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ABSTRACT

Barlow Twins is a feature-contrastive self-supervised learning framework built on
the principle of redundancy reduction. The idea is to train a network by maximiz-
ing the correlation between corresponding features and minimizing the correlation
between non-corresponding features in distorted views of the same image, through
this facilitating effective pretraining of a backbone network for a subsequent clas-
sification head. This is achieved by diagonalizing the cross-correlation matrix of
the network’s representations and scaling it towards the identity matrix. We show
that the cross-correlation matrix of distorted images is inherently symmetric, in-
dependent of the backbone network’s weights, which leads to two key insights:
(i) the cross-correlation matrix can always be diagonalized using a linear trans-
formation (layer), and (ii) the core idea of maximizing correlations between cor-
responding features while minimizing them for non-corresponding features alone
is insufficient for effective backbone network pretraining. Nevertheless, Barlow
Twins provide highly effective pretraining. We show that this is due to the nor-
malization of the cross-correlation matrix in the Barlow Twins cost function. This
normalization leads to minima of the cost function which are equivalent to the
minima of sample contrastive approaches to enforce invariance.

1 INTRODUCTION

In self-supervised learning, the goal is to learn meaningful representations without relying on la-
bels, which can be costly to obtain, especially for large datasets. Approaches like SimCLR (Chen
et al., 2020), SwAV (Caron et al., 2020), or SimSiam (Chen & Kaiming He, 2021) show that self-
supervised methods can produce strong representations which achieve competitive results compared
to supervised approaches. These approaches are often called sample-contrastive, as they make sam-
plewise comparisons between different instances. Another class of self-supervised learning ap-
proaches is called feature-contrastive, which works by comparing different instances at the feature
level rather than the sample level. Examples of these methods are the Barlow Twins (Zbontar et al.,
2021), VICReg (Bardes et al., 2022), VICRegL (Bardes et al., 2024), or W-MSE (Ermolov et al.,
2021). A significant advantage of all of these methods lies in their ability to harness the inherent
structure of unannotated data.

The Barlow Twins framework (Zbontar et al., 2021) introduced feature-contrastive learning,
grounded in the principle of redundancy reduction in neural representations, initially proposed by
H. Barlow (Barlow et al., 1961). The Barlow Twins approach minimizes the distance between a
modified cross-correlation matrix and the identity matrix in order to extract representations with
decorrelated feature dimensions. In Zbontar et al. (2021), a ResNet-50 f (He et al., 2016) is adapted
by deleting the fully connected layer and applying a projector network, which is a large multilayer
perceptron (MLP) p. In Zbontar et al. (2021), this MLP has three linear layers, each with 8192 output
dimensions and no biases. The first two layers are followed by a batch normalization layer as well
as a rectified linear unit (ReLU). Figure 1 shows a schematic overview of this architecture. Note that
the projector network p has approximately 2048 · 8192 + 2 · 81922 = 150,994,944 ≈ 151 million
parameters (the two batch normalization layers have negligible numbers of learnable parameters)
whereas the standard ResNet-50 architecture utilizes only 25.6 million parameters.
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Figure 1: Diagram of Barlow Twins. A batch of images X gets augmented twice. Each augmenta-
tion gets propagated through the same ResNet-50 f and projector network p. The resulting feature
vector matrices ZA and ZB are used to calculate C.

Propagating a batch through the resulting network can be split up into three steps:

A = TA(X), B = TB(X),

HA = f(A), HB = f(B),

ZA = p(HA), ZB = p(HB).

During the first step, the two views are generated by transforming each image in the batch in two
ways by TA and TB (e.g. color jitter, random grayscale or solarization; for more details see Zbontar
et al. (2021)). Note that each image gets transformed by a different augmentation, i.e. TA for the
first image may be different than TA for the second image. Afterwards, the two views A and B are
propagated through the same ResNet-50 f . The resulting features HA and HB are then propagated
through the projector network p to create ZA and ZB , respectively.

Now, the cross-correlation matrix for the given batch of images is calculated by

Ci,j =
⟨ZA

:,i,Z
B
:,j⟩

||ZA
:,i|| · ||ZB

:,j ||
. (1)

To be precise, it is not the cross-correlation matrix but the matrix of the Pearson correlation coef-
ficients between each pair of output neurons of the projection network. We will come back to this
later. The proposed loss function is defined as

LBT (C) =
∑
i

(1−Ci,i)
2 + λ ·

∑
i ̸=j

C2
i,j (2)

with the cross-correlation matrix C. LBT is minimized by the identity matrix, i.e. diagonal compo-
nents of 1 and off-diagonal components of 0. The regularization parameter λ controls the influence
of the off-diagonal components.

An intuitive explanation for the loss function is an invariance term for the first sum and a redundancy
reduction term for the second sum. The invariance term produces embeddings that are ”invariant”
to distortions TA, TB in the sense that an image feature encoded by an embedding dimension shall
highly correlate in different distortions of the same image. Additionally, it avoids the trivial solu-
tion of all features being zero. The redundancy reduction term decorrelates different embedding
dimensions (features) in order to avoid encoding similar image properties in multiple dimensions.
Additionally, it avoids the trivial solution of all features being constant.

After the pretraining phase is concluded, a simple linear classification head is trained via supervised
learning. In this phase, the ResNet-50 backbone’s parameters are frozen and not further updated, and
the projector network is discarded. The classification head is a linear layer that takes in the feature
vectors that were extracted by the backbone and assigns a class label. A different interpretation is
that the ResNet-50 backbone transforms the images into an embedding space where, in the best case,
the features are linearly seperable such that a linear layer can easily classify the respective image.

The Barlow Twins framework has been successfully applied in different scenarios. Bielak et al.
(2022) presented the application of the framework for graph neural networks, where the encoder
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was pretrained and shown to be on par or better than SOTA models. The authors did not use a
projector network, but calculated the cross-correlation matrix directly on the output features. Punn
and Agarwal pretrained the encoder of a U-Net (Punn & Agarwal, 2022). After pretraining, the
decoder network is initialized with default values. In contrast to the ”classic” Barlow Twins frame-
work, the full U-net is finetuned after pretraining on the desired (small) dataset rather than using a
frozen encoder network. In Marsocci & Scardapane (2023), the authors extended the Barlow Twins
framework for continual learning. In continual learning, large datasets are decomposed into subsets
to process them accumulatively. The authors could show that combining self-supervised learning
and continual learning leads to great performance by incorporating unlabeled data. Anton et al.
(Anton et al., 2023) adapted the Barlow Twins framework in the audio domain. Mohammadamini
et al. used the Barlow Twins framework for speaker recognition (Mohammadamini et al., 2022).
Their approach used the Barlow Twins objective function as a regularization method while training
a ResNet end-to-end on speaker embeddings in both noisy and clean environments.

The mentioned approaches consistently yield results comparable to or surpassing the state-of-the-
art, all achieved with a relatively small labeled dataset. In the following, we will demonstrate that
this effectiveness of the Barlow Twins approach, in fact, is not achieved by Barlow’s redundancy
principle but rather by enforcing invariance through the normalization in equation 1. In Garrido et al.
(2023) the authors analysed the the connection between sample- and feature-contrastive learning by
focussing on the non-diagonal elements of the cross-correlation matrix. Here we focus on the role
of the diagonal elements.

2 A LINEAR PROJECTOR NETWORK CAN DIAGONALIZE THE
CROSS-CORRELATION MATRIX

The Barlow Twins loss equation 2 is not using the precise definition of the cross-correlation ma-
trix, but taking a matrix with the Pearson correlation coefficients between pairs of output neurons
of the projector network. However, the Barlow Twins idea of redundancy reduction, i.e., max-
imizing the correlation between corresponding features and minimizing the correlation between
non-corresponding features in distorted views of the same image, can already be achieved with the
precise definition of the cross-correlation matrix, which gives

C̃i,j = ⟨ZA
:,i,Z

B
:,j⟩ (3)

without the normalization as in equation 1. Using it in equation 2 also avoids trivial solutions like
overall zero or constant values.

For determining Ci,j as well as C̃i,j , each image is augmented by TA and TB . For each image
the two augmentations TA and TB are drawn independently from the same discrete set of possible
augmentations T , hence, each pair of possible TA and TB can occur with equal probability. During
the training process, the cross-correlation matrix is calculated only over the given batch, a limited
number of images. The underlying complete cross-correlation matrix of the Barlow Twins is given
by the cross-correlation matrix over the whole data distribution µ(x) and all combinations of TA

and TB . With zA(x) = p(f(TA(x))) and zB(x) = p(f(TB(x))) as the output vectors of the
projection network for a given x from the data distribution µ(x), the complete cross-correlation
matrix 3 is given by

C̃i,j =

∫ ∑
TA,TB∈T

zA
i (x)z

B
j (x) dµ(x). (4)

If we take a linear projector network p, it can be decribed by a matrix W and we obtain zA(x) =
W f(TA(x)) and zB(x) = W f(TB(x)) with f as the output vector of the backbone network. It
is easy to see that

C̃i,j =

∫ ∑
TA,TB

[W f(TA(x))]i[W f(TB(x))]j dµ(x)

=

∫ ∑
TA,TB

[W f(TA(x))f(TB(x))TW T ]i,j dµ(x)

and, hence,
C̃ = WSW T (5)
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with

S =

∫ ∑
TA,TB∈T

f(TA(x))f(TB(x))T dµ(x)

=

∫ (∑
T∈T

f(T (x))

)(∑
T∈T

f(T (x))

)T

dµ(x)

=

∫
y(x)y(x)T dµ(x) (6)

and
y(x) =

∑
T∈T

f(T (x)).

With equation 6, the matrix S is not only symmetric, but also positive semi-definite with non-
negative eigenvalues. It is well known from linear algebra that for a symmetric, positive definite
matrix S there is always a W in equation 5 that leads to a diagonal C̃ with non-negative diagonal
elements. As long as there are no zero diagonal elements (zero eigenvalues), a subsequent linear
scaling (whitening) operation leads to C̃ = I with I as the identity matrix which perfectly min-
imizes the Barlow Twins loss 2. It suffices that the backbone f simply adapts such that the y(x)
span the whole space to ensure non-zero eigenvalues which leads to perfect solutions for the Barlow
Twin loss.

The requirement of non-zero eigenvalues (diagonal elements) is crucial to avoid degenerate solutions
such as constant or zero outputs from the backbone. However, this condition alone is insufficient to
obtain good solutions, as even random backbone weights can span the entire space and allows even
a linear projector head to minimize the Barlow Twins loss perfectly. An MLP projector is far more
expressive than a linear layer and can also diagonalize the outputs of random backbones. As a result,
using the Barlow Twins loss without normalization of the cross-correlation matrix lacks the neces-
sary formative power for effective backbone pretraining. We now demonstrate how normalization
of the cross-correlation matrix changes this dynamic.

3 FEATURE NORMALIZATION IS CRUCIAL

The cross-correlation matrix 1 used in the Barlow Twins framework goes beyond simply measuring
correlation and decorrelation of features, as already accomplished by the matrix in 3, but also nor-
malizes the correlations. To be precise, it is the Pearson correlation which is used. We demonstrate
that this normalization is essential to the success of the Barlow Twins approach. As shown in the
previous section, using the raw cross-correlation matrix alone is insufficient for effective backbone
pretraining. However, we show that using the Pearson correlation makes this possible.

Analog to equation 4, the complete Barlow-Twins loss is determined by the Pearson correlation over
the whole data distribution µ(x) and all combinations of TA and TB . We obtain

Ci,j =

∫ ∑
TA,TB∈T zA

i (x)z
B
j (x) dµ(x)

σiσj
(7)

with

σi =

√∫ ∑
T∈T

[zi(x)]2 dµ(x)

as the standard deviation of the i-th output neuron of the projector network over all x from µ(x) and
all augmentations T ∈ T . Accordingly, σj is the standard deviation of the j-th output neuron. Note
that Ci,j is symmetric.

The Pearson correlation ranges between −1 and +1, with +1 indicating perfect positive correlation.
In the optimum of the Barlow Twins loss, this perfect positive correlation is required for the diagonal
elements Ci,i. zA

i (x) and zB
i (x) correlate perfectly positively, if and only if for each x

zA
i (x) = azB

i (x) + b for each pair TA, TB ∈ T

4
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is valid for a fixed a, b ∈ R with a > 0. However, this implies that for a given x, this equation
must be valid for a TA, TB as well as vice versa for TB , TA. Then, for the given x we obtain
zA
i (x) = azB

i (x) + b and zB
i (x) = azA

i (x) + b. Subtracting both equations yields zA
i (x) −

zB
i (x) = a(zB

i (x)− zA
i (x)). Since a > 0, this is valid if and only if zA

i (x) = zB
i (x).

Since this holds for each i and TA, TB , we can conclude that in the minimum of the Barlow-Twins
loss with the Pearson correlation for any image x the corresponding output vector z(x) must remain
invariant to any distortion (augmentation) of the image x. This is equivalent to the minimum of∫ ∑

TA,TB∈T

||zA(x)− zB(x)||2 dµ(x) (8)

in sample contrastive learning approaches.

4 CONCLUSION

We demonstrated that the core idea behind Barlow Twins — reducing redundancy by maximiz-
ing the correlation between corresponding features and minimizing the correlation between non-
corresponding features in distorted images — is insufficient on its own for pretraining a backbone
network. The cross-correlation matrix of arbitrary outputs, even from untrained backbones, is sym-
metric and, hence, can be diagonalized already by a linear projection head. A multilayer perceptron
(MLP) as a projection head is even more expressive at achieving diagonalization than a simple linear
layer. However, since non-zero eigenvalues of the cross-correlation matrix are enforced, it is ensured
that the backbone output spans the entire space, preventing degenerate solutions such as constant or
zero output. This is one of the conditions for which usually explicit terms in the cost function are
used. For example, VICReg (Bardes et al., 2022) employs a term in the cost function which enforces
non-zero variance.

The primary objective of self-supervised learning is to achieve invariance in the backbone output
for perturbed images. Approaches like VICReg and other contrastive methods explicitly incorporate
terms like 8 in the cost function. We showed that the Barlow Twins method achieves the same
invariance by using the Pearson correlation matrix, which inherently includes normalization. This
normalization is crucial, as it enforces the same minima in the cost function as the explicit term 8.
Without this normalization, the Barlow Twins loss would not yield meaningful solutions.

In conclusion, Barlow Twins offer an elegant approach to achieving the key objectives of self-
supervised learning: They ensure invariance in the network output to image perturbations like ex-
plicit terms used in contrastive approaches, while simultaneously avoiding trivial solutions like con-
stant or zero output, by simply diagonalizing the Pearson correlation matrix with non-zero diagonal
elements.
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