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ABSTRACT

Dataset bias, in the context of machine learning, pertains to the issue of unintended
correlations between target labels and undesirable features found in specific training
datasets. This phenomenon frequently arises in real-world scenarios and can lead to
unintended behaviors. Researchers have devised techniques to alleviate this bias by
diminishing the influence of samples with spurious correlations (i.e., bias-aligned
samples) while assigning greater importance to other samples (i.e., bias-conflicting
samples) during the training process. Prior approaches have mainly focused on
leveraging given training datasets and have not explored the potential of harnessing
open datasets, which have huge size of samples. Nonetheless, open datasets may
contain noisy information posing a challenge for straightforward integration. In
this paper, we introduce a novel method calld ORBIS to tackle dataset bias using
open datasets. ORBIS comprises two core components. Firstly, it involves the
selection of relevant samples from open datasets whose context aligns with the
characteristics of the given training dataset. Subsequently, a debiased model is
trained using both training dataset and selected samples. We assess the effectiveness
of this proposed algorithm in conjunction with established debiasing methods and
evaluate its performance on both synthetic and real-world benchmark datasets.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated remarkable capabilities across various applications,
such as classification |He et al.[(2016)); Dosovitskiy et al.[|(2020), object detection |Girshick! (2015)),
and image generation |Goodfellow et al.| (2020). While these networks often achieve impressive
performance by leveraging well-curated and accurately labeled datasets, research has shown that
their generalizability can deteriorate when confronted with spurious correlations between intended
and unintended features. This phenomenon is commonly referred to as the dataset bias problem. In
real-world dataset collection, spurious correlations frequently emerge. For instance, when gathering a
dataset for classifying “ski” images, a significant portion of the images might be captured against a
snowy background. In this case, the images of “ski” exhibit a spurious correlation with “snow,” and
the snowy background is considered the bias attribute. These images are referred to as bias-aligned
samples. Conversely, samples captured in a desert environment (e.g., desert skiing) would be bias-
conflicting samples. When training a model on this dataset, the model suffers from the dataset bias
problem, as it becomes more influenced by the “background” (snow) rather than the “ski” itself.

In prior research, several strategies have been advanced to tackle the dataset bias issue by incorporating
human-supervised annotations related to bias. For instance, the authors of |Arjovsky et al.| (2019);
Sagawa et al.|(2019); Li & Vasconcelos| (2019); [Kim et al.[(2019); Tartaglione et al.[(2021) utilized
bias-related labels to prevent the trained models from learning these annotations. In Kim et al.| (2019),
adverasarial training was employed to make the trained model fail to learn the bias attribute. While
these labeling-intensive methods have proven effective, they come at a significant cost in terms of
human effort. To alleviate this burden, researchers have made assumptions about existing bias in
datasets and utilized these assumptions in their methodologies |Lee et al.|(2019); Bahng et al.|(2020b);
Alvi et al.[(2018). For instance, in|Alvi et al.| (2018]), the authors transformed the image into grayscale
to prevent color bias. Nonetheless, even these approaches require some level of human supervision
and may not be readily applicable in scenarios where the biased feature is not explicitly accounted
for, such as object bias.
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Figure 1: Despite prior methods primarily focusing on mitigating dataset bias using only the provided
training dataset, this paper aims to tackle the problem by incorporating both the training dataset and
an open dataset that is available but presents challenges in extracting relevant samples.

To minimize human involvement, researchers have explored approaches to replace human intervention
with a biased model (f;) and provide guidance on which samples have to emphasize or underweight

in order to achieve balance. Notable studies in this area include [Ahn et al.| (2023); [Lee et al.| (2021));
Kim et al.| (2021)); [Le Bras et al| (2020); Nam et al.| (2020); Kim et al.| (2022); [Hwang et al.| (2022).

For instance, Nam et al.|(2020); Lee et al.| (2021) employed relative difficulty weights, proportional
to the per-sample loss obtained from the biased model, to train the debiased model (f;) by assigning
weights to each sample. Recently, Hwang et al.| (2022) proposed an effective mixup algorithm for
debiasing that combines bias-conflicting and bias-aligned samples, while [Kim et al.| (2022)); [Le Bras
(2020) leveraged ensemble networks to identify samples that require emphasis. In a different
research direction, introduced a two-stage debiasing approach that utilizes the
per-sample gradient norm and adjusts the sampling probability of each sample based on the obtained
value. Two key insights emerge from these efforts: the identification of bias-conflicting samples and
the amplification of their importance. This leads to the intuitive understanding that accentuating the
role of bias-conflicting samples can help in alleviating biased outcomes.

In the stream of the research that utilizes the given dataset, however, we have a following question:
Can open-world datasets, which are uncurated but composed of a huge amount of data, help mitigate
the dataset bias problem? We mainly try to answer the question by constructing a module that helps
debiasing algorithms. To this aim, we study following questions. (1) What is the key factor to improve
the performance of mitigating dataset bias. (2) How can we effectively utilize open datasets to address
the dataset bias problem? Based on these questions, we propose a method that automatically mines
samples from the open dataset and leverages them to mitigate the dataset bias problem.

Contribution. Based on the above questions, we briefly summarize our contributions as follows:

* We first investigate which one plays a more crucial role in mitigating dataset bias: the number of
the proportion of bias-conflicting samples. In short, we find that the number is the dominant factor.
Therefore, we need to obtain additional bias-conflicting samples from an external data source.

* To the bset of our knowledge, we explore ways to leverage open datasets to increase the number of
bias-conflicting samples. (The problem formulation is described in[Figure T)) However, leveraging
open datasets for addressing dataset bias is challenging for tow reasons: (1) Open datasets primarily
consists of irrelevant samples for the given task. (2) Even if we have access to relevant samples, the
labels of these samples are either absent or mislabeled.

* We propose a novel algorithm, called ORBIS, which selects relevant datasets from the open
dataset and effectively leverages them to tackle the dataset bias problem. The proposed algorithm
consists of two main steps: (1) Extracting relevant samples from a large open dataset, which may
contain highly correlated or uncorrelated samples. (2) Implementing a debiasing algorithm using a
constrastive loss that does not require per-sample labels.

* Building upon the proposed method, we investigate whether properly leveraging open datasets can
enhance debiasing performance. We apply the proposed method to various benchmark datasets

including bFFHQ [Lee et al| (2022); [Kim et al.| (2021; 2022), Dogs and Cats (2022), and
CelebA (2020).
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2 DATASET BIAS PROBLEM AND OPEN DATASET

In this section, we investigate the phenomenon of dataset bias, particularly in the context of open
datasets. First, we elucidate our problem setting, complete with pertinent notations, to facilitate a
clear understanding of our methodology.

2.1 DATASET BIAS PROBLEM

Dataset bias problem. We provide a precise explanation of the notations and issues related to the
dataset bias problem. We assume that we have a training dataset denoted as Dy, = {(z,v:)}Y,,
where (x;,y;) ~ X x ). Each data point consists of an input value z; and its corresponding label
yi, which belongs to one of C' classes. The dataset comprises N total data points, each of which has
features like came1/ski and background, as exemplified in[Figure T} Our primary objective is
to achieve accurate calssification on the Ski/Camel attribute (referred to as the target attribute)
while mitigating the influence of the unintended attribute (referred to as the bias attribute). We focus
on instances where a significant majority of data points are strongly correlated with both the target
and bias attributes; these are termed as bias-aligned samples. In contrast, a limited set of data points
exhibit weak correlation, which we denote as bias-conflicting samples. We introduce the metric p to
quantitatively measure the proportion of bias-conflicting samples, referred to as the bias-conflicting
ratio.

If the model finds it easier to learn the bias attribute (e.g., Ski/Camel) rather than the target
attribute (e.g., Background), it may fail to learn the target attribute accurately. This observation has
been highlighted in previous work |Nam et al.[(2020). Consequently, during the inference phase, the
performance of the trained model may be poor, resulting in the undesirable situation known as the
dataset bias problem. Therefore, guiding correct direction to answer is important.

Summary of prior debiasing approaches. Previously, mainly two networks are used, as briefly
summarized in when bias-related information is not provided. Initially, the biased model
fv is trained on the given dataset D,.. Here, a technique for emphasizing bias-aligned samples is
leveraged to enhance the distinguishability of bias-conflicting samples. Based on information from
the biased model f3, the degree of emphasis for each sample is determined using several metrics,
such as training loss|Nam et al.| (2020); [Lee et al.[(2021)), gradient-norm |Ahn et al.| (2023)), softmax
entropy [Ahn & Yun|(2023)), and per-sample accuracy |Kim et al.[(2022). In this step, bias-conflicting
samples receive a higher degree of emphasis compared to bias-aligned samples, and as a result, the
debiased model f; is trained in a balanced manner.

2.2  OPEN DATASET

In practical scenarios, we encounter a myriad of open datasets, described by a distribution Dope, =
{z; };‘il ~ Xopen- This distribution may differ from the target distribution X". Importantly, while some
open datasets may carry their own class labels, relying solely on this information can be problematic,
and in certain scenarios, the labels may even be absent. Our investigation thus concentrates on
situations where the open dataset does not offer specific information concerning either class categories
or per-sample labeling.

3 MOTIVE OBSERVATION

Alg. W/0 Drey W/ Dy A = 1% Conflicting # — 102
- Algn. #/Conf. # | 19,008/192 15,206/153  9,504/96 | 171807192 13.362/192 95447192
Vanilla 55.24 57.88 | 42.64 e (Vanilla) | 60.96 59.42 52.13 60.67 61.03 60.83
LfF 63.34 68.23 | +4.89 Conf. Acc. (LfF) 69.24 65.43 59.81 68.62 68.76 68.92
LfF+BE  65.14 7126 | +6.12 L/ Conflicting # = 384
- Algn. #7Conf. # | 188167384 15,052/307 9,408/192 | 16,9347384 13.171/384 9.408/384
Disent 61.21 6640 | +6.19  EL e Vanillay | 69.00 65.65 61.52 68.92 67.92 68.72
Disent+BE  65.36 7043 | +5.07 Conf. Acc. (LfF) 73.08 7224 68.93 73.24 72.16 73.28

Table 1: Relevant or Irrelevant

In this section, we scrutinize three key questions: (i) Which is more significant—the number or the
ratio of bias-conflicting samples? (ii) How crucial is it to acquire samples relevant to Dy, from Dopeq.

Table 2: Portion v.s. Number
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(ii1) What impact does the label of the open dataset have? To investigate these questions, we evaluate
the bFFHQ Kim et al.| (2021)) with the WebVision open dataset|Li et al.[(2017).

Observation 1: Extracting target task-relevant samples is crucial. To assess the influence
of these relevant samples, we manually curate a set of 150 relevant samples for each class from the
open dataset and assign label to them. Details regarding the manual selected WebVision samples
are provided in[Appendix A] For comparison, we also choose random samples and assign labels to
them arbitrarily. As indicate in the selection of relevant samples significantly outperforms
the arbitrary selection. This underlines the necessity of extracting or selecting samples related to the
target dataset from the open dataset to improve debiasing performance.

Observation 2: Quantity is more crucial than the ratio of bias-conflicting samples. We
explore two scenarios to identify the leading factor that influences debiasing: (1) maintaining the
ratio of bias-conflicting samples in the training dataset and comparing the accuracy of these samples,
and (2) maintaining the number of bias-conflicting samples in the training dataset and evaluating
their accuracy. As detailed in [Table 2] even though the bias-conflicting ratio is slightly higher, the
accuracy of bias-conflicting sampels remains relatively similar when the number of bias-conflicting
samples is kept constant. Furthermore, when bias-conflicting samples are maintained, meaning the
ratio is not identical, the accuracy remains similar. In summary, it is imperative to acquire additional
bias-conflicting samples unless the bias-conflicting ratio (p) decreases.

Observation 3: Label condition is of paramount impor- Typje 3: Pseudo-labeling results.
tance. In our final discovery, we examine the labeling condition

after obtaining the relevant samples, a necessary step because é;i‘i)lrl‘;hm pﬁz 916% F’; gé/c
open datasets often feature noisy or unlabeled dataset|Li et al.| | ‘peeudo-Label | 5623  61.75
(2017). We investigate whether pseudo-labeling, which assigns la-  + FixMatch 61.03  69.22
bels based on cosine similarity trained on the WebVision dataset ~ LfF 69.24  73.08

+ Pseudo-Label 58.43 62.42

using SImCLR training procedure, and FixMatch |Sohn et al. " FixMatch €967 7368

(2020)), a semi-supervised learning method, prove effective. As
indicated in[Table 3] semi-supervised debiasing is not a straightforward process and can potentially
degrade performance. This decrement mainly arises because high-confidence bias-aligned samples
are often selected for pseudo-labeling (examples are described in[Appendix F). Therefore, crafting a
suitable labeling strategy for these relevant samples is paramount.

Key motivation for consturcting an algorithm utilizing an open dataset. Based on the findings
above, several essential components are necessary when leveraging open datasets to address the
bias problem. (1) Avoid focusing solely on selecting bias conflicting samples: it is not necessary to
exclusively focus on selecting bias-conflicting samples in order to increase the ratio of bias-conflicting
instances to improve the accuracy of bias-conflicting samples. (2) Select relevant samples from the
open dataset: it is imperative to select relevant samples from the open dataset, ensuring they are
aligned with the target task. (3) Consider the implictions of pseudo-labeling: be cautious when
employing pseudo-labeling, as it has the potential to degrade debiasing performance Ahn & Yun
(2023)). This is because pseudo-labelign relies on confidence-based labeling, which may not align
with the debiasing objectives. By taking these considerations into account, the construction of an
algorithm utilizing open dataset can be more effective in addressing dataset bias challenges.

4 ORBIS: OPEN DATASET CAN RESCUE YOU FROM BIAS

In this section, we present a comprehensive description of the algorithm. Proposed algorithm consists
of two primary steps: (1) selecting a relevant samples, and (2) training debiased model. In the initial
step, our objective is to choose a subset of the open dataset, denoted as Dyej C Dopen, that closely
resembles the given training dataset Dy;. The purpose of this step is to gather relevant samples, as
indicated in Observation 1, and ensure that we have an adequate number of bias-conflicting
samples as highlighted in Observation 2 infsection 3| In the subsequent step, we train a debiased
model that will be applied during the testing phase. However, this task is complicated by the presence
of unreliable labels in the dataset. To tackle this issue, we emply a self-supervised learning mechanism
that does not rely on target labels. We will now proceed to explain how we identify the relevant
dataset and train the debiased model using the selected subset. An overview of the proposed algorithm

is provided in and pseudo-code in
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Figure 2: Overview of the proposed algorithm. ORBI S composed of three steps: (1) Unsupervised
training on the open dataset D,,.,. (2) Extract relevant samples from open dataset. (3) Debiasing
training and utilizing relevant dataset for final training.

Cosine Similarity. We utilize the widely-adopted metric for measuring the distance between two
vectors, z; and z;, known as cosine similarity. Mathematically, it is expressed as sim(z;, z;) =
% This cosine similarity severs two main purpose in this paper: (1) As a distance measure
for subsampling the open dataset in Step 1. (2) For computing the contrastive loss in Step 2. Apart
from the notations introduced above, which are specifically defined within each respective step, the

following subsections will provide further explanations and details of our approach.

4.1 STEP 1: SELECTING THE RELEVANT DATASET

As previously noted, the open dataset Dypen does not inherently contain samples that are directly
relevant to the target task. Therefore, it is important to acquire samples that are specifically aligned
with the target task. For example, if the training dataset D, comprises facial images, then the
relevant dataset Dy should encompass facial images extracted from Dypen. To achieve this objective,
we initiate the training of a model using Dypen. Given that Dy, can either be labeled with noisy
anootations or remain unlabeled, we can effectively emply self-supervised learning (SSL) techniques
that do note neccessitate labels. In particular, we train the model f(z) based on the SimCLR
framework Chen et al | (]2020a|ﬂ

Following the training of the self-supervised model f(x), our next step involves selecting samples
from the open dataset that exhibit features similar to the class-wise centroids of the provided target
dataset. The class-wise centroid of the target dataset is defined as follows:

Z(:p“y E'D[f ( )

i

Co = where DS = {(;,y;)|y; = cand (z;,v;) € Dy}, )]

where D¢ represents the set of samples in the target dataset belonging to class ¢, and | D | denotes the
cadinalirty of the set. To assess the distance between the class-wise centroid C. and each sample in
Dopen, We calculate the cosine similarity between C. and f(z;), where Z; € Dopen as follows:

Ce f(xj)
[ICell - I1f ()l

After calculating the cosine similarity scores for each sample in Dypen, We generate a matrix of size
C' X |Dopen|, Where each entry represents the similairty score between a class-wise centroid and an

sim(Ce, f(2;)) = 2)

'For simplicity, we omit the projection head h(-) notation.
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open dataset sample. From these similarity score, we identify the class-wise relevant set Dy, for each
class ,which comprises samples exhibiting higher similarity. We determine membership in this set

using the following condition:
Drcel = {xJ'lSim(Cm f(xj) > T, T; € Dopen}a 3)

where 7 is the threshold hyperparameter. We construct the overall relevant dataset Dy by taking the
union of the class-wise relevant sets:

c
Dra = | Dl )
c=1

The approach of sampling the open dataset based on similarity was originally introduced in the
field of self-supervised learning |[Kim et al.|(2023a)). The key difference between their work and our
approach lies in how we employ the open dataset to train the f(x) model. We choose to utilize the
open dataset for training f(z) because it enables the model to acquire expertise in handling specific
characteristics of the open dataset, thereby ensuring that irrelevant samples are not included in Drel.
Furthermore, training fopen on the open dataset offers the advantage of reducing computational
costs, as the same fopen model can be applied across various datasets without the need for retraining
in each case.

4.2 STEP 2: TRAIN DEBIASED MODEL BY LEVERAGING RELEVANT SET

Once we have obtained D), which may contain missing or incorrectly labeled samples from the
target task perspective, we design an algorithm to utilize it conservatively without relying on provided
or pseudo-labels. In essence, we leverage contrastive loss for these samples. At this point, we have
two datasets that can be used for training f: D and D, . Both datasets can be employed for training,
especially based on contrastive loss. To incorporate both datasets, we merge them into a unified
dataset as follows:

Dretsr = Diat UD,,  where D, = {z|(z,y) € Dy}

Contrastive Loss. Before delving into the details of contrastive loss, let us introduce some relevant
notations. First, we consider the loss based on a randomly selected mini-batch of size B from
Drel+tr- Adhering to the principles of contrastive loss, we create two randomly augmented images,
(xab, Tap—1) = (A(xp), A(xp)), where A(x) denotes the augmentation operation and b is the index
within the mini batch. When we obtain features z from the projection head z = h(f(z)) the
contrastive loss is expressed as follows:

1 & exp(sim(zi, z;)/k)
Leon = BY:] Z [62},_1721, + €2b,2b—1] , where f@j = —log 55 Z’| J . 5
P > veq Loi exp(sim(zi, 25)/K)

Here, 1,; represents the indicator function, and & is a temperature hyperparameter.

Ultimate training. Using the £ and L., losses, we train the final target model f for a total of F/
epochs. The loss function for this training is defined as follows

L= Etr + /\Ecom (6)

where A represents the balancing hyperparameter. Here Ly is the debiasing loss, which can be a
weighted cross-entropy loss. For simplicity, we set A = 0.01 for all our experiments. It is worth
noting that the mini-batches used for L and L., are not identical, as Dy and Dij4, are different
dataset. Therefore, we construct two types of mini-batches for each iteration and compute losses
seprately.

5 EXPERIMENT

In this section, we will outline the experimental setup used to evaluate the performance of the
proposed algorithm. We will provide comprehensive details regarding the biased datasets utilized in
our experiments and describe the implementation of our algorithm. Following that, we will conduct a
comparative analysis of the performance of ORBIS in comparison to previous algorithms.
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Table 4: Unbiased test accuracy on bFFHQ, BAR and Dogs & Cats dataset. We format the best results

as bold. We report the average results of three random trials. We remark the cases, e.g., % denotes

the bias-conflicting ratio. L and T represents if the algorithm requires bias-related labels or bias-type.
denotes it requires label or type information and X represents that it does not.

Algorithm bFFHQ Dogs & Cats BAR
L/T 0.5% 1% 2% 5% 1% 5% 1% 5%
w/o SimCLR model (ResNet-18)
Vanilla XX 55.64 60.96 69.00 82.88 48.06 69.88 70.55 82.53
+ ORBIS XIX 59.23 64.43 73.18 84.32 45.60 72.10 7092  82.85
HED Xl 56.96 6232 7772 83.40 46.76  72.60 7048 81.20
LNL / 56.88 62.64 69.80 83.08 50.90 73.96 - -
EnD / 5596 60.88 69.72 82.88 48.56 68.24 - -
ReBias X/ 55.76  60.68 69.60 82.64 48.70 65.74 73.04 83.90
LfF XIX 65.19 69.24 73.08 79.80 71.72  84.32 70.16  82.95
+BE XIX 67.36  75.08 80.32 85.48 81.52 88.60 70.33  83.13
+ ORBIS XIX 68.62 75.63 76.41 81.31 7451 86.53 7241 83.52
+BE + ORBIS X/X 69.28 78.61 8543 89.42 81.96 89.42 74.52 84.12
Disent XIX 62.08 66.00 69.92 80.68 65.74 81.58 70.33 83.13
+BE XIX 67.56 7348 79.48 84.84 80.74 86.84 73.29 84.96
+ ORBIS XIX 66.64 69.66 74.86 84.21 76.50 88.30 7249 83.33

+BE + ORBIS X/X 68.54 75.60 80.88 86.23 81.81 89.62 7431 85.23
w/ SimCLR model (ResNet-50)

Vanilla XX 5621 69.23 7412 8221 66.54 86.43 49.21 60.81
+ ORBIS Xl X 61.83 70.21 7631 87.43 73.32  89.43 50.31 61.69
LfF Xl X 65.62 7452 77.83 8431 7291 90.83 55.01 66.26
+ ORBIS Xl X 71.63 80.31 83.21 88.38 7632 91.23 56.51 66.77
Disent Xl X 66.21 7532 78.61 8648 79.31 88.54 56.26  69.61
+ ORBIS Xl X 7040 77.63 84.22 87.82 81.00 92.53 56.43 71.13

5.1 EXPERIMENTAL SETTING

Baselines and Datasets. To assess the effectiveness of our proposed laogirtmh in mitigating dataset
bias, we conduct a comparative analysis against several existing debiasing algorithms, including
Vanilla (without any techniques for debiasing), HEX Wang et al.| (2019), LNL Kim et al.| (2019),
EnD [Tartaglione et al.| (2021}, ReBias Bahng et al.| (2020a)), LfF Nam et al.| (2020), Disent [Lee
et al.| (2021), and BiasEnsemble [Lee et al.| (2022). In our evaluation, we apply ORBIS to the
previous metioned algorithms, specifically Vanilla, LfF, and Disent, while ensuring that the network
architecture and hyperparameters remain consistent with their respective experimental settings. By
comparing the performance of ORBI S with these algorithms, our goal is to demonstrate its superiority
in mitigating dataset bias. We evaluate the performance across various benchmark datasets and provide
an in-depth analysis of the results, shedding light on the strengths and advantages of ORBIS.

Our evaluations encompass a divers set of datasets, each presenting unique biases and challenges.
These datasetinclude: biased FFHQ (bFFHQ)|Kim et al.| (2021), biased action recognition (BAR)[Nam
et al.| (2020), Dogans and Cats (DnC) Lee et al.|(2022)), and CelebA [Sagawa et al.| (2019). bFFHQ is
tailored for age classifiaction and exhibits gender bias, with a majority of “young” samples being
female and “old” samples being male. BAR focuses on six different actions and introduces background
bias, such as the predominance of “RockWall” backgrounds in the “Climbing” class. DnC showcases
color bias, with the majority of images in the “Dogs” class featuring bright-clored dogs, while “Dark”
dogs represent bias-conflicting samples. CelebA includes multiple target attributes, and we specifically
consider two classification tasks related to gender-biased attributes, namely “Heavymakeup” and
“BlondHair.” For synthetic dataset (bFFFHQ, BAR, and DnC) we evaluate different bias-conflicting
ratios, specifically {0.5%, 1%, 2% and 5%} for bFFHQ, and {1% , 5%} for the others.

Open dataset. We employ the widely recognized WebVision |Li et al.|(2017) as Dope, for all of our
experiments. The WebVision dataset is obtained through web-crawling and comprises a substantial
collection of 980, 449 samples. It is frequently used in research related to noisy labels. It is crucial to
emphasize that in our experiments, we do not utilize the labels provided with the WebVision dataset.

Implementation. In the implementation of ORBIS, we train the open dataset self-supervised model
using SimCLR |Chen et al.|(2020a). Specifically, we train a ResNet-50 He et al.| (2016) model on
the WebVision dataset once and utilized it for all benchmarks. Furthermore, we evaluate ResNet-18
trained from scratch. We run 3 epochs for the ResNet-50 case, and 50, 000 iterations for ResNet-18
case. Except for training iterations, we adhered to the training recipes provided in|Lee et al.| (2022,
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including learning rate, weight decay, optimizer, momentum, and learning rate scheduler, which were
consistent across all benchmarks. The two primary hyperparameters specific to our approach were set
as follows: the similarity threshold 7 = 0.8 and balancing parameter A = 0.01 for all cases.

5.2 PERFORMANCE ANALYSIS

Synthetically biased benchmarks. In[Table 4] we demonstrate the performance on various bench-
marks trained from scratch and fine-tuning the model obtained from SimCLR training. As in the
upper side of ORBIS improves prior methods and shows performance and denotes the best
performance on all cases. In short, LfF + BE + ORBIS shows the best performance on bFFHQ
dataset and some DnC and BAR datasets, and Disent + BE + ORBIS shows the best remain settings.
Especially, in bFFHQ with 5% case, LfF + BE + ORBIS improves 3.94% point compare to the
second best performance, LfF + BE. On the other case, loading SimCLR trained model shows also
best performance when we utilize ORBIS. As in the bottom block of ORBIS with LfF or
Disent shows the best performance for all cases. Therefore, we can conclude that ORBIS can be a
good add-on module for the previous debiasing algorithms.

Real-world benchmark. CelebA is a real-world  Table 5: Real-world benchmark, CelebA.

benchmark known for the spurious correlation _ CelebA

between Blond hair - Gender and Heavy  Algorithm Heavy Makeup ~ Blod Hair
Makeup - Gender, respectively i Avg.  Conf. Avg Conf.
(2019). We use the ResNet-50 model pretrained with Vinglr?m s g%g% ;ggi 3‘;; gg;g
the SimCLR algorithm to evaluate the CelebA dataset. [ 9041 7704 9354 0453
We report the average accuracy of the test dataset. +ORBIS 93.67 84.13 9527 9731
As described in applying ORBIS to the  Disent 90.11 7625  83.72 94.24

+ ORBIS 9347 82.17 9433 98.19

Vanilla LfF and Disent methods improves perfor-
mance. Specifically, LfF + ORBIS shows the best performance in the cases of Heavy makeup and
Disent + ORBIS shows best bias-conflicting performance on Blond hair targets. Therefore, we
can conclude that leveraging open datasets based on ORBIS can improve the debiasing performance
on real-world datasets.

5.3 ANALYSIS

In this section, we will answer the following questions: (1) we check that which samples are selected
by the first step of ORBIS. (2) To verify the impact of each step, we describe ablation study of the

proposed algorithm (Appendix D). (3) To check the hyperparameter sensitivity, we examine the
performance of various 7 and A (Appendix E).

r

(b) Given exampels of

?
A

/
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(c) Images in the relevant dataset for bFFHQ.

Figure 3: We plots for two benchmarks, bFFHQ, Dogs & Cats, and the D, sampled from WebVision
dataset. At the top row, we describe the bFFHQ and DnC dataset. Two bottom rows describe D).

Relevant set D, selection. We analyse what samples are selected at the first stage of ORBIS.
Especially, we plot the samples of three benchmarks: bFFHQ, Dogs & Cats. By comparing the
examples in the given dataset Dy, and [3b] and extracted samples and[3d] our first
step can extract similar samples to the given training dataset. However, in some cases, similar but
may not be in the training dataset, e.g., Monkey in the most right image in[Figure 3d| can be sampled.
Therefore, the proposed method can extract related samples so that it can improve the generalization

performance as described in[Chen et al] (20204); [Kim et al.| (2023a).
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6 RELATED WORK

We describe related work which is relevant to our work in two perspectives: (1) mitigating dataset
bias with or without human supervision. (2) Leveraging open datasets. for each paragraph.

Dataset bias with or without human supervision. The most easiest way of utilizing human
supervision is to use bias-related labels. For example, [Tartaglione et al.|(2021); Kim et al.| (2019);
Singh et al.[(2020); Teney et al.[(2021); Cadene et al.| (2019); |Arjovsky et al.[(2019) leverage explicit
bias labels. On the other hand, the authors of |Goyal et al.[|(2017;[2020) generates labels by using
human hands whenever the model requires a specific label related to the bias. However, they requires
extensive human labor. Therefore, some works |Li & Vasconcelos|(2019)); [Lee et al.[(2019); Bahng
et al.[(2020b) search the way of reducing human involvement by assuming that the model designer
knows bias types such as Gender is biased in bFFHQ dataset. Another way of reducing human
const, leveraging unbiased validation dataset was studied |Liu et al.|(2021); Nam et al.|(2022); |Zhang
et al.| (2022); Lee et al.| (2023). They directly utilized validation dataset [Nam et al.|(2022) or indirectly
utilized for hyperparameter tuning. In [Hardt et al.| (2016); [Woodworth et al.| (2017); [Pleiss et al.
(2017); |Agarwal et al.|(2018), the authors aimed to improve fairness by utilizing given all features.

Despite training unbiased model by using human labor, it requires expensive cost. Therefore, several
works aims to minimize human labor. The authors of [Kim et al.| (2021)); ILe Bras et al.| (2020);
Ahn et al.[(2023)); [Darlow et al.| (2020) modify the training dataset and make a balanced training
dataset. Oppositely, Lee et al.|(2021); Nam et al.| (2020) proposed weighted training methods which
multiply weights to the bias-conflicting samples. The authors of |Arjovsky et al.| (2019)), proposed
regularizer to make the trained model have unbiased mind. Because we cannot access the bias-
related information, [Sohoni et al.| (2020); |Seo et al.| (2022); |Creager et al.| (2021); Hwang et al.
(2022) proposed clustering based approaches, which divide the training dataset into bias-aligned
and bias-conflicting samples. Recently, utilizing an ensemble of fully connected layer, called the
bias-committee Kim et al.| (2022)) to detect the bias-conflicting samples was proposed. The authors
of Park et al.|(2023) proposed network pruning to reduce the impact of bias-aligned samples, and Kim
et al|(2023Db)) leveraged vision-language models to detect bias in the training dataset. On the other
side, the authors of [Li & Xu| (2021); Lang et al.| (2021); [Krishnakumar et al.| (2021) solves the
existance of bias in the training dataset, which is called bias identification problem.

Utilizing open dataset. Open datasets contain a wealth of divers samples but they are often unlabeled
or incorrectly labeled |[Li et al.[(2017). To harness the potential of this valuable resource, several works
have proposed strategies for its utilization. In|Wei et al.| (2021)) and |Wei et al.| (2022)), the authors
leveraged open datasets to address noisy labeling and class imbalance inssues, respectively. From a
self-supervised learning perspective, |[Kim et al.| (2023a) selected and utilized relevant datasets from
the open dataset pool. On the other hand, the availability of open datasets is assumed and used in open
set recognition |Chen et al.|(2021)); Scheirer et al.|(2012)); Bendale & Boult (2015); |Vaze et al.| (2021)),
webly supervised learning Chen & Gupta (2015)); |Li et al.| (2020), and semi-supervised learning |(Chen
et al.| (2020b); [Killamsetty et al.|(2021); |Saito et al.|(2021)).

7 CONCLUSION

In this work, we propose a way of leveraging open datasets to mitigate the dataset bias problem. This
is motivated by the fact that when we increase the quantity of bias-conflicting samples in the training
dataset, the model can be debiased more easily. To this end, we introduce an algorithm called ORBIS,
which consists of two major steps. First the proposed algorithm extracts relevant datasets from the
abundant irrelevant instances in the open dataset. Afterward, ORBIS runs the debiasing method with
contrastive loss which is computed based on the given training dataset and obtained relevant samples.
Here, the reason why we utilize unsupervised loss is that pseudo-labeling cannot cause performance
improvement due to their underline philosohpy. identifies bias-conflicting samples by generating
their pseudo-labels. Because the proposed method handles the open dataset, it can be readily applied
to previously proposed methods. We further analyze how this open dataset handling method can
enhance debiasing performance across various benchmarks. We believe that this open dataset-based
approach can serve as a powerful orthogonal research direction for mitigating dataset bias problem.
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Appendix
ORBIS: Open Dataset Can Rescue You from Dataset Bias

Due to the page limitations of the main manuscript, we provide detailed information in this sup-
plementary material as follows: (1) Manually selected samples for experiment in ?2)
Pseudo-code of the proposed algorithm erimental setting details, including
learning rate, trained model, and hyperparameters [Appendix C| (4) Component analysis, especially
the impact of the contrastive loss, open dataset, and relevant cases [Appendix D} (5) Hyperparame-
ter sensitivity [Appendix E] (6) Pseudo-labeling results on the FixMatch algorithm in [section 3]in
|Appendix H

A  MANUALLY SELECTED SAMPLES FOR EXPERIMENT IN [SECTION 3|
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(c) Bias-aligned samples Young/Female. (d) Bias-aligned samples O1d/Male.
Figure 4: Manully selected bias-conflicting/bias-aligned samples in the WebVision dataset for bFFHQ
dataset.

To evaluate the impact of relevant samples, we manually selected bias-conflicting samples from the
WebVision dataset. As depicted in[Figure 4} we provide examples of bias-conflicting and bias-aligned
samples selected from the WebVision |Li et al | dataset. Since the bias-conflicting and bias-
aligned types of the bFFHQ benchmark are Young/Mal, 0Old/Female and Old/Female ,
Young/Male, we manually selected 50 samples for each class of bias-conflicting samples and 100
samples for each class of bias-aligned samples.

B ALGORITHM DESCRIPTION

In this section, we describe the proposed algorithm in detail. The proposed algorithm is composed
of two main steps and preliminary step. In the preliminary step (Step 0), we train the model using
the open dataset. However, since we cannot obtain clean and task-related labels, we leverage self-
supervised learning, particularly SimCLR [Chen et al.| (20204). Subsequently, we extract features
from the training dataset Dy and obtain per-class centroid C.. Based on a predefined hyperparemeter
T, ORBIS selects a highly relevant sample set Dy from the open dataset Dopeq, Where the cosine
similarity betwee the per-class centroid and each sample in the open dataset is higher than 7. After
obtaining the relevant samples, we ultimately train the debiased model using a debiasing algorithm.
In this training, we utilize the contrastive learning loss Lo, for the union of Dy, U D,. The entire

procedure is described in

C EXPERIMENTAL DETAILS

We utilize two types of networks, ResNet-18 and ResNet-50 for the synthetically biased dataset, and
ResNet-50 for the real-world dataset, namely the CelebA dataset. As described in the main document,
for the ResNet-18 case, we follow the training recipe exactly as presented in a previous paper Lee
(2022). In short we train 50, 000 iterations with a mini-batch size of 64. The learning rate is
0.0001 and we apply weight decay with ratio of 0.1 every 10, 000 steps.
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Algorithm 1: ORBIS: Open dataset rescue you from dataset bias

Input: Training dataset D, Biased feature extractor f(x), Projection head h(f(x)), Linear
classifier g(f(x)).

Output: Debiased model f and g.

Initialize: All biased/debiased models, f, h, and g.

/* Step 0: Self-supervised Training */
Train model f () based on SimCLR self-supervised learning method.

/* Step 1: Select‘Relevant set Dy */

co = =gt where D = {(wy)ly = ¢ (w.9) € i) // equation [

D = U, DS, where DS, = {x|sim(C,, f(z)(x) > T V& € Dopen} // equation
and equation

/* Step 2: Training debised model*/
for epoch < E do
Compute L, (g(/(2))) on (z;,;) € Dy
Compute Lo, (h(f(xj))) on (xj) € Drelser // equation
Train f, h, g using £ = Liger + ALcon // equation [§
end

In the case of ResNet-50, we run training for 10 epochs for the bFFHQ and DnC dataset,s 50 epochs
for BAR and 3 epochs for the CelebA dataset. The reason for larger number of epochs for BAR is the
extremely smal ldataset size. In the cases of ResNet-50 except for CelebA, the learning rate is 0.0001
and the batch size remains identical to the ResNet-18 Case. We utilize learning rate of 0.00001 with
256 batch size for CelebA dataset.

D COMPONENT ANALYSIS

Table 6: Component analysis.

Option 05% 1% 2% 5%
Vanilla 55.64 60.96 69.00 82.88
Only Contrastive 56.60 62.80 72.03 83.21

Contrastive + Open (Random) | 56.62 62.20 70.63 83.42
Contrastive + Open (Relevant) | 59.23 64.43 73.17 84.32

To assess the impact of each component, we evaluate the model by removing individual components.
(1) Only Constrative: without leveraging open dataset, we can add contrastivee loss computed by using
the given dataset. It can give us information about the impact of using open dataset. (2) Contrative +
open (Random): when we exclude the relevant dataset selection, the open dataset can still be utilized
to compute the contrastive loss. In this case, we can check whether out-of-distribution samples,
i.e., irrelevant samples, are injected into the training procedure. (3) Contrastive + open (relevant): We
verify the impact of relevant samples. As described in[Table 6] we can conclude that every component
is necessary to achieve the best performance.

E HYPERPARAMETER SENSITIVITY

To assess the sensitivity of the hyperparameters we used, 7 and A\, we examine the performance
across various values of 7 and A. We train avanilla model on the bFFHQ dataset with a p = 0.5 bias-
conflicting ratio. As illustrated in ORBIS consistently demonstrates superior performance
compared to the case without ORBIS, represented by the black dotted line. This indicates that ORBI S
enhaces performance regardless of the values assigned to 7 and \.
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Figure 5: Hyperparameter Sensitivity

F RESULT OF FIXMATCH

LA

Figure 6: Pseudo-labeling results based on FixMatch.

Fixmatch (2020) is one of the well-known Semi-Supervised Learning (SSL) algorithms.
Like many recent SSL algorithms, FixMatch selects and assigns pseudo-labels to samples with high
confidence as a fundamental philosohpy. The detailed training loss for the unlabeled dataset is as

follows:
1 L8

b, = B ; L(max(qy) > 7)H (Gb, P (y[A(up)))-

Here, 7 is the threshold hyperparameter, g is the output of the weakly augmented sample, g is the
predicted label of g, = arg max g3, and H is the shannon entropy. In simpler terms, samples with
high confidence scores, where the maximum softmax value max g is greater than 7, are included in
the training procedure.

From this perspective, we plotted the samples with confidence scores higher than 7. As depicted
in[Figure 6] the sampled images primarily represent Young/Female and 01d/Male. This implieds
that the labeled samples are mainly bias-aligned samples, rather than bias-conflicting samples. In
other words, pseudo-labeling, especially confidence score-based approaches, struggle to identify
bias-conflictign samples. Consequently, these methods may not offer significant benefits from a
debiasing standpoint.
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