservable regions. By inpainting
the video frames in reverse order, we use
the later frame as a reference to inpaint the
earlier frame. When the video is played in
reverse, the object in the later frame will
transition only from near to far in the cam-
era view as the camera moves away from
the object in a reversed time-space. This
method uses a high-to-low-resolution guid-
ing approach instead of filling an area larger
than the reference region, as in the low-to-
high-resolution approach, which results in
more consistent inpainting. Finally, the in-
painted pixels are used as pseudo labels to
guide the re-optimization of 2DGS. This en-
ables our method to learn a scalable 2DGS
model that represents an empty street while
preserving the appearance integrity of re-
gions visible in other views.

Our contribution can be summarized as follows:

• We propose representing the street as hard-label semantic 2DGS, optimizing the 3D scene
with semantic guidance for scalable representation and improved instance decoupling.

• We use a rendered alpha map to locate completely unobservable regions and apply a semantic
distortion loss and a shrinking loss to create a reasonable inpainting mask for these regions.

• We introduce a novel time-reversal inpainting framework for long-trajectory scenes, en-
hancing the temporal consistency of inpainting results for re-optimization. Experiments
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show that our method can reconstruct an empty street from in-car camera video containing
obstructive elements.

2 RELATED WORK

Neural scene representation and reconstruction. The use of neural radiance fields
(NeRF)Mildenhall et al. (2020) to represent 3D scenes inspired a lot of follow-up work based
on the original approach. Some worksMüller et al. (2022); Chen et al. (2022); Sun et al. (2022); Sara
Fridovich-Keil and Alex Yu et al. (2022) explore explicit representations such as low-rank matrices,
hash grids, or voxel grids to increase the model capacity of original MLPs. Some works explored mul-
tiple separate MLPs Reiser et al. (2021); Kundu et al. (2022); Fu et al. (2022) to represent instances
and backgrounds separately. However, these scale-up strategies are complicated to implement at the
scale of street scenes. Existing works Xu et al. (2023); Tancik et al. (2022); Turki et al. (2022); Lu et al.
(2023); Rematas et al. (2022); Yang et al. (2023b); Wang et al. (2023c); Turki et al. (2023); Meuleman
et al. (2023); Wang et al. (2023b); Guo et al. (2023); Zhang et al. (2023b); Siddiqui et al. (2023)
explored mesh-based, primitive-based, or grid-based representations for large-scale street scenes.
However, both grid-based representation Guo et al. (2023) and mesh-based representation Wang
et al. (2023c) may be constrained by their limited topology, making it hard to decouple the scene into
separate instances. Recent advances in point-based rendering techniques Kerbl et al. (2023); Lassner
& Zollhofer (2021); Xu et al. (2022); Huang et al. (2024a) can achieve both high-quality and fast
rendering speed. The point-based nature of Gaussian Splatting enables scalability for street scenes.
While recent works Chen et al. (2023b); Yan et al. (2024); Lin et al. (2024b); Ren et al. (2024);
Cheng et al. (2024) have explored the reconstruction of large-scale scenes using Gaussian Splatting,
our work focuses on the unveiling stage of a street scene, which is more important for autonomous
driving and more challenging.

3D scene manipulation and inpainting. Early works Wang et al. (2021); Yuan et al. (2020); Philip
& Drettakis (2018); Thonat et al. (2016); Anguelov et al. (2010); Liu et al. (2018); Yu et al. (2018;
2019); Yi et al. (2020); Zhao et al. (2021); Mirzaei et al. (2024) explored street scene editing by
leveraging single-view or multi-view image inpainting networks. With the rapid development of
Neural Scene Representation, editing a 3D scene has been explored by lots of works Chong Bao and
Bangbang Yang et al. (2022); Zhao et al. (2024); Yang et al. (2023a); Yuan et al. (2022); Bao et al.
(2023); Kobayashi et al. (2022); Kerr et al. (2023); Peng et al. (2023). Edit-NeRF Liu et al. (2021)
pioneered shape and color editing of neural fields using latent codes. Subsequent works Bao et al.
(2023); Kobayashi et al. (2022); Kerr et al. (2023); Peng et al. (2023) utilized CLIP models to provide
editing guidance from text prompts or reference images. Recent works Weder et al. (2023); Zhang
et al. (2022); Mirzaei et al. (2023); Xiang et al. (2023); Chen et al. (2023a); Fang et al. (2023); Ye
et al. (2023); Weber et al. (2024); Wang et al. (2024b); Lin et al. (2024a); Mirzaei et al. (2024) also
explored 2D stylization and inpainting techniques, utilizing pretrained Diffusion Priors Rombach
et al. (2022) for editing 3D scenes. Specifically, Chen et al. (2023a); Fang et al. (2023); Ye et al.
(2023); Wang et al. (2024b) investigated these approaches in collaboration with Gaussian Splatting.
Unlike them, our work focuses on street scene object removal and empty street reconstruction, which
is more challenging.

Image and video inpainting. Image inpainting Bertalmio et al. (2000) aims to fulfill the missing
region within an image. Standard approaches included GAN-based methods Pathak et al. (2016);
Zhao et al. (2020), attention-based methods Yu et al. (2018); Liu et al. (2019), transformer-based
methods Wan et al. (2021); Liu et al. (2022), and more recently, diffusion-based methods Rombach
et al. (2022). Control-Net Zhang et al. (2023a) enabled generating images with additional conditions
on the frozen diffusion models. Recently, LeftRefill Cao et al. (2024) learned to guide the frozen
diffusion inpainting models with extra conditions of the reference image, enabling multi-view
inpainting on the frozen diffusion model. However, these image inpainting methods mainly focused
on the static scenario. Video inpainting considers the temporal consistent inpainting in the continuous
image sequence, utilizing approaches like 3D CNN Wang et al. (2019); Hu et al. (2020), temporal
shifting Zou et al. (2021), flow guidance Kim et al. (2019); Xu et al. (2019); Li et al. (2022),
temporal attentions Ren et al. (2022), to name a few. However, these video inpainting methods
hardly considered the long trajectory movement of cameras. In contrast, in our paper, we focus on
the inpainting of large-scale street scenes. Furthermore, the 2DGS representation used in our paper
enables the free-view rendering of the inpainted video.
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3 PROBLEM FORMULATION

Given in-car camera videos and the Lidar data of a parked-up street, our goal is to remove all temporar-
ily static objects in the street, like stopping vehicles and standing pedestrians, and finally reconstruct
an empty street. This task, named as Street Unveiling, is to reconstruct scenes devoid of these static
obstacles, providing an empty representation of the street environment. Such representations are
mainly represented by 3D models for free-view rendering. This task holds significant implications
for autonomous driving systems, urban planning, and scene understanding applications.

Street Unveiling shares some similarities with related tasks but cannot be addressed using existing
approaches. (1) 3D reconstruction primarily involves modeling a primary image or scene with an
object-centric camera. In contrast, Street Unveiling focuses on the background, aiming to remove
foreground objects to reveal an empty street. The absence of ground truth further differentiates it
from standard 3D reconstruction tasks. (2) Video inpainting typically deals with videos captured
by fixed or minimally moving cameras, featuring one or a few central objects. Conversely, Street
Unveiling involves long camera trajectories without central objects. These distinctions require
different capabilities and novel methods to address the unique challenges of Street Unveiling.

4 SEMANTIC STREET RECONSTRUCTION

We opt for 2D Gaussian Splatting Huang et al. (2024a) (2DGS) as our scene representation for its
rendering speed and editability. We first introduce the 2DGS in Sec. 4.1. Subsequently, we elaborate
our algorithm tailored for street unveiling using 2DGS in Sec. 4.2 and Sec. 4.3.

4.1 PRELIMINARY: 2D GAUSSIAN SPLATTING

Our reconstruction stage builds upon the state-of-the-art point-based renderer with the splendid
geometry performance, 2DGS Huang et al. (2024a). 2DGS is defined by several key components:
the central point pk, two principal tangential vectors tu and tv that determine its orientation, and a
scaling vector S = (su, sv) controlling the variances of the 2D Gaussian distribution.

2D Gaussian Splatting represents the scene’s geometry as a set of 2D Gaussians. A 2D Gaussian is
defined in a local tangent plane in world space, parameterized as follows:

P (u, v) = pk + sutuu+ svtvv. (1)

For the point u = (u, v) in uv space, its 2D Gaussian value can then be evaluated using the standard
Gaussian function:

G(u) = exp

(
−u2 + v2

2

)
. (2)

The center pk, scaling (su, sv), and the rotation (tu, tv) are learnable parameters. Each 2D Gaussian
primitive has opacity α and view-dependent appearance c with spherical harmonics. For volume
rendering, Gaussians are sorted according to their depth value and composed into an image with
front-to-back alpha blending:

c(x) =
∑
i=1

ciαiGi(u(x))

i−1∏
j=1

(1− αjGj(u(x))). (3)

where x represents a homogeneous ray emitted from the camera and passing through uv space.

4.2 2DGS FOR STREET SCENE RECONSTRUCTION

2DGS Huang et al. (2024a) features for its accurate geometry reconstruction of the object surface.
However, the application of 2DGS to reconstruct objects devoid of surfaces, such as the sky in an
open-air street scene, remains unexplored. We aim to reconstruct the street scene as a radiance field
and semantic field using 2DGS. More details about radiance field reconstruction are included in the
supplementary.

Learning 2D Gaussians with semantic guidance. We aim to augment the radiance field of street
scenes with editability. Inspired from Guo et al. (2022); Yan et al. (2024); Chen et al. (2023b); Zhou
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et al. (2024), we harness the power of 2D semantic segmentation and distill such knowledge back
to 2D Gaussians. To do so, we inject each 2D Gaussian with a ‘hard’ semantic label. The ‘hard’
means that the semantic label is non-trainable, which differs from the learnable ‘soft’ label used
in recent works Zhou et al. (2024); Yan et al. (2024); Zhou et al. (2023b). Note that although our
‘hard’ semantic label is not trainable, it allows for rendering correct 2D semantic maps by altering its
opacity, rotation, scaling, and position. This encourages the points with the same semantic labels
to gather closer, facilitating accurate object removal in 3D space. Assume that each 2D Gaussian
associated with a one-hot encoded semantic label s, we render the 2D semantic map as:

Ŝ(x) =
∑
i=1

siαiGi(u(x))

i−1∏
j=1

(1− αjGj(u(x))). (4)

During our densification, the newly generated splats will inherit the original hard semantic labels.

4.3 OPTIMIZATION OF 2DGS FOR STREET UNVEILING

In this part, we first introduce standard objectives used by previous approaches to optimize
2DGS Huang et al. (2024a). Then we discuss the inferiority of these objectives in the street scene and
propose the newly introduced objectives tailored for Street Unveiling. In summary, our objectives
consist of photo-metric loss, semantic loss, normal consistency loss, two different depth distortion
losses, and shrinking loss.

Standard approach: As in 3DGS Kerbl et al. (2023), we use L1 loss and D-SSIM loss for supervising
RGB color, with λ = 0.2:

Lrgb = (1− λ)L1 + λLD-SSIM. (5)
Following 2DGS Huang et al. (2024a), depth distortion loss and normal consistency loss are adopted
to refine the geometry property of the 2DGS representation of the street scene.

Ld =
∑
i,j

ωiωj |zi − zj | Ln =
∑
i

ωi(1− n⊤
i N) (6)

Here, ωi represents the blending weight of the i−th intersection. zi denotes the depth of the
intersection points. ni is the normal of the splat facing the camera. N is the estimated normal at
nearby depth point p.

We employ Cross-Entropy (CE) loss to supervise semantic labels:

Ls(x) = CE(Ŝ(x), S(x)) (7)
where S is a pseudo semantic map extracted from a pre-trained segmentation model Xie et al. (2021).

Inferiority of standard objectives. In Street Unveiling, the scene semantics are expected to be
maintained in a less messy and more consistent way to better recognize the Gaussians of objects
to remove. However, solely naïve depth distortion won’t hinder the merging of the 2DGS Huang
et al. (2024a) with different semantic labels, leading to noisy semantic information about the 3D
world. Meanwhile, the noisy Gaussians in the unseen region will still exist if we don’t find a way to
eliminate them. These problems will further harm the generation of an ideal inpainting mask.

Clean up objectives. To reduce the noise in the semantic fields, we propose a semantic depth
distortion loss Lds and a shrinking loss Lα on opacity α:

Lds =
∑
k

Lk
d Lα =

1

N

∑
p

αp (8)

where k iterates over each semantic label and Lk
d denotes the distortion loss of 2DGS Huang et al.

(2024a) with same semantic labels. This semantic depth distortion loss is exerted on the rendered
result of the Gaussians with the same semantic label. Intuitively, it will encourage the 2DGS with the
same label to have a more consistent depth at the pixel level. Shrinking loss will further eliminate
the Gaussians that are actually unseen by any viewpoint. αp represents the opacity value α of each
Gaussian. N is the total number of Gaussians.

The total loss is given as
L = Lrgb + λdLd + λnLn + λdsLds + λsLs + λαLα (9)

We empirically set λd = 100, λn = 0.05, λds = 100, λs = 0.1, and λα = 0.001.
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5 EMPTY STREET RECONSTRUCTION

A common strategy Mirzaei et al. (2023); Weder et al. (2023) to inpaint within small scenes is
utilizing 2D inpainting methods to inpaint removed objects in the image space for re-optimization.
However, lots of problems arise when it comes to the street scene. (1) Some views result in over-
blurry inpainting results due to the huge size of the inpainting mask, as is illustrated in Fig. 2(b); (2)
Some occluded regions of the street struggle to maintain consistency because they are exposed to a
large number of views over the long trajectory. These challenges will make it more vulnerable to
inconsistent inpainting.

In the context of point-based scene representation, eliminating the object involves deleting Gaussians.
However, a naïve removal often yields unsatisfactory results, particularly in the completely unobserv-
able regions beneath the object. In this section, we first propose how to generate the ideal mask for
inpainting as in Fig. 2(c). Then, we propose our time-reversal inpainting framework and how to use
the inpainting results to re-optimize the 2DGS.

5.1 GENERATION OF IDEAL INPAINTING MASK

In the street video captured by a moving car, we can divide the pixel space into three categories:
(1) The observable regions, where the regions are not occluded by any objects; (2) The partially
observable regions, where the regions are occluded in some views but are observable in other
views; (3) The completely unobservable regions, where the regions are unobservable in all recording
views. For regions in the second case, we can utilize information from other views to preserve more
information about the appearance of the street scene. As illustrated in Fig. 2, naïvely inpainting with
the object mask will cause the unexpected blurry inpainting result at the partially observable region,
which can be viewed from other viewpoints but is occluded from the current viewpoint.

To distinguish partially observable regions from completely unobservable regions and improve the
inpainting quality, we propose using the rendered alpha map to generate the mask for completely
unobservable regions. For a given viewpoint, we first remove the Gaussians of unwanted objects. For
robustness, we remove other Gaussians that are "too close" to the previously removed Gaussians.
Then we render the alpha map of the remaining scene. We identify the completely unobservable
region via pixels with low alpha values. The pixels with alpha values lower than a threshold are
selected as inpainting masks. The threshold is set as 0.99 in our implementation.

5.2 TIME-REVERSAL INPAINTING

The core challenge in reconstructing the empty street scene is ensuring consistency between different
views over the long trajectory. However, current video inpainting methods cannot generalize to our
long trajectory and complex scenarios, which can be validated from Tab. 1, Fig. 5, and supplementary
video comparison. This usually lags behind the scale-up speed of image inpainting models. To
this end, we propose using a reference-based image inpainting method that is trained to ensure
consistency between the inpainted region and the reference-based image. Particularly, we adopt
the LeftRefill Cao et al. (2024) for its stable diffusion-based backbone and the matching-based
training strategy. The stable diffusion backbone leads to a more powerful inpainting model with a
strong generation capacity in open-world scenarios, which fits the requirement of Street Unveiling.
Furthermore, the matching-based training strategy ensures that the inpainting model correctly fulfills
the masked region based on the observation in the reference image, which encourages consistency
between different views.

However, time-forward inpainting sequences usually lead to the failure of consistent inpainting.
Given the moving-forward nature of data-collecting vehicles, objects to be removed transit from
far to near in the camera view. (1) As is illustrated in Fig. 3, when we use the far-view image as a
reference to inpaint the same region in the near-view image, the models may not correctly capture the
matching relationships and thus causing inconsistent inpainting. Conversely, setting the near-view
image as the reference image leads to a more precise matching result and naturally better inpainting
results. (2) The near-view image can capture more fine-grained information and a larger receptive
field, thus making the inpainting easier to inpaint in a high-to-low resolution instead of low-to-high
which requires extra super-resolution capacity for the inpainting model. Besides, the objects removed
in the final frame are consistently observed in the earlier frames.

6
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Far View as Reference

Concatenate

Masked Near View

Reference
Based

Inpainting

Fewer Matches

Near View as Reference Masked Far View

Reference
Based

Inpainting

Concatenate

More Matches

Figure 3: Illustration of reference-based inpainting of two views. Left: When we inpaint the near
view with the far view as a reference, the consistency of the inpainting result degenerates. There are
fewer matching pixels between the reference far-view image and near-view inpainting result; Right:
Inpainting the far view using the near view as a reference results in better quality and more accurate
pixel matching. It’s easier to generate the low-resolution content with the high-resolution image as a
reference.

Based on the above analysis, we propose the time-reversal inpainting framework. If we reverse the
time, we can turn the moving-forward nature into a moving-backward nature. When the time is
reversed, objects to be removed will instead transition from near to far in the camera view because
the camera will be away from the removed object in reversed time-space.

We target to unconditionally inpaint a 3D region only once and then transmit the inpainted region’s
pixels to other views with reference-based inpainting. As is illustrated in Fig. 4, we first uncondition-
ally inpaint both frame Tn and Tn+1 with Cao et al. (2023). However, for frame Tn, there are some
regions that can be seen in Tn+1. We expect they would share more matching pixels by utilizing
the implicit pixel-matching ability of reference-based inpainting model Cao et al. (2024). Then we
use frame Tn+1 as a reference to inpaint frame Tn, masking only the regions visible in Tn+1. More
implementation details are elaborated in Sec. A.2 of the supplementary.

Mask seen in
Frame 𝑇!"#

Unconditional
Inpainting

Frame 𝑇!

Frame 𝑇!"#

Remove
Gaussians

Remove
Gaussians

Unconditional
Inpainting

Reference
Based

Inpainting

Matching-aware Reference Time-Reversal
Inpainting

Figure 4: Illustration of time-reversal inpainting. After we remove the Gaussians of the objects, we
first unconditionally inpaint both frame Tn and Tn+1 with Cao et al. (2023). Then we transmit the
pixels from frame Tn+1 to frame Tn in the form of reference-based inpainting Cao et al. (2024).
From a high-level understanding, we inpaint the earlier frame Tn with the later frame Tn+1 as a
reference condition.

5.3 RE-OPTIMIZATION OF THE 2D GAUSSIANS

Once we finish time reversal inpainting, we use our inpainting results as pseudo labels to guide
the re-optimization of 2DGS Huang et al. (2024a) representation. We use the following loss for
re-optimization:

Lretrain = L1 + λdLd + λnLn. (10)

6 EXPERIMENTS

Our experiments were conducted on a single NVIDIA A40 GPU with peak memory usage of 16GB.
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Dataset. For the evaluation of our approach from the reconstruction aspect and the object removal
aspect, we adopt real-world street scenes from Waymo Open Perception Dataset Sun et al. (2020)
and Pandaset Xiao et al. (2021). The Waymo dataset collects data from 5 camera perspectives,
encompassing roughly 230 degrees in field of view (FOV). We downscale the resolution to 484× 320.
The Pandaset collects data from 6 camera perspectives, encompassing 360 degrees in FOV. We
downscale the resolution to 480×270. We select front-view video sequences as the same experimental
setup in Yan et al. (2024); Chen et al. (2023b); Zhou et al. (2024), using 24 scenes from Waymo and
9 scenes from Pandaset for our experiments.

Metrics. To evaluate the effectiveness of object removal, we approach it from a multi-view inpainting
perspective. We follow the well-established previous works Mirzaei et al. (2023); Weder et al. (2023);
Liu et al. (2024); Lin et al. (2024a), we calculate the LPIPS Zhang et al. (2018) and Fréchet Inception
Distance (FID) Heusel et al. (2017) scores to quantify the discrepancies between the ground-truth
views and removed results. Each output video frame is paired with the corresponding frame from the
original training video to compute the LPIPS. We use the image collections of the output video and
original training video to compute FID.

Baselines. We compare our approach to 3D inpainting method SPIn-NeRF Mirzaei et al. (2023) and
a recent Gaussian Splatting based inpainting method Infusion Liu et al. (2024). As the original MLP
implementation of SPIn-NeRF Mirzaei et al. (2023) works poorly in the large-scale street scene, we
re-implement SPIn-NeRF Mirzaei et al. (2023) based on 2DGS Huang et al. (2024a), clarifying that
our superiority not only from 2DGS but also the proposed time reversal inpainting. Infusion Liu et al.
(2024) is evaluated with the official implementation. Since Infusion Liu et al. (2024) is designed
for small scenes, it only conducts GS removal and projection once for the whole scene. Its original
setting doesn’t match our long-trajectory tasks. Instead, we conduct every 10 frames to fit our setting.

Training Data Spin-NeRF
(in 2DGS) Infusion OursRemoved Object ProPainter

3D InpaintVideo Inpaint

Figure 5: Qualitative comparison results of our methods. We can observe that our methods achieve
clearer results than temporarily consistent inpainting baselines. Video comparisons will be placed in
the supplementary.

6.1 COMPARISON

The quantitative comparison results are shown in Tab. 1, and the qualitative comparison of 3D
inpainting methods are shown in Fig. 5. Noticed that SPIn-NeRF Mirzaei et al. (2023) utilizes
LaMa Suvorov et al. (2021) and Infusion Liu et al. (2024) utilizes SDXL Podell et al. (2023) for
inpainting. We can observe that 3D inpainting baseline methods lead to worse results, especially
when the case is challenging. The results demonstrate that our proposed method achieves better 3D
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Waymo Pandaset

LPIPS↓ FID ↓ LPIPS↓ FID ↓
Single Image Inpainting
LaMa(2D) Suvorov et al. (2021) 0.228 138.089 0.276 160.895
SDXL Podell et al. (2023) 0.231 116.634 0.276 133.042

Video Inpainting
ProPainter Zhou et al. (2023a) 0.233 141.906 0.286 178.135

3D Inpainting
SPIn-NeRF Mirzaei et al. (2023) 0.221 140.831 0.266 174.223
(in 2DGS)
Infusion Liu et al. (2024) 0.307 176.882 0.325 176.882
Ours 0.216 127.581 0.261 155.527

Table 1: Comparison with state-of-the-art 2D/3D inpainting methods on both two datasets. Our FID
is only lower than SDXL, yet SDXL doesn’t maintain consistency between different video frames.

Waymo Pandaset

LPIPS↓ FID ↓ LPIPS↓ FID ↓
Ablation of different pseudo labels
w/LaMa Suvorov et al. (2021) 0.226 137.753 0.281 169.836
w/SDXL Podell et al. (2023) 0.222 139.716 0.279 169.805
w/ProPainter Zhou et al. (2023a) 0.224 138.944 0.281 169.848

Ablation of 3D representation
w/3DGS Kerbl et al. (2023) 0.219 140.749 0.280 161.203

Time-Forward Inpainting 0.220 136.858 0.270 158.166

Ours 0.216 127.581 0.261 155.527

Table 2: Quantitative ablation study on both two datasets over different 2D inpainting methods for
3D inpainting. And the ablation study over different 3D representations. The comparison verifies the
effectiveness of the time-reversal inpainting pipeline and the necessity of the 2DGS representation.

inpainting results from the appearance aspect. The geometry property of the removed region will be
discussed in the supplementary. Video comparisons will also be included in the supplementary. In
Tab. 1, our proposed method outperforms all the baselines in LPIPS. It only achieves a lower FID
compared to SDXL, yet SDXL doesn’t maintain consistency between different video frames. This
can be easily observed from supplementary videos.

Training Data Removed Object

Vi
ew

1
Vi
ew

2

2D
In
pa
in
tG

ui
da
nc
e

SDXL

inconsistent

Ours

consistent

3D
Inpaint
Results

LaMa

inconsistent

ProPainter

inconsistent

Figure 6: Ablation for different inpainting methods as pseudo labels. From the top two rows, we
can observe that time-reversal inpainting is able to achieve more consistent inpainting results than
other methods. The bottom row shows that our method can achieve better 3D inpainting results.
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Figure 7: Ablation for 3D representation. When we use 3DGS, generating an ideal inpainting mask
with a rendered alpha map is hard. Good inpainting results are hard to achieve.

6.2 FURTHER ANALYSIS

Ablation of different inpainting methods as pseudo labels. We compare the reconstruction results
with pseudo labels from different inpainting methods. From Fig. 6, we can observe that time reversal
will maintain the consistency between View 1 and View 2. Current single image inpainting models,
like LaMa Suvorov et al. (2021) and SDXL Podell et al. (2023), fail to maintain the consistency
over the video frames. Although the video inpainting models Zhou et al. (2023a) can be temporarily
consistent at near frames, the whole inpainting region will be blurred since it can not guarantee 3D
consistency. The quantitative results in Tab. 2 verify the effectiveness of our time-reversal pipeline.

Ablation of 3D representation. We ablate through the 3D representation by comparing the results
obtained with 3DGS Kerbl et al. (2023) and 2DGS Huang et al. (2024a). From Fig. 7, we can observe
that after we remove the Gaussians, the rendered alpha map with 3DGS fails to generate an ideal
inpainting mask. The quantitative results given in Tab. 2 verify the necessity of 2DGS representation.

Ablation of time-reversal inpainting. For our time-reversal inpainting, we conduct inpainting on
frame Tn with Tn+1 as reference. We additionally ablate the time order in our inpainting progress. For
time-forward inpainting, frame Tn+1 is inpainted with frame Tn as reference. Tab. 2 quantitatively
demonstrates the necessity of the time-reversal order. We provide a more comprehensive discussion
and qualitative illustration in Sec. B.1 of the supplementary.

6.3 MORE EXPERIMENTS

We present additional ablation analysis covering "hard semantic label" and more comparison of
geometry performance in Sec. B of the supplementary.

7 CONCLUSION

We propose StreetUnveiler, a comprehensive pipeline for reconstructing empty streets from in-car
camera videos. Our method represents the street scene using a hard-label semantic-aware 2D Gaussian
Splatting Huang et al. (2024a), allowing us to remove each instance from the scene seamlessly. To
create an ideal inpainting mask, we utilize the rendered alpha map after removing unwanted 2DGS.
Additionally, we introduce a novel time-reversal inpainting framework that enhances consistency
across different viewpoints, facilitating the reconstruction of empty streets. Extensive experiments
demonstrate that our method effectively reconstructs empty street scenes and supports free-viewpoint
rendering.
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A IMPLEMENTATION DETAILS

A.1 DETAILS OF HARD-LABEL SEMANTIC 2DGS RECONSTRUCTION

Initialization with Lidar points. High-quality appearance and semantic reconstruction of the whole
street scene are hard to reach, with barely SFM points Schönberger & Frahm (2016); Schönberger
et al. (2016) as initialization for street scenes. Lidar points are leveraged to better reconstruct the
street scene like in Yan et al. (2024); Chen et al. (2023b); Zhou et al. (2024). We use an off-the-self
2D semantic segmenter Xie et al. (2021) to process the 2D images and back-project the hard semantic
labels to 2D Gaussians Huang et al. (2024a).

Environment map for street reconstruction. We empirically find that most 2D Gaussians’ opacity
will be larger than 0.9 or lower than 0.1, leading to the imperfect reconstruction quality of the
background environment, i.e., sky. To better model the environment in the street scene, we employ a
tiny MLP f to query the color of the environment map, which is similar to Guo et al. (2023); Turki
et al. (2023). The queried environment color at x is denoted as cenv. The final color of the ray is
obtained by blending the color of 2DGS projection and the environment map as follows:

cenv(x) = f(M,x) cfinal(x) = c(x) + (1− α(x))cenv(x) (11)

where M denotes the projection matrix from world coordinates to pixel coordinates. α(x) is the
rendered alpha map of 2DGS rendering.

Details of two-stage reconstruction training

The optimization of our designed 2DGS Huang et al. (2024a) reconstruction for street scenes contains
two stages. (1) In the first stage, we employ adaptive density control of 3DGS Kerbl et al. (2023).
And Ld, Ln and Lds will be deactivated to reach a more stable initialization of 2DGS reconstruction.
(2) In the second stage, Ld, Ln and Lds is activated. As empirically, most 2D Gaussians’ opacity
will be larger than 0.9 or lower than 0.1. The noisy 2DGS with the wrong semantic label will be
optimized as low opacity through Lds. We prune the Gaussians with opacity lower than a threshold ϵ
to further eliminate the noisy semantics in the 3D world, with ϵ set as 0.3 in our experiments.

A.2 DETAILS OF TIME-REVERSAL INPAINTING FRAMEWORK

As is mentioned in Wang et al. (2024a), when we are using a latent-diffusion-based inpainting
model, there will be non-ignorable shifts in low-frequency fields if we use images decoded by KL-
VAE Kingma & Welling (2022); Rombach et al. (2022) repeatedly for different times. Given that our
method can be summarised as inpainting frame Ti with Ti+1 as a reference through LeftRefill Cao
et al. (2024), which is latent-diffusion-based. For a whole sequence of video, if we simply iteratively
inpaint every Ti with Ti+1 as a reference, the shifts in low-frequency fields will be badly augmented
by KL-VAE, which will severely harm the quality of our 2D inpainting guidance. To alleviate this
inevitable shift from the KL-VAE of the latent diffusion model Rombach et al. (2022). We first select
some keyframes in the video. Then we use time-reversal inpainting to inpaint the selected keyframes
iteratively in the reversed time sequence.

We firstly select the keyframes of timestamps {Tk1 , . . . , Tkn}, and we start to inpainting all the
keyframes in the reversed time sequence. After we inpaint the keyframe Tki

, we generate the
middle frames between keyframe Tki+1

and keyframe Tki
with keyframe Tki

as reference image.
Per-image processing follows Fig. 4. Finally, we will use these results as pseudo-labeled data to
further re-optimize the 2DGS of the empty street scene.

B MORE EXPERIMENTS

B.1 ABLATION OF TIME-FORWARD INPAINTING AND TIME-REVERSAL INPAINTING

To further validate the effectiveness of time-reversal inpainting, we do an additional ablation in
Sec. 6.2 with time-forward inpainting, which is the reverse version of our proposed time-reversal
inpainting. In Tab. 3 and Tab. 2, our time-reversal inpainting achieves better quantitative results than
time-forward inpainting.
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For our time-reversal inpainting, we inpaint frame Tn with Tn+1 as reference. For time-forward
inpainting, frame Tn+1 is inpainted with frame Tn as reference. The Fig. 8 elaborates the details
about the process of these two methods. The qualitative comparison in Fig.9 showcases the high-to-
low-resolution nature of time-reversal inpainting, which will enhance the quality of the results.

Unconditional
Inpainting

Frame 𝑇!

Frame 𝑇!"#

Reference
Based

Inpainting

Reference

Frame 𝑇!$#

Reference
Based

Inpainting

Reference

Same

Reference
Based

Inpainting

Reference

Reference
Based

Inpainting

Frame 𝑇!$#

Frame 𝑇!

Frame 𝑇!"#
Reference

Time-Reversal Inpainting Time-Forward Inpainting

Figure 8: Illustration of the difference between time-reversal inpainting and time-forward
inpainting on inpainting strategy. We first use unconditional inpainting to inpaint the frame Tn+1.
For our time-reversal inpainting, we inpaint frame Tn with Tn+1 as reference. For time-forward
inpainting, frame Tn+1 is inpainted with frame Tn as reference.

Same

Time-Reversal Inpainting

Frame 𝑇!

Frame 𝑇!"#

Frame 𝑇!$# Frame 𝑇!$#

Frame 𝑇!

Frame 𝑇!"#

Time-Forward Inpainting

Better

Better

Figure 9: Illustration of the qualitative comparison between time-reversal inpainting and time-
forward inpainting. We can observe that the quality of time-forward inpainting results degenerates
because time-forward inpainting uses a low-to-high-resolution approach. This requires extra super-
resolution capacity for the inpainting model to get a better result. However, our time-reversal
inpainting uses a high-to-low-resolution approach. High-resolution content will better guide the
low-resolution content.

B.2 ABLATION OF HARD SEMANTIC LABEL

We additionally ablate the effectiveness of the hard semantic label. From Fig. 11, we can observe that
both 2DGS representation and hard semantic label contribute to a more stable reconstruction of the
semantic field.

The comparison between (a) and (b) demonstrates that the use of hard semantic labels effectively
reduces noise within the semantic fields. In addition, the comparison between (a) and (c) indicates
that the 2DGS representation leads to more stable semantic fields. Finally, (d) illustrates the clean
and stable semantic field achieved by employing hard-label semantic 2DGS in our method.
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Waymo Pandaset

LPIPS↓ FID ↓ LPIPS↓ FID ↓
Time-Forward Inpainting 0.220 136.858 0.270 158.166
Time-Reversal Inpainting(Ours) 0.216 127.581 0.261 155.527

Table 3: Quantitative ablation of time-reversal inpainting and time-forward inpainting. The result
validates the effectiveness of our method.

Waymo Pandaset

LPIPS↓ FID ↓ LPIPS↓ FID ↓
LeftRefill Cao et al. (2024) 0.227 135.421 0.288 168.112
Ours 0.216 127.581 0.261 155.527

Table 4: Quantitative comparison with LeftRefill Cao et al. (2024). The result validates the effective-
ness of our method.

By reconstructing a clean and stable semantic field of the street scene, we can more accurately identify
the Gaussians that need to be removed. This facilitates obtaining a high-quality 2D inpainting result,
which serves as effective guidance for re-optimization.

B.3 COMPARISON WITH LEFTREFILL

We additionally discuss the qualitative comparison with LeftRefill Cao et al. (2024) as another
baseline. Since LeftRefill requires an image as a reference, LeftRefill can’t be naturally run as
unconditional inpainting methods like LAMA Suvorov et al. (2021) and SDXL Podell et al. (2023) in
Tab. 1. We adapt LeftRefill with the 10th future frame as a condition and use the mask obtained after
our reconstruction stage. LeftRefill is also operated in a reverse order.

From Tab. 4, we can observe that our time-reversal inpainting pipeline generates better results than
LeftRefill. From Fig. 10, we observe that due to this adapted naive reverse inpainting with LeftRefill
taking the future frame as a reference, some regions are not visible in the future frame. This limitation
can lead to low-quality inpainting, as highlighted in the red frame of LeftRefill’s result. In contrast,
our pipeline generates a more natural inpainting result through 2DGS re-optimization, ultimately
achieving a clear 3D inpainting result.

LeftRefill Ours pseudo supervisionRemoved Object

2D inpaint 3D inpaint

Ours

Figure 10: Illustration of comparison with LeftRefill Cao et al. (2024). Since naive reverse inpainting
with LeftRefill takes the future frame as a reference, some regions are not visible in the future frame.
We observe that this will lead to a low quality of inpainting, as highlighted in the red frame of
LeftRefill’s result. Our pipeline generates a more natural inpainting result for 2DGS re-optimization
and finally obtains a clear 3D inpainting result.

B.4 QUALITATIVE COMPARISON OF RENDERED GEOMETRY

Since we want to reconstruct the empty street, we also want to compare the geometry property of
our method other than just appearance. From Fig. 14, Fig. 15, Fig. 16, Fig. 17, we can observe that
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(a) 3DGS w/soft label

(b) 3DGS w/hard label

(c) 2DGS w/soft label

(d) 2DGS w/hard label(Ours)

Figure 11: Illustration of hard semantic label ablation. Black rectangles in the figures include the
noise in the semantic fields. The comparison between (a) and (b) demonstrates that hard semantic
labels effectively reduce noise within semantic fields. Similarly, the comparison between (a) and
(c) indicates that the 2DGS representation contributes to more stable semantic fields. Finally, (d)
illustrates the clean and stable semantic field achieved by employing hard-label semantic 2DGS in
our method.
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Dataset(Frames) Reconstruction Our Inpaint Re-optimize

Waymo(198) 10016 sec 1035 sec 524 sec
Pandaset(80) 9640 sec 311 sec 257 sec

Table 5: Computational cost of each stage with our pipeline(in seconds): We evaluate on both Waymo
and Pandaset. We use 8 scenes from each dataset and average their time consumption in experiments.
"Reconstruction" is the main efficiency bottleneck in our pipeline.

Method Waymo Pandaset
(198) (80)

LaMa Suvorov et al. (2021) 0.20 sec 0.28 sec
SDXL Podell et al. (2023) 5.18 sec 5.21 sec
Propainter Zhou et al. (2023a) 0.59 sec 0.53 sec
Ours 5.22 sec 5.09 sec

Table 6: Total per-frame time cost comparison from 2D inpainting aspect: We use 8 scenes from each
dataset and average their time consumption in experiments. Our method is comparable to SDXL for
per-frame time cost.

our method produces both better appearance quality and geometry quality from rendered RGB and
rendered normal images.

B.5 COMPUTATIONAL ANALYSIS

We additionally conduct a computational analysis of each stage in our pipeline and per-frame
inpainting time cost. From Tab. 5, we observe that the "Reconstruction" stage is the main efficiency
bottleneck in our pipeline. By utilizing recent techniques like Instantsplat Fan et al. (2024), our whole
pipeline has the potential to be accelerated and may reach the result of reconstructing an empty street
in 30 minutes. From Tab. 6, our pipeline isn’t inferior to the Diffusion-based Podell et al. (2023)
method from the efficiency aspect.

C ADDITIONAL RESULTS

C.1 EMPTY STREET SCENE MESH EXTRACTION

We can further extract the mesh for our reconstructed empty street scene using TSDF fusion following
2DGS Huang et al. (2024a) with Open3D Zhou et al. (2018). In Fig. 19 and Fig. 20, we visualize the
extracted colored mesh before and after our unveiling. Our inpainting framework can successfully
remove unwanted cars from the street and finally reconstruct an empty street in mesh representation.
Mesh extraction results further verify the correct geometry produced through our method.

We clarify that our problem formulation is not exactly the same as StreetSurf Guo et al. (2023). The
target of our method is to reconstruct the empty street. However, the extracted mesh and reconstructed
street of StreetSurf is the original static scene "before unveiled".

Another key difference is that our setting lacks ground-truth "after unveiled" training data for both
Lidar and images. StreetSurf relies on ground-truth "before unveiled" data for both training and
evaluation.

While we are still able to evaluate the reconstructed "before unveiled" scenes to compare with
StreetSurf, which will provide meaningful insights for future work.

Following StreetSurf, we utilize the Lidar data under the real-world scale for geometry evaluation.
In StreetSurf, the extracted mesh may include some parts outside of the scene. To ensure a fair
comparison, we crop these out-of-range meshes from the extracted mesh. Specifically, any mesh that
is more than 5 meters away from the closest Lidar point will be cropped.
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Method CD↓ F-Score↑
StreetSurf Guo et al. (2023) 0.52 56.70
Ours(before unveiled) 0.55 61.54

Geometry-related input Lidar Monocular
Prior

StreetSurf Guo et al. (2023) ✓ ✓
Ours(before unveiled) ✓

Table 7: Comparison of the reconstruction performance on "before unveiled" geometry with Street-
Surf Guo et al. (2023) on 24 scenes from Waymo dataset Sun et al. (2020). Left: We observe
that our Chamfer Distance is higher than StreetSurf, while F-Score is higher than StreetSurf. The
reconstruction performance of observed geometry appears to be comparable. Right: The checkbox
of the geometry-related input data. We run StreetSurf with both monocular prior and Lidar as input.
While in our approach, we operate without relying on the monocular geometry prior.

For the experimental setup, we select both Chamfer Distance(CD) and F-score with a 0.25-meter
threshold as our geometry evaluation metrics. We evaluate StreetSurf using both monocular geometry
priors and Lidar as geometry-related inputs, while our method is tested exclusively with Lidar as the
geometry-related input.

From Tab. 7, we observe that our Chamfer Distance is greater than that of StreetSurf, while our F-
Score surpasses StreetSurf’s. From Fig. 12, we empirically observe that the StreetSurf achieves higher
accuracy on the observable ground of the street. Even after fair mesh cropping, the reconstructed
mesh of StreetSurf is still affected by out-of-range meshes to some extent. This results from the
inherent methodological differences between SDF extraction and TSDF fusion, which may lead to a
slightly lower F-Score for the SDF extraction approach. Overall, the reconstruction performance of
the observed geometry appears to be comparable.

StreetSurf Ours

Figure 12: Illustration of the "before unveiled" geometry comparison with StreetSurf Guo et al.
(2023). "Green" indicates "more accurate" regions, while "Red" represents "less accurate" regions.
We empirically observe that the StreetSurf achieves higher accuracy on the observable ground of
the street. Even after fair mesh cropping, the reconstructed mesh of StreetSurf is still influenced by
out-of-range meshes to some extent. This effect stems from inherent methodological differences
between SDF extraction and TSDF fusion, which may contribute to a slightly lower F-Score for the
SDF extraction approach. Overall, the reconstruction performances are comparable.

C.2 EXAMPLE OF REMOVING THE STANDING PEDESTRIAN

As in Fig. 21, we highlight an example of removing the standing pedestrian from the scene.

C.3 MORE VISUAL COMPARISON

We provide additional qualitative comparisons of inpainting results for the Pandaset dataset Xiao et al.
(2021) in Fig. 24.
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C.4 VIDEO VISUALIZATIONS

In order to conveniently view our video results, we prepare a web viewer at "./index.html" from the
root path of the supplementary materials.

C.4.1 NOVEL VIEW SYNTHESIS VIDEOS VISUALIZATIONS

As in Fig. 23, we showcase two novel view synthesis videos. The file paths are illustrated.

C.4.2 MORE VIDEO VISUALIZATIONS

As in Fig. 25, we visualize three scenes involved in Tab.1 for better comparison. The file paths are
illustrated. From video comparison, it can be observed that our method outperforms other baselines.

D DISCUSSION ON SEMANTIC LABEL SUPERVISION

We use SegFormer Xie et al. (2021) as the pre-trained model for segmentation, and our results appear
to be robust as a whole. Both our quantitative and qualitative results show that our method is stable
with SegFormer.

While it is inevitable that certain failure cases occur with small objects or object corners, these
challenges are common across most segmentation methods. The example cases are illustrated in
Fig. 13. As segmentation techniques continue to evolve, our method is poised to benefit and improve
alongside them.

E DISCUSSION ON DYNAMIC OBJECT REMOVAL

We illustrate a case to handle simple dynamic object removal in Fig. 22, which can be observed in the
scene 3(a moving car) in the supplementary videos. For more challenging dynamic cases, utilizing
optical flow or dynamic object detection over the video sequence to identify dynamic objects from
2D may be a considerable solution.

Alternatively, we can model dynamic Gaussians in street scenes like Chen et al. (2023b) and Yan
et al. (2024) for more challenging dynamic object removal.

The separation of dynamic and static elements may also facilitate the removal of dynamic objects
from scenes. Current methods, such as StreetGaussians Yan et al. (2024) (which utilizes 3D box-based
scene decomposition) and S3Gaussian Huang et al. (2024b) (a self-supervised approach to scene
decomposition), aim to distinguish between dynamic and static components. However, these methods
may not consistently differentiate static removable objects (like stopping cars) from essential scene
elements (like traffic signs).

F DISCUSSION ON 360° OR WIDE RANGE SURROUNDING VIDEOS

Our time-reversal inpainting pipeline works for "forward-facing" cameras. Thus, we used frontal
cameras for the experiment, which is the same as the experimental setup in Yan et al. (2024); Chen
et al. (2023b); Zhou et al. (2024). We found the inpainting results of the frontal view sufficient
for recovering a 3D unveiled street with satisfactory geometry properties. For left-back and right-
back(side and back cameras), our method doesn’t naturally promise to maintain the consistency of
the inpainting. The homography technique may help maintain consistency between different views
by leveraging the overlaps in images across those views.

G SOCIETAL IMPACTS

This technology can distort public space representations in urban planning, potentially leading to
flawed decisions. Additionally, it may be misused to alter important archaeological sites in digital
reconstructions, resulting in misinformation about historical facts.
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Figure 13: For the semantic segmentation mask predicted by SegFormer Xie et al. (2021) in original
full resolution, some noise exists at the boundaries between regions with different semantic tags.
These failure cases are more likely to occur at the corners of small objects.
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Figure 14: Illustration of geometry performance comparison.
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Figure 15: Illustration of geometry performance comparison.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Original
Scene

SPIn-NeRF
(in 2DGS)

Ours 3D
Removal

Reconstructed
Normal

Ours
Normal

SPIn-NeRF
(in 2DGS)
Normal

Infusion

Infusion
Normal

Figure 16: Illustration of geometry performance comparison.
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Figure 17: Illustration of geometry performance comparison.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Original
Scene

SPIn-NeRF
(in 2DGS)

Ours 3D
Removal

Reconstructed
Normal

Ours
Normal

SPIn-NeRF
(in 2DGS)
Normal

Infusion

Infusion
Normal

Figure 18: Illustration of geometry performance comparison.
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Figure 19: Illustration of colored mesh comparison between before and after the unveiling.
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Figure 20: Illustration of colored mesh comparison between before and after the unveiling.
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Training data Our unveiled

Figure 21: Illustration of removing the standing pedestrian.

Training data Our unveiled

Figure 22: Illustration of removing simple dynamic case.

./static/videos/NVS/nvs1.mp4 ./static/videos/NVS/nvs2.mp4

Novel View Synthesis Videos

Figure 23: Illustration of novel view synthesis videos and their file paths. It’s recommended to open
our web viewer located at "./index.html".
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Training Data
Spin-NeRF
(in 2DGS)

Infusion OursRemoved Object ProPainter

3D InpaintVideo Inpaint

Figure 24: More qualitative comparison on Pandaset dataset Xiao et al. (2021). Our method produced
a clearer result of the ground and trees behind the removed object compared to the baselines.

scene1

scene2

scene3

./static/videos
/Experiment/

data_vs_ours.mp4  

infusion_vs_ours.mp4

lama_vs_ours.mp4

propainter_vs_ours.mp4

sdxl_vs_ours.mp4

spin_vs_ours.mp4

Figure 25: Illustration of video comparison with baseline and their file paths. It’s recommended to
open our web viewer located at "./index.html". "data_vs_ours.mp4" shows our results compared
with training data for visualization. "infusion_vs_ours.mp4" shows both RGB and normal results
between Infusion and our method. "lama_vs_ours.mp4" shows our results compared to LaMa.
"propainter_vs_ours.mp4" shows our results compared to ProPainter, which is a state-of-the-art video
inpainting method. "sdxl_vs_ours.mp4" shows our results compared to SDXL. "spin_vs_ours.mp4"
shows both RGB and normal results between SPIn-NeRF in 2DGS representation and our method.
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