DIVERSE TEXT GENERATION THROUGH SOFT PROMPT TUNING

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

018

019

021

025

026

027

028

031

033

034

035

037

038

040

041

042

043

044

046

047

051

052

Paper under double-blind review

ABSTRACT

Diverse text generation is crucial for effective exploration in language models. Current sampling-based decoding methods struggle to balance quality and diversity and lack control over generating mutually distinct outputs. Reinforcement learning approaches maintain quality, but require extensive training and are difficult to transfer across domains due to task-specific reward functions. We propose a lightweight framework that learns diversely initialized continuous soft prompt vectors, which, when prepended to input prompts, guide the model's final-token hidden states into distinct representation regions. This enables diverse generations from identical inputs, as initial hidden state differences amplify through the autoregressive mechanism, creating increasingly divergent generations. By preserving earlier hidden state similarities, our method maintains contextual consistency to task-specific constraints. Experiments across combinatorial tasks, question generation, and molecular design reveal that our soft prompt tuning method improves diversity while consistently adhering to task-specific constraints. Our approach shows particular strength in complex settings with large exploration spaces, as demonstrated through our novel contribution of a challenging combinatorial dataset specifically designed to evaluate diverse generation capabilities of language models. This lightweight framework provides a unified, broadly applicable solution for diverse text generation across various application domains.

1 Introduction

Recent advances have leveraged the power of language models (LLMs) for high-quality text generation tasks (Li et al., 2021; Becker et al., 2024). Beyond quality, many applications require diverse generation capabilities, including style transfer, open-ended storytelling, and creative content production (Jhamtani et al., 2017; Rao & Tetreault, 2018). Diverse generations not only provide an effective mechanism for data augmentation but, more importantly, unlock the potential of language models to perform meaningful exploration. This capability is desired for many applications, such as molecule generation for drug discovery and agent planning (Jang et al., 2025; Guan et al., 2023; Valmeekam et al., 2023; Singh et al., 2022).

A widely adopted strategy for promoting output diversity is to apply stochastic decoding techniques such as minimum-probability sampling (Minh et al., 2024), temperature scaling (Ackley et al., 1985), top-k sampling (Fan et al., 2018), and nucleus (top-p) sampling (Holtzman et al., 2019). Despite their broad applicability, these methods suffer from notable shortcomings in both fidelity and distinctness. As diversity is increased, fluency and adherence to implicit task constraints often deteriorate (Shi et al., 2018; Du et al., 2022). Moreover, these approaches provide coarse control: when generating multiple responses, there is no explicit mechanism ensuring that the outputs are meaningfully distinct from one another, as diversity primarily stems from the randomness in sampling.

To encourage both quality and diversity, Reinforcement Learning (RL)-based methods have been explored as an alternative (Gou et al., 2023; Jang et al., 2025). These approaches can effectively promote exploration, but they are inherently domain-specific, requiring the careful design of task-dependent reward functions. This not only hinders cross-task generalization but also introduces substantial training overhead due to specialized optimization objectives. While RL offers greater controllability, it inevitably biases the generations toward characteristics encoded in the reward, thereby underrepresenting other aspects of diversity—particularly those not explicitly captured by

Figure 1: An example combinatorial task that requires diverse generation. Our method enables the LLM to generate diverse yet valid combinations for a given constraint.

the reward signal. As a result, the space of possible generations remains constrained, despite the increased optimization complexity.

To combine the best of both worlds, we introduce a lightweight and context-agnostic soft prompt tuning framework that steers generation directly toward diversity while preserving contextual consistency, without relying purely on randomness. Soft prompts are continuous learnable vectors that operate in the embedding space, guiding language model behavior without modifying the underlying weights (Lester et al., 2021). Our Soft Prompt Diversification approach optimizes multiple diversely initialized prompts, generated via scrambled Sobol sequences (Chi et al., 2005), to yield varied yet coherent outputs. During optimization, the model contrasts generations with and without soft prompts: it maximizes differences in final-token hidden states (promoting diversity) while minimizing deviations in earlier states (preserving context). Distinctions among final-token states across different prompts are further amplified to ensure mutually distinct generations. The expressive capacity of soft prompts has been demonstrated empirically, with a single vector $\mathbf{p} \in \mathbb{R}^d$ able to reconstruct text sequences of up to 1,000 tokens (Liu et al., 2025). Leveraging this representational power, our method introduces a principled distributional shift during decoding, enabling controlled exploration over an expanded latent manifold for diversification.

Related work explores guiding generation through the embedding space. For instance, SoftSRV trains full parametric embeddings to align outputs with a target distribution (DeSalvo et al., 2025). In contrast, our method adopts a hybrid design: combining continuous embeddings with token-level prompts, balancing the flexibility of embeddings with the interpretability of natural language.

We evaluate our approach on three distinct task domains that examine different aspects of diverse generation: (1) combinatorial task, based on a novel dataset we designed to evaluate the exploration effectiveness in large combinatorial solution spaces. Given a list of items, an LLM is prompted to generate multiple valid combinations whose values sum exactly to specified targets (Figure 1); (2) question generation (Gou et al., 2023; Rajpurkar et al., 2016), where LLMs are prompted to generate different questions that yield the same answer from a given context, testing diverse natural language generation; (3) molecule generation (Jang et al., 2025), which challenges domain-specific diversity. In particular, we work with a forward synthesis prediction task, where LLMs are required to generate multiple plausible products from fixed reagents and reactants, requiring chemical validity and structural diversity.

Our results demonstrate that soft prompt tuning can lead to more diverse responses while maintaining adherence to task constraints. The contributions of this work include:

- A lightweight, task-agnostic soft prompt diversification framework that enables controlled generation without fine-tuning or external training data. It can be directly applied to text diversification, showing consistent gains across various domains.
- A new target-sum combinatorial dataset featuring 50 real-life scenarios, each with an item list
 and a set of target values, evaluating LLMs' ability to generate diverse yet valid and optimal
 combinations.

2 BACKGROUND

Diverse Text Generation We define diverse text generation as the task of producing a diverse conditional distribution $p_{\Theta}(y|x)$, such that sampling from p_{Θ} yields semantically varied text outputs.

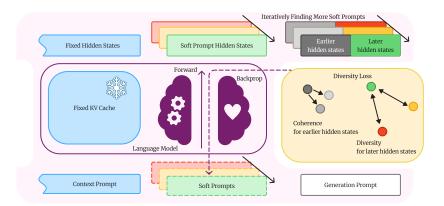


Figure 2: An illustration of our soft prompt tuning workflow.

Formally, given an input prompt $x_{1:L}$ and its generated continuation $y_{1:T}$, an autoregressive transformer model can be represented as:

$$p_{\Theta}(y|x) = \prod_{i=1}^{T} p_{\Theta}(y_i|x_{1:L}, y_{< i}).$$

At each token position i, the model computes hidden states as:

$$h_i = (h_i^{(1)}, \dots, h_i^{(n)}) \in \mathbb{R}^{n \times d},$$

where d is the embedding dimension and $h_i^{(j)}$ represents the output of transformer layer j. A causal attention mask ensures that $h_i^{(j)}$ attends only to previous hidden states $h_{< i}^{(\cdot)}$. Concatenating the input sequence and output generation to denote the full sequence as z=(x,y), we have:

$$h_i = LM_{\Theta}(z_i, h_{< i}), \quad p_{\Theta}(y_{i+1}|x, y_{< i}) = softmax(W_{\Theta}h_i^{(n)}),$$

where $W_{\Theta} \in \mathbb{R}^{|\mathcal{V}| \times d}$ maps the final hidden state to vocabulary logits.

Since each next-token distribution is determined largely by the final-layer vector $h_i^{(n)}$, enhancing diversity in p_{Θ} can be reduced to the problem of increasing diversity in these last-layer hidden states.

Soft Prompt A soft prompt is a set of continuous learnable vectors $P \in \mathbb{R}^{n_p \times d}$ that is prepended to input embeddings to guide language model behavior, where n_p denotes the prompt length and d represents the embedding dimension. Unlike discrete text prompts, soft prompts operate directly in the embedding space, providing a parameter-efficient approach to model adaptation without modifying the model weights (Lester et al., 2021). These tunable embeddings participate in all attention computation and can effectively alter the model's hidden states and consequently the generated texts. Soft prompts have demonstrated significant performance benefits with minimal computational overhead across various tasks, making them particularly valuable for efficiently adapting large language models (Li & Liang, 2021).

3 SOFT PROMPT TUNING FOR DIVERSE TEXT GENERATION

The key intuition for our approach for promoting diversity is two-fold: first, we introduce a set of lightweight, continuous soft prompts that are sufficiently distinct from one another, which we prepend to a common input embedding. These prompts effectively induce shifts in the conditional token probability distribution, leading to diversified generations. Second, we optimize these soft prompts to steer the model's final hidden states into diverse regions of the representation space. Due to the autoregressive decoding nature of language models, these initial embedding differences propagate and amplify over subsequent decoding steps, yielding progressively more divergent textual continuations (Figure 2).

Algorithm 1 Diverse Learning of Soft Prompts

162

193 194

195

196

197

199

200

201

202203204

205206

207

208

209

210

211

212

213

214

215

```
163
                      Input: Context prompt embedding E_c, generation prompt embedding E_q, soft prompts P_B \in
164
                      \mathbb{R}^{n_p \times d}, learning rate \eta, total epochs T, dynamic weight factor \delta, number of diverse tokens m
                      Output: Diversified soft prompts P_B^*
166
167
                 1: \mathcal{H} = \mathcal{M}(E_c, E_g)
2: \ell = (h_{l-m}^g, ... h_l^g) \leftarrow \text{last } m \text{ hidden states of } \mathcal{H}
169
                 3: c = (h_{k+1}^g, ..., h_{l-m-1}^g) \leftarrow \text{all but last } m \text{ hidden states of } \mathcal{H} \text{ in the generation prompt}
170
                 4: for t = 1 to T do
171
                             \mathcal{H} = \mathcal{M}(E_c \oplus P_B \oplus E_q)
172
                             \tilde{\ell} \leftarrow \text{last } m \text{ hidden states of } \widetilde{\mathcal{H}}
173
                 6:
                             \tilde{c} \leftarrow all but last m hidden states of \mathcal{H}
174
                 7:
                             d_{\text{last}} \leftarrow \|\hat{\ell} - \ell\|_2
                 8:
                                                                                                                ▶ 1. Last-m-token difference (to maximize)
175
                             d_{\text{ctrl}} \leftarrow \|\tilde{c} - c\|_2
                                                                                                                      ≥ 2. Controlled difference (to minimize)
176
                            d_{\text{batch}} \leftarrow \left[ \frac{1}{B-1} \sum_{j=1, j \neq i}^{B} \left\| \tilde{\ell}_i - \tilde{\ell}_j \right\|_2 \right]_{i=1}^{B}
\Rightarrow 3. \text{ Average difference to other soft prompts in the batch (to maximize)}
177
178
               11:
179
               12:
               13:
                                   Store d_0 \leftarrow d_{\text{ctrl}}, set w_c \leftarrow 0
181
               14:
                                  \Delta \leftarrow \| d_{\text{ctrl}} - d_0 \|_2w_c \leftarrow \Delta / (\delta + \Delta)
               15:
183
               16:
               17:
185
                            \mathcal{L} \leftarrow -(1-w_c)\left(d_{\text{last}}+d_{\text{batch}}\right) + w_c \operatorname{mean}(d_{\text{ctrl}})

P_B \leftarrow P_B - \eta \nabla_{P_B} \sum \mathcal{L} \triangleright 4. Form loss and take gradient step
               18:
               19:
187
188
                      return P_B as P_B^*
```

3.1 Initialization

To initialize diverse soft prompts, instead of direct sampling from the continuous embedding space $Z \in \mathbb{R}^d$, we construct a discrete space $\widetilde{Z} \in \mathbb{R}^d$ (d denotes the embedding dimension) using scrambled Sobol sequences, which ensures a uniform coverage of the continuous space (Chi et al., 2005). We generate these Sobol sequences in a lower-dimensional space d' where $d' \ll d$, then project them to the full embedding dimension using a matrix $A \in \mathbb{R}^{d \times d'}$ with values uniformly sampled from (0,1). This projection technique provides control over the magnitude of the resulting soft prompts, as larger values of d' produce soft prompts with greater overall magnitude. This dimensional control introduces flexibility, as different tasks may benefit from soft prompts of varying magnitudes, allowing for efficient adaptation across diverse downstream applications (Lin et al., 2023).

3.2 Soft Prompt Tuning Objective

Building on our initialization approach, we now turn to learning r distinct soft prompts that could induce r mutually diverse generations while maintaining task relevance.

We split the input into a context prompt and a generation prompt. The context prompt specifies the task requirements (e.g., the following is an example context prompt: "Context: The apple is red. Question: What is the color of the apple? Answer: Red. Your task is to generate a new question that can still be answered by the given answer based on the given context"), while the generation prompt elicits the response (e.g., "The new question is"). We denote their embeddings as E_c and E_a .

Unlike standard approaches that prepend soft prompts at the beginning of the entire input (Li & Liang, 2021), we insert them between the context and generation prompts. This placement preserves the task instructions while allowing the soft prompts to influence generation trajectories.

The hidden states without and with soft prompts are denoted as (\oplus denotes concatenation):

$$\mathcal{H} = \mathcal{M}(E_c \oplus E_g) = (h_1^c, h_2^c, \dots, h_k^c, h_{k+1}^g, \dots, h_l^g)$$
$$\widetilde{\mathcal{H}} = \mathcal{M}(E_c \oplus P \oplus E_g) = (\tilde{h}_1^c, \tilde{h}_2^c, \dots, \tilde{h}_k^c, \tilde{h}_1^{sp}, \dots, \tilde{h}_{n_n}^{sp}, \tilde{h}_{k+1}^g, \dots, h_l^g)$$

Our loss function balances two objectives:

- 1. **Diversity:** Maximize the distance between the final m hidden states produced with and without soft prompts, directly influencing the next token probability distribution. Additionally, we maximize pairwise distances between the final m hidden states across different soft prompts to ensure mutually distinct generations.
- 2. **Consistency:** Minimize differences in the hidden state of earlier tokens in the generation prompt, preserving the semantic and task alignment with the original input context.

To ensure task alignment while promoting diversity, we employ a dynamic weighting mechanism to balance the two complementary objectives. This weight automatically adjusts based on how far the controlled token representations drift from their initial values. As training progresses, this mechanism prevents excessive deviation from task requirements while still encouraging diversity where intended. Finally, we use stochastic gradient descent (SGD) to update the soft prompts based on the computed loss. Given r learned soft prompts, we choose a diversity-optimizing subset of size q by minimizing the sum of pairwise cosine similarity, and prepend each selected prompt to the same generation prompt(s) to obtain q distinct generations. Algorithm 1 provides the detailed implementations.

4 EXPERIMENTS

We evaluated our method across three distinct task domains. The combinatorial task challenges models to discover multiple distinct item subsets that sum precisely to target values. The question generation (QG) task (Rajpurkar et al., 2016) tests the ability to produce semantically varied questions yielding identical answers from given contexts. The forward synthesis molecule prediction tasks (FS-Mol) challenge models to predict plausible products from fixed reagents and reactants (Yu et al., 2024), using SMILES notation (Weininger, 1988) to represent molecular structures. In addition, we experiment with our methods on a different split of the question generation dataset and on a description-based molecule generation task. Details can be found in the Appendix H.

For each task, we decide two numbers for every input: $N_{\rm raw}$, the number of candidate generations we produce, and $N_{\rm final}$, the number we keep for evaluation. These values are chosen per task to reflect its difficulty and the size of its solution space, with details in Appendix B. Given an input, we first generate $N_{\rm raw}$ candidates using the prompting templates in the Appendix C. For the soft prompt tuning framework specifically, we decide learning on $r=5*N_{\rm raw}$ soft prompts and then select the most diverse $q=N_{\rm raw}$ for generation. We then uniformly subsample $N_{\rm final}$ candidates for evaluation. For the combinatorial task, we rank candidates by the absolute deviation between their sum and the target value and keep the top $N_{\rm final}$. We apply the same selection procedures to all baselines and to our method to ensure a fair comparison.

4.1 EXPERIMENT SETUP

Models and Hyperparameters We implemented our approach using open-source language models tailored to each task domain. For combinatorial tasks and question generation, we utilized Llama-3.1-8B-Instruct (Dubey et al., 2024) due to its strong text understanding and generation capabilities. For molecule generation tasks, we employed a domain-specific model, LlaSMol-Mistral-7B (Yu et al., 2024) that is specifically fine-tuned on comprehensive chemical tasks to ensure accurate molecular representations. For optimal performance, we conducted a random search over several key hyperparameter configuration dimensions. This included soft prompt parameters (number of soft prompt tokens, intrinsic dimension, and number of tokens to diversify) and training parameters (learning rate, number of training epochs). The complete hyperparameter settings and optimal configurations for each task are detailed in the Appendix E.

Baselines We implemented three standard decoding strategies as our main baselines: Temperature Sampling, Nucleus Sampling, and Diverse Beam Search (Ackley et al., 1985; Holtzman et al.,

2019; Vijayakumar et al., 2018). We systematically evaluated each strategy across multiple hyperparameter configurations to ensure a comprehensive comparison. For Temperature Sampling, we tested temperatures $\in \{0.6, 0.8, 1.0, 1.2, 1.4\}$ while fixing top-p = 0.95. For Nucleus Sampling, we tested top- $p \in \{0.8, 0.85, 0.9, 0.95, 1.0\}$ while maintaining temperature = 1.0. For Diverse Beam Search, we explored beam group sizes $\in \{1, 2\}$ and diversity penalties $\in \{0.6, 0.8, 1.0\}$, totaling 6 configurations. For each baseline method with each specific hyperparameter setting, we ran our proposed method using the identical decoding strategy and hyperparameters. This ensures that any performance differences can be attributed to our method rather than variations in the underlying decoding configuration.

Due to the extensive hyperparameter experiments, we initially evaluated all configurations on approximately 10% of the dataset with 3 independent runs per configuration, except for the Diverse Beam Search due to its deterministic nature. We then selected the best-performing hyperparameter setting from each baseline method and conducted full dataset evaluations for both the baselines and our proposed method under matching configurations. The findings on the full dataset closely matched those on the subset (see Appendix H for complete results). In the following sections, we present averaged performance across the 3 independent runs for clarity. Individual run results and standard deviations are also provided in Appendix H. Additionally, we benchmarked our method against GPT-40-mini using optimized diversity parameters (temperature = 1.2, presence penalty = 0.8) (Achiam et al., 2023), with full results available in the Appendix as well.

4.2 COMBINATORIAL GENERATION TASK

Dataset and Metrics We created a novel combinatorial dataset by prompting GPT-40 to generate 50 realistic scenarios spanning diverse domains. For each scenario, we defined 20 distinct target values and let GPT-40 generate a contextually appropriate list of 30 items with associated values. We implemented verification protocols to ensure that each target value could be achieved through at least 20 different combinations, yielding 1,000 combinatorial problems for evaluation. Each target value has an average of 1,624,205 possible valid solutions. More details about the dataset construction can be found in the Appendix G.

We evaluate solution quality using Mean Relative Sum Error (MRSE), which quantifies the average absolute deviation of each combination's sum from the target, normalized by the target itself, offering an overall sense of how closely the model's outputs approximate the desired total. For diversity evaluation, we employ Uniqueness, which calculates the proportion of distinct combinations.

Results Compared with temperature and nucleus sampling, our method achieves more diverse responses while improving quality, representing a clear Pareto improvement as shown in Figure 3(a). Averaged over temperature sampling baselines, our method decreases MRSE from 0.636 to 0.536 (-0.1; -15.7%) while increasing Uniqueness from 95.39% to 97.46% (+2.07; +2.2%). For topp sampling, MRSE drops from 0.616 to 0.506 (-0.110; -17.9%) with Uniqueness rising from 95.66% to 97.47% (+1.81; +1.9%) when shifting to our method. Meanwhile, diverse beam search proves uncompetitive on this combinatorial task, achieving only 50–78% Uniqueness and higher MRSE, while sampling methods already attain 95–98% Uniqueness baselines that our approach further enhances. The quality–diversity balance achieved on these complex problems demonstrates our framework's effectiveness at navigating diverse generations in high-dimensional solution spaces.

This task further emphasizes the importance of diverse generations: While enhanced diversity has the possibility of coming at the cost of decreased quality, it can actually lead to better solutions by more thoroughly exploring the solution space. Furthermore, standard language models like GPT-40-mini exhibit limited diversity (93.47%) (Table 12), failing to explore the rich solution spaces characteristic of real-world problems. This underscores both the challenge posed by our synthetic combinatorial dataset and the practical value of our approach for complex generation tasks.

4.3 QUESTION GENERATION

Dataset and Metrics We evaluated our approach using the SQuAD test datasets (Rajpurkar et al., 2016), employing SQuAD 1 data split established in prior work by Zhou et al. (2017). For a comprehensive quality assessment, we employ the QGEval framework (Fu et al., 2024) with seven interpretable criteria: fluency, clarity, conciseness, relevance, consistency, answerability, and answer consistency. We implement this evaluation using UniEval (Zhong et al., 2022), a T5-based system

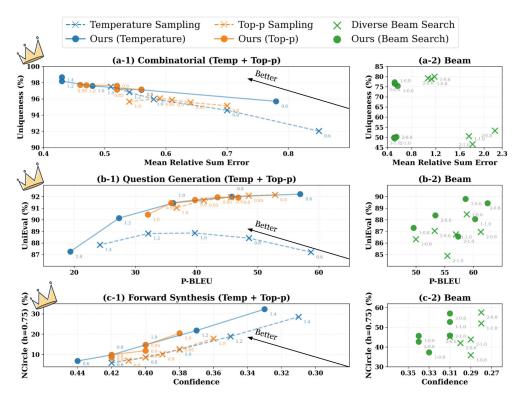


Figure 3: Quality-Diversity Trade-off across tasks. Each marker represents an independent experiment with a distinct hyperparameter configuration (temperature, top-p, beam search) for baselines and our method. The annotation near each marker indicates the specific hyperparameter setting: temperature for Temperature Sampling, top-p for Nucleus Sampling, beam group size-diversity penalty for Diverse Beam Search. Markers in the top-left corner indicate better performance.

that frames assessment as a binary question-answering task (e.g., "Is this question fluent") and derives normalized scores from yes/no probabilities, which have a strong correlation with human judgments. The UniEval score presented is the score averaged over the the seven dimensions. For diversity assessment, we first calculate the next-token prediction loss when generating the target answer from the generated question using Llama-3.1-8B-Instruct as our QA reward model. Then we filter out low-quality generations by removing questions whose answer-prediction loss exceeds 1.0. We then measure diversity among the remaining questions using Pairwise-BLEU (Self-BLEU), calculating the sentence-level metrics of each question against all others as references.

Results In the Question Generation task, we observe the expected trade-off between diversity and quality as lower P-BLEU (higher diversity) correlates with lower UniEval score (lower quality) in Figure 3(b). Nonetheless, our method consistently outperforms all baselines by shifting the diversity-quality curve upward and leftward, enabling simultaneous improvements in both dimensions. Compared to temperature sampling baselines (blue " \times " markers), our approach achieves substantial gains in quality: 3-5% higher UniEval scores while improving diversity by 2 to 4 points on the Pairwise-BLEU metric. With respect to nucleus sampling, both methods maintain high UniEval scores as the top-p value increases, but our method achieves meaningfully superior diversity at matching top-p values. Specifically, our method reduces Pairwise-BLEU to 46.8 versus 52.8 for top-p=0.8, and to 32.0 versus 36.7 for top-p=1.0, indicating substantially more diverse outputs without sacrificing quality. In contrast, diverse beam search remains constrained to low-diversity regions and provides only marginal quality improvements.

4.4 MOLECULE GENERATION

Dataset and Metrics For the forward synthesis prediction task (FS-Mol), we utilize the test set from Yu et al. (2024), which consists of cleaned and curated reactions from the USPTO-full chemi-

cal reaction dataset (Lowe, 2017). To evaluate the quality of the generated molecules, we use RXN-Mapper confidence (Schwaller et al., 2021), which measures the model's certainty in atom-mapping predictions. In practice, a higher confidence value indicates that atom-mapping was driven by clear attention signals, reflecting the model's greater certainty in the forward synthesis outcome. For the diversity metric, we use $\operatorname{NCircles}_h$ (Xie et al., 2023), which measures the largest subset where no two molecules have Tanimoto similarity (Bajusz et al., 2015) above threshold h. We then normalize $\operatorname{NCircles}_h$ as a percentage of total generations to enable consistent cross-task comparisons.

Results As shown in Figure 3(c), diverse beam search achieves extremely high diversity in the molecule generation task, producing roughly twice the NCircle values of baseline methods. However, this comes at the cost of substantial quality degradation. In contrast, our method enhances diversity while maintaining or even improving quality. Averaged across temperature settings, our approach increases confidence from 0.372 to 0.392 (+0.020; +5.4%) while NCircle rises from 14.92 to 17.11 (+2.19; +14.7%). Under nucleus sampling, we observe similar patterns: confidence improves from 0.388 to 0.404 (+0.016; +4.1%) with NCircle increasing from 11.26 to 13.11 (+1.85; +16.4%). These results demonstrate that while diverse beam search maximizes diversity at the expense of severe quality loss, our method provides a more balanced approach, achieving effective diversification with a superior quality–diversity trade-off. Furthermore, our method exhibits greater robustness to increased randomness in sampling strategies. As temperature and top-p values increase, the performance gap between our method ("o" markers) and baselines ("×" markers) widens, indicating better preservation of quality metrics under higher stochasticity.

5 DISCUSSION

Diversity requires guided exploration, not random perturbation. We compared our method against Hidden State Noise Injection (HSNI) experiment, where we add Gaussian noise to the final m token hidden states with magnitude normalized by state norms. As shown in Table 1, HSNI fails to produce diverse outputs in Combinatorial and Question Generation tasks, with very similar diversity metrics to temperature sampling baseline. This demonstrates that we need meaningful perturbations in the large latent space for diversification. Although HSNI can produce diverse responses in FS-Mol with a significant increase in NCircle value, quality deteriorates a lot, further demonstrating that different subspaces of hidden states may serve distinct functions such as task adherence and diversification. Random perturbation affects both indiscriminately, whereas our soft prompt approach provides targeted influence in directions that preserve task constraints while encouraging meaningful diversification. The failure of random noise highlights the need for enhanced understanding of the structure of the hidden state space rather than relying on undirected exploration. Full results with complete metrics across all tasks can be found in the Appendix H.

	Combinatorial		QG (SQu	AD 1)	FS-Mol	
Method	MRSE ↓	Unique (%)↑	UniEval (%)↑	P. BLEU ↓	Confidence ↑	NCircle(%)↑
Temperature	0.53	97.76	91.09	33.16	0.36	19
Ours	0.44	98.53	90.12	27.4	0.36	21.42
HSNI	0.52	97.99	91.06	33.19	0.33	26.01

Table 1: Comparison of our method with Hidden-State Noise Injection (HSNI) and temperature sampling across three tasks. Temperature remains the same as 1.2 across three methods.

One set of soft prompts might not fit all. The current training framework requires task-specific soft prompts for effective diversification, which limits its generalizability. Nonetheless, instead of generic approaches, each task might benefit from tailored strategies. The intuition lies in diversification isn't just about one unified strategy: Variety, it's about using strategies tailored to each task. In combinatorial settings, models should generate distinct, valid combinations adhering to numerical constraints, not random permutations. In question generation, the focus should be context-aware, answerable questions rather than simple paraphrases. True diversification must align with the structure and goals of each specific task. To validate this hypothesis, we analyzed trained soft prompts across tasks by computing average L-2 distances between prompts trained for different tasks from identical initializations. The results in Table 9 show that diagonal values are near-zero, confirming stable training directions within tasks, while similar tasks (e.g., SQuAD 1 and SQuAD 2) maintain

close soft prompt representations. Moreover, dissimilar tasks exhibit significant prompt divergence, reinforcing that different tasks might require distinct directions in the embedding space for optimal diversification.

Limitations While our soft prompt tuning approach offers significant advantages for diverse text generation, it has several limitations. First, our method's strategic placement of soft prompts in the input embeddings relies on continuous hidden state propagation through an autoregressive sequence, limiting its direct applicability to other model architectures such as encoder-decoder models. Second, the continuous nature of soft prompts inherently limits interpretability, making it challenging to precisely understand how specific prompt vectors influence generation trajectories. Moreover, our current implementation does not explicitly incorporate reasoning paths in language models, while the soft prompts may alter these reasoning processes in ways that contribute to output diversity, but this interaction remains unexplored. Future work could extend this approach to non-autoregressive architectures, developing techniques to improve soft prompt interpretability, and understanding how soft prompts could have an impact on the reasoning pathways.

Finally, the synthetic combinatorial dataset may not fully capture real-world complexity. Initial attempts to introduce additional constraints such as limiting selected items (e.g., requiring item value sums to equal N while total items $\leq M$ proved challenging, as LLM-generated item lists under stricter constraints often lacked sufficient valid solutions, which is particularly problematic for diversity-focused tasks requiring rich solution spaces. Since combinatorial problems remain both common and challenging for LLMs, constructing more rigorous datasets through combined LLM generation and algorithmic validation represents an important direction for future work.

6 RELATED WORKS

Training-Free Diverse Text Generation Most training-free diverse text generation approaches focus on manipulating probability distributions during decoding. Methods such as diverse beam search (Vijayakumar et al., 2018), nucleus sampling (Holtzman et al., 2019), top-k sampling (Fan et al., 2018) and minimum-probability sampling (Minh et al., 2024) have been widely adopted to enhance output diversity without requiring model fine-tuning. Entropy-guided approaches like η -sampling and microstat sampling offer another direction by dynamically modifying the candidate token pool based on the entropy of the token distribution (Hewitt et al., 2022; Basu et al., 2020). For combinatorial optimization specifically, LMEA (Liu et al., 2024) leverages large language models as evolutionary search operators over discrete solution spaces without gradient-based training. Our method extends beyond these approaches by operating directly in the embedding space, enabling a more precise control over the diversity-quality balance.

Fine-tune based Diverse Text Generation To encourage diverse text outputs, a range of fine-tuning strategies has been explored. In encoder–decoder models (Cho et al., 2014), mixture-of-decoders frameworks have been devised to produce multiple hypotheses per input (He et al., 2018; Shen et al., 2019). Inverse reinforcement learning has also been employed to learn reward functions that explicitly promote diversity (Shi et al., 2018). More recently, generative flow networks have recast autoregressive generation as flows over a DAG of partial states, sampling complete outputs in proportion to a user-defined reward (Bengio et al., 2021). While these techniques achieve strong diversity, they typically depend on carefully crafted rewards and extensive task-specific fine-tuning. In contrast, our soft-prompt tuning framework delivers comparable diversity through lightweight, parameter-efficient optimization that can be applied broadly across domains.

7 CONCLUSIONS

In this work, we introduced a lightweight diverse text generation framework using soft prompt tuning that achieves high output diversity while maintaining task constraint adherence. By optimizing these continuous prompts, our approach induces targeted distributional shifts guiding language models toward diverse outputs. Experiments across combinatorial tasks, question generation, and molecular generation have demonstrated superior diversity while maintaining or even increasing generation quality. In particular, the framework shows exceptional performance in domains with expansive solution spaces, particularly in our proposed synthetic combinatorial dataset. Future work could explore adapting this approach to additional model architectures, improving soft prompt interpretability, and investigating soft prompt effects on reasoning pathways.

Ethics Statement This approach potentially broadens the application of language models by enabling diverse generation. It may exaggerate the hallucination of language models, so the generated information should be more carefully examined.

Reproducibility statement Models used in this research such as Llama-3.1-8B-Instruct, are open-sourced with citation provided in the main text when mentioned. Code and the dataset will be published as an open-source repository on GitHub after the anonymous review period.

REFERENCES

486

487

488

489

490

491

492 493 494

495 496

497

498

499

500

501

504

505

506

507

510

511

512

513

514

515

516

517

519

521

522

523

524

525

527

528

529

530

531

534

538

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Made laine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim'on Posada Fishman, Juston Forte, Is abella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Li, Rachel Lim, Molly Lin, Stephanie Lin, Ma teusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke Metz, An drey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P. Mossing, Tong Mu, Mira Murati, Oleg Murk, David M'ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Ouyang Long, Cullen O'Keefe, Jakub W. Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alexandre Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Pondé de Oliveira Pinto, Michael Pokorny, Michael P Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack W. Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario D. Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer'on Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll L. Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report. 2023. URL https://api.semanticscholar.org/CorpusID:257532815.

544

546

547

548

549

550

551 552

553

554

555

556

558 559

561

562

564

565

566

567

568

569 570

571

572

573

574 575

576

577

578

579

580

581

582

583

584

585

586

588

589

592

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann machines. *Cognitive science*, 9(1):147–169, 1985.

Dávid Bajusz, Anita Rácz, and Károly Héberger. Why is tanimoto index an appropriate choice for fingerprint-based similarity calculations? *Journal of cheminformatics*, 7:1–13, 2015.

- Sourya Basu, Govardana Sachithanandam Ramachandran, Nitish Shirish Keskar, and Lav R. Varshney. Mirostat: A perplexity-controlled neural text decoding algorithm. *ArXiv*, abs/2007.14966, 2020. URL https://api.semanticscholar.org/CorpusID:220845423.
- Jonas Becker, Jan Philip Wahle, Bela Gipp, and Terry Ruas. Text generation: A systematic literature review of tasks, evaluation, and challenges. *ArXiv*, abs/2405.15604, 2024. URL https://api.semanticscholar.org/CorpusID:270045573.
- Yoshua Bengio, Tristan Deleu, J. Edward Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio. Gflownet foundations. *ArXiv*, abs/2111.09266, 2021. URL https://api.semanticscholar.org/CorpusID:244270393.
- Hongmei Chi, Peter Beerli, Deidre W Evans, and Michael Mascagni. On the scrambled sobol sequence. In *Computational Science–ICCS 2005: 5th International Conference, Atlanta, GA, USA, May 22-25, 2005, Proceedings, Part III 5*, pp. 775–782. Springer, 2005.
- Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural machine translation: Encoder-decoder approaches. In *Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation*, pp. 103–111, 2014. URL https://arxiv.org/abs/1409.1259.
- Giulia DeSalvo, Jean-Fracois Kagy, Lazaros Karydas, Afshin Rostamizadeh, and Sanjiv Kumar. Softsrv: Learn to generate targeted synthetic data, 2025. URL https://arxiv.org/abs/2410.16534.
- Wanyu Du, Jianqiao Zhao, Liwei Wang, and Yangfeng Ji. Diverse text generation via variational encoder-decoder models with gaussian process priors. *arXiv preprint arXiv:2204.01227*, 2022. URL https://arxiv.org/abs/2204.01227.
- Xinya Du, Junru Shao, and Claire Cardie. Learning to ask: Neural question generation for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1342–1352, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1123. URL https://aclanthology.org/P17-1123/.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony S. Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aur'elien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cris tian Cantón Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriele Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guanglong Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden Alwala, K. Upasani, Kate Plawiak, Keqian Li, Ken-591 neth Heafield, Kevin R. Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya

595

596

597

598

600

601

602

603

604

605

606

607

608

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

644

645

646

Pavlova, Melissa Hall Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Niko lay Bashlykov, Nikolay Bogoychev, Niladri S. Chatterji, Olivier Duchenne, Onur cCelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasić, Peter Weng, Prajiwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro main Sauvestre, Ron nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa hana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Chandra Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir ginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit ney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yiqian Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zhengxu Yan, Zhengxing Chen, Zoe Papakipos, Aaditya K. Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adi Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Po-Yao (Bernie) Huang, Beth Loyd, Beto de Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Shang-Wen Li, Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzm'an, Frank J. Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory G. Sizov, Guangyi Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Han Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kaixing(Kai) Wu, U KamHou, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, A Lavender, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michael Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptey, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe dro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollár, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,

Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sung-Bae Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-mar, Vishal Mangla, Vlad Ionescu, Vlad Andrei Poenaru, Vlad T. Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xia Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL https://api.semanticscholar.org/CorpusID:271571434.

- Angela Fan, Mike Lewis, and Yann N. Dauphin. Hierarchical neural story generation. *CoRR*, abs/1805.04833, 2018. URL http://arxiv.org/abs/1805.04833.
- Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language models. In *ICLR*. OpenReview.net, 2024. URL https://openreview.net/pdf?id=Tlsdsb619n.
- Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine learning. *Trans. Mach. Learn. Res.*, 2023, 2022. URL https://api.semanticscholar.org/CorpusID:252715476.
- Weiping Fu, Bifan Wei, Jianxiang Hu, Zhongmin Cai, and Jun Liu. QGEval: Benchmarking multi-dimensional evaluation for question generation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 11783–11803, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.658. URL https://aclanthology.org/2024.emnlp-main.658/.
- Qi Gou, Zehua Xia, Bowen Yu, Haiyang Yu, Fei Huang, Yongbin Li, and Nguyen Cam-Tu. Diversify question generation with retrieval-augmented style transfer. In *The 2023 Conference on Empirical Methods in Natural Language Processing*, 2023. URL https://openreview.net/forum?id=sS02W7Sloj.
- Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pretrained large language models to construct and utilize world models for model-based task planning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=zDbsSscmuj.
- Xuanli He, Gholamreza Haffari, and Mohammad Norouzi. Sequence to sequence mixture model for diverse machine translation. In Anna Korhonen and Ivan Titov (eds.), *Proceedings of the 22nd Conference on Computational Natural Language Learning*, pp. 583–592, Brussels, Belgium, October 2018. Association for Computational Linguistics. doi: 10.18653/v1/K18-1056. URL https://aclanthology.org/K18-1056/.
- John Hewitt, Christopher D. Manning, and Percy Liang. Truncation sampling as language model desmoothing. In *Conference on Empirical Methods in Natural Language Processing*, 2022. URL https://api.semanticscholar.org/CorpusID:253157390.
- Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. *CoRR*, abs/1904.09751, 2019. URL http://arxiv.org/abs/1904.09751.
- Hyosoon Jang, Yunhui Jang, Jaehyung Kim, and Sungsoo Ahn. Can llms generate diverse molecules? towards alignment with structural diversity, 2025. URL https://arxiv.org/abs/2410.03138.
- Harsh Jhamtani, Varun Gangal, Eduard H. Hovy, and Eric Nyberg. Shakespearizing modern language using copy-enriched sequence-to-sequence models. *CoRR*, abs/1707.01161, 2017. URL http://arxiv.org/abs/1707.01161.

- Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Qingliang Li, Benjamin Shoemaker, Paul Thiessen, Bo Yu, Leonid Zaslavsky, Jian Zhang, and Evan Bolton. Pubchem in 2021: New data content and improved web interfaces. *Nucleic Acids Research*, 49, 11 2020. doi: 10.1093/nar/gkaa971.
- Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wentau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243/.
- Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong Wen. Pretrained language models for text generation: A survey. *CoRR*, abs/2105.10311, 2021. URL https://arxiv.org/abs/2105.10311.
- Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 4582–4597, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353/.
- Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet, and Bryan Kian Hsiang Low. Use your instinct: Instruction optimization for llms using neural bandits coupled with transformers. In *International Conference on Machine Learning*, 2023. URL https://api.semanticscholar.org/CorpusID:270199517.
- Haoming Liu, Yuanhe Guo, Yijia Cao, Shengjie Wang, and Hongyi Wen. Optimal generative cyclic transport between image and text, 2025. URL https://openreview.net/forum?id=ZjKTMmWKHP.
- Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as evolutionary optimizers. *IEEE Transactions on Emerging Topics in Computational Intelligence*, 2024. URL https://ieeexplore.ieee.org/abstract/document/10611913.
- Daniel Lowe. Chemical reactions from US patents (1976-Sep2016). 6 2017. doi: 10. 6084/m9.figshare.5104873.v1. URL https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873.
- Nguyen Nhat Minh, Andrew Baker, Clement Neo, Allen Roush, Andreas Kirsch, and Ravid Shwartz-Ziv. Turning up the heat: Min-p sampling for creative and coherent llm outputs. In *International Conference on Learning Representations*, 2024. URL https://api.semanticscholar.org/CorpusID:270870613.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pp. 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264/.
- Sudha Rao and Joel Tetreault. Dear sir or madam, may I introduce the GYAFC dataset: Corpus, benchmarks and metrics for formality style transfer. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 129–140, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1012. URL https://aclanthology.org/N18-1012/.
- Philippe Schwaller, Benjamin Hoover, Jean-Louis Reymond, Hendrik Strobelt, and Teodoro Laino. Extraction of organic chemistry grammar from unsupervised learning of chemical reactions. *Science Advances*, 7(15):eabe4166, 2021.

- Tianxiao Shen, Myle Ott, Michael Auli, and Marc'Aurelio Ranzato. Mixture models for diverse machine translation: Tricks of the trade. In *International Conference on Machine Learning*, 2019. URL https://api.semanticscholar.org/CorpusID:67787922.
 - Zhan Shi, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. Toward diverse text generation with inverse reinforcement learning. In *Proceedings of the 27th International Joint Conference on Artificial Intelligence*, IJCAI'18, pp. 4361–4367. AAAI Press, 2018. ISBN 9780999241127.
 - Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language models. 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11523–11530, 2022. URL https://api.semanticscholar.org/CorpusID:252519594.
 - Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning abilities of large language models a critical investigation. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=X6dEqXIsEW.
 - Ashwin Vijayakumar, Michael Cogswell, Ramprasaath Selvaraju, Qing Sun, Stefan Lee, David Crandall, and Dhruv Batra. Diverse beam search for improved description of complex scenes. *Proceedings of the AAAI Conference on Artificial Intelligence*, 32(1), Apr. 2018. doi: 10. 1609/aaai.v32i1.12340. URL https://ojs.aaai.org/index.php/AAAI/article/view/12340.
 - David Weininger. Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. *Journal of chemical information and computer sciences*, 28(1):31–36, 1988.
 - Yutong Xie, Ziqiao Xu, Jiaqi Ma, and Qiaozhu Mei. How much space has been explored? measuring the chemical space covered by databases and machine-generated molecules. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=Yo06F8kfMa1.
 - Botao Yu, Frazier N. Baker, Ziqi Chen, Xia Ning, and Huan Sun. LlaSMol: Advancing large language models for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=1Y6XTF9tPv.
 - Dun Zhang, Jiacheng Li, Ziyang Zeng, and Fulong Wang. Jasper and stella: distillation of sota embedding models. *ArXiv*, abs/2412.19048, 2024. URL https://api.semanticscholar.org/CorpusID:275119352.
 - Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang Zhu, Heng Ji, and Jiawei Han. Towards a unified multi-dimensional evaluator for text generation. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 2023–2038, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022. emnlp-main.131. URL https://aclanthology.org/2022.emnlp-main.131/.
 - Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and M. Zhou. Neural question generation from text: A preliminary study. *ArXiv*, abs/1704.01792, 2017. URL https://api.semanticscholar.org/CorpusID:9745861.

A USE OF LLM STATEMENT

Large Language Models were used only as writing and visualization aids, such as improving the clarity of text and helping format tables/figures in LaTeX. All research ideas, implementations, analyses, and conclusions are entirely the authors' own.

B DATASET STATISTICS

Task	Size	Subset Size	$N_{ m raw}$	$N_{ m final}$
QG (SQuAD1)	8,964	1000	20	5
QG (SQuAD2)	11,877	1000	20	5
Desc-Mol	1,060	100	100	50
FS-Mol	4,062	500	100	50
Combinatorial	1,000	100	50	20

Table 2: Datasets and per-input generation settings. N_{raw} : candidates produced per input; N_{final} : candidates retained for evaluation.

C CONTEXT AND GENERATION PROMPT BASED ON TASKS

Task	Generation Prompt				
QG Desc-Mol	New Question: New SMILES: <smiles></smiles>				
FS-Mol Combinatorial	Product SMILES: <smiles> Selection: <select></select></smiles>				

Table 3: Generation prompts that are prepended by soft prompts

```
Task
         Prompt Template
QG
         Your task is to generate a new question.
         question should still be answered correctly using the
         same answer. The new question should be relevant to
         the context.
         ***Start of an example***
         Context: Antarctica is the driest continent on Earth,
         receiving less precipitation than the Sahara Desert.
         Example Question: Which continent receives less
         precipitation than the Sahara?
         Answer: Antarctica
         New Question: Which continent is the driest on Earth?
         Answer: Antarctica
         ***End of an example***
         ***Your turn***
         Context: {context}
         Example Question:
                           {question}
         Answer: {answer}
Desc-Mol
         Your task is to generate a molecule based on the
         description. Your output should be a SMILES string.
         ***Start of an example***
         Description: The molecule is a member of the class of
         tripyrroles ... ring assembly.
         New SMILES: <SMILES> CCCCC1=C(C)NC(/C=C2\N=C(C3=CC=CN3)C=C2OC)=C1
         </SMILES>
         ***End of an example***
         ***Your turn***
         Description: {description}
```

Table 4: Context prompt templates for question generation task (QG) and description guided molecule generation task (Desc-Mol)

961

```
927
928
          Task
                      Prompt Template
929
          FS-Mol
930
                      Your task is to predict the product of a chemical
                      reaction. Given the SMILES of reactants and reagents,
931
                      generate the SMILES of the most likely product. Your
932
                      output should be a SMILES string.
933
934
                      ***Start of an example***
935
                      Reactants and Reagents: <SMILES> NC1=CC=C2OCOC2=C1.0=C0
                      </SMILES>
936
                      Product SMILES: <SMILES> O=CNC1=CC=C2OCOC2=C1 </SMILES>
937
                      ***End of an example***
938
939
                      ***Your turn***
940
                      Reactants and Reagents:
                                                <SMILES> {input} </SMILES>
941
          Combinatorial
                      Given a target value and a list of items with their
942
                      values, your task is to select a subset of items such
                      that the sum of their values is as close as possible to
943
                      the target value. The specifc meaning of "item value"
944
                      and "target value" may vary from task to task, but the
945
                      general goal is the same: select a list of items whose
946
                      value sum up to the target.
947
                      Make sure to first output your answer in <SELECT>
                      </SELECT> tags. The answer format should be a list
948
                      of item IDs, separated by commas.
949
950
                      ***Start of an example***
951
                      Task: Create a box of chocolates with a total weight
952
                      of 200g.
                      Item list: [{"id": 1, "name": "Chocolate A",
953
                      "value": 100 }, ...]
954
                      Selection: <SELECT> [1,3,4] </SELECT>.
955
                      ***End of an example***
956
957
                      ***Your turn***
                      Task: {task}
958
                      Item list:
                                  {item list}
959
960
```

Table 5: Context prompt templates for forward synthesis molecule generation (FS-Mol) and Combinatorial tasks.

SAMPLE GENERATION RESULTS

QUESTION GENERATION

SQuAD 1

Input: In much of the U.S. South, many white students migrated to the academies, while public schools became in turn more heavily concentrated with African-American students (see List of private schools in Mississippi).

Gold Question: School desegregation in the United States led to an increased number of students of what ethnicity in public schools?

Answer: African-American

GPT-40-mini:

972

973 974

975 976

977

978

979

980

981

982 983

985

986 987

988

990

991

992

993

994

995

996

997

998

999

1004

1008

1010 1011

1012

1013

1014 1015

1016

1017

1018

1020

1021

1023

1024

1025

- 1. School desegregation in the United States led to a decrease in the number of students from which racial group in traditional
- Following school desegregation in the United States, what ethnic group became predominant in schools previously known as public schools in the U.S. South?
- 3. School desegregation in the United States led to schools becoming predominantly attended by what group?
- What demographic shift did school desegregation in the United States lead to in public schools in the U.S. South?
- 5. At public schools in the US South after desegregation, students of what ethnicity became concentrated in greater numbers?

- Which group of students became more prevalent in public schools as a result of school desegregation in the United States?
- Which demographic saw a rise in enrollment in public schools as white students moved to private academies in the U.S. South?
- What demographic shift occurred in public schools as a result of school desegregation in the United States?
- What ethnicity notably became more prevalent in public schools due to school desegregation in the U.S. South?
- What ethnicity saw a significant rise in enrollment in public schools due to school desegregation in the United States?

Input: Deke Slayton, the grounded Mercury astronaut who became Director of Flight Crew Operations for the Gemini and Apollo programs, selected the first Apollo crew in January 1966, with Grissom as Command Pilot, White as Senior Pilot, and rookie Donn F.

Gold Question: Who selected the first Apollo crew?

GPT-40-mini:

- Who appointed the crew for the first Apollo mission?
- Who was responsible for choosing the initial crew of the Apollo program?
- 3. Who was responsible for choosing the crew for the first Apollo mission?
- Who was responsible for choosing the initial crew of the Apollo mission?
- 5. Who was responsible for selecting the first crew of the Apollo program?

Ours:

- Whose team chose the first Apollo crew?
- Who selected the original Apollo crew?
- Who became Director of Flight Crew Operations for the Gemini and Apollo programs and later selected the first Apollo
- What astronaut selected the first crew for the Apollo mission?
- Who chose the initial crew for the Apollo space missions?

Input: This mechanism is still the leading theory today; however, a second theory suggests that most cpDNA is actually linear and replicates through homologous recombination.

Gold Question: How does the secondary theory say most cpDNA replicates?

GPT-40-mini:

- 1. What process does the secondary theory propose for the replication of most cpDNA?
- What process is proposed by the secondary theory as a method for cpDNA replication?
- What replication process does the secondary theory propose for the majority of cpDNA?
- What method does the secondary theory propose for the replication of most cpDNA? What method does the second theory propose for the replication of most cpDNA?

- 1. What replication process does the secondary theory propose for most cpDNA?
- In what way does the secondary theory propose cpDNA replicates?
- 3. According to the secondary theory, what does cpDNA replicate through?
- According to the secondary theory, in what mechanism do cpDNA usually replicate?
- 5. According to the secondary theory, what is the mode of replication of most cpDNA?

Table 6: Examples of question generation results from SQuAD 1 split. For each input context, we show the original gold question and the top 5 generated questions from GPT-4o-mini and our method. Our questions demonstrate greater lexical and structural diversity while remaining faithful to the context.

SOFT PROMPT AND TRAINING HYPERPARAMETERS

We perform a 15-trial random search for each task over soft prompt hyperparameters and training hyperparameters during diverse learning. The specific search range for each hyperparameter can be found in Table 7, and the resulting optimal hyperparameter settings for each task are detailed in Table 8

Hyperparameter	Search Space
# soft prompt tokens (n_p)	{1, 3, 5, 10}
Last m tokens to diversify	{1, 3}
Intrinsic dimension (d')	{10, 50, 100, 500, 1000}
Learning rate (η)	{1e-2, 1e-3, 1e-4}
Training Epoch (T)	{20, 30, 50}
Dynamic weight (δ)	{0, 30, 100}

Table 7: Hyperparameter search space.

	QG	Desc-Mol	FS-Mol	Combinatorial
# soft prompt tokens (n_p)	5	1	5	5
Last m tokens to diversify	1	1	1	1
Intrinsic dimension (d')	50	1000	50	50
Learning rate (η)	1e-4	1e-4	1e-4	1e-4
Training Epoch (T)	20	20	20	20
Dynamic weight (δ)	100	100	100	100

Table 8: Best hyperparameter settings for diverse generation tasks through random search.

F SOFT PROMPT GENERALIZABILITY

Task	Combinatorial	SQuAD 1	SQuAD 2	Desc-Mol	FS-Mol
Combinatorial	0.001	1217.23	1217.23	1224.91	450.40
SQuAD 1	-	1.70e-5	0.003	744.61	1186.44
SQuAD 2	-	-	9.08e-5	744.61	1186.45
Desc-Mol	-	-	_	1.08e-5	1194.86
FS-Mol	-	-	-	-	0.002

Table 9: Inter-Task Soft Prompt L-2 Distance. Values indicate the L-2 Distance between trained soft prompt learning on different task domains.

G DATASET CONSTRUCTION DETAILS

The section introduced more details about dataset construction. The dataset generation involved the following three steps:

- 1. Combinatorial task scenario generation and target value specification
- 2. Item list generation
- 3. Solution verification

First, we prompted GPT-40 to generate a list of realistic combinatorial task scenarios. Each scenario includes three components: a scenario name, a description, and a set of 20 target values. To ensure consistency and relevance, we provided an example in the prompt that reflects our desired "realistic knapsack" style tasks:

```
"scenario name": "Food & Nutrition", "description": "Create a meal exactly totaling {} calories", "target values": [300, ..., 2000]
```

We further manually reviewed and filtered the generated scenarios to ensure quality and diversity, ultimately selecting around 80 candidate scenarios. Each entry has a format similar to the one above. Next, for each accepted scenario, we crafted a system prompt to generate the corresponding item list. This second step again used GPT-40, with the following prompt format:

You are a data generator for combinatorial optimization tasks.

Given the following task description: "Create a meal exactly totaling N calories", where $N \in [300,\dots,2000]$ is the target value.

Generate a list of 30 unique items appropriate to the "Food & Nutrition" scenario. Each item should include:

• id (starting from 1),

- name (realistic item names),
- value (a number appropriate to the task's unit, within a sensible range).

Your output should be in JSON Lines (.jsonl) format, with one JSON object per line.

Finally, we implemented a verification step using a dynamic programming algorithm to exhaustively enumerate valid combinations (without replacement) of items that sum to each target value. Any scenario in which fewer than 20 valid combinations existed for any target value was discarded. After this filtering step, we kept 50 high-quality scenarios for the final dataset.

H COMPREHENSIVE RESULTS

In this section, we present detailed results for the three tasks discussed in the main text, along with two additional tasks. Each subsection contains three primary results tables. The first two tables compare our method against standard decoding baselines, with results averaged over three independent runs on a smaller dataset (diverse beam search was run once due to its deterministic nature). The second table presents results on a larger dataset, comparing our method against standard decoding baselines with optimized hyperparameters, a GPT-40-mini baseline, a hidden states Gaussian noise injection baseline, and an ablation of our method using random initialization instead of Sobol sequence-based initialization for soft prompts.

For simplicity, in the results table, we use "tem 0.6" stands for temperature=0.6 when running temperature sampling baseline (top-p=0.95); "topp 0.8" stands for top-p=0.8 when running top-p sampling baseline (temperature=1.0); "beam 1 penalty 0.6" stands for beam group size is 1 and diversity penalty is 0.6.

Aside from the task-specific diversity metric we presented in the main text, we employ a unified approach to measuring diversity across all tasks through the Vendi Score (Friedman & Dieng, 2022). This metric is calculated as the exponential of the Shannon entropy of the eigenvalues derived from the samples' normalized similarity matrix. The Vendi Score offers high interpretability, where a score of m indicates that the evaluated set exhibits m unique items. For consistent cross-task interpretation, we express the Vendi Score as a percentage of total generations, creating a normalized diversity metric independent of generation count. For our text-based evaluations, we construct an $N \times N$ similarity matrix, with each cell representing the dot-product similarity between the embeddings of two generated outputs. To ensure high-quality semantic representations, we utilize the stella_en_1.5B_v5 embedding model (Zhang et al., 2024) for all Vendi Score calculations.

H.1 COMBINATORIAL TASK

In addition to MRSE, we evaluate solution quality using another two metrics: Within-20% Acceptance Rate, Within-50% Acceptance Rate. The acceptance rates measure the proportion of unique combinations whose summed values fall within 20% and 50% of the target value, respectively, providing a metric of near-miss accuracy. Comprehensive results can be found in Table 10-12.

H.2 QUESTION GENERATION TASK (SQUAD1)

In addition to the metrics introduced in the main text, we evaluate the generation quality using Oracle-BLEU, which measures the highest BLEU-4 between the target question and any generated question. Comprehensive results can be found in Table 13-15.

Hyperparameters	(Quality Metrics		Diversity Metrics	
	20% Acpt ↑	50% Acpt ↑	MRSE ↓	Unique (%)↑	Vendi (%) ↑
tem 0.6	25.33 (1.07)	49.72 (0.93)	0.85 (0.02)	92.03 (0.37)	10.13 (0.18)
tem 0.8	26.98 (0.48)	57.38 (0.41)	0.70(0.01)	94.60 (0.51)	12.54 (0.30)
tem 1.0	26.38 (0.45)	61.62 (0.77)	0.58 (0.02)	95.97 (0.23)	14.57 (0.33)
tem 1.2	25.97 (0.28)	62.02 (0.98)	0.54 (0.02)	96.83 (0.31)	16.05 (0.27)
tem 1.4	25.50 (0.83)	62.18 (1.49)	0.51 (0.01)	97.50 (0.14)	16.52 (0.12)
topp 0.8	26.05 (0.40)	55.08 (0.90)	0.70 (0.01)	95.15 (0.46)	13.39 (0.17)
topp 0.85	26.43 (0.84)	58.17 (1.04)	0.64 (0.01)	95.55 (0.20)	13.76 (0.22)
topp 0.9	25.57 (1.01)	59.58 (1.04)	0.61 (0.01)	95.87 (0.34)	14.28 (0.14)
topp 0.95	25.32 (0.96)	60.90 (0.51)	0.59 (0.00)	96.05 (0.07)	14.46 (0.12)
topp 1.0	26.12 (0.91)	61.23 (0.91)	0.54 (0.00)	95.67 (0.16)	14.67 (0.16)
beam 1 penalty 0.6	11.90	30.00	1.18	79.95	11.74
beam 1 penalty 0.8	12.30	30.30	1.07	79.20	11.84
beam 1 penalty 1.0	12.45	28.75	1.13	78.80	12.10
beam 2 penalty 0.6	6.65	15.00	2.18	53.30	9.60
beam 2 penalty 0.8	7.25	16.00	1.75	50.60	9.45
beam 2 penalty 1.0	5.90	13.80	1.81	46.65	9.48

Table 10: Combinatorial: Standard decoding baseline results

Hyperparameters	(Quality Metrics	Diversity Metrics		
	20% Acpt †	50% Acpt ↑	MRSE ↓	Unique (%)↑	Vendi (%) ↑
tem 0.6	22.27 (0.39)	49.63 (0.90)	0.78 (0.02)	95.70 (0.22)	12.34 (0.10)
tem 0.8	27.48 (0.66)	60.97 (0.64)	0.56 (0.01)	97.12 (0.23)	14.18 (0.03)
tem 1.0	28.47 (1.01)	65.80 (1.29)	0.48 (0.01)	97.60 (0.39)	16.05 (0.13)
tem 1.2	28.20 (0.44)	66.57 (0.40)	0.43 (0.01)	98.18 (0.06)	17.51 (0.22)
tem 1.4	26.92 (0.46)	64.72 (0.39)	0.43 (0.01)	98.68 (0.24)	17.77 (0.18)
topp 0.8	29.32 (0.76)	61.30 (0.76)	0.56 (0.01)	97.17 (0.09)	14.69 (0.08)
topp 0.85	28.50 (0.52)	62.45 (1.26)	0.52 (0.01)	97.15 (0.23)	15.21 (0.12)
topp 0.9	28.12 (0.47)	62.92 (0.63)	0.52 (0.00)	97.62 (0.22)	15.62 (0.24)
topp 0.95	29.98 (0.78)	67.03 (1.02)	0.46 (0.01)	97.72 (0.02)	16.02 (0.13)
topp 1.0	26.67 (1.20)	64.30 (0.74)	0.47 (0.01)	97.68 (0.19)	16.18 (0.17)
beam 1 penalty 0.6	18.50	42.35	0.57	75.40	11.61
beam 1 penalty 0.8	19.75	44.65	0.52	76.50	11.76
beam 1 penalty 1.0	17.95	42.90	0.52	77.20	12.09
beam 2 penalty 0.6	12.10	28.90	0.55	50.30	10.73
beam 2 penalty 0.8	12.85	29.70	0.51	49.90	11.05
beam 2 penalty 1.0	11.75	29.35	0.52	49.55	11.16

Table 11: Combinatorial: Soft prompt tuning results, to be compared with the standard decoding baseline

H.3 QUESTION GENERATION TASK (SQUAD2)

SQuAD2 is another data split based on the SQuAD test datasets (Rajpurkar et al., 2016)Du et al. (2017). Comprehensive results can be found in Table 16-18

H.4 DESCRIPTION-GUIDED MOLECULE GENERATION (DESC-MOL)

For description-guided molecule generation, we adapted the dataset from Fang et al. (2024), originally comprising 331,261 SELFIES-description molecule pairs extracted from PubChem (Kim et al., 2020). We first converted all SELFIES to SMILES notation and implemented a two-stage filtering process: (1) removing descriptions paired with only a single molecule to ensure the possibility for diversity. (2) eliminating overly specific descriptions or those referencing existing compounds. This curation process yielded 1,060 high-quality descriptions primarily characterizing broader chemical families with sufficient structural flexibility for novel generation.

Method	Q	uality Metrics	Diversity Metrics		
	20% Acpt ↑	50% Acpt ↑	MRSE ↓	Unique (%)↑	Vendi (%) ↑
GPT-4o-mini	39.37	74.91	0.34	93.47	4.50
Temperature Sampling	27.40	64.31	0.53	97.67	16.21
Ours (temp)	28.06	67.42	0.44	98.53	17.13
Top-p Sampling	27.90	63.60	0.54	97.13	15.01
Ours $(top-p)$	27.46	65.29	0.48	98.18	16.20
Diverse Beam Search	12.16	30.04	1.12	79.17	11.78
Ours (beam)	19.50	45.00	0.50	74.64	11.72
Ours	28.06	67.42	0.44	98.53	17.13
Randomly initialized soft prompt	32.96	71.69	0.42	98.63	16.29
Hidden state noise injection	28.37	65.43	0.52	97.99	16.00

Table 12: Combinatorial: Comparison between soft prompt tuning method with other baselines

Hyperparameters	Qualit	y Metrics	Diversity Metrics		
	O. BLEU↑	UniEval (%)↑	P. BLEU ↓	Vendi (%) ↑	
tem 0.6	31.76 (0.01)	87.21 (0.11)	58.70 (0.16)	37.63 (0.16)	
tem 0.8	31.07 (0.11)	88.42 (0.14)	48.58 (0.85)	39.99 (0.24)	
tem 1.0	29.51 (0.48)	88.86 (0.09)	39.73 (0.53)	42.75 (0.54)	
tem 1.2	27.19 (0.50)	88.82 (0.17)	32.10 (0.42)	46.36 (0.40)	
tem 1.4	23.64 (0.40)	87.84 (0.06)	24.22 (0.12)	51.23 (0.53)	
topp 0.8	31.90 (0.18)	92.15 (0.06)	52.82 (0.67)	35.45 (0.48)	
topp 0.85	31.36 (0.29)	92.09 (0.04)	48.54 (1.02)	36.68 (0.35)	
topp 0.9	31.52 (0.71)	91.96 (0.03)	45.62 (0.55)	38.20 (0.52)	
topp 0.95	29.92 (0.28)	91.67 (0.02)	41.17 (0.73)	39.95 (0.26)	
topp 1.0	29.28 (0.47)	91.04 (0.06)	36.73 (0.86)	41.31 (0.37)	
beam 1 penalty 0.6	31.21	88.48	58.83	43.21	
beam 1 penalty 0.8	30.88	87.04	53.23	46.09	
beam 1 penalty 1.0	28.64	86.32	49.96	47.95	
beam 2 penalty 0.6	28.68	86.96	61.28	45.53	
beam 2 penalty 0.8	28.96	86.75	56.94	48.07	
beam 2 penalty 1.0	27.22	84.90	55.46	49.54	

Table 13: SQuAD1: Standard decoding baseline results

We evaluate quality via validity and answer loss. Validity measures whether generated SMILES strings can be converted to valid molecule objects using RDKit 1 . Answer loss uses LlaSMol-Mistral-7B (Yu et al., 2024) to generate molecule descriptions, then calculates prediction loss against reference descriptions. Comprehensive results can be found in Table 19-21

H.5 FORWARD SYNTHESIS MOLECULE GENERATION (FS-MOL)

We additionally use a quality metric called Tanimoto Similarity (Bajusz et al., 2015) that quantifies structural similarity between generated and reference products. Comprehensive results can be found in Table 22-24

I COMPUTATIONAL RESOURCES

All experiments are conducted on high-performance computing clusters. We used 1 NVIDIA A100 GPU for each open-source models we mentioned and used in the Experiment section.

¹RDKit: Open-source cheminformatics. https://www.rdkit.org

Hyperparameters	Qualit	y Metrics	Diversity Metrics		
	O. BLEU↑	UniEval (%)↑	P. BLEU ↓	Vendi (%) ↑	
tem 0.6	33.14 (0.40)	92.22 (0.04)	56.94 (0.71)	34.73 (0.33)	
tem 0.8	32.88 (0.18)	92.00 (0.11)	45.76 (0.47)	38.22 (0.45)	
tem 1.0	29.61 (0.68)	91.45 (0.08)	36.19 (0.48)	42.58 (0.27)	
tem 1.2	26.19 (0.21)	90.12 (0.14)	27.34 (1.02)	48.08 (0.82)	
tem 1.4	22.12 (0.51)	87.26 (0.25)	19.38 (0.40)	55.21 (0.57)	
topp 0.8	33.03 (0.25)	91.93 (0.05)	46.81 (0.67)	38.02 (0.17)	
topp 0.85	31.62 (0.50)	91.95 (0.09)	43.42 (0.43)	39.59 (0.15)	
topp 0.9	30.86 (0.46)	91.72 (0.06)	39.76 (0.16)	41.14 (0.18)	
topp 0.95	29.56 (0.37)	91.46 (0.02)	35.86 (0.35)	42.88 (0.39)	
topp 1.0	28.26 (0.36)	90.45 (0.08)	32.04 (0.54)	45.37 (0.55)	
beam 1 penalty 0.6	32.39	89.81	58.64	43.37	
beam 1 penalty 0.8	31.47	88.39	53.36	46.67	
beam 1 penalty 1.0	29.72	87.31	49.57	48.55	
beam 2 penalty 0.6	29.89	89.43	62.46	45.79	
beam 2 penalty 0.8	28.86	88.06	60.29	48.26	
beam 2 penalty 1.0	28.26	86.55	57.34	49.60	

Table 14: SQuAD 1: Soft prompt tuning results, to be compared with the standard decoding baseline

Method	Qualit	ty Metrics	Diversity Metrics		
	O. BLEU↑	UniEval (%)↑	P. BLEU ↓	Vendi (%) ↑	
gpt-4o-mini	15.90	92.87	61.52	33.00	
Temperature Sampling	24.30	91.09	33.16	44.60	
Ours (temp)	23.39	90.12	27.40	48.28	
Top-p Sampling	25.36	91.14	36.76	42.60	
Ours (top-p)	24.59	90.47	31.01	45.44	
Diverse Beam Search	28.45	87.10	51.87	47.22	
Ours (beam)	29.55	88.39	53.42	47.35	
Ours	23.39	90.12	27.40	48.28	
Randomly initialized soft prompt	24.80	90.55	29.75	45.80	
Hidden state noise injection	24.43	91.06	33.19	44.21	

Table 15: SQuAD 1: Comparison between soft prompt tuning method with other baselines

Hyperparameters	Quality Metrics		Diversity Metrics	
	O. BLEU↑	UniEval (%)↑	P. BLEU ↓	Vendi (%) ↑
tem 0.6	27.06 (0.41)	91.66 (0.09)	62.43 (0.34)	31.49 (0.28)
tem 0.8	27.26 (0.40)	91.42 (0.08)	52.33 (0.32)	34.52 (0.17)
tem 1.0	25.13 (0.30)	90.90 (0.07)	43.19 (0.31)	38.21 (0.49)
tem 1.2	22.88 (0.22)	89.89 (0.07)	34.34 (0.07)	42.58 (0.23)
tem 1.4	20.31 (0.27)	87.99 (0.05)	26.13 (0.26)	47.70 (0.66)
topp 0.8	26.54 (0.24)	91.40 (0.07)	54.20 (0.37)	33.69 (0.33)
topp 0.85	26.26 (0.54)	91.43 (0.03)	50.08 (0.44)	35.27 (0.29)
topp 0.9	26.07 (0.39)	91.18 (0.03)	46.56 (0.84)	36.22 (0.24)
topp 0.95	25.31 (0.49)	90.91 (0.12)	42.79 (0.33)	38.02 (0.30)
topp 1.0	24.64 (0.36)	90.00 (0.22)	37.71 (0.39)	40.25 (0.36)
beam 1 penalty 0.6	27.06	86.64	56.95	44.75
beam 1 penalty 0.8	26.47	85.73	52.18	47.79
beam 1 penalty 1.0	26.11	84.31	47.93	51.56
beam 2 penalty 0.6	25.87	84.10	58.35	48.94
beam 2 penalty 0.8	24.79	83.24	55.56	51.23
beam 2 penalty 1.0	24.45	82.52	51.93	54.75

Table 16: SQuAD2: Standard decoding baseline results

Hyperparameters	Quality Metrics		Diversity	Metrics
	O. BLEU↑	UniEval (%)↑	P. BLEU ↓	Vendi (%) ↑
tem 0.6	28.38 (0.21)	91.55 (0.01)	59.40 (1.00)	32.87 (0.12)
tem 0.8	27.29 (0.19)	91.16 (0.06)	47.49 (0.14)	36.83 (0.43)
tem 1.0	25.29 (0.42)	90.47 (0.07)	36.93 (0.79)	40.44 (0.33)
tem 1.2	22.58 (0.30)	88.75 (0.13)	29.02 (0.09)	45.62 (0.65)
tem 1.4	19.41 (0.56)	85.71 (0.22)	20.54 (0.20)	52.42 (0.17)
topp 0.8	27.34 (0.44)	91.24 (0.06)	49.01 (0.38)	35.82 (0.29)
topp 0.85	26.65 (0.22)	91.10 (0.02)	44.65 (0.89)	37.72 (0.17)
topp 0.9	26.04 (0.59)	90.81 (0.06)	41.61 (0.69)	39.14 (1.02)
topp 0.95	25.92 (0.57)	90.49 (0.11)	37.74 (0.38)	40.96 (0.44)
topp 1.0	23.59 (0.08)	89.15 (0.04)	32.44 (0.27)	44.10 (0.44)
beam 1 penalty 0.6	27.76	88.19	56.82	46.40
beam 1 penalty 0.8	26.31	86.88	50.36	50.26
beam 1 penalty 1.0	26.38	86.48	47.89	51.94
beam 2 penalty 0.6	26.15	87.74	59.80	48.86
beam 2 penalty 0.8	25.59	86.34	57.50	50.88
beam 2 penalty 1.0	23.80	85.25	56.67	52.77

Table 17: SQuAD 2: Soft prompt tuning results, to be compared with the standard decoding baseline

Method	Qualit	ty Metrics	Diversity Metrics	
	O. BLEU↑	UniEval (%)↑	P. BLEU↓	Vendi (%) ↑
gpt-4o-mini	17.30	91.74	65.19	16.84
Temperature Sampling	24.12	89.88	39.51	18.27
Ours (temp)	23.53	88.87	33.87	20.00
Top-p Sampling	25.13	89.97	43.18	17.53
Ours (top-p)	24.30	89.28	38.12	18.45
Diverse Beam Search	18.66	85.46	51.86	49.00
Ours (beam)	19.73	86.91	50.78	50.79
Ours	24.12	89.88	39.51	18.27
Randomly initialized soft prompt	22.93	87.29	36.55	25.97
Hidden state noise injection	24.05	89.94	39.76	18.24

Table 18: SQuAD 2: Comparison between soft prompt tuning method with other baselines

Hyperparameters	Quality N	Metrics	Diversity Metrics		
	Validity (%) ↑	Ans. Loss ↓	NCircle (h=0.75) (%) ↑	Vendi (%) ↑	
tem 0.6	99.79 (0.05)	2.28 (0.00)	16.42 (0.47)	4.13 (0.02)	
tem 0.8	99.52 (0.13)	2.27 (0.01)	27.21 (0.22)	5.60 (0.08)	
tem 1.0	98.94 (0.07)	2.27 (0.00)	43.59 (0.46)	7.12 (0.06)	
tem 1.2	97.97 (0.14)	2.27 (0.00)	61.74 (0.79)	8.71 (0.10)	
tem 1.4	95.09 (0.37)	2.28 (0.01)	76.93 (0.42)	10.25 (0.09)	
topp 0.8	99.61 (0.07)	2.28 (0.00)	23.88 (0.27)	4.71 (0.03)	
topp 0.85	99.34 (0.09)	2.27 (0.00)	28.24 (0.17)	5.19 (0.04)	
topp 0.9	99.27 (0.06)	2.27 (0.00)	34.62 (0.12)	5.84 (0.04)	
topp 0.95	99.01 (0.06)	2.26 (0.00)	43.68 (0.10)	6.45 (0.03)	
topp 1.0	97.54 (0.15)	2.28 (0.00)	54.63 (0.70)	7.17 (0.01)	
beam 1 penalty 0.6	94.82	2.37	63.48	14.49	
beam 1 penalty 0.8	92.60	2.41	69.42	16.52	
beam 1 penalty 1.0	89.98	2.44	71.22	17.94	
beam 2 penalty 0.6	94.26	2.43	50.40	12.57	
beam 2 penalty 0.8	92.06	2.45	52.86	13.94	
beam 2 penalty 1.0	88.88	2.48	52.54	15.32	

Table 19: Desc-Mol: Standard decoding baseline results

Hyperparameters	Quality N	Metrics	Diversity Metrics		
	Validity (%) ↑	Ans. Loss ↓	NCircle (h=0.75) (%) ↑	Vendi (%) ↑	
tem 0.6	99.71 (0.01)	2.29 (0.00)	15.65 (0.03)	4.01 (0.01)	
tem 0.8	99.44 (0.00)	2.27 (0.00)	27.27 (0.01)	5.18 (0.00)	
tem 1.0	98.93 (0.01)	2.27 (0.00)	43.77 (0.03)	6.38 (0.00)	
tem 1.2	97.72 (0.02)	2.27 (0.00)	63.34 (0.06)	7.44 (0.00)	
tem 1.4	94.59 (0.02)	2.29 (0.00)	78.21 (0.01)	8.07 (0.01)	
topp 0.8	99.66 (0.00)	2.28 (0.00)	24.25 (0.01)	4.60 (0.01)	
topp 0.85	99.55 (0.01)	2.27 (0.00)	28.35 (0.02)	5.16 (0.00)	
topp 0.9	99.13 (0.02)	2.26 (0.00)	35.84 (0.04)	5.84 (0.01)	
topp 0.95	98.94 (0.00)	2.27 (0.00)	43.79 (0.02)	6.38 (0.00)	
topp 1.0	97.49 (0.04)	2.29 (0.00)	56.42 (0.13)	7.04 (0.00)	
beam 1 penalty 0.6	94.18	2.39	64.74	14.40	
beam 1 penalty 0.8	92.46	2.42	70.56	16.28	
beam 1 penalty 1.0	90.72	2.45	73.02	18.08	
beam 2 penalty 0.6	93.72	2.44	50.84	12.35	
beam 2 penalty 0.8	91.46	2.45	52.14	13.74	
beam 2 penalty 1.0	89.40	2.48	52.18	15.04	

Table 20: Desc-Mol: Soft prompt tuning results, to be compared with the standard decoding baseline

Method	Quality I	Metrics	Diversity Metrics	
	Validity (%) ↑	Ans. Loss ↓	NCircle (h=0.75) (%) ↑	Vendi (%) ↑
gpt-4o-mini	72.83	1.97	46.40	30.99
Temperature Sampling	97.99	2.36	63.16	7.20
Ours (temp)	97.67	2.36	64.68	7.20
Top-p Sampling	97.57	2.37	56.35	7.10
Ours (top-p)	97.39	2.37	56.73	7.00
Diverse Beam Search	98.14	2.46	70.24	18.45
Ours (beam)	98.29	2.47	71.30	16.22
Ours	97.67	2.36	64.68	7.20
Randomly initialized soft prompt	97.33	2.36	63.67	7.20
Hidden state noise injection	96.03	2.36	67.46	8.60

Table 21: Desc-Mol: Comparison between soft prompt tuning method with other baselines

Hyperparameters	Quality N	1etrics	Diversity Metrics		
	Tanimoto Sim. ↑	Confidence ↑	NCircle (h=0.75) (%) ↑	Vendi (%) ↑	
tem 0.6	0.49 (0.00)	0.42 (0.00)	5.95 (0.03)	3.19 (0.01)	
tem 0.8	0.46 (0.00)	0.40(0.00)	8.65 (0.10)	3.80 (0.01)	
tem 1.0	0.42 (0.00)	0.38 (0.00)	12.51 (0.13)	4.55 (0.02)	
tem 1.2	0.37 (0.00)	0.35 (0.00)	18.91 (0.07)	5.37 (0.02)	
tem 1.4	0.32 (0.00)	0.31 (0.00)	28.56 (0.28)	6.21 (0.01)	
topp 0.8	0.47 (0.00)	0.41 (0.00)	7.06 (0.08)	3.56 (0.01)	
topp 0.85	0.45 (0.00)	0.40 (0.00)	8.60 (0.16)	3.85 (0.00)	
topp 0.9	0.44 (0.00)	0.39 (0.00)	10.17 (0.07)	4.17 (0.00)	
topp 0.95	0.42 (0.00)	0.38 (0.00)	12.63 (0.03)	4.56 (0.01)	
topp 1.0	0.38 (0.00)	0.36 (0.00)	17.86 (0.10)	5.04 (0.03)	
beam 1 penalty 0.6	0.21	0.29	43.85	13.54	
beam 1 penalty 0.8	0.18	0.28	51.97	15.58	
beam 1 penalty 1.0	0.16	0.28	57.58	17.26	
beam 2 penalty 0.6	0.20	0.29	35.93	12.20	
beam 2 penalty 0.8	0.16	0.30	42.05	13.60	
beam 2 penalty 1.0	0.15	0.31	45.27	15.08	

Table 22: FS-Mol: Standard decoding baseline results

Hyperparameters	Quality M	Ietrics	Diversity Metrics		
	Tanimoto Sim. ↑	Confidence ↑	NCircle (h=0.75) (%) ↑	Vendi (%) ↑	
tem 0.6	0.47 (0.01)	0.44 (0.01)	6.86 (0.17)	3.43 (0.05)	
tem 0.8	0.43 (0.00)	0.42 (0.01)	9.80 (0.27)	4.14 (0.10)	
tem 1.0	0.40 (0.01)	0.40 (0.01)	14.76 (0.17)	4.91 (0.01)	
tem 1.2	0.35 (0.01)	0.37 (0.01)	21.81 (0.04)	5.78 (0.01)	
tem 1.4	0.30 (0.00)	0.33 (0.01)	32.30 (0.13)	6.63 (0.03)	
topp 0.8	0.44 (0.00)	0.42 (0.02)	8.54 (0.27)	3.96 (0.08)	
topp 0.85	0.43 (0.00)	0.42 (0.02)	9.93 (0.36)	4.23 (0.05)	
topp 0.9	0.41 (0.01)	0.40 (0.01)	11.91 (0.15)	4.56 (0.06)	
topp 0.95	0.40 (0.01)	0.40 (0.02)	14.72 (0.17)	4.92 (0.02)	
topp 1.0	0.36 (0.01)	0.38 (0.02)	20.46 (0.03)	5.49 (0.01)	
beam 1 penalty 0.6	0.20	0.31	45.82	13.98	
beam 1 penalty 0.8	0.17	0.31	52.78	16.09	
beam 1 penalty 1.0	0.15	0.31	57.07	17.75	
beam 2 penalty 0.6	0.18	0.33	37.29	13.02	
beam 2 penalty 0.8	0.15	0.34	42.67	14.46	
beam 2 penalty 1.0	0.14	0.34	45.74	15.85	

Table 23: FS-Mol: Soft prompt tuning results, to be compared with the standard decoding baseline

Method	Quality M	Ietrics	Diversity Metrics	
	Tanimoto Sim. ↑	Confidence ↑	NCircle (h=0.75) (%) ↑	Vendi (%) ↑
gpt-4o-mini	0.10	0.08	1.81	2.41
Temperature Sampling	0.38	0.36	19.00	5.43
Ours (temp)	0.35	0.36	21.42	5.81
Top-p Sampling	0.39	0.37	17.82	5.10
Ours (top-p)	0.36	0.37	19.99	5.50
Diverse Beam Search	0.18	0.29	52.41	15.46
Ours (beam)	0.17	0.31	52.94	15.92
Ours	0.35	0.36	21.42	5.81
Randomly initialized soft prompt	0.34	0.34	22.13	5.73
Hidden state noise injection	0.31	0.33	26.01	7.51

Table 24: FS-Mol: Comparison between soft prompt tuning method with other baselines.