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Abstract

Open-world semi-supervised learning aims at inferring both known and novel
classes in unlabeled data, by harnessing prior knowledge from a labeled set with
known classes. Despite its importance, there is a lack of theoretical foundations for
this problem. This paper bridges the gap by formalizing a graph-theoretic frame-
work tailored for the open-world setting, where the clustering can be theoretically
characterized by graph factorization. Our graph-theoretic framework illuminates
practical algorithms and provides guarantees. In particular, based on our graph
formulation, we apply the algorithm called Spectral Open-world Representation
Learning (SORL), and show that minimizing our loss is equivalent to performing
spectral decomposition on the graph. Such equivalence allows us to derive a prov-
able error bound on the clustering performance for both known and novel classes,
and analyze rigorously when labeled data helps. Empirically, SORL can match
or outperform several strong baselines on common benchmark datasets, which is
appealing for practical usage while enjoying theoretical guarantees. Our code is
available at https://github.com/deeplearning-wisc/sorl.

1 Introduction

Labeled Data
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Figure 1: Open-world Semi-supervised Learning
aims to correctly cluster samples in the novel class
and classify samples in the known classes by uti-
lizing knowledge from the labeled data. An open
question is “what is the role of the label informa-
tion in shaping representations for both known and
novel classes?” This paper aims to provide a for-
mal understanding.

Machine learning models in the open world in-
evitably encounter data from both known and
novel classes [2, 15, 16, 65, 79]. Traditional su-
pervised machine learning models are trained
on a closed set of labels, and thus can strug-
gle to effectively cluster new semantic concepts.
On the other hand, open-world semi-supervised
learning approaches, such as those discussed
in studies [7, 63, 69], enable models to distin-
guish both known and novel classes, making
them highly desirable for real-world scenarios.
As shown in Figure 1, the learner has access
to a labeled training dataset Dl (from known
classes) as well as a large unlabeled dataset Du

(from both known and novel classes). By opti-
mizing feature representations jointly from both
labeled and unlabeled data, the learner aims to
create meaningful cluster structures that corre-
spond to either known or novel classes. With the
explosive growth of data generated in various
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domains, open-world semi-supervised learning has emerged as a crucial problem in the field of
machine learning.

Motivation. Different from self-supervised learning [5, 8, 11, 12, 23, 26, 68, 77], open-world
semi-supervised learning allows harnessing the power of the labeled data for possible knowledge
sharing and transfer to unlabeled data, and from known classes to novel classes. In this joint learning
process, we argue that interesting intricacies can arise—the labeled data provided may be beneficial or
unhelpful to the resulting clusters. We exemplify the nuances in Figure 1. In one scenario, when the
model learns the labeled known classes (e.g., traffic light) by pushing red and green lights closer, such
a relationship might transfer to help cluster green and red apples into a coherent cluster. Alternatively,
when the connection between the labeled data and the novel class (e.g., flower) is weak, the benefits
might be negligible. We argue—perhaps obviously—that a formalized understanding of the intricate
phenomenon is needed.

Theoretical significance. To date, theoretical understanding of open-world semi-supervised learning
is still in its infancy. In this paper, we aim to fill the critical blank by analyzing this important learning
problem from a rigorous theoretical standpoint. Our exposition gravitates around the open question:
what is the role of labeled data in shaping representations for both known and novel classes? To
answer this question, we formalize a graph-theoretic framework tailored for the open-world setting,
where the vertices are all the data points and connected sub-graphs form classes (either known or
novel). The edges are defined by a combination of supervised and self-supervised signals, which
reflects the availability of both labeled and unlabeled data. Importantly, this graph facilitates the
understanding of open-world semi-supervised learning from a spectral analysis perspective, where
the clustering can be theoretically characterized by graph factorization. Based on the graph-theoretic
formulation, we derive a formal error bound by contrasting the clustering performance for all classes,
before and after adding the labeling information. Our Theorem 4.2 reveals the sufficient condition for
the improved clustering performance for a class. Under the K-means measurement, the unlabeled
samples in one class can be better clustered, if their overall connection to the labeled data is stronger
than their self-clusterability.

Practical significance. Our graph-theoretic framework also illuminates practical algorithms with
provided guarantees. In particular, based on our graph formulation, we present the algorithm called
Spectral Open-world Representation Learning (SORL) adapted from Sun et al. [64]. Minimizing this
loss is equivalent to performing spectral decomposition on the graph (Section 3.2), which brings two
key benefits: (1) it allows us to analyze the representation space and resulting clustering performance
in closed-form; (2) practically, it enables end-to-end training in the context of deep networks. We
show that our learning algorithm leads to strong empirical performance while enjoying theoretical
guarantees. The learning objective can be effectively optimized using stochastic gradient descent on
modern neural network architecture, making it desirable for real-world applications.

2 Problem Setup

We formally describe the data setup and learning goal of open-world semi-supervised learning [7].

Data setup. We consider the empirical training set Dl ∪ Du as a union of labeled and unlabeled data.

1. The labeled set Dl = {x̄i, yi}ni=1, with yi ∈ Yl. The label set Yl is known.

2. The unlabeled set Du = {x̄i}mi=1, where each sample x̄i can come from either known or
novel classes1. Note that we do not have access to the labels in Du. For mathematical
convenience, we denote the underlying label set as Yall, where Yl ⊂ Yall. We denote
C = |Yall| the total number of classes.

The data setup has practical value for real-world applications. For example, the labeled set is common
in supervised learning; and the unlabeled set can be gathered for free from the model’s operating
environment or the internet. We use Pl and P to denote the marginal distributions of labeled data and
all data in the input space, respectively. Further, we let Pli denote the distribution of labeled samples
with class label i ∈ Yl.

1This generalizes the problem of Novel Class Discovery [19, 22, 27, 28, 82, 83], which assumes the unlabeled
set is purely from novel classes.
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Learning target. Under the setting, our goal is to learn distinguishable representations for both
known and novel classes simultaneously. The representation quality will be measured using classic
metrics, such as K-means clustering accuracy, which we will define mathematically in Section 4.2.2.
Unlike classic semi-supervised learning [86], we place no assumption on the unlabeled data and
allow its semantic space to cover both known and novel classes. The problem is also referred to
as open-world representation learning [63], which emphasizes the role of good representation in
distinguishing both known and novel classes.

Theoretical analysis goal. We aim to comprehend the role of label information in shaping represen-
tations for both known and novel classes. It’s important to note that our theoretical approach aims to
understand the perturbation in the clustering performance by labeling existing, previously unlabeled
data points within the dataset. By contrasting the clustering performance before and after labeling
these instances, we uncover the underlying structure and relations that the labels may reveal. This
analysis provides invaluable insights into how labeling information can be effectively leveraged to
enhance the representations of both known and novel classes.

3 A Spectral Approach for Open-world Semi-Supervised Learning

In this section, we formalize and tackle the open-world semi-supervised learning problem from a
graph-theoretic view. Our fundamental idea is to formulate it as a clustering problem—where similar
data points are grouped into the same cluster, by way of possibly utilizing helpful information from
the labeled data Dl. This clustering process can be modeled by a graph, where the vertices are all
the data points and classes form connected sub-graphs. Specifically, utilizing our graph formulation,
we present the algorithm — Spectral Open-world Representation Learning (SORL) in Section 3.2.
The process of minimizing the corresponding loss is fundamentally analogous to executing a spectral
decomposition on the graph.

3.1 A Graph-Theoretic Formulation

We start by formally defining the augmentation graph and adjacency matrix. For clarity, we use x̄ to
indicate the natural sample (raw inputs without augmentation). Given an x̄, we use T (x|x̄) to denote
the probability of x being augmented from x̄. For instance, when x̄ represents an image, T (·|x̄) can
be the distribution of common augmentations [11] such as Gaussian blur, color distortion, and random
cropping. The augmentation allows us to define a general population space X , which contains all the
original images along with their augmentations. In our case, X is composed of augmented samples
from both labeled and unlabeled data, with cardinality |X | = N . We further denote Xl as the set of
samples (along with augmentations) from the labeled data part.

We define the graph G(X , w) with vertex set X and edge weights w. To define edge weights w, we
decompose the graph connectivity into two components: (1) self-supervised connectivity w(u) by
treating all points in X as entirely unlabeled, and (2) supervised connectivity w(l) by adding labeled
information from Pl to the graph. We proceed to define these two cases separately.

First, by assuming all points as unlabeled, two samples (x, x+) are considered a positive pair if:
Unlabeled Case (u): x and x+ are augmented from the same image x̄ ∼ P .

For any two augmented data x, x′ ∈ X , w(u)
xx′ denotes the marginal probability of generating the pair:

w
(u)
xx′ ≜ Ex̄∼PT (x|x̄)T (x′|x̄) , (1)

which can be viewed as self-supervised connectivity [11, 23]. However, different from self-supervised
learning, we have access to the labeled information for a subset of nodes, which allows adding
additional connectivity to the graph. Accordingly, the positive pair can be defined as:

Labeled Case (l): x and x+ are augmented from two labeled samples x̄l and x̄′
l with the same

known class i. In other words, both x̄l and x̄′
l are drawn independently from Pli .

Considering both case (u) and case (l), the overall edge weight for any pair of data (x, x′) is given by:

wxx′ = ηuw
(u)
xx′ + ηlw

(l)
xx′ ,where w

(l)
xx′ ≜

∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)T (x′|x̄′

l) , (2)
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and ηu, ηl modulates the importance between the two cases. The magnitude of wxx′ indicates the
“positiveness” or similarity between x and x′. We then use wx =

∑
x′∈X wxx′ to denote the total

edge weights connected to a vertex x.

Remark: A graph perturbation view. With the graph connectivity defined above, we can now
define the adjacency matrix A ∈ RN×N with entries Axx′ = wxx′ . Importantly, the adjacency matrix
can be decomposed into two parts:

A = ηuA
(u) + ηlA

(l) , (3)
Perturbation by adding labels

which can be regarded as the self-supervised adjacency matrix A(u) perturbed by additional labeling
information encoded in A(l). This graph perturbation view serves as a critical foundation for our
theoretical analysis of the clustering performance in Section 4. As a standard technique in graph
theory [14], we use the normalized adjacency matrix of G(X , w):

Ã ≜ D− 1
2AD− 1

2 , (4)

where D ∈ RN×N is a diagonal matrix with Dxx = wx. The normalization balances the degree of
each node, reducing the influence of vertices with very large degrees. The normalized adjacency
matrix defines the probability of x and x′ being considered as the positive pair from the perspective
of augmentation, which helps derive the learning loss as we show next.

3.2 SORL: Spectral Open-World Representation Learning

We present an algorithm called Spectral Open-world Representation Learning (SORL), which can
be derived from a spectral decomposition of Ã. The algorithm has both practical and theoretical
values. First, it enables efficient end-to-end training in the context of modern neural networks. More
importantly, it allows drawing a theoretical equivalence between learned representations and the
top-k singular vectors of Ã. Such equivalence facilitates theoretical understanding of the clustering
structure encoded in Ã. Specifically, we consider low-rank matrix approximation:

min
F∈RN×k

Lmf(F,A) ≜
∥∥∥Ã− FF⊤

∥∥∥2
F

(5)

According to the Eckart–Young–Mirsky theorem [17], the minimizer of this loss function is Fk ∈
RN×k such that FkF

⊤
k contains the top-k components of Ã’s SVD decomposition.

Now, if we view each row f⊤x of F as a scaled version of learned feature embedding f : X 7→ Rk,
the Lmf(F,A) can be written as a form of the contrastive learning objective. We formalize this
connection in Theorem 3.1 below2.

Theorem 3.1. We define fx =
√
wxf(x) for some function f . Recall ηu, ηl are coefficients defined

in Eq. (2). Then minimizing the loss function Lmf(F,A) is equivalent to minimizing the following
loss function for f , which we term Spectral Open-world Representation Learning (SORL):

LSORL(f) ≜ −2ηlL1(f)− 2ηuL2(f) + η2l L3(f) + 2ηlηuL4(f) + η2uL5(f), (6)

where

L1(f) =
∑
i∈Yl

E
x̄l∼Pli

,x̄′
l∼Pli

,

x∼T (·|x̄l),x
+∼T (·|x̄′

l)

[
f(x)⊤f

(
x+
)]

,L2(f) = E
x̄u∼P,

x∼T (·|x̄u),x
+∼T (·|x̄u)

[
f(x)⊤f

(
x+
)]

,

L3(f) =
∑

i,j∈Yl

E
x̄l∼Pli

,x̄′
l∼Plj

,

x∼T (·|x̄l),x
−∼T (·|x̄′

l)

[(
f(x)⊤f

(
x−))2] ,

L4(f) =
∑
i∈Yl

E
x̄l∼Pli

,x̄u∼P,

x∼T (·|x̄l),x
−∼T (·|x̄u)

[(
f(x)⊤f

(
x−))2] ,L5(f) = E

x̄u∼P,x̄′
u∼P,

x∼T (·|x̄u),x
−∼T (·|x̄′

u)

[(
f(x)⊤f

(
x−))2] .

2Theorem 3.1 is primarily adapted from Theorem 4.1 in [64]. However, there is a distinction in the data
setting, as Sun et al. [64] do not consider known class samples within the unlabeled dataset.
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Proof. (sketch) We can expand Lmf(F,A) and obtain

Lmf(F,A) =
∑

x,x′∈X

(
wxx′√
wxwx′

− f⊤x fx′

)2
= const+

∑
x,x′∈X

(
−2wxx′f(x)⊤f (x′) + wxwx′

(
f(x)⊤f (x′)

)2)
The form of LSORL(f) is derived from plugging wxx′ (defined in Eq. (1)) and wx. Full proof is in
Appendix A.

Interpretation of LSORL(f). At a high level, L1 and L2 push the embeddings of positive pairs to be
closer while L3, L4 and L5 pull away the embeddings of negative pairs. In particular, L1 samples
two random augmentation views of two images from labeled data with the same class label, and L2

samples two views from the same image in X . For negative pairs, L3 uses two augmentation views
from two samples in Xl with any class label. L4 uses two views of one sample in Xl and another one
in X . L5 uses two views from two random samples in X . This training objective, though bearing
similarities to NSCL [64], operates within a distinct problem domain. Accordingly, we derive novel
theoretical analysis uniquely tailored to our problem setting, which we present next.

4 Theoretical Analysis
So far we have presented a spectral approach for open-world semi-supervised learning based on graph
factorization. Under this framework, we now formally analyze: how does the labeling information
shape the representations for known and novel classes?

4.1 An Illustrative Example

We consider a toy example that helps illustrate the core idea of our theoretical findings. Specifically,
the example aims to distinguish 3D objects with different shapes, as shown in Figure 2. These
images are generated by a 3D rendering software [31] with user-defined properties including colors,
shape, size, position, etc. We are interested in contrasting the representations (in the form of singular
vectors), when the label information is either incorporated in training or not.

Data design. Suppose the training samples come from three types, X , X , X . Let X be the
sample space with known class, and X ,X be the sample space with novel classes. Further, the
two novel classes are constructed to have different relationships with the known class. Specifically,
X shares some similarity with X in color (red and blue); whereas another novel class X has
no obvious similarity with the known class. Without any labeling information, it can be difficult to
distinguish X from X since samples share common colors. We aim to verify the hypothesis
that: adding labeling information to X (i.e., connecting and ) has a larger (beneficial) impact
to cluster X than X .

(a) Definition of Augmentation Probability (b) Adjacency Matrix 
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Figure 2: An illustrative example for theoretical analysis. We consider a 6-node graph with one
known class (cube) and two novel classes (sphere, cylinder). (a) The augmentation probabilities
between nodes are defined by their color and shape in Eq. (7). (b) The adjacency matrix can then be
calculated by Equations in Sec. 3.1 where we let τ0 = 0, ηu = 6, ηl = 4. The calculation details are
in Appendix B. The magnitude order follows τ1 ≫ τc > τs > 0.
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Augmentation graph. Based on the data design, we formally define the augmentation graph, which
encodes the probability of augmenting a source image x̄ to the augmented view x:

T (x | x̄) =


τ1 if color(x) = color(x̄), shape(x) = shape(x̄);
τc if color(x) = color(x̄), shape(x) ̸= shape(x̄);
τs if color(x) ̸= color(x̄), shape(x) = shape(x̄);
τ0 if color(x) ̸= color(x̄), shape(x) ̸= shape(x̄).

(7)

With Eq. (7) and the definition of the adjacency matrix in Section 3.1, we can derive the analytic
form of A(u) and A, as shown in Figure 2(b). We refer readers to Appendix B for the detailed
derivation. The two matrices allow us to contrast the connectivity changes in the graph, before
and after the labeling information is added.Insights. We are primarily interested in analyzing the
difference of the representation space derived from A(u) and A. We visualize the top-3 eigenvectors3

of the normalized adjacency matrix Ã(u) and Ã in Figure 3(a), where the results are based on the
magnitude order τ1 ≫ τc > τs > 0. Our key takeaway is: adding labeling information to known
class X helps better distinguish the known class itself and the novel class X , which has a
stronger connection/similarity with X .

Qualitative analysis. Our theoretical insight can also be verified empirically, by learning represen-
tations on over 10,000 samples using the loss defined in Section 3.2. Due to the space limitation,
we include experimental details in Appendix E.1. In Figure 3(b), we visualize the learned features
through UMAP [43]. Indeed, we observe that samples become more concentrated around different
shape classes after adding labeling information to the cube class.
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empirical feature space of 
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Ã

Figure 3: Visualization of representation space for toy example. (a) Theoretically contrasting the feature formed
by top-3 eigenvectors of Ã(u) and Ã respectively. (b) UMAP visualization of the features learned without (left)
and with labeled information (right). Details are in Appendix B (eigenvector calculation) and Appendix E.1
(visualization setting).

4.2 Main Theory

The toy example offers an important insight that the added labeled information is more helpful for
the class with a stronger connection to the known class. In this section, we formalize this insight by
extending the toy example to a more general setting. As a roadmap, we derive the result through three
steps: (1) derive the closed-form solution of the learned representations; (2) define the clustering
performance by the K-means measure; (3) contrast the resulting clustering performance before and
after adding labels. We start by deriving the representations.

4.2.1 Learned Representations in Analytic Form

Representation without labels. To obtain the representations, one can train the neural network
f : X 7→ Rk using the spectral loss defined in Equation 6. We assume that the optimizer is
capable to obtain the representation Z(u) ∈ RN×k that minimizes the loss, where each row vector
zi = f(xi)

⊤. Recall that Theorem 3.1 allows us to derive a closed-form solution for the learned
feature space by the spectral decomposition of the adjacency matrix, which is Ã(u) in the case without
labeling information. Specifically, we have F

(u)
k =

√
D(u)Z(u), where F

(u)
k F

(u)⊤
k contains the

3When τ1 ≫ τc > τs > 0, the top-3 eigenvectors are almost equivalent to the feature embedding.
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top-k components of Ã(u)’s SVD decomposition and D(u) is the diagonal matrix defined based on
the row sum of A(u). We further define the top-k singular vectors of Ã(u) as V (u)

k ∈ RN×k, so we

have F
(u)
k = V

(u)
k

√
Σ

(u)
k , where Σ

(u)
k is a diagonal matrix of the top-k singular values of Ã(u). By

equalizing the two forms of F (u)
k , the closed-formed solution of the learned feature space is given by

Z(u) = [D(u)]−
1
2V

(u)
k

√
Σ

(u)
k .

Representation perturbation by adding labels. We now analyze how the representation is “per-
turbed” as a result of adding label information. We consider |Yl| = 14 to facilitate a better under-
standing of our key insight. We can rewrite A in Eq. 3 as:

A(δ) ≜ ηuA
(u) + δll⊤,

where we replace ηl to δ to be more apparent in representing the perturbation and define l ∈
RN , (l)x = Ex̄l∼Pl1

T (x|x̄l). Note that l can be interpreted as the vector of “the semantic connection
for sample x to the labeled data”. One can easily extend to r classes by letting l ∈ RN×r.

Here we treat the adjacency matrix as a function of the perturbation. In a similar manner as above,
we can derive the normalized adjacency matrix Ã(δ) and the feature representation Z(δ) in closed
form. The details are included in Appendix C.4.

4.2.2 Evaluation Target

With the learned representations, we can evaluate their quality by the clustering performance. Our
theoretical analysis of the clustering performance can well connect to empirical evaluation strategy in
the literature [75] using K-means clustering accuracy/error. Formally, we define the ground-truth
partition of clusters by Π = {π1, π2, ..., πC}, where πi is the set of samples’ indices with underlying
label yi and C is the total number of classes (including both known and novel). We further let
µπ = Ei∈πzi be the center of features in π, and the average of all feature vectors be µΠ = Ej∈[N ]zj .

The clustering performance of K-means depends on two measurements: Intra-class measure and
Inter-class measure. Specifically, we let the intra-class measure be the average Euclidean distance
from the samples’ feature to the corresponding cluster center and we measure the inter-class separation
as the distances between cluster centers:

Mintra-class(Π, Z) ≜
∑
π∈Π

∑
i∈π

∥zi − µπ∥2 ,Minter-class(Π, Z) ≜
∑
π∈Π

|π| ∥µπ − µΠ∥2 . (8)

Strong clustering results translate into low Mintra-class and high Minter-class. Thus we define the
K-means measure as:

Mkms(Π, Z) ≜ Mintra-class(Π, Z)/Minter-class(Π, Z). (9)

We also formally show in Theorem 4.1 that the K-means clustering error5 is asymptotically equivalent
to the K-means measure we defined above.
Theorem 4.1. (Relationship between the K-means measure and K-means error.) We define the
ξπ→π′ as the index set of samples that is from class division π however is closer to µπ′ than µπ . In
other word, ξπ→π′ = {i : i ∈ π, ∥zi − µπ∥2 ≥ ∥zi − µπ′∥2}. Assuming |ξπ→π′ | > 0, we define
below the clustering error ratio from π to π′ as Eπ→π′ and the overall cluster error ratio EΠ,Z as the
Harmonic Mean of Eπ→π′ among all class pairs:

EΠ,Z = C(C − 1)/

 ∑
π ̸=π′

π,π′∈Π

1

Eπ→π′

 ,where Eπ→π′ =
|ξπ→π′ |
|π′|+ |π| .

The K-means measure Mkms(Π, Z) has the same order of the Harmonic Mean of the cluster error
ratio between all cluster pairs with proof in Appendix C.3.

EΠ,Z = O(Mkms(Π, Z)).

4To understand the perturbation by adding labels from more than one class, one can take the summation of
the perturbation by each class.

5It is theoretically inconvenient to directly analyze the clustering error since it is a non-differentiable target.
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The K-means measure Mkms(Π, Z) have a nice matrix form as shown in Appendix C.2 which
facilitates theoretical analysis. Our analysis revolves around contrasting the resulting clustering
performance before and after adding labels as we will shown next.

4.2.3 Perturbation in Clustering Performance

With the evaluation target defined above, our main analysis will revolve around analyzing “how the
extra label information help reduces Mkms(Π, Z)”. Formally, we investigate the following error
difference, as a result of added label information:

∆kms(δ) = Mkms(Π, Z)−Mkms(Π, Z(δ)),

where the closed-form solution is given by the following theorem. Positive ∆kms(δ) means improved
clustering, as a result of adding labeling information.

Theorem 4.2. (Main result.) Denote V
(u)
∅ ∈ RN×(N−k) as the null space of V (u)

k and
Ã

(u)
k = V

(u)
k Σ

(u)
k V

(u)⊤
k as the rank-k approximation for Ã(u). Given δ, η1 > 0 and let Gk

as the spectral gap between k-th and k + 1-th singular values of Ã(u), we have:

∆kms(δ) = δη1 Tr
(
Υ
(
V

(u)
k V

(u)⊤
k ll⊤(I + V

(u)
∅ V

(u)⊤
∅ )− 2Ã

(u)
k diag(l)

))
+O(

1

Gk
+ δ2),

where diag(·) converts the vector to the corresponding diagonal matrix and Υ ∈ RN×N

is a matrix encoding the ground-truth clustering structure in the way that Υxx′ > 0 if x
and x′ has the same label and Υxx′ < 0 otherwise. The concrete form and the proof are in
Appendix C.4.

Theorem 4.2 is more general but less intuitive to understand. To gain a better insight, we introduce
Theorem 4.3 which provides more direct implications. We provide the justification of the assumptions
and the formal proof in Appendix C.5.

Theorem 4.3. (Intuitive result.) Assuming the spectral gap Gk is sufficiently large and l lies
in the linear span of V (u)

k . We also assume ∀πc ∈ Π,∀i ∈ πc, l(i) =: lπc which represents
the connection between class c to the labeled data. Given δ, η1, η2 > 0, we have:

∆kms(δ) ≥ δη1η2
∑
πc∈Π

|πc|lπc∆πc(δ),

where

∆πc(δ) = (lπc − 1
N ) − 2(1− |πc|

N
)( Ei∈πcEj∈πcz

⊤
i zj − Ei∈πcEj /∈πc

z⊤i zj ).

Connection from class c to the labeled data.

Intra-class similarity Inter-class similarity

Implications. In Theorem 4.3, we define the class-wise perturbation of the K-means measure as
∆πc

(δ). This way, we can interpret the effect of adding labels for a specific class c. If we desire
∆πc

(δ) to be large, the sufficient condition is that

connection of class c to the labeled data > intra-class similarity - inter-class similarity.

We use examples in Figure 1 to epitomize the core idea. Specifically, our unlabeled samples consist of
three underlying classes: traffic lights (known), apples (novel), and flowers (novel). (a) For unlabeled
traffic lights from known classes which are strongly connected to the labeled data, adding labels to
traffic lights can largely improve the clustering performance; (b) For novel classes like apples, it
may also help when they have a strong connection to the traffic light, and their intra-class similarity
is not as strong (due to different colors); (c) However, labeled data may offer little improvement
in clustering the flower class, due to the minimal connection to the labeled data and that flowers’
self-clusterability is already strong.
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5 Empirical Validation of Theory

Beyond theoretical insights, we show empirically that SORL is effective on standard benchmark
image classification datasets CIFAR-10/100 [35]. Following the seminal work ORCA [7], classes are
divided into 50% known and 50% novel classes. We then use 50% of samples from the known classes
as the labeled dataset, and the rest as the unlabeled set. We follow the evaluation strategy in [7] and
report the following metrics: (1) classification accuracy on known classes, (2) clustering accuracy on
the novel data, and (3) overall accuracy on all classes. More experiment details are in Appendix E.2.

Table 1: Main Results. Mean and std are estimated on five different runs. Baseline numbers are from [7, 63].

Method CIFAR-10 CIFAR-100
All Novel Known All Novel Known

FixMatch [37] 49.5 50.4 71.5 20.3 23.5 39.6
DS3L [21] 40.2 45.3 77.6 24.0 23.7 55.1
CGDL [62] 39.7 44.6 72.3 23.6 22.5 49.3
DTC [22] 38.3 39.5 53.9 18.3 22.9 31.3
RankStats [82] 82.9 81.0 86.6 23.1 28.4 36.4
SimCLR [11] 51.7 63.4 58.3 22.3 21.2 28.6

ORCA [7] 88.3±0.3 87.5±0.2 89.9±0.4 47.2±0.7 41.0±1.0 66.7±0.2

GCD [69] 87.5±0.5 86.7±0.4 90.1±0.3 46.8±0.5 43.4±0.7 69.7±0.4

OpenCon [63] 90.4 ±0.6 91.1±0.1 89.3±0.2 52.7±0.6 47.8±0.6 69.1±0.3

SORL (Ours) 93.5 ±1.0 92.5 ±0.1 94.0±0.2 56.1 ±0.3 52.0 ±0.2 68.2±0.1

SORL achieves competitive performance. Our proposed loss SORL is amenable to the theoretical
understanding, which is our primary goal of this work. Beyond theory, we show that SORL is equally
desirable in empirical performance. In particular, SORL displays competitive performance compared
to existing methods, as evidenced in Table 1. Our comparison covers an extensive collection of very
recent algorithms developed for this problem, including ORCA [7], GCD [69], and OpenCon [63].
We also compare methods in related problem domains: (1) Semi-Supervised Learning [21, 37, 62],
(2) Novel Class Discovery [22, 82], (3) common representation learning method SimCLR [11]. In
particular, on CIFAR-100, we improve upon the best baseline OpenCon by 3.4% in terms of overall
accuracy. Our result further validates that putting analysis on SORL is appealing for both theoretical
and empirical reasons.

6 Broader Impact
From a theoretical perspective, our graph-theoretic framework can facilitate and deepen the un-
derstanding of other representation learning methods that commonly involve the notion of posi-
tive/negative pairs. In Appendix D, we exemplify how our framework can be potentially generalized
to other common contrastive loss functions [11, 34, 68], and baseline methods that are tailored for the
open-world semi-supervised learning problem (e.g., GCD [69], OpenCon [63]). Hence, we believe
our theoretical framework has a broader utility and significance.

From a practical perspective, our work can directly impact and benefit many real-world applications,
where unlabeled data are produced at an incredible rate today. Major companies exhibit a strong need
for making their machine learning systems and services amendable for the open-world setting but
lack fundamental and systematic knowledge. Hence, our research advances the understanding of
open-world machine learning and helps the industry improve ML systems by discovering insights
and structures from unlabeled data.

7 Related Work

Semi-supervised learning. Semi-supervised learning (SSL) is a classic problem in machine learning.
SSL typically assumes the same class space between labeled and unlabeled data, and hence remains
closed-world. A rich line of empirical works [9, 13, 21, 29, 37, 38, 39, 42, 48, 50, 53, 54, 74, 76, 78]
and theoretical efforts [3, 46, 47, 51, 60, 61, 73] have been made to address this problem. An
important class of SSL methods is to represent data as graphs and predict labels by aggregating
proximal nodes’ labels [1, 18, 30, 71, 80, 84, 85]. Different from classic SSL, we allow its semantic
space to cover both known and novel classes. Accordingly, we contribute a graph-theoretic framework
tailored to the open-world setting, and reveal new insights on how the labeled data can benefit the
clustering performance on both known and novel classes.
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Open-world semi-supervised learning. The learning setting that considers both labeled and un-
labeled data with a mixture of known and novel classes is first proposed in [7] and inspires a
proliferation of follow-up works [49, 52, 63, 69, 81] advancing empirical success. Most works
put emphasis on learning high-quality embeddings [49, 63, 69, 81]. In particular, Sun and Li [63]
employ contrastive learning with both supervised and self-supervised signals, which aligns with our
theoretical setup in Sec. 3.1. Different from prior works, our paper focuses on advancing theoretical
understanding. To the best of our knowledge, we are the first to theoretically investigate the problem
from a graph-theoretic perspective and provide a rigorous error bound.

Spectral graph theory. Spectral graph theory is a classic research problem [10, 14, 33, 40, 44, 70],
which aims to partition the graph by studying the eigenspace of the adjacency matrix. The spectral
graph theory is also widely applied in machine learning [1, 6, 45, 56, 58, 64, 86]. Recently, HaoChen
et al. [23] derive a spectral contrastive loss from the factorization of the graph’s adjacency matrix
which facilitates theoretical study in unsupervised domain adaptation [24, 57]. In these works, the
graph’s formulation is exclusively based on unlabeled data. Sun et al. [64] later expanded this spectral
contrastive loss approach to cater to learning environments that encompass both labeled data from
known classes and unlabeled data from novel ones. In this paper, our adaptation of the loss function
from [64] is tailored to address the open-world semi-supervised learning challenge, considering
known class samples within unlabeled data.

Theory for self-supervised learning. A proliferation of works in self-supervised representation
learning demonstrates the empirical success [5, 8, 11, 12, 23, 26, 68, 77] with the theoretical foun-
dation by providing provable guarantees on the representations learned by contrastive learning for
linear probing [4, 41, 55, 59, 66, 67]. From the graphic view, HaoChen et al. [23, 24], Shen et al.
[57] model the pairwise relation by the augmentation probability and provided error analysis of the
downstream tasks. The existing body of work has mostly focused on unsupervised learning. In
this paper, we systematically investigate how the label information can change the representation
manifold and affect the downstream clustering performance on both known and novel classes.

8 Conclusion

In this paper, we present a graph-theoretic framework for open-world semi-supervised learning.
The framework facilitates the understanding of how representations change as a result of adding
labeling information to the graph. Specifically, we learn representation through Spectral Open-world
Representation Learning (SORL). Minimizing this objective is equivalent to factorizing the graph’s
adjacency matrix, which allows us to analyze the clustering error difference between having vs.
excluding labeled data. Our main results suggest that the clustering error can be significantly reduced
if the connectivity to the labeled data is stronger than their self-clusterability. Our framework is also
empirically appealing to use since it achieves competitive performance on par with existing baselines.
Nevertheless, we acknowledge two limitations to practical application within our theoretical construct:

• The augmentation graph serves as a potent theoretical tool for elucidating the success of modern
representation learning methods. However, it is challenging to ensure that current augmentation
strategies, such as cropping, color jittering, can transform two dissimilar images into identical ones.

• The utilization of Theorems 4.1 and 4.2 necessitates an explicit knowledge of the adjacency matrix
of the augmentation graph, a requirement that can be intractable in practice.

In light of these limitations, we encourage further research to enhance the practicality of these
theoretical findings. We also hope our framework and insights can inspire the broader representation
learning community to understand the role of labeling prior.
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Appendix

A Technical Details of Spectral Open-world Representation Learning

Theorem A.1. (Recap of Theorem 3.1) We define fx =
√
wxf(x) for some function f . Recall

ηu, ηl are two hyper-parameters defined in Eq. (1). Then minimizing the loss function Lmf(F,A)
is equivalent to minimizing the following loss function for f , which we term Spectral Open-world
Representation Learning (SORL):

LSORL(f) ≜− 2ηlL1(f)− 2ηuL2(f)

+ η2l L3(f) + 2ηlηuL4(f) + η2uL5(f),
(10)

where

L1(f) =
∑
i∈Yl

E
x̄l∼Pli

,x̄′
l∼Pli

,

x∼T (·|x̄l),x
+∼T (·|x̄′

l)

[
f(x)⊤f

(
x+
)]

,

L2(f) = E
x̄u∼P,

x∼T (·|x̄u),x
+∼T (·|x̄u)

[
f(x)⊤f

(
x+
)]

,

L3(f) =
∑

i,j∈Yl

E
x̄l∼Pli

,x̄′
l∼Plj

,

x∼T (·|x̄l),x
−∼T (·|x̄′

l)

[(
f(x)⊤f

(
x−))2] ,

L4(f) =
∑
i∈Yl

E
x̄l∼Pli

,x̄u∼P,

x∼T (·|x̄l),x
−∼T (·|x̄u)

[(
f(x)⊤f

(
x−))2] ,

L5(f) = E
x̄u∼P,x̄′

u∼P,

x∼T (·|x̄u),x
−∼T (·|x̄′

u)

[(
f(x)⊤f

(
x−))2] .

Proof. We can expand Lmf(F,A) and obtain

Lmf(F,A) =
∑

x,x′∈X

(
wxx′√
wxwx′

− f⊤x fx′

)2

=const +
∑

x,x′∈X

(
−2wxx′f(x)⊤f (x′) + wxwx′

(
f(x)⊤f (x′)

)2)
,

where fx =
√
wxf(x) is a re-scaled version of f(x). At a high level, we follow the proof in [23],

while the specific form of loss varies with the different definitions of positive/negative pairs. The
form of LSORL(f) is derived from plugging wxx′ and wx.

Recall that wxx′ is defined by

wxx′ = ηl
∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)T (x′|x̄′

l) + ηuEx̄u∼PT (x|x̄u)T (x′|x̄u) ,

and wx is given by

wx =
∑
x′

wxx′

= ηl
∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)

∑
x′

T (x′|x̄′
l) + ηuEx̄u∼PT (x|x̄u)

∑
x′

T (x′|x̄u)

= ηl
∑
i∈Yl

Ex̄l∼Pli
T (x|x̄l) + ηuEx̄u∼PT (x|x̄u).

Plugging in wxx′ we have,
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− 2
∑

x,x′∈X
wxx′f(x)⊤f (x′)

=− 2
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wxx+f(x)⊤f
(
x+
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=− 2ηl
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− 2ηuEx̄u∼P
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Plugging wx and wx′ we have,
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17



B Technical Details for Toy Example

B.1 Calculation Details for Figure 2.

We first recap the toy example, which illustrates the core idea of our theoretical findings. Specifically,
the example aims to distinguish 3D objects with different shapes, as shown in Figure 2. These images
are generated by a 3D rendering software [31] with user-defined properties including colors, shape,
size, position, etc.

Data design. Suppose the training samples come from three types, X , X , X . Let X be the
sample space with known class, and X ,X be the sample space with novel classes. Further, the
two novel classes are constructed to have different relationships with the known class. Specifically,
we construct the toy dataset with 6 elements as shown in Figure 4(a).

Augmentation graph. Based on the data design, we formally define the augmentation graph, which
encodes the probability of augmenting a source image x̄ to the augmented view x:

T (x | x̄) =


τ1 if color(x) = color(x̄), shape(x) = shape(x̄);
τc if color(x) = color(x̄), shape(x) ̸= shape(x̄);
τs if color(x) ̸= color(x̄), shape(x) = shape(x̄);
τ0 if color(x) ̸= color(x̄), shape(x) ̸= shape(x̄).

(11)

According to the definition above, the corresponding augmentation matrix T with each element
formed by T (· | ·) is given in Figure 4(b). We proceed by showing the details to derive A(u) and A
using T .

(a) Definition of Augmentation Probability
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(b) Augmentation Graph

Figure 4: An illustrative example for theoretical analysis. We consider a 6-node graph with one
known class (cube) and two novel classes (sphere, cylinder). (a) The augmentation probabilities
between nodes are defined by their color and shape in Eq. (11). (b) The augmentation matrices T
derived by Eq. (11) where we let τ0 = 0.

Derivation details for A(u) and A. Recall that each element of A(u) is formed by w
(u)
xx′ =

Ex̄∼PT (x|x̄)T (x′|x̄) . In this toy example, one can then see that A(u) = 1
6TT

⊤ since augmentation
matrix T is defined that each element Txx̄ = T (x|x̄). Note that T is explicitly given in Figure 4(b)
and then if we let ηu = 6, we have the close-from:

ηuA
(u) = T 2 =


τ21 + τ2s + τ2c 2τ1τs 2τ1τc 2τcτs 0 0

2τ1τs τ21 + τ2s + τ2c 2τcτs 2τ1τc 0 0
2τ1τc 2τcτs τ21 + τ2s + τ2c 2τ1τs 0 0
2τcτs 2τ1τc 2τ1τs τ21 + τ2s + τ2c 0 0
0 0 0 0 2τ21 2τ21
0 0 0 0 2τ21 2τ21

 .
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We then derive the second part A(l) whose element is given by:

w
(l)
xx′ ≜

∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)T (x′|x̄′

l) .

Such a form can be simplified in Section 4 by defining l ∈ RN , (l)x = Ex̄l∼Pl1
T (x|x̄l) and by

letting |Yl| = 1. In this toy example, the known class only has two elements, so l = 1
2 (T:,1 + T:,2)

(average of T ’s 1st & 2nd column), we then have:

A(l) = ll⊤ =
1

4


(τ1 + τs)

2
(τ1 + τs)

2
τc (τ1 + τs) τc (τ1 + τs) 0 0

(τ1 + τs)
2

(τ1 + τs)
2

τc (τ1 + τs) τc (τ1 + τs) 0 0
τc (τ1 + τs) τc (τ1 + τs) τ2c τ2c 0 0
τc (τ1 + τs) τc (τ1 + τs) τ2c τ2c 0 0

0 0 0 0 0 0
0 0 0 0 0 0

 .

Finally, if we let ηl = 4 and A = ηuA
(u) + ηlA

(l), we have the full results in Figure 2.

B.2 Calculation Details for Figure 3.

In this section, we present the analysis of eigenvectors and their orders for toy examples shown in
Figure 2. In Theorem B.1 we present the spectral analysis for the adjacency matrix with additional
label information while in Theorem B.2, we show the spectral analysis for the unlabeled case.

Theorem B.1. Let

ηuA
(u) =


τ21 + τ2s + τ2c 2τ1τs 2τ1τc 2τcτs 0 0

2τ1τs τ21 + τ2s + τ2c 2τcτs 2τ1τc 0 0
2τ1τc 2τcτs τ21 + τ2s + τ2c 2τ1τs 0 0
2τcτs 2τ1τc 2τ1τs τ21 + τ2s + τ2c 0 0
0 0 0 0 2τ21 2τ21
0 0 0 0 2τ21 2τ21

 ,

A = ηuA
(u) +


(τ1 + τs)

2 (τ1 + τs)
2 τc(τ1 + τs) τc(τ1 + τs) 0 0

(τ1 + τs)
2 (τ1 + τs)

2 τc(τ1 + τs) τc(τ1 + τs) 0 0
τc(τ1 + τs) τc(τ1 + τs) τ2c τ2c 0 0
τc(τ1 + τs) τc(τ1 + τs) τ2c τ2c 0 0

0 0 0 0 0 0
0 0 0 0 0 0

 ,

and we assume that 1 ≫ τc
τ1

> τs
τ1

> 0, 4
9τc ≤ τs ≤ τc and τ1 + τc + τs = 1.

Let λ1, λ2, λ3 and v1, v2, v3 be the largest three eigenvalues and their corresponding eigenvectors of
D− 1

2AD− 1
2 , which is the normalized adjacency matrix of A. Then the concrete form of λ1, λ2, λ3

and v1, v2, v3 can be approximately given by:

λ̂1 = 1, λ̂2 = 1, λ̂3 = 1− 16

3

τc
τ1

,

v̂1 = [0, 0, 0, 0, 1, 1],

v̂2 = [
√
3,
√
3, 1, 1, 0, 0],

v̂3 = [1, 1,−
√
3,−

√
3, 0, 0].

Note that the approximation gap can be tightly bounded. Specifically, for i ∈ {1, 2, 3}, we have
|λi − λ̂i| ≤ O(( τcτ1 )

2) and ∥ sin(U, Û)6∥F ≤ O( τcτ1 ), where U = [v1, v2, v3], Û = [v̂1, v̂2, v̂3].

6The sin operation measures the distance of two matrices with orthonormal columns, which is usually used
in the subspace distance. See more in https://trungvietvu.github.io/notes/2020/DavisKahan.
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Proof. By τ1 + τc + τs = 1 and 1 ≫ τc
τ1

> τs
τ1

> 0, we define the following equation which
approximates the corresponding terms up to error O(( τcτ1 )

2):

A ≈ Â = τ21


2 + 2 τs

τ1
1 + 4 τs

τ1
3 τc
τ1

τc
τ1

0 0
1 + 4 τs

τ1
2 + 2 τs

τ1
τc
τ1

3 τc
τ1

0 0
3 τc
τ1

τc
τ1

1 2 τs
τ1

0 0
τc
τ1

3 τc
τ1

2 τs
τ1

1 0 0
0 0 0 0 2 2
0 0 0 0 2 2

 .

D ≈ D̂ = τ21 diag

([
3

(
1 + 2

τs
τ1

+
4

3

τc
τ1

)
, 3

(
1 + 2

τs
τ1

+
4

3

τc
τ1

)
, 1 + 2

τs
τ1

+ 4
τc
τ1

, 1 + 2
τs
τ1

+ 4
τc
τ1

, 4, 4

])
.

D− 1
2 ≈ D̂− 1

2 =
1

τ1
diag

([√
3

(
1− τs

τ1
− 2

3

τc
τ1

)
,
√
3

(
1− τs

τ1
− 2

3

τc
τ1

)
, 1− τs

τ1
− 2

τc
τ1

, 1− τs
τ1

− 2
τc
τ1

, 2, 2

])
.

D− 1
2AD− 1

2 ≈ D̂− 1
2 ÂD̂− 1

2

=



2
3

(
1− τs

τ1
− 4

3
τc
τ1

)
1
3

(
1 + 2 τs

τ1
− 4

3
τc
τ1

) √
3 τc
τ1

1√
3
τc
τ1

0 0

1
3

(
1 + 2 τs

τ1
− 4

3
τc
τ1

)
2
3

(
1− τs

τ1
− 4

3
τc
τ1

)
1√
3
τc
τ1

√
3 τc
τ1

0 0√
3 τc
τ1

1√
3
τc
τ1

1− 2 τs
τ1

− 4 τc
τ1

2 τs
τ1

0 0
1√
3
τc
τ1

√
3 τc
τ1

2 τs
τ1

1− 2 τs
τ1

− 4 τc
τ1

0 0

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2


.

And we have ∥∥∥∥D− 1
2AD− 1

2 − D̂− 1
2 ÂD̂− 1

2

∥∥∥∥
2

≤
∥∥∥∥D− 1

2AD− 1
2 − D̂− 1

2 ÂD̂− 1
2

∥∥∥∥
F

≤O((
τc
τ1

)2).

Let λ̂a, . . . , λ̂f be six eigenvalues of D̂− 1
2 ÂD̂− 1

2 , and v̂a, . . . , v̂f be corresponding eigenvectors. By
direct calculation we have

λ̂a = 1, λ̂b = 1, λ̂c = 1− 16

3

τc
τ1

, λ̂d = 0

and corresponding eigenvectors as

v̂a = [0, 0, 0, 0, 1, 1],

v̂b = [
√
3,
√
3, 1, 1, 0, 0],

v̂c = [1, 1,−
√
3,−

√
3, 0, 0],

v̂d = [0, 0, 0, 0, 1,−1].

For the remaining two eigenvectors, by the symmetric property, they have the formula

v̂e = [α(
τs
τ1

,
τc
τ1

),−α(
τs
τ1

,
τc
τ1

), β(
τs
τ1

,
τc
τ1

),−β(
τs
τ1

,
τc
τ1

), 0, 0],

v̂f = [β(
τs
τ1

,
τc
τ1

),−β(
τs
τ1

,
τc
τ1

),−α(
τs
τ1

,
τc
τ1

), α(
τs
τ1

,
τc
τ1

), 0, 0],
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where α, β are some real functions. Then, by solving

D̂− 1
2 ÂD̂− 1

2 v̂e = λ̂ev̂e

D̂− 1
2 ÂD̂− 1

2 v̂f = λ̂f v̂f ,

we get

λ̂e =
1

9

(√
(3− 12

τs
τ1

− 16
τc
τ1

)2 + 108(
τc
τ1

)2 − 24
τs
τ1

− 20
τc
τ1

+ 6

)
λ̂f =

1

9

(
−
√
(3− 12

τs
τ1

− 16
τc
τ1

)2 + 108(
τc
τ1

)2 − 24
τs
τ1

− 20
τc
τ1

+ 6

)
.

Now, we show that λ̂c > λ̂e. By τc
τ1

≪ 1 and 4
9τc ≤ τs ≤ τc

λ̂c ≥ λ̂e ⇔ 3 + 24
τs
τ1

− 28
τc
τ1

≥
√
(3− 12

τs
τ1

− 16
τc
τ1

)2 + 108(
τc
τ1

)2

⇔ 36(
τs
τ1

)2 + 35(
τc
τ1

)2 − 144
τs
τ1

τc
τ1

+ 18
τs
τ1

− 6
τc
τ1

≥ 0.

Thus, we have 1 = λ̂a = λ̂b > λ̂c > λ̂e > λ̂f > λ̂d = 0. Moreover, we also have

λ̂c − λ̂e =1− 16

3

τc
τ1

− 1

9

(√
(3− 12

τs
τ1

− 16
τc
τ1

)2 + 108(
τc
τ1

)2 − 24
τs
τ1

− 20
τc
τ1

+ 6

)
≥Ω

(
τc
τ1

)
.

Let λ̂1 = λ̂a, λ̂2 = λ̂b, λ̂3 = λ̂c. Then, by Weyl’s Theorem, for i ∈ {1, 2, 3}, we have

|λi − λ̂i| ≤
∥∥∥∥D− 1

2AD− 1
2 − D̂− 1

2 ÂD̂− 1
2

∥∥∥∥
2

≤ O((
τc
τ1

)2).

By Davis-Kahan theorem, we have

∥ sin(U, Û)∥F ≤
O(( τcτ1 )

2)

Ω
(

τc
τ1

) ≤ O(
τc
τ1

).

We finish the proof.

Theorem B.2. Recall ηuA(u) is defined in Theorem B.1. Assume 1 ≫ τc
τ1

> τs
τ1

> 0 and τ1+τc+τs =

1. Let λ(u)
1 , λ

(u)
2 , λ

(u)
3 and v

(u)
1 , v

(u)
2 , v

(u)
3 be the largest three eigenvalues and their corresponding

eigenvectors of D(u)− 1
2 (ηuA

(u))D(u)− 1
2 , which is the normalized adjacency matrix of ηuA(u). Let

λ̂
(u)
1 = 1, λ̂

(u)
2 = 1, λ̂

(u)
3 = 1− 4

τs
τ1

,

v̂
(u)
1 = [0, 0, 0, 0, 1, 1],

v̂
(u)
2 = [1, 1, 1, 1, 0, 0],

v̂
(u)
3 = [1,−1, 1,−1, 0, 0].

Let U (u) = [v
(u)
1 , v

(u)
2 , v

(u)
3 ], Û (u) = [v̂

(u)
1 , v̂

(u)
2 , v̂

(u)
3 ]. Then, for i ∈ {1, 2, 3}, we have |λ(u)

i −
λ̂
(u)
i | ≤ O(( τcτ1 )

2) and ∥ sin(U (u), Û (u))∥F ≤ O(
τ2
c

τ1(τc−τs)
).

Proof. Similar to the proof of Theorem B.1, up to error O(( τcτ1 )
2), we have the following equation,

η̂uA(u) = τ21


1 2 τs

τ1
2 τc
τ1

0 0 0
2 τs
τ1

1 0 2 τc
τ1

0 0
2 τc
τ1

0 1 2 τs
τ1

0 0
0 2 τc

τ1
2 τs
τ1

1 0 0
0 0 0 0 2 2
0 0 0 0 2 2

 .
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D̂(u) = τ21 diag

([
1 + 2

τs
τ1

+ 2
τc
τ1

, 1 + 2
τs
τ1

+ 2
τc
τ1

, 1 + 2
τs
τ1

+ 2
τc
τ1

, 1 + 2
τs
τ1

+ 2
τc
τ1

, 4, 4

])
.

D̂(u)− 1
2 =

1

τ1
diag

([
1− τs

τ1
− τc

τ1
, 1− τs

τ1
− τc

τ1
, 1− τs

τ1
− τc

τ1
, 1− τs

τ1
− τc

τ1
, 2, 2

])
.

D̂(u)− 1
2 η̂uA(u)D̂(u)− 1

2 =



1− 2 τs
τ1

− 2 τc
τ1

2 τs
τ1

2 τc
τ1

0 0 0
2 τs
τ1

1− 2 τs
τ1

− 2 τc
τ1

0 2 τc
τ1

0 0
2 τc
τ1

0 1− 2 τs
τ1

− 2 τc
τ1

2 τs
τ1

0 0
0 2 τc

τ1
2 τs
τ1

1− 2 τs
τ1

− 2 τc
τ1

0 0

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2

 .

Let λ̂(u)
1 , . . . , λ̂

(u)
6 be six eigenvalue of D̂(u)− 1

2 η̂uA(u)D̂(u)− 1
2 , and v̂

(u)
1 , . . . , v̂

(u)
6 be corresponding

eigenvectors. By direct calculation we have

λ̂
(u)
1 = 1, λ̂

(u)
2 = 1, λ̂

(u)
3 = 1− 4

τs
τ1

, λ̂
(u)
4 = 1− 4

τc
τ1

, λ̂
(u)
5 = 1− 4

τs
τ1

− 4
τc
τ1

, λ̂
(u)
6 = 0

and corresponding eigenvector as

v̂
(u)
1 = [0, 0, 0, 0, 1, 1],

v̂
(u)
2 = [1, 1, 1, 1, 0, 0],

v̂
(u)
3 = [1,−1, 1,−1, 0, 0],

v̂
(u)
4 = [1, 1,−1,−1, 0, 0],

v̂
(u)
5 = [1,−1,−1, 1, 0, 0],

v̂
(u)
6 = [0, 0, 0, 0, 1,−1].

Then, by Weyl’s Theorem, for i ∈ {1, 2, 3}, we have

|λ(u)
i − λ̂

(u)
i | ≤

∥∥∥∥D(u)− 1
2 ηuA

(u)D(u)− 1
2 − D̂(u)− 1

2 η̂uA(u)D̂(u)− 1
2

∥∥∥∥
2

≤ O((
τc
τ1

)2).

By Davis-Kahan theorem, we have

∥ sin(U (u), Û (u))∥F ≤
O(( τcτ1 )

2)

4( τcτ1 − τs
τ1
)
≤ O(

τ2c
τ1(τc − τs)

).

We finish the proof.
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C Technical Details for Main Theory

C.1 Notation

We let 1n, 0n be the n-dimensional vector with all 1 or 0 values respectively. 1m×n, 0m×n are
similarly defined for m-by-n matrix. In is the identity matrix with shape n× n. For any matrix V ,
V(i,j) indictes the value at i-th row and j-th column of V . If the matrix is subscripted like Vk, we
use a comma in-between like Vk,(i,j). Similarly, v(i) and vk,(i) are the i-th value for vector v and vk

respectively. [n] is used to abbreviate the set {1, 2, ..., n}.

C.2 Matrix Form of K-means and the Derivative

Recall that we defined the K-means clustering measure of features in Sec. 4:

Mkms(Π, Z) =
∑
π∈Π

∑
i∈π

∥zi − µπ∥2 /
∑
π∈Π

|π| ∥µπ − µΠ∥2 , (12)

where the numerator measures the intra-class distance:
Mintra(Π, Z) =

∑
π∈Π

∑
i∈π

∥zi − µπ∥2 , (13)

and the denominator measures the inter-class distance:
Minter(Π, Z) =

∑
π∈Π

|π| ∥µπ − µΠ∥2 . (14)

We will show next how to convert the intra-class and the inter-class measure into a matrix form,
which is desirable for analysis.

Intra-class measure. Note that the K-means intra-class measure can be rewritten in a matrix form:

Mintra(Π, Z) = ∥Z −HΠZ∥2F ,
where HΠ is a matrix to convert Z to mean vectors w.r.t clusters defined by Π. Without losing the
generality, we assume Z is ordered according to the partition in Π — first |π1| vectors are in π1, next
|π2| vectors are in π2, etc. Then HΠ is given by:

HΠ =


1

|π1|1|π1|×|π1| 0 ... 0

0 1
|π2|1|π2|×|π2| ... 0

... ... ... ...
0 0 ... 1

|πk|1|πk|×|πk|

 .

Going further, we have:
Mintra(Π, Z) = ∥Z −HΠZ∥2F

= Tr((I −HΠ)
2ZZ⊤)

= Tr((I − 2HΠ +H2
Π)ZZ⊤)

= Tr((I −HΠ)ZZ⊤).

Inter-class measure. The inter-class measure can be equivalently given by:

Minter(Π, Z) = ∥HΠZ − 1

N
1N×NZ∥2F ,

where HΠ is defined as above. And we can also derive:

Minter(Π, Z) = ∥HΠZ − 1

N
1N×NZ∥2F

= Tr((HΠ − 1

N
1N×N )2ZZ⊤)

= Tr((H2
Π − 2

N
HΠ1N×N +

1

N2
12
N×N )ZZ⊤)

= Tr((HΠ − 1

N
1N×N )ZZ⊤).
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C.3 K-means Measure Has the Same Order as K-means Error

Theorem C.1. (Recap of Theorem 4.1) We define the ξπ→π′ as the index of samples that is from
class division π however is closer to µπ′ than µπ . In other word, ξπ→π′ = {i : i ∈ π, ∥zi −µπ∥2 ≥
∥zi − µπ′∥2}. Assuming |ξπ→π′ | > 0, we define below the clustering error ratio from π to π′ as
Eπ→π′ and the overall cluster error ratio EΠ,Z as the Harmonic Mean of Eπ→π′ among all class
pairs:

EΠ,Z = C(C − 1)/

 ∑
π ̸=π′

π,π′∈Π

1

Eπ→π′

 ,where Eπ→π′ =
|ξπ→π′ |
|π′|+ |π| .

The K-means measure Mkms(Π, Z) has the same order as the Harmonic Mean of the cluster error
ratio between all cluster pairs:

EΠ,Z = O(Mkms(Π, Z)).

Proof. We have the following inequality for i ∈ ξπ→π′ :
4∥zi − µπ∥22 ≥ 2∥zi − µπ∥22 + 2∥zi − µπ′∥22 ≥ ∥µπ − µπ′∥22.

Then we have:
Mintra(Π, Z) =

∑
π∈Π

∑
i∈π

∥zi − µπ∥22

≥
∑
i∈π

∥zi − µπ∥22

≥
∑

i∈ξπ→π′

∥zi − µπ∥22

≥ 1

4

∑
i∈ξπ→π′

∥µπ − µπ′∥22

=
1

4
|ξπ→π′ |∥µπ − µπ′∥22.

Note that the inter-class measure can be decomposed into the summation of cluster center distances:

Minter(Π, Z) =
∑
π∈Π

|π| ∥µπ − µΠ∥22

=
∑
π∈Π

|π|
N2

∥∥∥∥∥(∑
π′∈Π

|π′|)µπ −
∑
π′∈Π

|π′|µπ′

∥∥∥∥∥
2

2

≤ C

N2

∑
π∈Π

|π|
∑
π′∈Π

|π′|2 ∥µπ − µπ′∥22

=
C

N2

∑
π ̸=π′

|π||π′|(|π′|+ |π|) ∥µπ − µπ′∥22 ,

where
∑

π ̸=π′ is enumerating over any two different class partitions in Π. Combining together, we
have:

C(C − 1)/

∑
π ̸=π′

(|π′|+ |π|)
|ξπ→π′ |

 = C(C − 1)/

∑
π ̸=π′

(|π′|+ |π|)∥µπ − µπ′∥22
|ξπ→π′ |∥µπ − µπ′∥22


≤ C(C − 1)/

∑
π ̸=π′

|π′||π|(|π′|+ |π|)∥µπ − µπ′∥22
N2|ξπ→π′ |∥µπ − µπ′∥22


≤ C(C − 1)/

( Minter(Π, Z)

4CMintra(Π, Z)

)
= O(Mkms(Π, Z)).
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C.4 Proof of Theorem 4.2

We start by providing more details to supplement Sec. 4.2.1.

Matrix perturbation by adding labels. Recall that we define in Eq. 3 that the adjacency matrix is
the unlabeled one A(u) plus the perturbation of the label information A(l):

A = ηuA
(u) + ηlA

(l).

We study the perturbation from two aspects: (1) The direction of the perturbation which is given by
A(l), (2) The perturbation magnitude ηl. We first consider the perturbation direction A(l) and recall
that we defined the concrete form in Eq. 2:

A
(l)
xx′ = w

(l)
xx′ ≜

∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)T (x′|x̄′

l) .

For simplicity, we consider |Yl| = 1 in this theoretical analysis. Then we observe that A(l)
xx′ is a

rank-1 matrix can be written as
A

(l)
xx′ = ll⊤,

where l ∈ RN×1 with (l)x = Ex̄l∼Pl1
T (x|x̄l). And we define Dl ≜ diag(l).

The perturbation function of representation. We then consider a more generalized form for the
adjacency matrix:

A(δ) ≜ ηuA
(u) + δll⊤.

where we treat the adjacency matrix as a function of the “labeling perturbation” degree δ. It is clear
that A(0) = ηuA

(u) which is the scaled adjacency matrix for the unlabeled case and that A(ηl) = A.
When we let the adjacency matrix be a function of δ, the normalized form and the derived feature
representation should also be the function of δ. We proceed by defining these terms.

Without losing the generality, we let diag(1⊤
NA(0)) = IN which means the node in the unlabeled

graph has equal degree. We then have:

D(δ) ≜ diag(1⊤
NA(δ)) = IN + δDl.

The normalized adjacency matrix is given by:

Ã(δ) ≜ D(δ)−
1
2A(δ)D(δ)−

1
2 .

For feature representation Z(δ), it is derived from the top-k SVD components of Ã(δ). Specifically,
we have:

Z(δ)Z(δ)⊤ = D(δ)−
1
2 Ãk(δ)D(δ)−

1
2 = D(δ)−

1
2

k∑
j=1

λj(δ)Φj(δ)D(δ)−
1
2 ,

where we define Ãk(δ) as the top-k SVD components of Ã(δ) and can be further written as Ãk(δ) =∑k
j=1 λj(δ)Φj(δ). Here the λj(δ) is the j-th singular value and Φj(δ) is the j-th singular projector

(Φj(δ) = vj(δ)vj(δ)
⊤) defined by the j-th singular vector vj(δ). For brevity, when δ = 0, we

remove the suffix (0) since it is equivalent to the unperturbed version of notations. For example, we
let

Ã(0) = Ã(u), Z(0) = Z(u), λi(0) = λ
(u)
i , vi(0) = v

(u)
i ,Φi(0) = Φ

(u)
i .

Theorem C.2. (Recap of Th. 4.2) Denote V
(u)
∅ ∈ RN×(N−k) as the null space of V (u)

k and Ã
(u)
k =

V
(u)
k Σ

(u)
k V

(u)⊤
k as the rank-k approximation for Ã(u). Given δ, η1 > 0 and let Gk as the spectral

gap between k-th and k + 1-th singular values of Ã(u), we have:

∆kms(δ) = δη1 Tr
(
Υ
(
V

(u)
k V

(u)⊤
k ll⊤(I + V

(u)
∅ V

(u)⊤
∅ )− 2Ã

(u)
k diag(l)

))
+O(

1

Gk
+ δ2),

where diag(·) converts the vector to the corresponding diagonal matrix and Υ ∈ RN×N is a matrix
encoding the ground-truth clustering structure in the way that Υxx′ > 0 if x and x′ has the same
label and Υxx′ < 0 otherwise.
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Proof. As we shown in Sec C.2, we can now also write the K-means measure as the function of
perturbation:

Mkms(δ) =
Tr((I −HΠ)Z(δ)Z(δ)⊤)

Tr((HΠ − 1
N 1N×N )Z(δ)Z(δ)⊤)

.

The proof is directly given by the following Lemma C.3.

Lemma C.3. Let η1, η2 be two real values and Υ = (1 + η2)HΠ − I − η2

N 1N1⊤
N . Let the spectrum

gap Gk =
λ
(u)
k

λ
(u)
k+1

, we have the derivative of the K-means measure evaluated at δ = 0:

[Mkms(δ)]
′
∣∣∣
δ=0

= −η1 Tr
(
Υ
(
V

(u)
k V

(u)⊤
k ll⊤ − 2Ã

(u)
k Dl + V

(u)
k V

(u)⊤
k ll⊤V

(u)
∅ V

(u)⊤
∅

))
+O(

1

Gk
).

The proof for Lemma C.3 is lengthy. We postpone it to Sec. C.6.

C.5 Proof of Theorem 4.3

We start by showing the justification of the assumptions made in Theorem 4.3.

Assumption C.4. We assume the spectral gap Gk is large. Such an assumption is commonly used in
theory works using spectral analysis [32, 57].

Assumption C.5. We assume l lies in the linear span of V (u)
k . i.e., V (u)

k V
(u)⊤
k l = l, V

(u)⊤
∅ l = 0.

The goal of this assumption is to simplify (V
(u)
k V

(u)⊤
k ll⊤ + V

(u)
k V

(u)⊤
k ll⊤V

(u)
∅ V

(u)⊤
∅ ) to ll⊤.

Assumption C.6. For any πc ∈ Π, ∀i, j ∈ πc, l(i) = l(j) =: lπc
. Recall that the l(i) means the

connection between the i-th sample to the labeled data. Here we can view lπc
as the connection

between class c to the labeled data.

Theorem C.7. (Recap of Theorem 4.3.) With Assumption C.4, C.5 and C.6. Given δ, η1, η2 > 0, we
have:

∆kms(δ) ≥ δη1η2
∑
πc∈Π

|πc|lπc
∆πc

(δ),

where

∆πc
(δ) = (lπc

− 1

N
)− 2(1− |πc|

N
)(Ei∈πc

Ej∈πc
z⊤i zj − Ei∈πc

Ej /∈πc
z⊤i zj).

Proof. The proof is directly given by Lemma C.8 and plugging the definition of ∆kms(δ).

Lemma C.8. With Assumption C.4 C.5 and C.6, we have the derivative of K-means measure with
the upper bound:

[Mkms(δ)]
′
∣∣∣
δ=0

≤ −η1η2
∑
π∈Π

|π|lπ
(
(lπ − 1

N
)− 2(µ⊤

πµπ − µ⊤
πµΠ)

)
.

Proof. By Assumption C.4 C.5 and C.6 and Theorem 4.2, we have

1

η1
[Mkms(δ)]

′
∣∣∣
δ=0

= −Tr
(
Υ
(
V

(u)
k V

(u)⊤
k ll⊤ − 2Ã

(u)
k Dl

))
= −Tr

(
Υ
(
ll⊤ − 2Ã

(u)
k Dl

))
= −Tr

((
(1 + η2)HΠ − I − η2

N
1N1⊤

N

)(
ll⊤ − 2Ã

(u)
k Dl

))
= (1 + η2)M′

H +M′
I + η2M′

1,
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where

M′
H = −Tr

(
HΠ

(
ll⊤ − 2Ã

(u)
k Dl

))
= −

∑
π∈Π

|π|(Ei∈πl(i))
2 − 2

|π|
∑
i∈π

∑
j∈π

l(i)Ã
(u)
k,(i,j)


= −

∑
π∈Π

(
|π|l2π − 2|π|lπE(i,j)∈π×πz

⊤
i zj

)
= −

∑
π∈Π

|π|lπ(lπ − 2µ⊤
πµπ),

M′
I = Tr

((
ll⊤ − 2Ã

(u)
k Dl

))
=
∑
π∈Π

|π|lπ(lπ − 2Ei∈πz
⊤
i zi),

and

M′
1 = Tr

(
1

N
1N1⊤

N

(
ll⊤ − 2Ã

(u)
k Dl

))
=

1

N
− 2

∑
π∈Π

∑
i∈π

l(i)Ej∈[N ]z
⊤
i zj

=
1

N
− 2

∑
π∈Π

|π|lπµ⊤
πµΠ.

We observe that

M′
I +M′

H = −
∑
π∈Π

|π|lπ(lπ − 2µ⊤
πµπ) +

∑
π∈Π

|π|lπ(lπ − 2Ei∈πz
⊤
i zi)

= 2
∑
π∈Π

|π|lπ(∥Ei∈πzi∥22 − Ei∈π∥zi∥22)

≤ 0,

where the last inequality is by Jensen’s Inequality. We then have
1

η1η2
[Mkms(δ)]

′
∣∣∣
δ=0

≤ M′
H +M′

1

= −
∑
π∈Π

|π|lπ(lπ − 2µ⊤
πµπ) +

1

N
− 2

∑
π∈Π

|π|lπµ⊤
πµΠ

=
1

N
−
∑
π∈Π

|π|lπ(lπ − 2(µ⊤
πµπ − µ⊤

πµΠ))

= −
∑
π∈Π

|π|lπ((lπ − 1

N
)− 2(µ⊤

πµπ − µ⊤
πµΠ)).

C.6 Proof of Lemma C.3

Notation Recap: We define Ãk(δ) as the top-k SVD components of Ã(δ) and can be further written
as Ãk(δ) =

∑k
j=1 λj(δ)Φj(δ). Here the λj(δ) is the j-th singular value and Φj(δ) is the j-th

singular projector (Φj(δ) = vj(δ)vj(δ)
⊤) defined by the j-th singular vector vj(δ). For brevity,

when δ = 0, we remove the suffix (0) since it is equivalent to the unperturbed version of notations.
For example, we let

Ã(0) = Ã(u), Z(0) = Z(u), λi(0) = λ
(u)
i , vi(0) = v

(u)
i ,Φi(0) = Φ

(u)
i .
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Proof. By the derivative rule, we have,

M′
kms(δ) =

1

Minter(Π, Z)
M′

intra(δ)−
Mintra(Π, Z)

Minter(Π, Z)2
M′

inter(δ)

= η1M′
intra(δ)− η1η2M′

inter(δ)

= η1

(
Tr((IΠ −HΠ)[Z(δ)Z(δ)⊤]′)− η2 Tr((HΠ − 1

N
1N×N )[Z(δ)Z(δ)⊤]′)

)
= η1

(
Tr((IΠ +

η2
N

1N×N − (η2 + 1)HΠ)[Z(δ)Z(δ)⊤]′)
)

= −η1
(
Tr(Υ[Z(δ)Z(δ)⊤]′)

)
= −η1

k∑
j=1

Tr(Υ[D(δ)−
1
2λj(δ)Φj(δ)D(δ)−

1
2 ]′),

where we let η1 = 1
Minter(Π,Z) , η2 = Mintra(Π,Z)

Minter(Π,Z) and Υ = (1 + η2)HΠ − IΠ − η2

N 1N1⊤
N . We

proceed by showing the calculation of [D(δ)−
1
2 ]′, [λj(δ)]

′ and [Φj(δ)]
′.

Since D(δ) = I + δDl, then [D(δ)−
1
2 ]′
∣∣∣
δ=0

= − 1
2Dl. To calculate [λj(δ)]

′ and [Φj(δ)]
′, we first

need:

[Ã(δ)]′
∣∣∣
δ=0

= [D(δ)−
1
2A(δ)D(δ)−

1
2 ]′

= [D(δ)−
1
2 ]′Ã(u) + [A(δ)]′ + Ã(u)[D(δ)−

1
2 ]′

= −1

2
DlÃ

(u) + ll⊤ − 1

2
Ã(u)Dl.

Then, according to Equation (3) in [20], we have:

[λj(δ)]
′
∣∣∣
δ=0

= Tr(Φ
(u)
j [Ã(δ)]′)

= Tr(Φ
(u)
j (−1

2
DlÃ

(u) + ll⊤ − 1

2
Ã(u)Dl))

= Tr((−
λ
(u)
j

2
DlΦ

(u)
j +Φ

(u)
j ll⊤ −

λ
(u)
j

2
Φ

(u)
j Dl))

= Tr(Φ
(u)
j (ll⊤ − λ

(u)
j Dl)).
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Now we calculate the derivative of the K-means loss:
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D Analysis on Other Contrastive Losses

In this section, we discuss the extension of our graphic-theoretic analysis to one of the most common
contrastive loss functions – SimCLR [11]. SimCLR loss is an extended version of InfoNCE loss [68]
that achieves great empirical success and inspires a proliferation of follow-up works [5, 8, 12, 26,
34, 69, 77]. Specifically, SupCon [34] extends SimCLR to the supervised setting. GCD [69] and
OpenCon [63] further leverage the SupCon and SimCLR losses, and are tailored to the open-world
representation learning setting considering both labeled and unlabeled data.

At a high level, we consider a general form of the SimCLR and its extensions (including SupCon,
GCD, OpenCon) as:

Lgnl(f ;P+) = −1

τ
E

(x,x+)∼P+

[
f(x)⊤f(x+)

]
+ E

x∼P

log
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x ̸=x′

ef(x
′)⊤f(x)/τ

 , (15)

where we let the P+ as the distribution of positive pairs defined in Section 3.1. In SimCLR [11], the
positive pairs are purely sampled in the unlabeled case (u) while SupCon [34] considers the labeled
case (l). With both labeled and unlabeled data, GCD [69] and OpenCon [63] sample positive pairs in
both cases.

In this section, we investigate an alternative form that eases the theoretical analysis (also applied
in [72]):
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≥Lgnl (f ;P+), (17)

which serves an upper bound of Lgnl (f) according to Jensen’s Inequality.

A graph-theoretic view. Recall in Section 3.1, we define the graph G(X , w) with vertex set X and
edge weights w. Each entry of adjacency matrix A is given by wxx′ , which denotes the marginal
probability of generating the pair for any two augmented data x, x′ ∈ X :

wxx′ = ηuw
(u)
xx′ + ηlw

(l)
xx′ ,

and wx measures the degree of node x:

wx =
∑
x′

wxx′ .

One can view the difference between SimCLR and its variants in the following way: (1) SimCLR [11]
corresponds to ηl = 0 when there is no labeled case; (2) SupCon [34] corresponds to ηu = 0 when
only labeled case is considered. (3) GCD [69] and OpenCon [63] correspond to the cases when ηu, ηl
are both non-zero due to the availability of both labeled and unlabeled data.

With the define marginal probability of sampling positive pairs wxx′ and the marginal probability of
sampling a single sample wx, we have:
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When τ is large:
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L̂simclr (Z;G(X , w)) ≈ −1
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If we further consider the constraint that the Z⊤Z = I , minimizing L̂simclr (Z;G(X , w)) boils
down to the eigenvalue problem such that Z is formed by the top-k eigenvectors of matrix (A −
D1N1⊤

ND−D2

Tr(D)2−Tr(D2) ). Recall that our main analysis for Theorem 4.2 and Theorem 4.3 is based on the
insight that the feature space is formed by the top-k eigenvectors of the normalized adjacency matrix
D− 1

2AD− 1
2 . Viewed in this light, the same analysis could be applied to the SimCLR loss as well,

which only differs in the concrete matrix form. We do not include the details in this paper but leave it
as a future work.
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E Additional Experiments Details

E.1 Experimental Details of Toy Example

Recap of set up. In Section 4.1 we consider a toy example that helps illustrate the core idea of
our theoretical findings. Specifically, the example aims to cluster 3D objects of different colors and
shapes, generated by a 3D rendering software [31] with user-defined properties including colors,
shape, size, position, etc. Suppose the training samples come from three shapes, X , X , X .
Let X be the sample space with known class, and X ,X be the sample space with novel
classes. Further, the two novel classes are constructed to have different relationships with the known
class. Specifically, the toy dataset contains elements with 5 unique types:

X = X ∪ X ∪ X ,

where
X = {x , x },
X = {x , x },

X = {x }.

Experimental details for Figure 3(b). We rendered 2500 samples for each type of data. In
total, we have 12500 samples. For known class X , we randomly select 50% as labeled data
and treat the rest as unlabeled. For training, we use the same data augmentation strategy as in
SimSiam [12]. We use ResNet18 and train the model for 40 epochs (sufficient for convergence)
with a fixed learning rate of 0.005, using SORL defined in Eq. (6). We set ηl = 0.04 and ηu = 1,
respectively. Our visualization is by PyTorch implementation of UMAP [43], with parameters
(n_neighbors=30, min_dist=1.5, spread=2, metric=euclidean).

E.2 Experimental Details for Benchmarks

Hardware and software. We run all experiments with Python 3.7 and PyTorch 1.7.1, using
NVIDIA GeForce RTX 2080Ti and A6000 GPUs.

Training settings. For a fair comparison, we use ResNet-18 [25] as the backbone for all methods.
Similar to [7], we pre-train the backbone using the unsupervised Spectral Contrastive Learning [23]
for 1200 epochs. The configuration for the pre-training stage is consistent with [23]. Note that the
pre-training stage does not incorporate any label information. At the training stage, we follow the
same practice in [7, 63], and train our model f(·) by only updating the parameters of the last block of
ResNet. In addition, we add a trainable two-layer MLP projection head that projects the feature from
the penultimate layer to an embedding space Rk (k = 1000). We use the same data augmentation
strategies as SimSiam [12, 23]. For CIFAR-10, we set ηl = 0.25, ηu = 1 with training epoch 100,
and we evaluate using features extracted from the layer preceding the projection. For CIFAR-100, we
set ηl = 0.0225, ηu = 3 with 400 training epochs and assess based on the projection layer’s features.
We use SGD with momentum 0.9 as an optimizer with cosine annealing (lr=0.05), weight decay 5e-4,
and batch size 512.

Evaluation settings. At the inference stage, we evaluate the performance in a transductive manner
(evaluate on Du). We run a semi-supervised K-means algorithm as proposed in [69]. We follow
the evaluation strategy in [7] and report the following metrics: (1) classification accuracy on known
classes, (2) clustering accuracy on the novel data, and (3) overall accuracy on all classes. The accuracy
of the novel classes is measured by solving an optimal assignment problem using the Hungarian
algorithm [36]. When reporting accuracy on all classes, we solve optimal assignments using both
known and novel classes.
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