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ABSTRACT

Transformer-based architectures have recently demonstrated remarkable perfor-
mance in various vision tasks by capturing global contextual relationships through
self-attention. However, this success comes at a high computational cost, as the
self-attention mechanism scales quadratically with the number of visual tokens,
limiting its scalability to high-resolution inputs and real-time applications. Al-
though several recent efforts have aimed to reduce this complexity via token prun-
ing or condensation, these methods often rely on heuristic importance scores or
non-differentiable selection strategies, which can lead to suboptimal performance
and lack of generalizability across tasks. To address these limitations, we propose
AdaptiVision, a flexible and efficient Vision Transformer architecture designed to
dynamically adapt the token set throughout the network. At the core of Adap-
tiVision is a differentiable token condensation module based on clustering, which
groups semantically similar tokens and allows the model to retain only the most
informative and representative ones while discarding redundancies. To guide this
condensation process, we introduce a semantic guidance mechanism that incor-
porates auxiliary semantic signals (such as saliency or label-based cues) to pre-
serve task-relevant structures during token reduction. Furthermore, we design
auxiliary consistency and stability objectives that promote coherent token cluster-
ing across layers and inputs, enabling better generalization and robustness with-
out sacrificing performance. We conduct extensive experiments across multiple
challenging benchmarks to validate the effectiveness of our model. Notably, on
the ImageNet-1K dataset, our proposed AdaptiVision achieves the highest Top-
1 accuracy (79.8%) among comparable vision transformers while substantially
reducing the number of parameters and FLOPs, demonstrating superior accuracy-
efficiency trade-offs.

1 INTRODUCTION

Vision transformers (ViTs) have recently emerged as a powerful alternative to convolutional neural
networks (CNNs) in a variety of computer vision tasks, including image classification Dosovitskiy
et al. (2021a); Yuan et al. (2021), object detection Carion et al. (2020); Zhang et al. (2022), and
semantic segmentation Strudel et al. (2021). Unlike CNNs, which exploit local spatial priors us-
ing shared convolutional filters, ViTs partition an image into a sequence of fixed-size patches and
process them as tokens through global self-attention mechanisms. This architecture enables ViTs to
model long-range dependencies effectively, resulting in strong performance across diverse bench-
marks. However, the strength of ViTs comes at a significant computational cost: the self-attention
operation has a quadratic complexity with respect to the number of tokens. Consequently, standard
ViTs become prohibitively expensive for high-resolution images or real-time applications, where
latency and efficiency are critical constraints.

A growing body of research has sought to reduce the token burden in ViTs through various com-
pression, pruning, and routing mechanisms. One line of work focuses on token pruning strategies,
such as DynamicViT Rao et al. (2021a) and Evo-ViT Xu et al. (2022), which dynamically drop less
important tokens based on learned attention scores. While effective in reducing computation, these
methods risk discarding semantically important tokens, particularly in early training stages where
attention may be noisy or misaligned with task objectives. Other methods like TokenLearner Ryoo
et al. (2021) and ToMe Bolya et al. (2023) propose learnable modules that merge or reweigh tokens,
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reducing token count by generating a condensed representation. Although these techniques preserve
more information than hard pruning, they often rely on heuristic or handcrafted criteria for merging
and require careful tuning to balance performance and efficiency. Furthermore, approaches such
as PVT Wang et al. (2021) and Swin Transformer Liu et al. (2021) adopt hierarchical structures to
reduce token resolution at deeper stages, analogous to CNN pyramids, but at the cost of architectural
complexity and limited modularity.

These baseline models highlight an essential challenge in ViT compression: the need for a principled
mechanism that reduces token redundancy while preserving semantic content and being flexible
enough to generalize across tasks. Most existing approaches rely solely on visual information to
determine token importance, overlooking the fact that in many scenarios, external semantic cues,
such as object annotations, spatial priors, or auxiliary modality embeddings, can offer valuable
guidance in shaping token-level representations. However, incorporating such guidance into the
token compression process remains largely unexplored. Moreover, few existing models enforce
consistency or stability in token selection across augmentations or similar inputs, which can lead to
erratic behavior and hinder training convergence.

Motivated by these limitations, we propose AdaptiVision, a flexible and efficient vision transformer
framework that unifies dynamic token condensation, semantic guidance integration, and auxiliary
supervision into a single, scalable architecture. The core component of AdaptiVision is a Dynamic
Token Condensation (DTC) module that clusters input tokens into a set of representative super-
tokens in a data-driven manner. Unlike pruning or merging strategies that rely on fixed importance
scores, DTC performs differentiable soft clustering to preserve semantic fidelity while drastically re-
ducing the token count. This allows AdaptiVision to adapt its granularity based on input complexity,
retaining fine-grained detail where necessary and coarsening simpler regions.

To enhance token condensation, AdaptiVision incorporates a semantic guidance branch that injects
external task-specific signals—such as class labels, masks, or learned embeddings—into the clus-
tering process. These signals are projected into a latent space and integrated via cross-attention or
fusion, enabling the model to leverage supervision when available while gracefully degrading when
guidance is missing or noisy. Additionally, two auxiliary losses are employed: a clustering consis-
tency loss to stabilize token-to-cluster assignments across augmentations, and a guidance alignment
loss to align clusters with external semantic cues, improving generalization and robustness. Eval-
uations on ImageNet-1K, COCO, and ADE20K show that AdaptiVision achieves comparable or
superior performance with fewer tokens and lower computational cost than baseline ViTs. In sum-
mary, our key contributions are:

1. We introduce AdaptiVision, a novel vision transformer framework that employs a differen-
tiable token condensation strategy grounded in semantic clustering. This enables adaptive
reduction of input tokens while maintaining essential semantic structures, significantly re-
ducing computational overhead.

2. We introduce a semantic guidance mechanism that integrates auxiliary information into the
condensation process, enhancing model flexibility.

3. We design principled auxiliary loss objectives that encourage stable and semantically mean-
ingful token assignments across transformer layers. These objectives improve the model’s
generalization and consistency across various data distributions.

4. We conduct comprehensive experiments on multiple vision tasks to validate the effective-
ness, efficiency, and generalizability of AdaptiVision compared to strong baselines.

2 RELATED WORKS

Vision Transformers. Transformer architectures, originally introduced for natural language pro-
cessing tasks Vaswani et al. (2017), have demonstrated remarkable capability in modeling long-
range dependencies through self-attention mechanisms, effectively replacing traditional recurrent
networks. Motivated by this success, transformers have been adapted to computer vision, achieving
competitive performance with convolutional neural networks (CNNs) in image classification Doso-
vitskiy et al. (2021a); Liu et al. (2021); Rao et al. (2021b); Zhou et al. (2021), object detection
Carion et al. (2020), semantic segmentation Cheng et al. (2021); Zheng et al. (2021), and 3D vision
tasks Yu et al. (2021).
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The Vision Transformer (ViT) Dosovitskiy et al. (2021a) pioneered pure transformer-based image
classification by treating image patches as tokens, although it required large-scale pretraining for
competitive performance. Swin Transformer (Swin-T) Liu et al. (2021) introduced hierarchical fea-
ture maps and shifted windows to improve efficiency and scalability. More recent models, such as
LeMeViT Zhang et al. (2024) and ToFe-LV Zhang et al. (2025), focus on lightweight and adaptive
architectures to balance accuracy and computational cost. HiRED Arif et al. (2025) proposes hier-
archical refinement for detailed feature extraction, while token-mixing strategies like ToMe Bolya
et al. (2023) and DynamicViT Rao et al. (2021a) reduce computational overhead by selectively prun-
ing tokens. These models collectively form strong baselines in modern vision transformer research.

Token Reduction and Pruning. Despite their effectiveness, vision transformers suffer from high
computational costs due to the quadratic complexity of self-attention with respect to the number
of tokens Dosovitskiy et al. (2021a). Recognizing that many tokens correspond to background or
redundant information, several methods aim to reduce token count without sacrificing accuracy.
DynamicViT Rao et al. (2021a) employs gating modules to discard less informative tokens, while
TokenLearner Ryoo et al. (2021) condenses tokens using spatial attention, inspiring subsequent
works such as TokenFuser Kim et al. (2024) and DART Yin et al. (2025). Adaptive token pruning
methods, including AdaViT and A-ViT Yin et al. (2022), leverage attention entropy or learned binary
masks to dynamically select important tokens. Evo-ViT Xu et al. (2022) gradually prunes tokens
based on spatiotemporal similarity to maintain structural coherence. Reinforcement learning-based
strategies, such as IA-RED2 Pan et al. (2021), optimize pruning with interpretability-aware rewards.
Finally, UViT Zeng et al. (2025) and EfficientFormer Li et al. (2022) integrate token reduction with
architectural design to minimize FLOPs while preserving model performance.

3 METHOD

In this section, we present the architecture of AdaptiVision, designed for efficient and flexible visual
representation through semantic-aware token processing and cross-modal integration. The model
comprises three core components: Dynamic Token Clustering (DTC), AdaptiveFocus Attention
(AFA), and Cross-Modal Token Fusion (CMTF), all operating on a ViT-compatible tokenized in-
put.

Unlike conventional ViTs that tokenize images uniformly, AdaptiVision first partitions an image
into N non-overlapping patches, projects them into a D-dimensional embedding space, and adds
positional encodings. The DTC module then clusters semantically similar tokens into super-tokens,
reducing redundancy while preserving key information. These super-tokens are processed by AFA,
which selectively attends to content-relevant regions, improving both generalization and computa-
tional efficiency. Appendix A provides the theoretical analysis.

3.1 INPUT PROCESSING

To prepare visual data for efficient and structured representation within the AdaptiVision, the input
image X ∈ RH×W×C is divided into a sequence of N = H×W

P 2 non-overlapping patches of size
P × P . Each patch is flattened into a vector xi ∈ RP 2C and projected into a D-dimensional
embedding space using a learnable linear projection: zi = xiWp, Wp ∈ RP 2C×D.

To preserve spatial structure, we incorporate positional encodings Epos ∈ RN×D, resulting in the
initial token sequence:

Z0 = [z1, z2, . . . , zN ] + Epos. (1)

An optional [CLS] token is prepended when performing classification tasks. Additionally, the ar-
chitecture is designed to accommodate auxiliary tokens, such as those derived from external sensory
signals or guidance inputs, which are appended after encoding. These auxiliary tokens can be selec-
tively leveraged by later modules (e.g., CTF) for context-aware visual reasoning.

This input processing framework forms the foundation of AdaptiVision. A learnable linear pro-
jection maps raw image patches into compact, expressive embeddings, enhancing computational
efficiency. Positional embeddings preserve spatial structure, essential for spatially sensitive tasks.
The architecture also supports auxiliary tokens for incorporating contextual cues without altering
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the main visual pipeline. This flexible design improves AdaptiVision’s adaptability across a wide
range of tasks.

3.2 DYNAMIC TOKEN CLUSTERING (DTC)

Dynamic token clustering (DTC) is a core component of the AdaptiVision architecture, designed
to enhance computational efficiency by reducing the number of tokens processed in the transformer
pipeline. Instead of relying on all N input tokens, resulting from patch embedding, DTC compresses
the token sequence into a significantly smaller set of K ≪ N super-tokens, thereby alleviating the
quadratic computational cost of multi-head self-attention (MHSA).

To achieve this, we employ a differentiable soft k-means clustering mechanism. Each token zi ∈ RD

is softly assigned to one of K learned cluster centroids µk ∈ RD. The assignment weight is defined
as:

aik =
exp

(
−∥zi − µk∥2/τ

)∑K
j=1 exp (−∥zi − µj∥2/τ)

, (2)

where τ > 0 is a temperature parameter that controls the sharpness of the assignments. The resulting
super-tokens are computed as weighted aggregations:

sk =

N∑
i=1

aikzi, (3)

forming the output token sequence S = [s1, . . . , sK ] ∈ RK×D. Importantly, the value of K can be
dynamically adapted based on input complexity, such as token-level variance or entropy, to better
reflect the semantic richness of different image regions.

DTC reduces self-attention complexity from O(N2) to O(K2), improving AdaptiVision’s scala-
bility and efficiency. Unlike static approaches such as Swin Transformer’s fixed-window attention,
DTC performs content-adaptive token aggregation, assigning more clusters to semantically rich re-
gions and fewer to redundant areas. For each input, a complexity measure, such as the variance or
entropy of token embeddings, is computed to capture heterogeneity. The cluster count K is then
dynamically scaled within a predefined range [Kmin,Kmax] proportional to this complexity, ensur-
ing richer inputs receive more clusters while simpler inputs use fewer. These cluster counts are used
in a differentiable soft k-means procedure, producing variable-sized super-token sets that preserve
important information in complex regions while maintaining computational efficiency.

3.3 ADAPTIVEFOCUS ATTENTION (AFA)

AdaptiveFocus Attention (AFA) augments the standard MHSA mechanism by introducing a context-
aware modulation strategy, enabling more dynamic and input-sensitive attention. By leveraging
global contextual information, AFA incorporates a modulation matrix that adjusts attention weights
based on the overall characteristics of the input, allowing the model to effectively prioritize salient
and task-relevant regions.

Given a token sequence Sl ∈ RK×D at layer l, standard MHSA computes the query, key, and value
matrices:

Q = SlWQ, K = SlWK , V = SlWV . (4)

AFA enhances this by introducing a modulation matrix M ∈ RK×K , predicted by a lightweight
feedforward network fm conditioned on global contextual information:

G = Pool(Sl), M = fm(G), (5)

where G ∈ RD is a pooled global descriptor (e.g., mean-pooled token embeddings).

The attention scores are modulated as follows:

Ãj = softmax

(
QjKT

j√
dk

·M

)
Vj , (6)
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where M ∈ RK×K is the context-dependent modulation matrix that adjusts the attention distribu-
tion.

The final output of the attention layer is computed by concatenating the heads, applying a linear
projection, and adding a residual connection followed by layer normalization:

Sl+1 = LayerNorm
(
Sl + Concat(Ã1, . . . , Ãh)WO

)
. (7)

AFA dynamically modulates attention weights using global statistics G, allowing the model to em-
phasize task-relevant regions and suppress less informative content, unlike standard ViTs, which
treat all tokens equally. This results in more selective and robust attention. The lightweight, fully dif-
ferentiable design enables seamless integration and end-to-end training, enhancing AdaptiVision’s
generalization, feature discrimination, and cross-domain robustness.

3.4 CROSS-MODAL TOKEN FUSION (CMTF)

The cross-modal token fusion (CMTF) module facilitates the integration of auxiliary guidance infor-
mation, such as text embeddings, depth cues, or other contextual signals, into the token stream of the
visual backbone. Given auxiliary tokens Gt ∈ RM×D and the super-token sequence Sl ∈ RK×D at
layer l, a cross-attention mechanism is applied to align and fuse these representations:

Q = SlWQc , K = GtWKc , V = GtWVc , (8)

Ac = softmax
(
QKT

√
dk

)
V, (9)

where WQc ,WKc ,WVc ∈ RD×dk are learnable projection matrices.

To regulate the contribution of auxiliary information, a gating mechanism is introduced:

S′
l = Sl + σ(AcWg), (10)

where Wg ∈ Rdk×D is a trainable weight matrix and σ denotes the sigmoid activation function.

This mechanism enables the network to dynamically integrate auxiliary guidance into the visual
token representation while preserving the simplicity of the core architecture. In contrast to con-
ventional approaches that rely on complex multi-branch designs, CMTF provides a lightweight and
efficient solution that enhances the model’s adaptability across a wide range of tasks. Moreover, the
inclusion of a gating mechanism ensures that the influence of external signals is effectively regu-
lated, allowing the model to maintain robust performance even in the absence of auxiliary inputs.

3.5 OUTPUT STAGE

The final output stage of the model is designed for flexibility and efficiency across a wide spectrum
of vision tasks. For classification, a compact global representation is extracted from either the [CLS]
token or the pooled set of super-tokens SL at the final layer:

zout = Pool(SL)

y = Wo · LayerNorm(zout) (11)

This stage seamlessly supports both standard classification and more complex downstream tasks,
such as object detection or semantic segmentation, by appending task-specific heads. By operating
on the reduced token set produced by the DTC module, the output stage ensures computational
efficiency without compromising representational quality. The use of layer normalization and a final
linear projection preserves compatibility with established ViTs, allowing AdaptiVision to remain
robust and adaptable across a wide variety of vision applications.

3.6 TRAINING OBJECTIVE

The training objective of the proposed AdaptiVision framework is formulated to jointly optimize
three aspects critical to robust performance across vision tasks: task-specific accuracy, structural
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consistency of token representations, and alignment with auxiliary modalities when available. The
total loss function is defined as:

L = LCE + λ1Lcluster + λ2Lalign, (12)
where LCE denotes the standard cross-entropy loss used for classification tasks, ensuring that the
model learns accurate label predictions based on the final representation. Given the predicted class
probabilities ŷi and ground truth labels yi, this loss is computed as:

LCE = −
N∑
i=1

yi log(ŷi). (13)

The second component, Lcluster, is a clustering consistency loss that enhances the stability and se-
mantic coherence of the token grouping process within the DTC module. It ensures that tokens zi are
tightly clustered around their respective cluster centroids µk, encouraging structurally meaningful
token representations. It is defined as:

Lcluster =

K∑
k=1

N∑
i=1

aik ∥zi − µk∥2 , (14)

where aik is an assignment coefficient indicating the degree to which token zi belongs to cluster k,
µk is the centroid of cluster k, and N is the total number of tokens.

The third component, Lalign, is an optional alignment loss that encourages visual representations
to align with auxiliary inputs (e.g., text or depth maps). Based on contrastive learning, it pulls
positive pairs—consisting of the pooled visual output zout and its corresponding auxiliary embedding
gt—closer in the embedding space, while pushing negative pairs g′t from other instances apart.
Formally, the loss maximizes similarity for (zout, gt) and minimizes it for (zout, g

′
t), using a similarity

metric such as cosine similarity with temperature scaling to control the sharpness of the distribution.
Mathematically:

Lalign = − log
exp(sim(zout, gt)/τ)

exp(sim(zout, gt)/τ) +
∑

g′
t
exp(sim(zout, g′t)/τ)

, (15)

where τ is a temperature hyperparameter and sim(·, ·) denotes the similarity function. This formula-
tion ensures the model learns semantic alignment across modalities by explicitly contrasting relevant
positive pairs against semantically unrelated negatives sampled in-batch.

The hyperparameters λ1 and λ2 control the contributions of clustering consistency and alignment
with auxiliary guidance, respectively. Together, these terms encourage AdaptiVision to learn sta-
ble and discriminative representations while flexibly incorporating external signals when available,
improving adaptability and performance across diverse vision tasks.

4 EXPERIMENT

In this section, we extensively evaluate the proposed AdaptiVision framework across multiple stan-
dard vision benchmarks to assess its effectiveness, efficiency, and generalizability.

4.1 DATASETS

To evaluate the effectiveness and generalizability of AdaptiVision, we conduct experiments across
a diverse set of benchmark datasets spanning multiple vision tasks. For image classification, we
use CIFAR-10, CIFAR-100, Tiny ImageNet, and the large-scale ImageNet-1K. We also include the
Chest X-ray dataset to assess performance in a medical imaging context. For object detection, we
use the COCO2017 dataset, which contains complex scenes with multiple objects. For semantic
segmentation, we utilize ADE20K, a challenging dataset with 150 classes and dense annotations.

4.2 IMPLEMENTATION DETAILS

Our proposed AdaptiVision framework is implemented using the PyTorch library. All models are
trained on NVIDIA A4500 GPUs with mixed-precision training enabled for efficiency. For consis-
tent evaluation, we compare AdaptiVision with a range of competitive baseline models, including
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ViT Dosovitskiy et al. (2021b), Swin-T Liu et al. (2021), LeMeViT Zhang et al. (2024), ToFe-LV
Zhang et al. (2025), HiRED Arif et al. (2025), ToMe Bolya et al. (2023) and DynamicViT Rao et al.
(2021a), following the same training and evaluation protocols as used in their original implemen-
tations. We use the AdamW optimizer with a cosine annealing learning rate schedule. The base
learning rate is set to 5e-4, and weight decay to 0.05. All models are trained for 300 epochs.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS ON MULTIPLE BENCHMARKS

Table 1 showcases a detailed comparison of the proposed AdaptiVision model across four diverse
datasets: CIFAR-10, CIFAR-100, TinyImageNet, and ChestX-ray. The evaluation is performed us-
ing Top-1 accuracy, Top-5 accuracy, and throughput (measured in images per second). Across all
datasets, AdaptiVision consistently achieves superior performance while maintaining lower com-
putational complexity in terms of parameters and FLOPs. On CIFAR-10, AdaptiVision attains a
Top-1 accuracy of 98.9% and a Top-5 accuracy of 99.9%, which are the highest among all compared
methods. Additionally, it records the highest throughput at 712 images per second, highlighting
its efficiency. This performance trend continues on the CIFAR-100 dataset, where AdaptiVision
achieves a Top-1 accuracy of 89.7% and a Top-5 accuracy of 99.5%, again outperforming all base-
lines. It also maintains the highest throughput at 700 images per second, demonstrating its ability
to scale across datasets of increasing complexity. Similarly, on the TinyImageNet dataset, Adap-
tiVision delivers a Top-1 accuracy of 79.2% and a Top-5 accuracy of 95.0%, outperforming existing
models while maintaining a strong inference speed of 685 images per second. On the ChestX-ray
dataset, which involves real-world medical imaging, the model achieves the highest classification
performance with a Top-1 accuracy of 95.1%, further emphasizing its robustness and applicability
to critical domains. Overall, AdaptiVision demonstrates a favorable balance between accuracy and
computational efficiency, setting a new benchmark in adaptive vision transformer design.

Table 1: Comparison of AdaptiVision with state-of-the-art models across multiple datasets in terms
of Top-1 Accuracy, Top-5 Accuracy, and Throughput (images/second) (Thpt).

Model Params (M) FLOPs (G) CIFAR-10 CIFAR-100 TinyImageNet ChestX-ray (Top-1)
Top-1 Top-5 Thpt Top-1 Top-5 Thpt Top-1 Top-5 Thpt (%)

ViT 86.0 17.6 98.0 99.8 475 87.1 98.9 460 74.2 93.0 450 92.6
Swin-T 28.3 4.5 98.3 99.8 624 88.0 99.1 610 76.2 93.7 598 93.4
DynamicViT 27.0 3.4 98.4 99.8 655 88.3 99.2 643 77.1 94.0 625 94.0
LeMeViT 30.0 4.2 98.5 99.8 640 88.5 99.2 622 77.4 94.2 608 94.2
ToFe-LV 26.0 3.3 98.6 99.9 670 89.0 99.3 655 78.1 94.4 640 94.4
HiRED 24.5 3.4 98.7 99.9 685 89.2 99.4 670 78.3 94.6 652 94.5
ToMe 25.8 3.1 97.8 99.5 618 88.4 98.6 620 77.8 94.8 663 93.6
AdaptiVision (Ours) 18.2 3.1 98.9 99.9 712 89.7 99.5 700 79.2 95.0 685 95.1

Table 2: Top-1 Accuracy (%) and Throughput on ImageNet-1K
Model Params (M) FLOPs (G) Top-1 Acc (%)
ViT 86 17.6 77.9
Swin-T 28.3 4.5 78.4
DynamiViT 27.0 3.4 78.6
LeMeViT 30 4.2 77.9
ToFe-LV 26 3.3 79.2
HiRED 24.5 3.4 78.9
ToMe 25.8 3.9 78.8
AdaptiVision (ours) 18.2 3.1 79.8

4.4 IMAGE CLASSIFICATION ON IMAGENET-1K

Table 2 presents a detailed comparison of the proposed AdaptiVision model against several state-
of-the-art Transformer-based vision architectures on the ImageNet-1K dataset. With only 18.2M
parameters and 3.1 GFLOPs, AdaptiVision achieves the highest Top-1 Accuracy of 79.8%, out-
performing recent efficient models such as ToFe-LV (79.2%, 3.3G FLOPs), HiRED (78.9%, 3.4G
FLOPs), and DynamicViT (78.6%, 3.4G FLOPs), while using fewer parameters and lower com-
putational cost. Compared to Swin-T (78.4%, 4.5G FLOPs) and LeMeViT (77.9%, 4.2G FLOPs),
AdaptiVision not only improves accuracy by a clear margin but also operates with significantly
lower FLOPs. Even against the original ViT model, which has 86M parameters and 17.6 GFLOPs,
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AdaptiVision provides a more efficient and lightweight alternative with better accuracy. These re-
sults highlight the effectiveness of AdaptiVision in balancing performance and computational effi-
ciency, making it a strong candidate for high-performance image classification tasks. The Fig. 1
(a) illustrates the performance of our proposed AdaptiVision model on the ImageNet-1K dataset
under varying FLOPs. AdaptiVision consistently outperforms existing methods like DynamicViT
and ToFe-LV, especially in low-computation settings, demonstrating superior accuracy-efficiency
trade-offs.

Figure 1: Comparison with previous models across three tasks under varying FLOPs constraints. (a)
ImageNet-1K for classification, (b) ADE20K for segmentation, and (c) Cityscapes for segmentation.
All methods follow identical token reduction settings. Our model consistently achieves superior
performance, especially under aggressive token compression.

4.5 SEMANTIC SEGMENTATION

We extend our evaluation to semantic segmentation tasks using the Segmenter-L/16 architecture as
the baseline. Our method, AdaptiVision, is integrated into the Vision Transformer block of Seg-
menter. For a fair comparison, we evaluate our model against existing token selection methods,
including Hourglass Liang et al. (2022a) and EViT Liang et al. (2022b), under varying FLOPs con-
figurations.

As illustrated in Fig. 1 (b) (ADE20k) and Fig. 1 (c) (Cityscapes), AdaptiVision consistently achieves
superior performance across a wide range of computational budgets. Notably, it maintains higher
mIoU with lower FLOPs, demonstrating the efficiency and effectiveness of our token selection strat-
egy. For instance, on ADE20k, AdaptiVision preserves up to 30% FLOPs reduction with negligible
performance loss, outperforming both EViT and Hourglass. On Cityscapes, it exceeds Hourglass
by 0.4% mIoU (78.8 vs. 78.4) under equivalent FLOPs, while offering a 25% lossless compres-
sion. These results highlight the strength of AdaptiVision in dense prediction tasks. Unlike token-
exclusive methods such as EViT, our many-to-many adaptive token preservation mechanism retains
critical spatial-semantic information, especially in lower-compression regimes. This capability plays
a pivotal role in sustaining model accuracy under constrained computational settings, proving the
robustness and adaptability of AdaptiVision for semantic segmentation.

Table 3: Detailed comparison for object detection on COCO.
Model Backbone GFLOPs ↓ FPS ↑ mAP ↑
DINO Swin-L 936 4.74 58.5
+Hourglass Swin-L 746 5.64 56.9
+AdaptiVision (Ours) Swin-L 734 5.72 57.3 (+0.4)

4.6 OBJECT DETECTION ON COCO

We evaluate AdaptiVision on object detection by integrating it with the Swin-L Zhang et al. (2022)
backbone in the DINO Zhang et al. (2022) detector. Unlike classification tasks, object detection does
not use class tokens, making many existing dynamic token pruning methods inapplicable. Therefore,
we compare AdaptiVision with the state-of-the-art Hourglass Liang et al. (2022a) under identical
compression settings.
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As reported in Table 3, AdaptiVision achieves a mAP of 57.3%, outperforming Hourglass by +0.4%
while also reducing GFLOPs and improving inference speed (FPS). These results demonstrate that
our matrix-efficient token selection effectively preserves performance in dense prediction tasks and
validate AdaptiVision’s scalability and generalizability to transformer-based backbones like Swin-L.

4.7 ABLATION STUDY

We conduct a thorough ablation study on the image classification task to assess the effectiveness
of our proposed AdaptiVision framework and analyze the impact of key hyperparameters. We also
present the generalization to out-of-distribution (OOD) experiments and the evaluation of individual
model components in Appendix B.

Effect of Temperature (τ ) in Token Transformation: We start by analyzing the impact of the
temperature parameter τ in the token transformation module on ImageNet-1K classification per-
formance. As presented in Table 4, the classification accuracy steadily improves as the temperature
increases from 1 to 150, reaching peak performance at τ = 150. Beyond this point, the improvement
plateaus, and performance slightly declines, indicating a saturation point in model sensitivity.

This trend supports our hypothesis: a very low temperature introduces excessive noise and weakens
discriminative capacity by preserving less informative tokens, while excessively high temperatures
tend to oversmooth the transformation, potentially filtering out relevant features. The optimal range
of τ lies between 100 and 200, demonstrating the robustness and stability of AdaptiVision to a broad
range of parameter settings.

Table 4: Influence of temperature τ on classification accuracy (%) for AdaptiVision.
Temperature τ 1 20 100 150 200 250
Accuracy (%) 74.5 79.2 79.5 79.7 79.5 79.4

Table 5: Ablation study on the effect of token reduction strategy in AdaptiVision on ImageNet-1K.
Model Acc (%) FLOPs (G)
No pruning 78.0 4.6
Random pruning 77.8 3.1
Importance-based (DynamicViT) 78.4 3.2
Semantic-aware (Ours) 79.8 3.1

Effect of Token Reduction Strategy in AdaptiVision: To evaluate the effectiveness of the token
reduction strategy in our proposed AdaptiVision model, we conduct a comprehensive ablation study
using ImageNet-1K. Table 5 presents a comparative analysis of various token reduction strategies,
including no pruning, random pruning, importance-based pruning (as used in DynamicViT), and our
proposed semantic-aware token condensation method.

Our semantic-aware token condensation method achieves the highest accuracy while maintaining
lower FLOPs, outperforming both random and importance-based pruning strategies. This demon-
strates that preserving semantically meaningful tokens leads to more informative and efficient rep-
resentations, highlighting the superiority of the AdaptiVision token reduction approach.

5 CONCLUSION

In this paper, we presented AdaptiVision, a flexible and efficient vision transformer framework de-
signed to tackle the computational overhead and semantic redundancy inherent in standard Vision
Transformer (ViT) architectures. Unlike prior token reduction approaches that depend on heuristic
scoring or class-token attention, AdaptiVision introduces a principled, semantic-aware token con-
densation mechanism that enables adaptive pruning based on both content relevance and structural
consistency. To further strengthen its performance, we incorporate an auxiliary guidance branch
and design auxiliary objectives that enforce clustering stability and semantic alignment, ensuring
robust token selection and better generalization across diverse tasks. Our method achieves state-of-
the-art results while reducing computational cost, demonstrating strong scalability and adaptabil-
ity. Overall, AdaptiVision provides a task-agnostic and semantically guided blueprint for building
efficient transformer-based vision models, paving the way for future advances in lightweight and
high-performance visual understanding.
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A THEORETICAL ANALYSIS

To formally establish the computational advantage of our proposed DTC module, we present the
following theorem, which quantifies the reduction in computational complexity achieved by Adap-
tiVision’s attention mechanism.
Theorem 1. Let N be the number of input tokens and K denote the number of super-tokens pro-
duced by the DTC module, where K ≪ N . The computational complexity of the MHSA mechanism
in ViTs is O(N2D), where D is the token embedding dimension. AdaptiVision reduces this com-
plexity to O(K2D), thereby offering a substantial gain in efficiency.

Proof. In a conventional ViT, each MHSA block operates on the full sequence of N tokens. Com-
puting the attention score matrix QKT ∈ RN×N across h heads incurs a computational cost of
O(N2D), which becomes a bottleneck as N grows.

AdaptiVision addresses this by applying DTC, which clusters the input tokens into K semantically
coherent super-tokens. The MHSA now operates on this reduced set, and the attention score com-
putation QKT ∈ RK×K requires only K2D operations. Even though the clustering step requires
O(NKD) operations for computing assignment weights and cluster centroids, this cost is signif-
icantly smaller than O(N2D) when K ≪ N , making it negligible in the overall computational
cost.

This theorem underpins the scalability of AdaptiVision by showing that DTC reduces attention com-
plexity to O(K2D), enabling efficient processing of longer sequences or high-resolution images
without loss of expressiveness. This efficiency allows AdaptiVision to perform competitively even
in resource-constrained or real-time settings.

B ADDITIONAL ABLATION STUDY

Generalization to Out-of-Distribution (OOD): To assess the robustness of our proposed Adap-
tiVision model against distributional shifts, we evaluate its performance on two challenging OOD
benchmarks: ImageNet-A and ImageNet-R. As shown in Table 6, AdaptiVision achieves notable
improvements over baseline Vision Transformer models, demonstrating its enhanced ability to gen-
eralize beyond the training distribution. This superior performance highlights the benefit of our
semantic-aware learning framework in improving model robustness under real-world conditions.

Table 6: Generalization to Out-of-Distribution (OOD) datasets: ImageNet-A and ImageNet-R
Model ImageNet-A (%) ImageNet-R (%)
ViT 41.0 62.8
DeiT 43.7 64.5
AdaptiVision (ours) 47.1 67.2

Table 7: Ablation study results on ImageNet-1K. Including each component improves accuracy
and/or efficiency.

Model Variant DTC AFA CMTF Top-1 Acc (%) FLOPs (G)

Baseline ViT ✗ ✗ ✗ 77.9 17.6
+ DTC ✓ ✗ ✗ 78.6 3.8
+ DTC + AFA ✓ ✓ ✗ 79.2 4.0
+ DTC + AFA + CMTF (Full) ✓ ✓ ✓ 79.8 3.1

Evaluation of Individual Model Components: To quantify the individual contributions of the
proposed modules, Dynamic Token Clustering (DTC), AdaptiveFocus Attention (AFA), and Cross-
Modal Token Fusion (CMTF), we conduct a comprehensive ablation study on the ImageNet-1K
dataset. Starting from a baseline vision transformer lacking these components, we progressively
add each module and evaluate their impact on Top-1 accuracy, computational complexity (FLOPs),

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

and inference throughput. This analysis highlights the complementary benefits and computational
trade-offs of each component.

As shown in Table 7, the baseline ViT achieves a Top-1 accuracy of 77.9% but at a high computa-
tional cost of 17.6 GFLOPs. Incorporating DTC drastically reduces FLOPs to 3.8 G, a nearly 80%
reduction, while also increasing accuracy to 78.6% by effectively condensing redundant tokens.
Adding AFA further improves accuracy to 79.2% by adaptively modulating attention, with only a
minor increase in FLOPs to 4.0 G. Finally, the full model with CMTF reaches the highest Top-1 ac-
curacy of 79.8%, demonstrating the benefit of integrating cross-modal semantic information, while
maintaining an efficient FLOPs of 3.1 G due to the synergy between DTC and CMTF.
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